Фотон
Фотон — это частица света или квант света; частица с которой можно делать расчёты.
Фотоны всегда находятся в движении и в вакууме движутся с постоянной скоростью 2,998 x 10^8 м/с (это называется скоростью света и обозначается буквой c).
В марте 1905 года Эйнштейн создал квантовую теорию света, это была идея о том, что свет существует в виде крошечных частиц, которые он назвал фотонами.
Позже в том же году была расширена специальная теория относительности, в которой Эйнштейн доказал, что энергия (E) и материя (масса – m) связаны, и это соотношение стало самым знаменитым в физике: E=mc²; (напомним: c — скорость света).
Формулы фотона
Эти формулы являются наиболее важными.
Формула энергии кванта/фотона (формула Планка или Энергия кванта)
Энергия — это постоянная Планка, умноженная на частоту колебаний
E = h×v
Где:
- E — энергия фотона/кванта (в Дж – джоуль),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц).
Масса фотона
m = hv/c² = h/cλ
Где:
- m — масса фотона (в кг),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц),
- c = 3.10^8 (это скорость света в м/с),
- λ — длина световой волны (в метрах).
Примечание:
Фотоны всегда движутся со скоростью света. В состоянии покоя фотоны не существуют (т.е. можно сказать, что масса покоя равна нулю).
Формула массы фотона (m = h/cλ) была выведена из формулы эквивалентности массы и энергии (E = mc²), при этом было использовано также равенство с энергией Кванта (E = h×v).
Импульс фотона
p = hv/c = h/λ
Где:
- p — импульс фотона (в Н•с – ньютон-секунда),
- h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду),
- ν — частота колебаний света (в Гц – герц),
- c = 3.10^8 (это скорость света в м/с),
- λ — длина световой волны (в метрах).
Длина волны света, период и частота
Это ещё одно соотношение, которое может быть полезным в расчётах.
λ = cT = c/v
Где:
- λ — длина световой волны (в метрах),
- c = 3.10^8 (это скорость света в м/с),
- T — период световых колебаний (в секундах),
- ν — частота колебаний света (в Гц – герц).
Пример решения задачи с данными формулами
Определите энергию фотонов красного (λк = 0,76 мкм) света.
Известно:
λк = 0,76 мкм = 0,76 × 10^(–6) м
Решение:
Формула энергии фотонов: E = h×v
Где:
h — постоянная Планка,
v — частота света; из равенства λ = c/v выходит, что v = с/λ.
Таким образом, составляем равенство:
E = h × (с/λ) = hc / λ
Вспоминаем другие данные:
c = 3.10^8 (это скорость света в м/с)
h = 6,6.10^(–34) (постоянная Планка, в Дж.с – джоуль в секунду)
E = hc / λ = ((6,6.10^(–34) Дж.с) × (3.10^8 м/с)) / (0,76 × 10^(–6) м) = 2,6 × 10^(–19) Дж
Фотон является волной?
Фотон является одновременно частицей и волной. Согласно квантовой теории света Эйнштейна, энергия фотонов (E) равняется их частоте колебаний (v), умноженной на постоянную Планка (h); т.е. эта формула выглядит так: E = h×v.
Так он доказал, что:
- свет — это поток фотонов,
- энергия этих фотонов — это высота их частоты колебаний,
- интенсивность света соответствует количеству фотонов.
Таким образом, учёный объяснил, что поток фотонов действует и как волна, и как частица.
Узнайте также про:
- Нейтрино
- Теорию относительности
- Магнитную индукцию
- Полимер
- Теорию струн
Фотоны
-
Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.
-
Энергия фотона
-
Импульс фотона
-
Давление света
-
Двойственная природа света
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.
В результате исследования явлений, связанных с взаимодействием света и вещества (тепловое излучение и фотоэффект), физики пришли к выводу, что свет состоит из отдельных порций энергии — фотонов. Излучение света, его распространение и поглощение происходит строго этими порциями.
Фотоны обладают энергией и импульсом и могут обмениваться ими с частицами вещества (скажем, с электронами или атомами). При этом мы говорим о столкновении фотона и частицы. При упругом столкновении фотон меняет направление движения — свет рассеивается. При неупругом столкновении фотон поглощается отдельной частицей или совокупностью частиц вещества — так происходит поглощение света.
Словом, фотон ведёт себя как частица и поэтому — наряду с электроном, протоном, нейтроном и некоторыми другими частицами — причислен к разряду элементарных частиц.
к оглавлению ▴
Энергия фотона
Выражение для энергии фотона с частотой мы уже знаем:
(1)
Часто бывает удобно работать не с обычной частотой , а с циклической частотой .
Тогда вводят другую постоянную Планка «аш с чертой»:
Дж · с.
Выражение (1) для энергии фотона примет вид:
Фотон движется в вакууме со скоростью света и потому является релятивистской частицей: описывая фотон, мы должны привлекать формулы теории относительности. А там имеется такая формула для энергии тела массы , движущегося со скоростью :
(2)
Если предположить, что , то формула (2) приводит к бессмысленному заключению: энергия фотона должна быть бесконечной. Чтобы избежать этого противоречия, остаётся признать, что масса фотона равна нулю. Формула (2) позволяет сделать и более общий вывод: только безмассовая частица может двигаться со скоростью света.
к оглавлению ▴
Импульс фотона
Обладая энергией, фотон должен обладать и импульсом. Действительно, важнейшая формула теории относительности даёт связь энергии и импульса частицы:
(3)
Для фотона, имеющего нулевую массу, эта формула сводится к простому соотношению:
Отсюда для импульса фотона получаем:
(4)
Направление импульса фотона совпадает с направлением светового луча.
Учитывая, что отношение есть длина волны , формулу (4) можно переписать так:
(5)
В видимом диапазоне наименьшими значениями энергии и импульса обладают фотоны красного света — у них самая маленькая частота (и самая большая длина волны). При движении в сторону фиолетового участка спектра энергия и импульс фотона линейно возрастают с частотой.
к оглавлению ▴
Давление света
Свет оказывает давление на освещаемую поверхность. Такой вывод был сделан Максвеллом из теоретических соображений и получил экспериментальное подтверждение в знаменитых опытах П.Н. Лебедева. Если понимать
свет как поток фотонов, обладающих импульсом , то можно легко объяснить давление света и вывести формулу Максвелла.
Предположим, что на некоторое тело падает свет частоты . Лучи направлены перпендикулярно поверхности тела; площадь освещаемой поверхности равна (рис. 1).
Рич. 1. Давление света
Пусть — концентрация фотонов падающего света, то есть число фотонов в единице объёма.
За время на нашу поверхность попадают фотоны, находящиеся внутри цилиндра высотой .
Их число равно:
При падении света на поверхность тела часть световой энергии отражается, а часть — поглощается. Пусть — коэффициент отражения света; величина показывает, какая часть световой энергии отражается от поверхности. Соответственно, величина — это доля падающей энергии, поглощаемая телом.
Как мы теперь знаем, энергия света пропорциональна числу фотонов. Поэтому можно написать, какое количество фотонов (из общего числа ) отразится от поверхности, а какое — поглотится ею:
Импульс каждого падающего фотона равен . Поглощённый фотон испытывает неупругое столкновение с телом и передаёт ему импульс . Отражённый фотон после упругого столкновения меняет направление своего импульса на противоположное, и поэтому импульс, переданный телу отражённым фотоном, равен .
Таким образом, от каждого фотона, входящего в световой поток, тело получает некоторый импульс. Вот простая и очевидная причина того, что свет оказывает давление на освещаемую поверхность.
Суммарный импульс, полученный телом от падающих фотонов, равен:
На нашу поверхность действует сила , равная импульсу, полученному телом в единицу времени:
Давление света есть отношение этой силы к площади освещаемой поверхности:
(6)
Выражение имеет простой физический смысл: будучи произведением энергии фотона на число фотонов в единице объёма, оно равно энергии света в единице объёма, то есть объёмной плотности энергии . Тогда соотношение (6) приобретает вид:
Это и есть формула для давления света, теоретически выведенная Максвеллом (в рамках классической электродинамики) и экспериментально проверенная в опытах Лебедева.
к оглавлению ▴
Двойственная природа света
В результате рассмотрения всей совокупности оптических явлений возникает естественный вопрос: что же такое свет? Непрерывно распределённая в пространстве электромагнитная волна или поток отдельных частиц — фотонов? Теория и эксперименты приводят к заключению, что оба ответа должны быть утвердительными.
1. Явления интерференции и дифракции света, характерные для любых волновых процессов, не оставляют сомнений в том, что свет есть форма волнового движения материи.
Таким образом, мы должны признать: да, свет имеет волновую природу, свет — это электромагнитная волна.
2. Однако явления взаимодействия света и вещества (например, фотоэффект) указывают на то, что свет ведёт себя как поток отдельных частиц. Эти частицы — фотоны — ведут, так сказать, самостоятельный образ жизни, обладают энергией и импульсом, участвуют во взаимодействиях с атомами и электронами. Излучение света — это рождение фотонов.
Распространение света — это движение фотонов в пространстве. Отражение и поглощение света — это соответственно упругие и неупругие столковения фотонов с частицами вещества.
Все попытки истолковать указанные явления излучения и поглощения света в рамках волновых представлений классической физики окончились неудачей. Оставалось лишь согласиться с тем, что свет имеет корпускулярную природу (от латинского слова corpusculum — маленькое тельце, частица), свет — это совокупность фотонов, мчащихся в пространстве.
Таким образом, свет имеет двойственную, корпускулярно-волновую природу — он может проявлять себя то так, то эдак. В одних явлениях (интерференция, дифракция) на передний план выходит волновая природа, и свет ведёт себя в точности как волна. Но в других явлениях (фотоэффект) доминирует корпускулярная природа, и свет ведёт себя подобно потоку частиц.
Странно всё это, не правда ли? Но что поделать — так устроена природа. Мы, люди, живём среди макроскопических тел, и наше воображение оказалось не способным полноценно представить себе явления микромира.
Природа, однако, неизмеримо шире и богаче того, что может вместить в себя человеческое воображение. Признав это и руководствуясь не столько собственным воображением, сколько наблюдениями, результатами экспериментов и весьма изощрённой математикой, люди начали успешно создавать квантовую теорию микроскопических явлений и процессов.
О некоторых парадоксальных на первый взгляд — но тем не менее подтверждённых экспериментально! — выводах квантовой теории мы поговорим в следующем листке.
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Фотоны» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
07.05.2023
Фотон в современной физике считается разновидностью элементарных частиц. В частности, он представляет собой квант электромагнитного излучения (квант — неделимая частица чего-либо).
Энергия и импульс фотона
Фотоны обладают определенной энергией и импульсом. Когда свет испускается или поглощается, он ведет себя подобно не волне, а потоку частиц, имеющих энергию Е = hν, которая зависит от частоты. Оказалось, что порция света по своим свойствам напоминает то, что принято называть частицей. Поэтому свойства света, обнаруживаемые при его излучении и поглощении, стали называть корпускулярными. Сама же световая частица была названа фотоном, или квантом электромагнитного излучения.
Как частица, фотон обладает определенной порцией энергии, которая равна hν. Энергию фотона часто выражают не через частоту v, а через циклическую частоту:ω = 2πν
При этом в формуле для энергии фотона в качестве коэффициента пропорциональности (постоянной Планка) используется другая величина, обозначаемая ℏ и равная:
ℏ=h2π≈1,0545726·10−34 (Дж·с)
Учитывая это, формула для определения энергии фотона примет вид:
Е=ℏω
Согласно теории относительности, энергия частиц связана с массой следующим соотношением:
Е=mс2
Так как энергия фотона равна hν, то, следовательно, его масса m получается равной:
m=hνс2
У фотона нет собственной массы, поскольку он не может существовать в состоянии покоя. Появляясь, он уже имеет скорость света. Поэтому формула выше показывает только массу движущегося фотона.
По известной массе и скорости фотона можно найти его импульс:
p=mc=hνc=hλ
Внимание! Вектор импульса фотона всегда совпадает с направлением распространения луча света.
Чем больше частота ν, тем больше энергия Е и импульс р фотона и тем отчетливее свет проявляет свои корпускулярные свойства. Из-за того что постоянная Планка мала, энергия фотонов видимого излучения крайне незначительна. К примеру, фотоны, свойственные зеленому свету, имеют энергию, равную всего 4∙10–19 Дж. Несмотря на это, человеческий глаз способен различать изменение освещенности, даже если оно измеряется единичными квантами.
Пример №1. Каков импульс фотона, если длина световой волны λ = 5∙10–7 м?
Корпускулярно-волновой дуализм
Законы теплового излучения и фотоэффекта объясняются только при условии, если начать считать свет потоком частиц. Однако нельзя отрицать тот факт, что свету присущи такие явления как интерференция и дифракция света. Но эти явления встречаются только у волновых процессов. Поэтому в современной физике принято считать свет с дуализмом, иначе — двойственностью свойств.
Когда свет распространяется в средах, он проявляет волновые свойства. Когда он начинает взаимодействовать с веществом (поглощаться или излучаться), проявляются корпускулярные свойства (свойства частицы).
Гипотеза де Бройля
Длительное время электромагнитное поле представлялось как материя, которая распределена в пространстве непрерывно. Электроны же представлялись как очень маленькие частицы материи. Не нет ли здесь ошибки, обратной той, которая была допущена при определении света? Может быть, электрон и другие частицы тоже обладают волновыми свойствами. Такую мысль высказал в 1923 г. французский ученый Луи де Бройль.
Он предположил, что с движением частиц связано распространение некоторых волн. И ученому удалось найти длину волны этих волн. Связь длины волны с импульсом частицы оказалась точно такой же, как и у фотонов. Если длину волны обозначить через λ, а импульс — через р, то получится, что:
λ=hp
Эта формула носит название формулы де Бройля, которая является одной из основных в разделе квантовой физики.
В будущем волновые свойства частиц, о которых предположил де Бройль, были обнаружены экспериментально. Так, удалось получить дифракцию электронов и других частиц на кристаллах. В этих случаях получалась почти такая же картина, как в случае с рентгеновскими и другими лучами. И формула де Бройля также нашла экспериментальное доказательство. Волновые свойства микрочастиц описываются квантовой механикой.
Квантовая механика — раздел физики, изучающий теорию движения микрочастиц.
Внимание! Законы Ньютона в квантовой физике в большинстве случаем не могут быть применены.
Давление света
В 1873 г. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствия. Предсказанное Максвеллом существование светового давления было экспериментально подтверждено Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Оно оказалось чрезвычайно малым, около 4∙10-7 Па.
Световое давление, обусловленное солнечным излучением у поверхности Земли, составляет менее 0,0001 Па. Этим и объясняется тот факт, что в обычных условиях давление света заметным образом себя не проявляет. Но давлением света объясняет следующие факты:
- хвосты комет направлены от ядра кометы в сторону, противоположную Солнцу;
- изменение орбит искусственных спутников Земли.
Свет — это поток фотонов с импульсом:
p=mc
При поглощении веществом фотон перестает существовать, но импульс его, по закону сохранения импульса, не может исчезнуть бесследно. Он предается телу, значит, на тело действует сила.
Приведенное рассуждение будет абсолютно верным, если считать, что свет только веществом поглощается. Но разве это всегда так, свет еще может отражаться телами, а если тело прозрачно, то может проходить сквозь него. В реальных условиях свет частично отражается телом, частично поглощается, а если это, например, стекло, то свет проходит сквозь него. Как будет обстоять дело, если поверхность зеркальная? Возникает световое давление в данном случае?
Для простоты предположим, что свет падает перпендикулярно к поверхности зеркала. Мы знаем, что при абсолютном ударе какого-либо тела о стенку она получает импульс, модуль которого равен удвоенному модулю импульса тела, то есть 2mv. Отражаясь, фотон летит с той же скоростью, но в противоположном направлении. Значит, при отражении фотона от зеркала его импульс изменяется на 2mc. Такое же изменение импульса, но в противоположном направлении, получит зеркало. Импульс, получаемый телом при отражении фотона, будет в 2 раза больше импульса, получаемого телом при поглощении фотона.
Задание EF17985
За время t=4 с детектор поглощает N=6⋅105 фотонов падающего на него монохроматического света. Поглощаемая мощность P=5⋅10−14 Вт. Какова длина волны падающего света?
Ответ:
а) 0,4 мкм
б) 0,6 мкм
в) 520 нм
г) 780 нм
Алгоритм решения
1.Записать исходные данные.
2.Установить взаимосвязь между энергией фотонов и поглощаемой детектором мощностью.
3.Выполнить решение в общем виде.
4.Подставить известные данные и найти искомую величину.
Решение
Запишем исходные данные:
• Количество фотонов: N = 6∙105 шт.
• Поглощенная мощность: P = 5∙10–14 Вт.
Вся энергия фотонов будет поглощена детектором. Согласно закону сохранения энергии:
Nhν=Pt
Длина волны определяется формулой:
λ=cν
Отсюда частота равна:
ν=cλ
Подставим это выражение в записанный закон сохранения энергии:
Nhcλ=Pt
Отсюда длина волны равна:
Ответ: б
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17986
При изучении давления света проведены два опыта с одним и тем же лазером. В первом опыте свет лазера направляется на пластинку, покрытую сажей, а во втором – на зеркальную пластинку такой же площади. В обоих опытах пластинки находятся на одинаковом расстоянии от лазера и свет падает перпендикулярно поверхности пластинок.
Как изменится сила давления света на пластинку во втором опыте по сравнению с первым? Ответ поясните, указав, какие физические закономерности Вы использовали для объяснения.
Алгоритм решения
1.Описать процессы, происходящие во время обоих опытов.
2.С помощью физических формул установить, как изменяется сила давления света.
Решение
В обоих опытах происходит поглощение световой волны. Этот процесс можно рассматривать как поглощение за время t большого числа световых квантов — N >>1 (фотонов). Фотоны поглощаются пластинкой. Причем каждый фотон передает этой пластинке свой импульс, равный:
pф=hνc
Поэтому импульс пластинки становится равным сумме импульсу всех поглощенных фотонов:
pп=Nhνc
В результате поглощения света пластинкой, покрытой сажей, она приобретает за время t импульс pп в направлении распространения света от лазера. Согласно закону изменения импульса, тела в инерциальной системе отсчета скорость изменения импульса тела равна силе, действующей на него со стороны других тел или полей:
F1=pпt=Nthνc
В результате отражения света от зеркальной пластины отраженный фотон имеет импульс, противоположный импульсу фотона падающей волны:
pф=∣∣−pфп∣∣
Поэтому отраженная волна будет иметь импульс:
pов=−N´pф=−N´hνc
N´ — количество отраженных фотонов.
В итоге за время t импульс волны под действием зеркальной пластинки изменился. Это изменение будет равно разности импульса отраженной волны и импульса пластинки:
Δp=pов−pп=−Npф−N´pф=−(N+N´)pф
Согласно закону сохранения импульса, импульс системы, состоящей из световой волны и зеркальной пластинки, сохраняется:
Δ(pп+pпл)=0
Отсюда:
Δpпл=Δpп
Но изменение импульса тела в инерциальной системе отсчета происходит только под действием других тел или полей и характеризуется силой:
F2=pплt=N+N´thνc
Если зеркала отражает хорошо, то N ≈ N´. Тогда:
F2≈2F1
Отсюда видно, что сила давления света увеличится вдвое.
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18201
Излучением лазера с длиной волны 3,3⋅10−7 м за время 1,25⋅104 с был расплавлен лёд массой 1 кг, взятый при температуре 0 °С, и полученная вода была нагрета на 100 °С. Сколько фотонов излучает лазер за 1 с? Считать, что 50% излучения поглощается веществом.
Алгоритм решения
1.Записать исходные данные.
2.Установить, какое количество тепла было сообщено льду для его расплавления и нагревания до температуры кипения.
3.Установить, какая энергия была выделена лазером при условии, что лишь половина этой энергии была сообщена льду.
4.Из полученного выражения выразить количество фотонов, излученных лазером за время t.
5.Записать формулу для количества фотонов, выделяемых за время 1 с.
6.Подставить известные данные и вычислить искомую величину.
Решение
Запишем не только те данные, что есть в условии задачи, но и табличные данные, которые нам понадобятся в ходе решения задачи:
• Удельная теплота плавления льда: λльда = 3,4∙105 Дж/кг.
• Удельная теплоемкость воды: c = 4200 Дж/(кг∙оС).
• Начальная температура льда/воды: t1 = 0 оС.
• Конечная температура воды: t2 = 100 оС.
• Коэффициент полезного действия: η = 50%.
• Длина световой волны: λсвета = 3,3∙10–7.
• Время проведения всего опыта: t = 1,25∙104.
Чтобы лед расплавился, а образовавшаяся вода нагрелась до температуры кипения, нужно сообщить ему следующее количество энергии:
Q=Q1+Q2=mλльда+mc(t2−t1)
Так как КПД равен 50% (0,5), то это количество теплоты равно половине энергии, выделенной лазером:
Q=ηE
mλльда+mc(t2−t1)=ηE
Энергия, выделенная лазером, равна сумме энергий каждого из излученных фотонов, количество которых будет равно N:
E=Nhν
Но частота световой волны равна:
ν=cλсвета
Тогда:
E=Nhcλсвета
Отсюда:
Nhcλсвета
Теперь мы можем записать:
mλльда+mc(t2−t1)=ηNhcλсвета
Выразим количество излученных фотонов за все время:
N=λсвета(mλльда+mc(t2−t1))ηhc
Если разделить это выражение на время проведения опыта, то мы найдем количество фотонов, излученных за 1 секунду:
N1с=λсвета(mλльда+mc(t2−t1))ηhct
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 2.7k
То, что мы знаем — ограничено, а то, что не знаем — бесконечно…
В вакууме энергия и импульс фотона зависят только от его частоты мю (или, что эквивалентно, от длины волны лямбда = скорость света в вакууме/мю ):
Энергия же фотонов равна…
E = h*мю, где h — постоянная Планка…
Выразите из формулы лямбда = скорость света в вакууме/мю мю (частоту) и подставьте в формулу для энергии…
Сходите сюда…
tvsh2004.narod.ru/problems/quants.html
daranton надо найти количество. формула будет такая Nhc/лямбда=Е
То, что мы знаем — ограничено, а то, что не знаем — бесконечно…
Dtv-93
daranton надо найти количество. формула будет такая Nhc/лямбда=Е
Как она у Вас получилась…???
ну это школьный курс физики, количество фотонов зависит от интенсивности падающего света, т.е. энергии
То, что мы знаем — ограничено, а то, что не знаем — бесконечно…
Dtv-93
ну это школьный курс физики, количество фотонов зависит от интенсивности падающего света, т.е. энергии
Где Вы эту формулу откопали…нигде такой нет…???
Киньте ссылочку по этой теме…мне тоже интересно…как эта формула получается…???
я ее не откапывал, я ее знал с уроков физики, сейчас поищу, может найду
То, что мы знаем — ограничено, а то, что не знаем — бесконечно…
Dtv-93
я ее не откапывал, я ее знал с уроков физики, сейчас поищу, может найду
Если есть конспект с урока…скиньте на моё мыло пожалуйста…???
мы к сожалению не писали конспектов на уроках, еще есть формула числа электронов при фотоэффекте: Ne=It, где e=1,6*10^(-19), I сила тока, t время
То, что мы знаем — ограничено, а то, что не знаем — бесконечно…
Dtv-93 мы к сожалению не писали конспектов на уроках, еще есть формула числа электронов при фотоэффекте: Ne=It, где e=1,6*10^(-19), I сила тока, t время
Меня больше интересует формула для нахождения количества фотонов…
энергия прямо пропорциональна количеству порций этой энергии, отсюда получаем указанную выше формулу
То, что мы знаем — ограничено, а то, что не знаем — бесконечно…
Dtv-93
энергия прямо пропорциональна количеству порций этой энергии, отсюда получаем указанную выше формулу
Так сказать…всё равно что ничего не сказать…
Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. (с)Э. Кольман
Тоже мне проблема….
Энергия одного фотона Ef = c*h/l, где c — скорость света, h — постоянная планка, а l — длина волны.
Пусть в нашей волне N фотонов, тогда их суммарная энергия даст энергию волны E, т.е. Ef*N = E => N = E/Ef = (E*l)/(c*h)
То, что мы знаем — ограничено, а то, что не знаем — бесконечно…
Heor
А где можно посмотреть материал по этой теме…дайте ссылочку пожалуйста…???
В этой статье будем определять концентрацию фотонов в световом луче, и количество фотонов, падающих за определенное время на поверхность известной площади.
Задача 1.
Рубиновый лазер дает импульс монохроматического излучения с длиной волны А. Определить концентрацию фотонов в пучке, если мощность излучения лазера МВт, а площадь сечения луча м.
Концентрация – это количество фотонов в объеме. Объем найдем как . Количество фотонов определим как
Определим теперь концентрацию:
Ответ: 1/м.
Задача 2. Сколько квантов излучения падает за время с на поверхность площадью см, если ее облучают потоком гамма-лучей с длиной волны см, мощность которого на площадь см составляет Вт?
Число фотонов можно найти как:
Число фотонов, падающих на единицу поверхности:
Мощность на площадь можно выразить как , тогда
Ответ:
Задача 3.
Сколько гамма-квантов падает ежесекундно на поверхность, которую облучают гамма-лучами мощностью Вт и длиной волны м?
Число фотонов, падающих на единицу поверхности:
Число фотонов можно найти как:
А за время :
Ответ: 1/см с
Задача 4.
Точечный источник света мощностью испускает свет с длиной волны . Сколько фотонов падает за время на маленькую площадку площадью , расположенную перпендикулярно к падающим лучам, на расстоянии от источника?
Число фотонов, падающих на единицу поверхности:
Но источник излучает во все стороны, то есть лучи образуют сферу, а площадь площадки относится к площади сферы как , тогда количество квантов, попавших «в нужное место» равно
Ответ:
Задача 5.
Мощность точечного источника монохроматического излучения с длиной волны мкм Вт. Определить число фотонов, падающих за 1 с на см площади, расположенной перпендикулярно лучам на расстоянии м.
По аналогии с предыдущей задачей
Ответ: .