2) Принять предположение о равновероятности (равновозможности) всех этих исходов;
3) Найти количество n(а) тех исходов опыта, в которых наступает событие а;
4) Найти частное , оно и будет равно вероятности событияА.
Принято
вероятность события А
обозначать: Р(А).
Объяснение
такого обозначения очень простое: слово
«вероятность» по-французски – probabilite,
по-английски
– probability.
В обозначении
используется первая буква слова.
Используя
это обозначение, вероятность события
А
по классической схеме можно найти с
помощью формулы
.
Часто все пункты
приведенной классической вероятностной
схемы выражают одной довольно длинной
фразой.
КЛАССИЧЕСКОЕ
ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ Вероятностью
события А
при
проведении некоторого испытания называют
отношение числа исходов, в результате
которых наступает событие А, к общему
числу всех равновозможных между собой
исходов этого испытания.
Пример
2. Найти
вероятность того, что при одном бросании
игрального кубика выпадет: а) 4; б) 5; в)
четное число очков; г) число очков,
большее 4; д) число очков, не кратное
трем.
Решение.
Всего имеется N
= 6 возможных
исходов: выпадение грани куба с числом
очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем,
что ни один из них не имеет никаких
преимуществ перед другими, т. е. принимаем
предположение
о равновероятности
этих исходов.
а)
Ровно в одном из исходов произойдет
интересующее нас событие А – выпадение
числа 4. Значит, N(А)
= 1 и
.
б) Решение и ответ
такие же, как и в предыдущем пункте.
в)
Интересующее нас событие В
произойдет
ровно в трех случаях, когда выпадет
число очков 2, 4 или 6. Значит, N(B)
= 3 и
.
г)
Интересующее нас событие С произойдет
ровно в двух случаях, когда выпадет
число очков 5 или 6. Значит, N(C)
= 2 и
.
д)
Из шести возможных выпавших чисел четыре
(1, 2, 4, и 5) не кратны трем, а остальные два
(3 и 6) делятся на три. Значит, интересующее
нас событие наступает ровно в четырех
из шести возможных и равновероятных
между собой исходах опыта. Поэтому в
ответе получается
.
Ответ:
а)
;
б);
в);
г);
д).
Реальный
игральный кубик вполне может отличаться
от идеального (модельного)
кубика,
поэтому для описания его поведения
требуется более точная и детальная
модель, учитывающая преимущества одной
грани перед другой, возможное наличие
магнитов и т. п. Но «дьявол кроется в
деталях», а большая точность ведет, как
правило, к большей сложности, и получение
ответа становится проблемой. Мы же
ограничиваемся рассмотрением простейшей
вероятностной модели, где все возможные
исходы равновероятны.
Замечание
1. Рассмотрим
еще пример. Был задан вопрос: «Какова
вероятность выпадения тройки при одном
бросании кубика?» Ученик ответил так:
«Вероятность равна 0,5». И объяснил свой
ответ: «Тройка или выпадет, или нет.
Значит, всего есть два исхода и ровно в
одном наступает интересующее нас
событие. По классической вероятностной
схеме получаем ответ 0,5». Есть в этом
рассуждении ошибка? На первый взгляд –
нет. Однако она все же есть, причем в
принципиальном моменте. Да, действительно,
тройка или выпадет, или нет, т. е. при
таком определении исхода бросания N
= 2. Правда и
то, что N(А)
= 1 и уж,
разумеется, верно, что
= 0,5, т.е. три пункта вероятностной схемы
учтены, а вот выполнение пункта 2) вызывает
сомнения. Конечно, с чисто юридической
точки зрения, мы имеем право считать,
что выпадение тройки равновероятно ее
невыпадению. Но вот можем ли мы так
считать, не нарушая свои же естественные
предположения об «одинаковости» граней?
Конечно, нет! Здесь мы имеем дело с
правильным рассуждением внутри некоторой
модели. Только вот сама эта модель
«неправильная», не соответствующая
реальному явлению.
Замечание
2. Рассуждая
о вероятности, не упускайте из виду
следующее важное обстоятельство. Если
мы говорим, что при бросании кубика
вероятность выпадения одного очка равна
,
это совсем не значит, что, кинув кубик
6 раз, вы получите одно очко ровно один
раз, бросив кубик 12 раз, вы получите одно
очко ровно два раза, бросив кубик 18 раз,
вы получите одно очко ровно три раза и
т. д. Слововероятно
носит
предположительный характер. Мы
предполагаем, что,
скорее всего,
может произойти. Вероятно, если мы бросим
кубик 600 раз, одно очко выпадет 100 раз
или около 100. Если у вас будет время и
желание, проведите эксперимент: бросьте
игральный кубик, например, 60 раз и
составьте таблицу выпадений очков 1, 2,
3, 4, 5, 6. Скорее всего (вероятнее
всего), все
числа в вашей таблице будут около 10.
Пример
3. Найти
вероятность того, что при двукратном
бросании игрального кубика произведение
выпавших очков будет: а) кратно 5; б)
кратно 6.
Решение.
При каждом из двух бросаний кубика
возможны 6 исходов. Предполагается, что
эти два испытания независимы
друг от
друга. По правилу умножения получаем,
что данный опыт имеет 6 • 6 = 36 исходов.
Будем действовать по классической
вероятностной схеме, т. е. считать, что
все N = 36
исходов
равновероятны между собой.
Все 36 исходов можно
перечислить. Например, с помощью таблицы.
В данном случае все исходы – это пары
(1; 1), (1; 2), …, (1; 6), (2; 1), (2; 2), …, (6; 5), (6; 6).
а) Если на первом
месте стоит 5, то при любой второй цифре
их произведение кратно 5. Получается
шесть вариантов: (5; 1), (5; 2), (5; 3), (5; 4), (5;
5), (5; 6). Еще шесть вариантов получается,
если 5 стоит на втором месте. Так как 5 –
простое число, то других вариантов нет.
Вроде
бы, ответ 6 + 6 = 12. Но один результат (5; 5)
мы посчитали дважды.
Значит,
интересующее нас событие А
наступает
ровно в 11 из возможных 36 равновероятных
между собой исходах, т. е. N(А)
= 11, поэтому
.
б)
Если на первом или на втором месте стоит
6, то произведение выпавших чисел делится
на 6, а всего таких вариантов, как и в
случае а), будет 11. Но произведение
выпавших чисел будет кратно 6 в тех
случаях, когда одно из чисел, отличных
от 6, — четное, а другое кратно 3. Перечислим
благоприятные варианты: (2; 3), (4; 3), (3; 2),
(3; 4) – всего 4 варианта. Добавив их к
указанным выше 11 вариантам, получим 15
благоприятных исходов, т.е. N(А)
= 15. Значит,
.
Ответ:
а)
,
б)
.
Задачи
на отыскание вероятностей случайных
событий «в два с половиной раза» сложнее
задач по комбинаторике. Сначала мы
используем комбинаторику при нахождении
N
– количества всех исходов опыта. Во
второй раз комбинаторика нужна при
нахождении N(А).
При этом во
второй раз – это уже более сложная
комбинаторика. Наконец, надо еще уметь
вычислить значение дроби. Вот и получается
«две с половиной комбинаторики».
Теория
вероятностей возникла в XVII
веке при анализе различных азартных
игр. Неудивительно поэтому, что первые
примеры носят игровой характер. От
примеров с игральными кубиками перейдем
к случайному вытаскиванию игральных
карт из колоды.
Пример
4. Из колоды
в 36 карт случайным образом одновременно
вытаскивают 3 карты. Какова вероятность
того, что среди них нет пиковой дамы?
Решение.
У нас имеется множество из 36 элементов.
Мы производим выбор трех элементов,
порядок которых не важен. Значит, возможно
получение N
=
исходов. Будем действовать по классической
вероятностной схеме, т. е. предположим,
что все эти исходы равновероятны.
Среди
всех N =исходов нам следует сосчитать те, в
которых нет пиковой дамы (событиеА).
Отложим даму
пик в сторону, и из оставшихся 35 карт
будем выбирать 3 карты. Получатся все
интересующие нас варианты. Значит, N(А)
=
.
Осталось
вычислить нужную вероятность по
классическому определению:
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).
Зачем нужна теория вероятности
Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.
Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.
В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.
Основные понятия теории вероятности
Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.
Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.
Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.
События А и В называется несовместными, если они не могут произойти одновременно.
Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .
Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .
Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.
- Вероятность принимает значения на отрезке от 0 до 1, т.е. .
- Вероятность невозможного события равна 0, т.е. .
- Вероятность достоверного события равна 1, т.e. .
- Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. .
Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.
Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .
Ответ получаем по формуле .
Пример задачи из ЕГЭ по математике по определению вероятности
На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?
Решение.
Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:
Ответ: 0,4
Независимые, противоположные и произвольные события
Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.
События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.
Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .
Теоремы сложения и умножения вероятностей, формулы
Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .
Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .
Последние 2 утверждения называются теоремами сложения и умножения вероятностей.
Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.
Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается “шесть факториал”.
В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .
Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .
В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам
В нашем случае .
И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:
В нашем случае .
Примеры решения задач из ЕГЭ по математике на определение вероятности
Задача 1. Из сборника под ред. Ященко.
На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.
Решение:
.
Ответ: 0,3.
Задача 2. Из сборника под ред. Ященко.
В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.
Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:
Ответ: 0,98.
Задача 3.
Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.
Решение:
Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.
Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:
.
Ответ: 0,06.
Задача 4.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение.
Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:
Ответ: 0,35.
Задача 5.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.
Тогда укажем варианты таких событий. Примем обозначения: – лампочка горит, – лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”: , где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно: .
Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .
Ответ: 0,975608.
Еще одну задачку вы можете посмотреть на рисунке:
Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.
❓ Что такое теория вероятностей?
Теория вероятностей использует случайные величины и распределения вероятностей для математической оценки неопределенных ситуаций. Понятие вероятности используется для присвоения числового описания вероятности наступления события. Вероятность можно определить как число благоприятных исходов, деленное на общее число возможных исходов события.
Определение теории вероятностей
Теория вероятностей – это область математики и статистики, которая занимается определением вероятностей, связанных со случайными событиями. Существует два основных подхода к изучению теории вероятностей: теоретический и экспериментальный. Теоретическая вероятность определяется на основе логических рассуждений без проведения экспериментов. В отличие от нее, экспериментальная вероятность определяется на основе исторических данных путем проведения повторных экспериментов.
Пример теории вероятностей
Предположим, нам необходимо определить вероятность выпадения числа 4 при бросании игральной кости. Число благоприятных исходов равно 1. Возможные исходы игральной кости – {1, 2, 3, 4, 5, 6}. Из этого следует, что всего существует 6 исходов. Таким образом, вероятность выпадения 4 при бросании игральной кости, используя теорию вероятности, можно вычислить как 1 / 6 ≈ 0,167.
🎲 Основы теории вероятностей
Мы можем понять эту область математики с помощью нескольких основных терминов, напрямую связанных с теорией вероятностей.
Случайный эксперимент
Случайный эксперимент в теории вероятностей – это испытание, которое повторяется несколько раз для получения четко определенного набора возможных результатов. Подбрасывание монеты является примером случайного эксперимента.
Пространство выборки
Пространство выборки можно определить как множество всех возможных исходов, полученных в результате проведения случайного эксперимента. Например, пространство выборки при подбрасывании симметричной монеты (fair coin), стороны которой – это орел и решка.
Событие
Теория вероятностей определяет событие как набор исходов эксперимента, который образует подмножество пространства выборки.
Примеры событий:
- Независимые – те, на которые не влияют другие события, являются независимыми.
- Зависимые – те, на которые влияют другие события.
- Взаимоисключающие – события, которые не могут произойти в одно и то же время.
- Равновероятные – два или более события, которые имеют одинаковые шансы произойти.
- Исчерпывающие – это события, которые равны выборочному пространству эксперимента.
Случайная величина
В теории вероятностей случайную переменную можно определить как величину, которая принимает значение при всех возможных исходах эксперимента.
Существует два типа случайных величин:
- Дискретная случайная величина – принимает точные значения, такие как 0, 1, 2…. Описывается кумулятивной функцией распределения и функцией массы вероятности.
- Непрерывная случайная величина – переменная, которая может принимать бесконечное число значений. Для определения характеристик этой переменной используются кумулятивная функция распределения и функция плотности вероятности.
Вероятность
Вероятность мы можем определить как численную вероятность наступления события. Вероятность того, что событие произойдет, всегда лежит между 0 и 1. Это связано с тем, что число желаемых исходов никогда не может превысить общее число исходов события. Теоретическая вероятность и эмпирическая вероятность используются в теории вероятностей для измерения шанса наступления события.
Условная вероятность
Ситуация, когда необходимо определить вероятность наступления события, притом что другое событие уже произошло.
Обозначается как P(A | B).
Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», на котором ты:
- Усвоишь специальную терминологию и сможешь читать статьи по Data Science без постоянных обращений к поисковику.
- Подготовишься к успешной сдачи вступительных экзаменов в Школу анализа данных Яндекс.
- Овладеешь математическим аппаратом, который необходим, чтобы стать специалистом в Data Science.
Ожидание
Ожидание случайной величины X можно определить как среднее значение результатов эксперимента, проводимого многократно. Ожидание обозначается как E[X]. Также известно как среднее значение случайной величины.
Дисперсия
Дисперсия – это мера, которая показывает, как распределение случайной величины изменяется относительно среднего значения. Дисперсия определяется как среднее квадратичное отклонение от среднего значения случайной величины. Обозначается как Var[X].
Функция распределения теории вероятностей
Распределение вероятностей или кумулятивная функция распределения – это функция, которая моделирует все возможные значения эксперимента, используя случайную переменную. Распределение Бернулли и биномиальное распределение – это примеры дискретных распределений вероятностей. Например, нормальное распределение представляет собой пример непрерывного распределения.
Массовая функция вероятности
Массовая функция вероятности определяется как вероятность того, что дискретная случайная величина будет в точности равна определенному значению.
Функция плотности вероятности
Функция плотности вероятности – это вероятность того, что непрерывная случайная величина принимает множество возможных значений.
Формулы теории вероятностей
В теории вероятностей существует множество формул, которые помогают рассчитать различные вероятности, связанные с событиями.
Наиболее важные формулы:
- Теоретическая вероятность: Число благоприятных исходов / Число возможных исходов.
- Эмпирическая вероятность: Число случаев, когда событие происходит / Общее число испытаний.
- Правило сложения: P(A ∪ B) = P(A) + P(B) – P(A∩B), где A и B – события.
- Правило комплементарности: P(A’) = 1 – P(A). P(A’) означает вероятность того, что событие не произойдет.
- Независимые события: P(A∩B) = P(A) ⋅ P(B).
- Условная вероятность: P(A | B) = P(A∩B) / P(B).
- Теорема Байеса: P(A | B) = P(B | A) ⋅ P(A) / P(B).
- Массовая функция вероятности: f(x) = P(X = x).
- Функция плотности вероятности: p(x) = p(x) = dF(x) / dx, где F(x) – кумулятивная функция распределения.
- Ожидание непрерывной случайной величины: ∫xf(x)dx, где f(x) является МФВ (Массовой функцией вероятности).
- Ожидание дискретной случайной величины: ∑xp(x), где p(x) – это ФПВ (Функцией плотности вероятности).
- Дисперсия: Var(X) = E[X2] – (E[X])2.
Применение теории вероятностей
Теория вероятностей используется во многих областях и помогает оценить риски, которые связаны с теми или иными решениями. Некоторые из направлений, где применяют теорию вероятностей:
- В финансовой отрасли теория вероятностей используется для создания математических моделей фондового рынка с целью прогнозирования будущих тенденций. Это помогает инвесторам вкладывать средства в наименее рискованные активы, которые дают наилучший доход.
- В потребительской индустрии теория вероятностей используется для снижения вероятности неудачи при разработке продукта.
- Казино использует теорию вероятностей для разработки азартных игр с максимизацией своей прибыли.
🏋️ Практические задания
Задача 1: При бросании двух игральных костей, какова вероятность того, что выпадет комбинация, сумма которой будет равна 8?
При бросании двух игральных костей существует 36 возможных исходов. Для получения суммы, равной 8, существует 5 благоприятных исходов: [(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)]. Используя формулы теории вероятностей: Вероятность = Число благоприятных исходов / общее число возможных исходов = 5 / 36. Ответ: Вероятность получения суммы 8 при бросании двух игральных костей равна 5 / 36.
Задача 2: Какова вероятность вытащить карту королеву из колоды?
Колода карт имеет 4 масти. Каждая масть состоит из 13 карт. Таким образом, общее число возможных исходов = (4) * (13) = 52. Может быть, 4 королевы, по одной из каждой масти. Следовательно, количество благоприятных исходов = 4. Карточная вероятность = 4 / 52 = 1 / 13. Ответ: Вероятность получить королеву из колоды карт равна 1 / 13
Задача 3: Из 10 человек 3 купили карандаши, 5 купили тетради, а 2 купили и карандаши, и тетради. Если покупатель купил тетрадь, какова вероятность того, что он также купил карандаш?
Используя понятие условной вероятности, P(A | B) = P(A∩B) / P(B). Пусть A – событие, когда люди покупают карандаши, а B – событие, когда люди покупают тетради. P(A) = 3 / 10 = 0,3P(B) = 5 / 10 = 0,5P(A∩B) = 2 / 10 = 0,2. Подставим полученные значения в приведенную формулу, P(A | B) = 0,2 / 0,5 = 0,4. Ответ: Вероятность того, что покупатель купил карандаш, при условии, что он купил блокнот, равна 0,4.
В заключение
Подведем итоги:
- Теория вероятностей – это раздел математики, в котором рассматриваются вероятности случайных событий.
- Понятие вероятности объясняет возможность наступления того или иного события.
- Значение вероятности всегда лежит между 0 и 1.
- В теории вероятностей все возможные исходы случайного эксперимента составляют пространство выборки.
- Теория вероятностей использует такие важные понятия, как случайные величины и кумулятивные функции распределения для моделирования случайного события. Сюда же относится определение различных вероятностей, связанных с этим.
Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», который включает в себя:
- 47 видеолекций и 150 практических заданий.
- Консультации с преподавателями курса.
Загрузить PDF
Загрузить PDF
Вероятность показывает возможность того или иного события при определенном количестве повторений.[1]
Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.
-
1
Выберите событие со взаимоисключающими результатами. Вероятность можно рассчитать лишь в том случае, если рассматриваемое событие либо происходит, либо не происходит. Нельзя одновременно получить какое-либо событие и противоположный ему результат. Примером таких событий служат выпадение 5 на игровом кубике или победа определенной лошади на скачках. Пять либо выпадет, либо нет; определенная лошадь либо придет первой, либо нет.[2]
Например:» невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.
-
2
Определите все возможные события и результаты, которые могут произойти. Предположим, необходимо определить вероятность того, что при броске игрового кубика с 6 цифрами выпадет тройка. «Выпадение тройки» является событием, и поскольку мы знаем, что может выпасть любая из 6 цифр, число возможных исходов равно шести. Таким образом, мы знаем, что в данном случае есть 6 возможных результатов и одно событие, вероятность которого мы хотим определить. Ниже приведено еще два примера.[3]
- Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? В данном случае событием является «выбор дня, который приходится на выходные», а число возможных исходов равно количеству дней недели, то есть семи.
- Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Событием является «вынуть красный шар», а число возможных исходов равно общему количеству шаров, то есть двадцати.
-
3
Поделите число событий на количество возможных исходов. Таким образом вы определите вероятность одиночного события. Если мы рассматриваем случай выпадения 3 при бросании кубика, число событий равно 1 (тройка находится лишь на одной грани кубика), а общее количество исходов равно 6. В результате получаем соотношение 1/6, 0,166, или 16,6 %. Вероятность события для двух приведенных выше примеров находится следующим образом:[4]
- Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? Число событий равно 2, так как в одной неделе два выходных дня, а общее количество исходов составляет 7. Таким образом, вероятность равна 2/7. Полученный результат можно записать также как 0,285 или 28,5 %.
- Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Число событий равно 5, поскольку в коробке 5 красных шаров, а общее количество исходов составляет 20. Находим вероятность: 5/20 = 1/4. Полученный результат можно записать также как 0,25 или 25 %.
-
4
Сложите вероятности всех возможных событий и проверьте, получится ли в сумме 1. Суммарная вероятность всех возможных событий должна составлять 1, или 100 %. Если у вас не получится 100 %, скорее всего, вы допустили ошибку и пропустили одно или несколько возможных событий. Проверьте свои вычисления и убедитесь, что вы учли все возможные исходы.[5]
- Например, вероятность выпадения 3 при бросании игрового кубика составляет 1/6. При этом вероятность выпадения любой другой цифры из пяти оставшихся также равна 1/6. В результате получаем 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6, то есть 100 %.
- Если вы, например, забудете о цифре 4 на кубике, сложение вероятностей даст вам лишь 5/6, или 83 %, что не равно единице и указывает на ошибку.
-
5
Представьте вероятность невозможного исхода в виде 0. Это означает, что данное событие не может произойти, и его вероятность равна 0. Таким образом вы сможете учесть невозможные события.[6]
- Например, если бы вы вычисляли вероятность того, что в 2020 году Пасха придется на понедельник, то получили бы 0, поскольку Пасха всегда празднуется в воскресенье.
Реклама
-
1
При рассмотрении независимых событий вычисляйте каждую вероятность отдельно. После того как вы определите, каковы вероятности событий, их можно будет рассчитать отдельно. Предположим, необходимо узнать вероятность того, что при бросании кубика два раза подряд выпадет 5. Мы знаем, что вероятность выпадения одной пятерки составляет 1/6, и вероятность выпадения второй пятерки также равна 1/6. Первый исход не связан со вторым.[7]
- Несколько выпадений пятерок называются независимыми событиями, поскольку то, что выпадет первый раз, не влияет на второе событие.
-
2
Учитывайте влияние предыдущих исходов при расчете вероятности для зависимых событий. Если первое событие влияет на вероятность второго исхода, говорят о расчете вероятности зависимых событий. Например, если вы выбираете две карты из колоды, состоящей из 52 карт, после взятия первой карты состав колоды изменяется, что влияет на выбор второй карты. Чтобы рассчитать вероятность второго из двух зависимых событий, необходимо вычесть 1 из количества возможных результатов при расчете вероятности второго события.[8]
-
Пример 1. Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.
- После этого вероятность того, что вторая карта окажется трефовой масти, составляет 12/51, поскольку одной трефовой карты уже нет. Это объясняется тем, что первое событие влияет на второе. Если вы вытянули тройку треф и не положили ее обратно, в колоде будет на одну карту меньше (51 вместо 52).
-
Пример 2. В коробке 4 синих, 5 красных и 11 белых шаров. Если наугад вынуть три шара, какова вероятность того, что первый окажется красным, второй синим, а третий белым?
- Вероятность того, что первый шар окажется красным, составляет 5/20, или 1/4. Вероятность того, что второй шар будет синим, равна 4/19, поскольку в коробке осталось на один шар меньше, но по прежнему 4 синих шара. Наконец, вероятность того, что третий шар окажется белым, составляет 11/18, так как мы уже вынули два шара.
-
Пример 1. Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.
-
3
Перемножьте вероятности каждого отдельного события. Независимо от того, имеете ли вы дело с независимыми или зависимыми событиями, а также количества исходов (их может быть 2, 3 и даже 10), можно рассчитать общую вероятность, умножив вероятности всех рассматриваемых событий друг на друга. В результате вы получите вероятность нескольких событий, следующих одно за другим. Например, стоит задача Найти вероятность того, что при бросании кубика два раза подряд выпадет 5. Это два независимых события, вероятность каждого из которых равна 1/6. Таким образом, вероятность обоих событий составляет 1/6 x 1/6 = 1/36, то есть 0,027, или 2,7 %.[9]
- Пример 1. Из колоды наугад одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность первого события составляет 13/52. Вероятность второго события равна 12/51. Находим общую вероятность: 13/52 x 12/51 = 12/204 = 1/17, то есть 0,058, или 5,8 %.
- Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если наугад вытянуть из коробки три шара один за другим, какова вероятность того, что первый окажется красным, второй синим, а третий белым? Вероятность первого события составляет 5/20. Вероятность второго события равна 4/19. Вероятность третьего события составляет 11/18. Таким образом, общая вероятность равна 5/20 x 4/19 x 11/18 = 44/1368 = 0,032, или 3,2 %.
Реклама
-
1
Рассматривайте возможность как дробь с положительным результатом в числителе. Вернемся к нашему примеру с разноцветными шарами. Предположим, необходимо узнать вероятность того, что вы достанете белый шар (всего их 11) из всего набора шаров (20). Шанс того, что данное событие произойдет, равен отношению вероятности того, что оно случится, к вероятности того, что оно не произойдет. Поскольку в коробке имеется 11 белых шаров и 9 шаров другого цвета, возможность вытянуть белый шар равна отношению 11:9.[10]
- Число 11 представляет вероятность достать белый шар, а число 9 — вероятность вытянуть шар другого цвета.
- Таким образом, более вероятно, что вы достанете белый шар.
-
2
Сложите полученные величины, чтобы перевести возможность в вероятность. Преобразовать возможность довольно просто. Сначала ее следует разбить на два отдельных события: шанс вытянуть белый шар (11) и шанс вытянуть шар другого цвета (9). Сложите полученные числа, чтобы найти общее число возможных событий. Запишите все как вероятность с общим количеством возможных результатов в знаменателе.[11]
- Вы можете вынуть белый шар 11 способами, а шар другого цвета — 9 способами. Таким образом, общее число событий составляет 11 + 9, то есть 20.
-
3
Найдите возможность так, как если бы вы рассчитывали вероятность одного события. Как мы уже определили, всего существует 20 возможностей, причем в 11 случаях можно достать белый шар. Таким образом, рассчитать вероятность вытянуть белый шар можно так же, как и вероятность любого другого одиночного события. Поделите 11 (количество положительных исходов) на 20 (число всех возможных событий), и вы определите вероятность.[12]
- В нашем примере вероятность достать белый шар составляет 11/20. В результате получаем 11/20 = 0,55, или 55 %.
Реклама
Советы
- Для описания вероятности того, что то или иное событие произойдет, математики обычно используют термин «относительная вероятность». Определение «относительная» означает, что результат не гарантирован на 100 %. Например, если подбросить монету 100 раз, то, вероятно, не выпадет ровно 50 раз орел и 50 решка. Относительная вероятность учитывает это.[13]
- Вероятность какого-либо события не может быть отрицательной величиной. Если у вас получилось отрицательное значение, проверьте свои вычисления.[14]
- Чаще всего вероятности записывают в виде дробей, десятичных дробей, процентов или по шкале от 1 до 10.
- Вам может пригодиться знание того, что в спортивных и букмекерских ставках шансы выражаются как «шансы против» — это означает, что возможность заявленного события оценивается первой, а шансы того события, которое не ожидается, стоят на втором месте. Хотя это и может сбить с толку, важно помнить об этом, если вы собираетесь делать ставки на какое-либо спортивное событие.
Реклама
Об этой статье
Эту страницу просматривали 705 752 раза.
Была ли эта статья полезной?
Вероятность есть числовая характеристика возможности появления случайного события. При этом предполагается, что условия эксперимента могут быть воспроизведены неограниченное число раз. Это нематематическое определение носит скорее интуитивный характер. Придадим ему более точный смысл.
Рассмотрим некоторый случайный эксперимент. Пусть в результате данного эксперимента может произойти несколько исходов (случайных событий). К примеру, при бросании кубика может произойти шесть различных исходов (может выпасть число от 1 до 6).
Назовем исход благоприятным для случайного события А, если событие А следует из такого исхода. Пусть, например, событие А состоит в том, что выпавшее на грани кубика число четно. Благоприятными для этого события будут три исхода эксперимента: выпадение 2, 4 и 6 очков.
Будем называть равновозможными исходы, имеющие одинаковые шансы. Равновозможность определяется нестрого, однако считается интуитивно ясным и лишь поясняется примерами. Для каждого из таких событий характерно то, что ни одно из них не является объективно более возможным, чем другие. В практических задачах исследователь сам решает, какие события считать равновозможными (как правило, исходя из некой симметрии в условиях задачи).
Определение:Пусть данный эксперимент имеет N равновозможных и несовместных исходов. Вероятностью P(A) события А называется отношение числа благоприятных исходов m(A) к общему числу N несовместных равновозможных исходов:
.
Данное равенство называется классическим определением вероятности.
Вероятность можно вычислять в процентах. Например, выражения P(A) = 90% и P(A) = 0,9 эквивалентны.
Для любого случайного события А
Во-первых, по определению вероятность неотрицательна. Во-вторых, число благоприятных исходов m(A) не больше общего числа исходов N. Поэтому,
Пример 1:В урне находятся 4 белых и 6 черных шаров. Какова вероятность, что вынутый наугад шар будет белым?
Всего эксперимент имеет десять исходов (можно вынуть любой из 10 шаров). Благоприятными будут 4 исхода. Значит, вероятность этого события равна =0,4. Соответственно, вероятность вынуть черный шар равна 0,6.
Пример 2. Пусть опыт состоит в последовательном бросании двух кубиков. Найдем вероятность события B – «в сумме выпало 8 очков» и вероятность события C – «в сумме выпало 12 очков».
Очевидно, что при бросании двух кубиков всего может быть получено 36 равновозможных несовместных исходов: n = 36 (каждому из 6 различных случаев выпадения очков на первом кубике отвечает 6 случаев выпадения различного числа очков на втором кубике). Событию С благоприятен лишь один исход: случай выпадения двух «шестерок», поэтому m(C) = 1, и . Событию B благоприятны 5 исходов (2+6, 3+5, 4+4, 5+3, 6+2), и, следуя классическому определению вероятности, получаем .
Чтобы пользоваться классическим определением вероятности, нужно уметь подсчитывать общее число исходов эксперимента и число благоприятных исходов. Такой подсчет сводится к перебору вариантов, т.е. к задачам комбинаторики. Рассмотрим, как комбинаторные формулы применяются в задачах теории вероятностей.
Многие случайные события моделируются экспериментами с урной и шарами. Шары из урны можно доставать по-разному: шар можно каждый раз возвращать в урну, а можно этого не делать; выбранные шары можно упорядочивать или не упорядочивать и т.д. Таким образом, существуют различные схемы выбора. В каждой из этих схем общее число исходов и число благоприятных исходов подсчитывается по-разному. Рассмотрим основные схемы выбора и соответствующие задачи.
Задача 1. (Схема выбора без возвращения и упорядочения).В урне 3 белых и 7 черных шаров. Какова вероятность того, что из четырех наугад выбранных шаров ровно один будет белый? Какова вероятность, что белых шаров будет ровно два?
Решение:вынуть 4 шара – это все равно, что вынуть по одному шару, не возвращая их обратно в урну. Поэтому такая ситуация описывается схемой без возвращения и без упорядочения. Общее число исходов этого случайного эксперимента равно числу способов выбрать 4 шара из 10, т.е. числу сочетаний . Таким образом,
В первом случай при благоприятном исходе среди четырех шаров один белый, а остальные три – черные (событие А). Белый шар можно выбрать тремя способами (их всего три), три черных можно выбрать способами, так как черных шаров в урне семь. Каждый из трех белых шаров может сочетаться с любой из троек. Таким образом, благоприятных исходов
Значит, искомая вероятность
Найдем число благоприятных исходов во втором случае (два белых, два черных шара – событие B). Пару белых шаров можно выбрать способами. Для пары черных шаров число способов выбора
Каждая пара белых шаров может сочетаться с каждой парой черных. Поэтому всего благоприятных исходов m(A) = 3·21 = 63. Значит вероятность второго события (B):
Задача 2. (Схема выбора без возвращения c упорядочением).В урне находятся карточки с цифрами от 0 до 5. Наугад достают две карточки и складывают подряд. Какова вероятность того, что полученное двузначное число кратно семи?
Решение:В отличие от предыдущей задачи, теперь важен порядок, в котором вынимают карточки, но по-прежнему карточки в урну не возвращают. Значит, в этом случае общее число исходов равно числу размещений из 6 по 2, т.е. Благоприятные исходы – это числа 14, 21, 35, 42, т.е. m(A) = 4. Значит, искомая вероятность
Задача 3. (Схема выбора с возвращением и без упорядочения).В кондитерской продается семь видов пирожных. Очередной покупатель выбил чек на четыре пирожных. Найти вероятность того, что заказаны:
а) пирожные одного вида;
б) пирожные разных видов;
в) по два пирожных разных видов.
Решение:Результатом опыта являются всевозможные наборы из четырех пирожных, отличающиеся составом. Наборы из одних и тех же пирожных, но расположенных в различном порядке, считаются одинаковыми (схема без упорядочения). При этом отдельные наборы могут содержать повторяющиеся элементы (схема с возвращением). Поэтому общее число исходов равно числу сочетаний с повторениями:
В первом случае благоприятных исходов 7 (наборы из пирожных каждого из семи видов). Значит, вероятность
Во втором случае благоприятными являются всевозможные наборы из четырех различных пирожных, выбранных из семи (порядок не важен). Ясно, что это число сочетаний из 7 по 4:
Поэтому вероятность второго события
Рассмотрим третий случай. Благоприятный исход представляет собой две пары одинаковых пирожных. Таких наборов ровно столько, сколько различных пар можно составить из 7 предметов, т.е. Значит, вероятность этого события
Задача 4. (Схема выбора с возвращением и с упорядочением).Телефонная книга раскрывается наудачу и выбирается случайный номер телефона. Считая, что телефонные номера состоят из семи цифр, причем все комбинации равновероятны, найти вероятность того, что все цифры в номере различны.
Решение:Заметим, что условие задачи разрешает любые номера (такие, например, как 0012413, 0123456 и даже 0000000). Поскольку всего цифр 10, а номера семизначные, общее число номеров равно N = 10 7 = 10000000 (число размещений с повторениями из 10 элементов по 7). Благоприятные исходы составляют все различные наборы из семи цифр, отличающиеся также порядком (число размещений без повторений из 10 элементов по 7). Значит, благоприятных исходов
Итак,
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10572 — | 7332 — или читать все.
78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Если вас интересует вопрос заголовка, вы наверняка студент или школьник, столкнувшийся с новым для себя предметом. Задачи теории вероятностей сейчас решают и школьники пятых классов продвинутых школ, и старшеклассники перед ЕГЭ, и студенты буквально всех специальностей — от географов до математиков. Что же это за предмет такой, и как к нему подойти?
Вероятность. Что это?
Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.
Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.
Таким образом, мы сталкиваемся с основным понятием случайного события — явления, поведение которого невозможно предсказать, опыта, результат которого заранее невозможно вычислить и т.п. Именно вероятности событий вычисляются в типовых задачах.
Вероятность — это некоторая, строго говоря, функция, принимающая значения от 0 до 1 и характеризующая данное случайное событие. 0 — событие практически невозможно, 1 — событие практически достоверно, 0,5 (или «50 на 50») — с равной вероятностью событие произойдет или нет.
Алгоритм решения задач на вероятность
Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике.
А теперь не будем ходить вокруг да около, и сформулируем схему, по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.
- Внимательно прочитать задачу и понять, что именно происходит (что из какого ящика вытаскивается, что где лежало, сколько приборов работает и т.п.)
- Найти основной вопрос задачи вроде «вычислить вероятность того, что . » и вот это многоточие записать в виде события, вероятность которого надо найти.
- Событие записано. Теперь надо понять, к какой «схеме» теории вероятностей относится задача, чтобы правильно выбрать формулы для решения. Ответьте на тестовые вопросы типа:
- происходит одно испытание (например, выбрасывание двух костей) или несколько (например, проверка 10 приборов);
- если испытаний несколько, зависимы ли результаты одного от других (зависимость или независимость событий);
- событие происходит в единственной ситуации или задача говорит о нескольких возможных гипотезах (например, шар вынимается из любого ящика из трех, или из конкретного).
Чем больше опыт решения задач, тем легче будет определить, какие формулы подходят.
Как решать задачи: классическая вероятность
Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».
Начинаем решение по пунктам, описанным выше.
- В задаче речь идет о выборе 3 студентов из группы, которые удовлетворяют определенным условиям.
- Вводим основное событие $X$ = (Все 3 студента, вызванные к доске, получили по контрольной работе «2»).
- Так как в задаче происходит только одно испытание и оно связано с отбором/выбором по определенному условию, речь идет о классическом определении вероятности. Запишем формулу: $P=m/n$, где $m$ – число исходов, благоприятствующих осуществлению события $X$, а $n$ – число всех равновозможных элементарных исходов.
- Теперь необходимо найти значения $m$ и $n$ для этой задачи. Сначала найдем число всех возможных исходов — число способов выбрать 3 студентов из 30. Так как порядок выбора не имеет значения, это число сочетаний из 30 по 3: $$n=C_<30>^3=frac<30!><3!27!>=frac<28cdot 29 cdot 30><1cdot 2 cdot 3>=4060.$$ Найдем число способов вызвать только студентов, получивших «2». Всего таких студентов было $30-6-10-9=5$ человек, поэтому $$m=C_<5>^3=frac<5!><3!2!>=frac<4 cdot 5><1cdot 2>=10.$$
- Получаем вероятность: $$P(X)=frac=frac<10><4060>=0,002.$$ Задача решена.
Некогда решать? Найди решенную задачу
Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:
Как решать задачи: формула Бернулли
Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?
Снова по схеме решения задач на вероятность рассматриваем данную задачу:
- В задаче идет речь о серии одинаковых испытаний — бросаний монеты.
- Вводим основное событие $X$ = (При 8 бросаниях монеты герб выпадет 5 раз).
- Так как в задаче происходит несколько испытаний, и вероятность появления события (герба) одинакова в каждом испытании, речь идет о схеме Бернулли. Запишем формулу Бернулли, которая описывает вероятность того, что из $n$ бросков монет герб выпадет ровно $k$ раз: $$ P_(k)=C_n^k cdot p^k cdot (1-p)^.$$
- Записываем данные из условия задачи: $n=8, p=0,5$ (вероятность выпадения герба в каждом броске равна 0,5) и $k=5$
- Подставляем и получаем вероятность: $$ P(X)=P_<8>(5)=C_8^5 cdot 0,5^5 cdot (1-0,5)^<8-5>=frac<8!><5!3!>cdot 0,5^8=frac<6cdot 7 cdot 8><1cdot 2 cdot 3>cdot 0,5^8= 0,219.$$ Задача решена.
И это все? Конечно, нет.
Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!
Теория вероятностей (тервер) – раздел математики, который изучает случайные события и их свойства. Ознакомиться с ней нужно, чтобы понимать, как принимать взвешенные решения. Ведь зная статистические данные и анализируя закономерности, можно «предсказать» исход события.
Я не станут грузить вас сложными формулами – желающие углубленно заняться тервером могут сделать это по книге В. Е. Гмурмана «Теория вероятностей и математическая статистика». В статье покажу простые примеры для понимания зависимых и независимых событий, расскажу о состоянии неопределенности и интуитивном знании.
Материал полезен широкому кругу читателей.
Коротко о теории вероятностей
Вероятность в зависимых событиях
Вы решаете отправить в подарок другу балык. Знаете номер дома, подъезд, этаж. Курьер просит называть номер квартиры. С мучительными усилиями вспоминаете, что в доме по три двери на площадку, но дальше – туман. Давайте рассчитаем, сможет ли курьер попасть в нужную квартиру с первого раза.
Имеем три варианта развития событий:
- Курьер звонит в первую (1) дверь.
- Курьер звонит во вторую (2) дверь.
- Курьер звонит в третью (3) дверь.
Но в истории участвует еще один человек: ваш друг. И событийность в его случае выглядит так:
- Друг за первой (1) дверью.
- Друг за второй (2) дверью.
- Друг за третьей (3) дверью.
Прежде чем пойти дальше, введем определение вероятности – количество благоприятных исходов к вероятному числу событий.
Теперь соберем данные в таблицу (таблица 1). Всего — 9 исходов. Отметим положительные (курьеру откроет друг) – их 3. Получается, что вероятность с первого раза позвонить в дверь к нужному человеку – 3/9 или 1/3. Если вам нравится видеть вероятность в процентах, умножьте результат на 100%.
Таблица 1 – Девять исходов, три благоприятных
Представим, что курьер ошибся, и за дверью оказалась сногсшибательная блондинка в коротком халате. Для курьера исход положительный, для вас – нет. Поэтому считаем новую вероятность:
- Курьер звонит в первую (1) квартиру.
- Курьер звонит во вторую (2) квартиру.
То же самое с другом:
- Друг ждет в первой (1) квартире.
- Друг ждет во второй (2) квартире.
Теперь у нас 4 варианта и 2 – выигрышные (таблица 2). Вероятность со второго раза попасть в квартиру друга – 1/2. Она уменьшилась из-за зависимости событий: мы уже исключили неблагоприятный исход и расчёт нужно производить заново. Если курьер настолько невезуч, что промахнется во второй раз, вероятность попасть по адресу в третий раз – 100%. Опытным путем мы проверили, что за двумя предыдущими дверьми балык никто не ждет.
Таблица 2 Четыре исхода, два благоприятных
Пример с курьером — начальный уровень тервера. Он применим для бытовых нужд: предугадать вероятность побочного эффекта от антибиотиков, выбрать из разнообразия бабушкиных пирожков пирожок с повидлом и др.
На экзамене по теории вероятности советский математик и автор учебника Елена Вентцель спросила:
— Кому все понятно? Поднимите руки.
В аудитории живо взметнулся лес рук.
— Отлично! Остальные свободны, оценка – пять баллов! Поднявшие руки – останьтесь. За годы преподавания я так и не поняла большей части тервера. Рада, что вы мне все сейчас объясните.
Байка с математического факультета
Вероятность в независимых событиях
Независимые события не влияют друг на друга: количество благоприятных исходов в каждом новом событии не меняется.
Регина Тодоренко и Леся Никитюк в рамках программы «Орел и Решка» приехали в США. Обе хотят провести уик-энд «по богатому» и кидают монетку. Леся поставила на орла, Регина – на решку. Вероятность уехать на собственном авто у девушек одинакова: 1/2. На это раз повезло Лесе. Впрочем, как в следующей поездке тоже.
Регина негодует, почему тервер работает не в ее сторону
Теперь определим, могут ли независимые события происходить подряд с одним и тем же исходом. Лесе везло уже два раза и выпадал «орел». Повезет ли в третий раз? Составим список возможных исходов:
- Орел, орел, орел.
- Орел, орел, решка.
- Орел, решка, орел.
- Орел, решка, решка.
- Решка, орел, орел.
- Решка, орел, решка.
- Решка, решка, орел.
- Решка, решка, решка.
По результату видно: вероятность определенной последовательности каждый раз меньше на вероятность одного события. То есть вероятность определенной последовательности – произведение вероятностей каждого события. Если в одном событии вероятность 1/2, то в трех: 1/2*1/2*1/2=1/8.
Как человек принимает решения в состоянии неопределённости
Часть мозга, которая ответственна за оценку ситуации связана с медиаторной системой — центром мотивационных и эмоциональных процессов. Логика и эмоции часто конфликтуют между собой, поэтому решение принимается случайным образом.
У моей подруги аллергия на виноград. Но в студенчестве она не могла отказаться от бокала вина на вечеринке. Часто ее дерзость оставалась безнаказанной и организм нормально воспринимал аллерген. Реже протестовал: у подруги появлялись отеки на лице и в горле. В эти моменты ее левое полушарие отчаянно искало закономерность и просчитывало вероятность наступления аллергической реакции, правое же шептало: «Не пей, лицо распухнет!». Она могла вывести количество благоприятных исходов математическим путем и пить вино без опасений, но эмоции оказались сильней. Подруга раз и навсегда отказалась от любых продуктов с виноградом.
Хороший пример принятия решений описан в книге Млодинова «(Не) совершенная случайность». Допустим, вы отправили рассказ в четыре издательства. От каждого получили отказ. На эмоциях вы придете к мысли: рассказ ужасный! Хотя, если изучить биографии популярных писателей, может оказаться, что дело не в вас. Отказы в публикации получали Стивен Кинг, Джоан Роулинг, Виктор Франкл. Такие истории случались вовсе не из-за отсутствия у них дара: просто в одном издательстве редактор не понял тонкую философию автора, в другом – спешил домой и проставил визу не читая.
Почему интуитивное знание всегда противоречит статистике
Моя бабушка считает: в Албании убивают на каждом шагу. Хотя в стране она не была и новостей о не слышала: ей так кажется интуитивно. Наверняка и вы не раз испытывали подобное чувство. Оно называется интуитивное знание – внутреннее убеждение, что собственная оценка более правдива, чем официальные источники и статистика.
Всего 127 убийств на 100 000 человек
Классическое исследование на тему интуитивного знания провели Даниэль Канеман и Амос Тверский. Они дали задание группе студентов: на основании портрета, оценить утверждения с таблицы как более (1 балл) и менее (8 баллов) вероятные (таблица 3).
Портрет выглядел так: «Линда, возраст – немного за 30. Умная, говорит, что думает. В колледже изучала философию. Тогда же выступала против социального неравенства, дискриминации и использования ядерного оружия. Не замужем».
Таблица 3
По портрету логично предположить, что Линда участвует в феминистском движении. Но студенты принимали решения интуитивно, что привело к ошибке. Вероятность, что Линда работает в банке и принимает участие в феминистском движении больше вероятности работы в банке.
Посмотрите на таблицу: вероятность работы в банке и увлечение феминистским движением – 4,1 балл. Но первое (работа в банке) и второе (феминистское движение) в сумме дают 8,3 балла. Согласно терверу, вероятность, что произойдут оба события не может быть выше, чем вероятность каждого события по отдельности. Главное утверждение (4,1 балла) содержит 2 события и является единым. В интуитивном решения правило тервера нарушено. Это доказывает — наши убеждения часто являются ложными.
В дальнейшем проводились множественные эксперименты, которые подтвердили догадку Канемана.
Вместо заключения
Теория вероятностей почти всегда разбивается о «случай», продиктованный убеждением или эмоцией отдельного человека. Поэтому использование ее в повседневной жизни может не оправдать ожиданий. Но выбирать вам! Хорошего дня!