Как найти количество классов в выборке

Построение вариационного ряда

Любое
статистическое исследование должно
начинаться с установления характера
распределения изучаемых признаков.
Распределение
– это соотно­шение между значениями
случайной величины и частотой их
встречаемости
.
Бóльшая повторяемость одних значений
по сравнению с другими заставляет
задумываться о причинах наблюдаемых
процессов. Если значения признака
откладывать по оси абсцисс, а частоты
их встречаемости по оси ординат, то
можно построить гистограмму,
частотную
диаграмму
,
удобную для целей иллюстрации и
исследования.

Основой
для построения гистограммы служит
вариационный
ряд – представленный в виде таблицы
ряд значений изучаемого признака
,
расположенных
в порядке возрастания с соответствующими
им частотами их встречаемости в выборке
.

Начнем
с примера изучения плодовитости
серебристо-черных лисиц, которое дало
следующие результаты (число щенков на
самку): 5 5 6 5 5 6 4 4 4 5 6 4 6 6 4 6 4 5 5 8 5 3 6 5 5 5 5 5
6 3 6 4 6 4 6 2 5 6 5 3 7 6 3 4 6 8 6 3 5 5 6 5 4 3 8 4 7 5 4 3 1 6
5 3 4 5 6 7 4 4 6 5 6 4 6 5.

Для
дискретного признака (такова плодовитость)
построение вариационного ряда обычно
не представляет сложности, достаточно
подсчитать встречаемость конкретных
значений.

Плодовитость,
x

Частота,

a

1

1

2

1

3

8

4

16

5

23

6

21

7

3

8

3

Гистограмма,
построенная по данным о плодовитости
лисиц (рис. 2), сразу же обнаруживает
характерное поведение случайной величины
– высокие частоты встречаемости значений
в центре распределения и низкие по
периферии.

Рис.
2.
Распределение
плодовитости лисиц

Если
же изучаемый признак непрерывен (таковы
размерно-весовые характеристики), то
для построения вариационного ряда
сначала весь диапазон изменчивости
признака разбивается на серию равных
интервалов (классов вариант), затем
подсчитывают, сколько вариант попало
в каждый интервал. Число классов для
больших выборок (n > 100)
должно быть не менее 7 и не более 12, их
оптимальное число можно приблизительно
определить по эмпирической форму­ле:

k
=
1 + 3.32 ∙ lg(n),
где п
– объем выборки

(число
вариант в выборке
).

Составим
для примера вариационный ряд для
непрерывного признака – по данным о
весе 63 взрослых землероек (г):

9.2

11.6

8.1

9.1

10.1

9.6

9.3

9.7

9.9

9.9

9.6

7.6

10.0

9.7

8.4

8.6

9.0

8.8

8.6

9.3

11.9

9.3

9.2

10.2

11.2

8.1

10.3

9.2

9.8

9.9

9.3

9.1

9.4

9.6

7.3

8.3

8.8

9.2

8.0

8.6

8.8

9.0

9.5

9.1

8.5

8.8

9.7

11.5

10.5

9.8

10.0

9.4

8.7

10.0

7.9

8.6

8.7

9.1

8.2

9.2

9.4

8.8

9.8

1)
Все
операции могут быть выполнены вручную.
Вначале следует определить объем выборки
n =
63.

2)
Рассчитать
пределы размаха
изменчивости

значений, лимит
– разность
между максимальным и минимальным
значением
:

Lim
=
xmax  xmin
=
11.9 −7.3 = 4.6.

3)
Найти
число классов вариационного ряда по
формуле:

k
=
1 + 3.32 ∙ lg(63)
= 6.973811 ≈ 7.

4)
Найти
длину интервала dx
(допустимо округление):

dx
= Limk
= 4.6/ 7
≈ 0.7.

5)
Установить
границы классов; в качестве первой
границы имеет смысл взять округленное
минимальное значение: xmin
=
7.

6)
Вычислить
центральное значение признака в каждом
классе; исходным берется значение центра
первого интервала; для первого класса
7–7.7, для второго – 7.8–8.4…

7)
Произвести разноску вариант в
соответствующие классы с подсчетом их
числа методом конверта (табл. 2):

1
2 3 4 5 6   7 8 9 10 .

Теперь
данные можно пред­ставить графически,
в виде полигона частот (ломаной кривой)
или гистограммы (столбиками) (рис. 3).

Таблица 2

Классы

Центр
классового интервала

Подсчет

частот

Частоты,
а

7–7.7

7.35

2

7.8–8.4

8.05

7

8.5–9.1

8.75

18

9.2–9.8

9.45

22

9.9–10.5

10.15

10

10.6–11.2

10.85

1

11.3–11.9

11.55

3

Сумма

63

Рис.
3.

Распределение бурозубок по весу тела

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Варианты для выполнения работы

I. Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных — результатов наблюдений.

Почти все встречающиеся в жизни величины (урожайность сельскохозяйственных растений, продуктивности скота, производительность труда и заработная плата рабочих, объем производства продукции и т.д.) принимают неодинаковые значения у различных членов совокупности. Поэтому возникает необходимость в изучении их изменяемости. Это изучение начинается с проведения соответствующих наблюдений, обследований.

В результате наблюдений получают сведения о численной величине изучаемого признака у каждого члена данной совокупности.

Пример. Имеются данные о размере прибыли 100 коммерческих банков. Прибыль, млн. рублей.

30,2 51,9 43,1 58,9 34,1 55,2 47,9 43,7 53,2 34,9
47,8 65,7 37,8 68,6 48,4 67,5 27,3 66,1 52,0 55,6
54,1 26,9 53,6 42,5 59,3 44,8 52,8 42,3 55,9 48,1
44,5 69,8 47,3 35,6 70,1 39,5 70,3 33,7 51,8 56,1
28,4  48,7 41,9 58,1 20,4 56,3 46,5 41,8 59,5 38,1
41,4 70,4 31,4 52,5 45,2 52,3 40,2 60,4 27,6 57,4
29,3 53,8 46,3 40,1 50,3 48,9 35,8 61,7 49,2 45,8
45,3 71,5 35,1 57,8 28,1 57,6 49,6 45,5 36,2 63,2
61,9 25,1 65,1 49,7 62,1 46,1 39,9 62,4 50,1 33,1
33,3 49,8 39,8 45,9 37,3 78,0 64,9 28,8 62,5 58,7

                 
Из данной таблицы видно, что интересующий нас признак (прибыль банков) меняется от одного члена совокупности к другому, варьирует. Варьирование есть изменяемость признака у отдельных членов совокупности.

Вариационным рядом называется последовательность вариант, записанных в возрастающем порядке и соответствующих им частот.

Число, показывающее, сколько раз повторяется в данной совокупности каждое значение признака, называется частотой.

Составим ранжированный вариационный ряд (выпишем варианты в порядке возрастания):

20,4 25,1 26,9 27,3 27,6 28,1 28,4 28,8 29,3 30,2
31,4 33,1 33,3 33,7 34,1 34,9 35,1 35,6 35,8 36,2
37,3 37,8 38,1 39,5 39,8 39,9 40,1 40,2 41,4 41,8
41,9 42,3 42,5 43,1 43,7 44,5 44,8 45,2 45,3 45,5
45,8 45,9 46,1 46,3 46,5 47,3 47,8 47,9 48,1 48,4
48,7 48,9 49,2 49,6 49,7 49,8 50,1 50,3 51,8 51,9
52,0 52,3 52,5 52,8 53,2 53,6 53,8 54,1 55,2 55,6
55,9 56,1 56,3 57,4 57,6 57,8 58,1 58,7 58,9 59,3
59,5 60,4 61,7 61,9 62,1 62,4 62,5 63,2 64,9 65,1
65,7 66,1 67,5 68,6 69,8 70,1 70,3 70,4 71,5 78,0

 В нашем случае каждое значение признака (варианта вариационного ряда) повторилось только один раз, т.е. значение частоты для всех вариант равно единице. Перейдем к интервальному вариационному ряду, так как интересующий нас признак принимает дробные, практически не повторяющиеся значения.

Для этого необходимо определить число интервалов (классов) и длину интервала (классного промежутка), после чего произвести разноску, т.е. подсчитать для каждого интервала число вариант, попавших в него.

Количество классов устанавливают в зависимости от степени точности, с которой ведется обработка, и количества объектов в выборке. Считается удобным при объеме выборки (n) в пределах от 30 до 60 вариант распределять их на 6-7 классов, при n от 60 до 100 вариант — на 7-8 классов, при n от 100 и более вариант — на 9-17 классов.

Нужное количество групп также может быть ориентировочно вычислено по формуле Стерджесса:

    [k=1+3,322lgn]

где k — число групп (классов, интервалов) ряда распределения; n — объем выборки.

Можно также использовать выражение:

    [k=sqrt{n}.]

При nle 70 они дают примерно одинаковые результаты.

В рассматриваемом примере о размере прибыли коммерческих банков, n=100. Применяя формулу Стерджесса, получим:

    [k=1+3,322lg100=1+3,322cdot 2=7,644approx 8.]

Однако sqrt{100}=10. Таким образом, число интервалов может быть равно 8, 9, 10 и т.д.

Нахождение нужного количества групп и их размеров часто бывает взаимообусловлено. Для того, чтобы как-то определиться с числом интервалов, найдем размах вариации — разность между наибольшей и наименьшей вариантой:

    [R=x_{max}-x_{min}]

где R — размах вариации,

x_{max} — наибольшее значение варьирующего признака,

x_{min} — наименьшее значение варьирующего признака.

Найдем размах вариации для рассматриваемой задачи:

    [R=78,0-20,4=57,6]

Для того, чтобы найти длину интервала (величину классового промежутка) необходимо разделить размах вариации на число классов и полученную величину округлить таким образом, чтобы было удобно производить сначала разноску, а затем и различные вычисления. Рекомендую округлять до единиц, до которых округлены варианты в исходной таблице, в нашем случае до десятых.

    [happrox frac{R}{k}]

Согласно формуле получаем

    [happrox frac{57,6}{8}=7,2]

Теперь необходимо определиться с началом первого интервала. Для этого можно использовать формулу:

    [x_1approx x_{min}-frac{h}{2}]

    [x_1approx 20,4-frac{7,2}{2}=16,8.]

Замечание. За начало первого интервала можно принять некоторое значение, несколько меньшее x_{min} или само значение x_{min}. Далее в табличном виде я покажу оба варианта.

Прибавив к началу первого интервала (нижней границе) шаг, получим верхнюю границу первого интервала и одновременно нижнюю границу второго интервала. Выполняя последовательно указанные действия, будем находить границы последующих интервалов до тех пор, пока не будет получено или перекрыто x_{max}.

Таким образом, верхняя граница одного интервала одновременно является нижней границей другого интервала. Чтобы не возникало сомнений, в какой интервал отнести варианту, попавшую на границу, условимся относить ее к верхнему интервалу.

Составим теперь рабочую таблицу для построения интервального вариационного ряда и произведем подсчет частот вариант, попавших в тот или иной интервал.

Как и обещал покажу две таблицы построения ряда:

1. Отсчет ведем от x_{min}, т.е. нижняя граница первого интервала совпадает с x_{min}.

Группы банков по размеру прибыли

(границы интервалов)

Количество банков, принадлежащих данной группе

(частоты, n_i)

Накопленные частоты,

S_i

20,4 — 27,6 4 4
27,6 — 34,8 11 15
34,8 — 42 16 31
42 — 49,2 21 52
49,2 — 56,4 21 73
56,4 — 63,6 15 88
63,6 — 70,8 10 98
70,8 — 78 2 100

2. Начало первого интервала определяем с помощью формулы: x_1approx x_{min}-frac{h}{2}.

Группы банков по размеру прибыли

(границы интервалов)

Количество банков, принадлежащих данной группе

(частоты, n_i)

Накопленные частоты,

S_i

16,8 — 24 1 1
24 — 31,2 9 10
31,2 — 38,4 13 23
38,4 — 45,6 17 40
45,6 — 52,8 23 63
52,8 — 60 18 81
60 — 67,2 11 92
67,2 — 74,4 7 99
74,4 — 81,6 1 100

Как мы видим в 1-м случае у нас получилось восемь интервалов, что полностью совпадает с результатом, который нам дала формула Стерджесса. Во втором случае у нас получилось девять интервалов, так как при поиске начала первого интервала пользовались специальной формулой.

Для дальнейшего исследования я буду пользоваться результатами второй таблицы, так как там ярко выражен модальный интервал (одна мода) и медиана практически точно попадает на середину вариационного ряда.

Мы получили интервальный вариационный ряд — упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами попаданий в каждый из них значений величины.

II. Графическая интерпретация вариационных рядов.

№ п/п

Границы интервалов,

[x_{i}; x_{i+1})

Середины интервалов,

x_{i}^{*}=frac{x_i+x_{i+1}}{2}

Частоты интервалов,

n_i

Относительные частоты

W_i=frac{n_i}{n}

Плотность относит. частоты

frac{W_i}{h}

Плотность частоты

frac{n_i}{h}

1 16,8 — 24 20,4 1 0,01 0,001 0,139
2 24 — 31,2 27,6 9 0,09 0,013 1,250
3 31,2 — 38,4 34,8 13 0,13 0,018 1,806
4 38,4 — 45,6 42 17 0,17 0,024 2,361
5 45,6 — 52,8 49,2 23 0,23 0,032 3,194
6 52,8 — 60 56,4 18 0,18 0,025 2,500
7 60 — 67,2 63,6 11 0,11 0,015 1,528
8 67,2 — 74,4 70,8 7 0,07 0,010 0,972
9 74,4 — 81,6 78 1 0,01 0,001 0,139
      sum=100 sum=1    

Строим графики:

График гистограммы частот ischanow.com

График гистограммы плотности частот ischanow.com

График гистограммы относительных частот ischanow.com

График гистограммы плотности относительных частот ischanow.com

График полигона частот ischanow.com

Далее найдем моду вариационного ряда:

    [M_o(X)=x_{M_o}+hfrac{(n_2-n_1)}{(n_2-n_1)+(n_2-n_3)}]

где

x_{M_o} — начало модального интервала;

h — длина частичного интервала (шаг);

n_1 — частота предмодального интервала;

n_2 — частота модального интервала;

n_3 — частота послемодального интервала.

Определим модальный интервал — интервал, имеющий наибольшую частоту. Из таблицы видно, что модальным является интервал (45,6 — 52,8).

    [M_o(X)=45,6+7,2frac{(23-17)}{(23-17)+(23-18)}=]

    [=45,6+7,2cdot frac{6}{6+5}=45,6+3,93=49,5]

Медиана

Для интервального ряда медиана находится по формуле:

    [M_e(X)=x_{M_e}+hfrac{0,5n-S_{M_{e}-1}}{n_{M_e}}]

где

x_{M_e} — начало медианного интервала;

h — длина частичного интервала (шаг);

n — объем совокупности;

S_{M_{e}-1} — накопленная частота интервала, предшествующая медианному;

n_{M_e} — частота медианного интервала.

Определим медианный интервал — интервал, в котором впервые накопленная частота превышает половину объема выборки.Так как объем выборки n=100, то n/2=50. По таблице найдем интервал, где впервые накопленные частоты превысят это значение. Таким является интервал (45,6 — 52,8).

Получаем,

    [M_e(X)=45,6+7,2frac{0,5cdot 100-40}{23}approx 48,7.]

III. Расчет сводных характеристик выборки.

Для определения x_B, D_{B}, sigma_{B} составим расчетную таблицу. Для начала определимся с ложным нулем С. В качестве ложного нуля можно принять любую варианту. Максимальная простота вычислений достигается, если выбрать в качестве ложного нуля варианту, которая расположена примерно в середине вариационного ряда (часто такая варианта имеет наибольшую частоту).

Варианте, которая принята в качестве ложного нуля, соответствует условная варианта, равная нулю. В нашем случае С=49,2.

Равноотстоящими называют варианты, которые образуют арифметическую прогрессию с разностью h.

Условными называют варианты, определяемые равенством:

    [U_i=frac{(x_i-C)}{h}]

Произведем расчет условных вариант согласно формуле:

    [U_1=frac{20,4-49,2}{7,2}=-4]

    [U_2=frac{27,6-49,2}{7,2}=-3]

    [U_3=frac{34,8-49,2}{7,2}=-2]

    [U_4=frac{42-49,2}{7,2}=-1]

    [U_5=frac{49,2-49,2}{7,2}=0]

    [U_6=frac{56,4-49,2}{7,2}=1]

    [U_7=frac{63,6-49,2}{7,2}=2]

    [U_8=frac{70,8-49,2}{7,2}=3]

    [U_9=frac{78-49,2}{7,2}=4]

N п/п

Середины интервалов,

x_{i}^{*}

Частоты интервалов,

n_i

Условные варианты,

U_i

Произведения частот и условных вариант,

n_icdot U_i

Произведения частот и условных вариант,

n_icdot U_i^2

Произведения частот и условных вариант,

n_icdot U_i^3

Произведения частот и условных вариант,

n_icdot U_i^4

Произведения частот и условных вариант,  

n_icdot (U_i+1)^2

Произведения частот и условных вариант,

n_icdot(U_i+1)^4

1 20,4 1 -4 -4 16 -64 256 9 81
2 27,6 9 -3 -27 81 -243 729 36 144
3 34,8 13 -2 -26 52 -104 208 13 13
4 42 17 -1 -17 17 -17 17 0 0
5 49,2 23 0 0 0 0 0 23 23
6 56,4 18 1 18 18 18 18 72 288
7 63,6 11 2 22 44 88 176 99 891
8 70,8 7 3 21 63 189 567 112 1792
9 78 1 4 4 16 64 256 25 625
    sum=100   sum n_iU_i=-9 sum n_iU_i^2=307 sum n_icdot U_i^3=-69 sum n_icdot U_i^4=2227 sum n_icdot (U_i+1)^2=389 sum n_icdot(U_i+1)^4=3857

    
Контроль:

    [sum n_i U_i^2 + 2sum n_iU_i+n=sum n_i{(U_i+1)}^2]

    [sum n_i U_i^2 + 2sum n_iU_i+n=307+2cdot (-9)+100=389]

    [sum n_i{(U_i+1)}^2=389]

Контроль:

    [sum n_i U_i^4 + 4sum n_iU_i^3+6sum n_iU_i^2+4sum n_iU_i+n=sum n_i{(U_i+1)}^4]

    [sum n_i U_i^4 + 4sum n_iU_i^3+6sum n_iU_i^2+4sum n_iU_i+n=]

    [=2227+4cdot (-69)+6 cdot 307+4cdot (-9)+100=3857]

    [sum n_i{(U_i+1)}^4=3857]

Равенство выполнено, следовательно вычисления произведены верно.

Вычислим условные моменты 1-го, 2-го, 3-го и 4-го порядков:

    [M_1^{*}=frac{sum n_iU_i}{n}=frac{-9}{100}=-0,09;]

    [M_2^{*}=frac{sum n_iU_i^2}{n}=frac{307}{100}=3,07;]

    [M_3^{*}=frac{sum n_iU_i^3}{n}=frac{-69}{100}=-0,69;]

    [M_4^{*}=frac{sum n_iU_i^4}{n}=frac{2227}{100}=22,27.]

Найдем выборочные среднюю, дисперсию и среднее квадратическое отклонение :

    [x_{B}=M_1^{*}cdot h+C=-0,09cdot 7,2+49,2=48,552;]

    [D_{B}=(M_2^{*}-{(M_1^{*})}^2)h^2=(3,07-{(-0,09)}^2){7,2}^2approx 158,73.]

    [sigma_{B}=sqrt{D_B}=sqrt{158,73}=12,6.]

Также для оценки отклонения эмпирического распределения от нормального используют такие характеристики, как асимметрия и эксцесс.

Асимметрией теоретического распределения называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения:

    [a_s=frac{m_3}{sigma_B^3}]

Асимметрия положительна, если «длинная часть» кривой распределения расположена справа от математического ожидания; асимметрия отрицательна, если «длинная часть» кривой расположена слева от математического ожидания. Практически определяют знак асимметрии по расположению кривой распределения относительно моды (точки максимума дифференциальной функции): если «длинная часть» кривой расположена правее моды, то асимметрия положительна, если слева — отрицательна.

Эксцесс эмпирического распределения определяется равенством:

    [e_k=frac{m_4}{sigma_B^4}-3]

где m_4 — центральный эмпирический момент четвертого порядка.

Для нормального распределения эксцесс равен нулю. Поэтому если эксцесс некоторого распределения отличен от нуля, то кривая этого распределения отличается от нормальной кривой: если эксцесс положительный, то кривая имеет более высокую и «острую» вершину, чем нормальная кривая; если эксцесс отрицательный, то сравниваемая кривая имеет более низкую и «плоскую» вершину, чем нормальная кривая. При этом предполагается, что нормальное и теоретическое распределения имеют одинаковые математические ожидания и дисперсии.

Вычисляем центральные эмпирические моменты третьего и четвертого порядков:

    [m_3=(M_3^*-3M_1^*M_2^*+2{(M_1^*)}^3)cdot h^3=51,3;]

    [m_4=(M_4^*-4M_3^*M_1^*+6M_2^*{(M_1^*)}^2-3{(M_1^*)}^4)cdot h^4=59580,97;]

Найдем асимметрию и эксцесс:

    [a_s=frac{51,3}{{12,6}^3}=0,026]

    [e_k=frac{59580,97}{{12,6}^4}-3=-0,635]

IV. Проверка гипотезы о нормальном распределении генеральной совокупности. Критерий согласия Пирсона.

Проверим генеральную совокупность значений размера прибыли банков по критерию Пирсона chi^2

Правило. Для того, чтобы при заданном уровне значимости проверить нулевую гипотезу H_o: генеральная совокупность распределена нормально, надо сначала вычислить теоретические частоты, а затем наблюдаемое значение критерия:

    [chi^2_{nabl}=sum frac{ {(n_i-n_i^{'})}^2}{n_i^{'}}]

и по таблице критических точек распределения chi^2, по заданному уровню значимости alpha и числу степеней свободы k=s-3 найти критическую точку chi^2_{kp}(alpha;k), где s — количество интервалов.

Если chi^2_{nabl}<chi^2_{kp} — нет оснований отвергнуть нулевую гипотезу.

Если chi^2_{nabl}>chi^2_{kp} — нулевую гипотезу отвергают.

Найдем теоретические частоты n_i^', для этого составим следующую таблицу.

Середины интервалов,

x_{i}^{*}

Частоты интервалов,

n_i

Произведем расчет,

x_{i}^{*}-x_B

Произведем расчет,

V_i=frac{(x_{i}^{*}-x_B)}{sigma_B}

Значения функции Гаусса,

varphi(V_i)

Произведем расчет,

frac{nh}{sigma_B}

Теоретические частоты,

n_i^{'}=57 cdotvarphi(V_i)

20,4 1 -28,152 -2,23 0,0332 57 2
27,6 9 -20,952 -1,66 0,1006 57 6
34,8 13 -13,752 -1,09 0,2203 57 13
42 17 -6,552 -0,52 0,3485 57 20
49,2 23 0,648 0,05 0,3984 57 23
56,4 18 7,848 0,62 0,3292 57 19
63,6 11 15,048 1,19 0,1965 57 11
70,8 7 22,248 1,77 0,0833 57 5
78 1 29,448 2,34 0,0258 57 1
  n=100         sum n_i^{'}=100

   
Вычислим chi^2_{nabl}, для чего составим расчетную таблицу.

N^0 n_i n_i^{'} n_i-n_i^{'} {(n_i-n_i^{'})}^2 frac{{(n_i-n_i^{'})}^2}{n_i^'} n_i^2 frac{n_i^2}{n_i^{'}}
1 1 2 -1 0,5 1 0,5
2 9 6 3 9 1,5 81 13,5
3 13 13 0 0 0 169 13
4 17 20 -3 9 0,45 289 14,45
5 23 23 0 0 0 529 23
6 18 19 -1 1 0,05 324 17,05
7 11 11 0 0 0 121 11
8 7 5 2 4 0,8 49 9,8
9 1 1 0 0 0 1 1
sum 100 100    

Наблюдаемое значение критерия,

chi^2_{nabl}=3,30

  103,30

Контроль:

    [sumfrac{n_i^2}{n_i^{'}}-n=sum frac{{(n_i-n_i^{'})}^2}{n_i^'}]

    [sumfrac{n_i^2}{n_i'}-n=103,3-100=3,3]

    [sum frac{{(n_i-n_i')}^2}{n_i'}=3,3]

Вычисления произведены правильно.

Найдем число степеней свободы, учитывая, что число групп выборки (число различных вариант) s=9;

    [k=s-3=9-3=6.]

По таблице критических точек распределения chi^2 по уровню значимости alpha = 0,025 и числу степеней свободы k=6 находим chi^2_{kp}(0,025;6)=14,4.

Так как chi^2_{nabl}<chi^2_{kp} — нет оснований отвергнуть нулевую гипотезу. Другими словами, расхождение эмпирических и теоретических частот незначительное. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.

На рисунке построены нормальная (теоретическая) кривая по теоретическим частотам (зеленый график) и полигон наблюдаемых частот (коричневый график). Сравнение графиков наглядно показывает, что построенная теоретическая кривая удовлетворительно отражает данные наблюдений.

График нормальной кривой и полигон наблюдаемых частот

V. Интервальные оценки.

Интервальной называют оценку, которая определяется двумя числами — концами интервала, покрывающего оцениваемый параметр.

Доверительным называют интервал, который с заданной надежностью gamma покрывает заданный параметр.

Интервальной оценкой (с надежностью gamma) математического ожидания (а) нормально распределенного количественного признака Х по выборочной средней x_B при известном среднем квадратическом отклонении sigma генеральной совокупности служит доверительный интервал

    [x_B-frac{tsigma}{sqrt{n}}<a<x_B+frac{tsigma}{sqrt{n}},]

где frac{tsigma}{sqrt{n}}=delta — точность оценки, n — объем выборки, t — значение аргумента функции Лапласа phi (t) (см. приложение 2), при котором phi(t)=frac{gamma}{2};

при неизвестном среднем квадратическом отклонении sigma (и объеме выборки n<30)

    [x_B-frac{t_{gamma}cdot S}{sqrt{n}}<a<x_B+frac{t_{gamma}cdot S}{sqrt{n}},]

    [S=sqrt{frac{n}{n-1}D_B}]

где S — исправленное выборочное среднее квадратическое отклонение, t_{gamma} находят по таблице приложения по заданным n и gamma.

В нашем примере среднее квадратическое отклонение известно, sigma_B=12,6. А также x_B=48,55, n=100, gamma=0,95. Поэтому для поиска доверительного интервала используем первую формулу:

    [x_B-frac{tsigma}{sqrt{n}}<a<x_B+frac{tsigma}{sqrt{n}}]

Все величины, кроме t, известны. Найдем t из соотношения phi(t)=frac{0,95}{2}=0,475. По таблице приложения находим t=1,96. Подставив t=1,96, sigma_B=12,6, x_B=48,55, n=100 в формулу, окончательно получим искомый доверительный интервал:

    [48,55-frac{1,96cdot 12,6}{10}<a<48,55+frac{1,96cdot 12,6}{10}]

    [48,55-2,47<a<48,55+2,47]

    [46,08<a<51,02]

Интервальной оценкой (с надежностью gamma) среднего квадратического отклонения sigma нормально распределенного количественного признака Х по «исправленному» выборочному среднему квадратическому отклонению S служит доверительный интервал

S(1-q)<sigma<S(1+q),    (при q<1), (*)

0<sigma<S(1+q),      (при q>1),

где q — находят по таблице приложения по заданным n и gamma.

По данным gamma=0,95 и n=100 по таблице приложения 4 найдем q=0,143. Так как q<1, то, подставив S=sqrt{frac{n}{n-1}D_B}=sqrt{frac{100}{99}cdot 158,73}approx 12,66, quad quad q=0,143 в соотношение (*), получим доверительный интервал:

    [12,66(1-0,143)<sigma<12,66(1+0,143)]

    [10,85<sigma<14,47]

Обработка вариационного ряда

Варианты в статистической совокупности подвергаются обработке. Для этого составляется вариационный ряд, т. е. варианты располагают по возрастающим или убывающим величинам. Варианты в выборке, относящиеся к одному и тому же признаку, практически не совпадают между собой, или варьируют. Те варианты, которые резко отличаются от вариантов статистической совокупности и вызывают сомнение у исследователя определяются как артефакт. Они располагаются в начале или в конце вариационного ряда. Артефакт исключается из статистической совокупности и не подлежит обработке. Например, в приведенных вариационных рядах: 2, 9, 11, 12, 13, 15 и 25, 27, 29, 32, 55 почти все соседние показатели весьма близки по значению. Вызывают сомнение варианты 2 в первом ряду и 55 во втором. Их можно принять за артефакт и исключить (выбраковать) из обработки. Выбраковка должна быть статистически доказана.

Существующие критерии выбраковки основываются, как правило, на допущении, что выборка распределяется по нормальному или близкому к нему закону. В качестве критерия выбраковки может быть использован критерий τ (прил. 3). Если критерий τ вычисленный (фактический) больше или равен критерию τ табличному (τф ≥ τт) при объеме выборки N и уровне значимости α (0,05 или 0,01), то соответствующие значения вариантов выборки (х) допустимо отбросить как артефакт. Значения τ для вызывающей сомнение величины вычисляются по следующим формулам:

τ1 = (х2 – х1) / (хn1 – х1) (1.1)

для наименьшего значения переменной величины в вариационном ряду (х1);

τn = (хn – хn1) / (хn – х2) (1.2)

для максимального значения переменной в вариационном ряду.

Пример. При составлении вариационного ряда по урожайности сельскохозяйственных культур в разрезе хозяйств одного из районов получен следующий ряд значений: 10,8; 12,5; 12,9; 13,2; 20,2 (ц/га). Вызывает сомнение максимальное значение в выборке варианты 20,2. Следует доказать, можно ли ее отнести к артефакту. Подставляем необходимые данные в формулу 1.2:

τ5 = (х5– х4) / (х5 – х2) = (20,2 – 13,2) / (20,2 – 12,5) = 0,958.

Вычисленное значение критерия (τ5 = 0,958) сравнивают с табличным значением (τт), учитывая объем выборки (N = 5). В прил. 3 критическое значение критерия артефакта для N = 5 и уровня значимости α 0,05 и 0,01 соответственно будут равны 0,807 и 0,916, что меньше расчетного значения (τ5 = 0,958). Поэтому варианту 20,2 признают артефактом и исключают из статистической обработки как сомнительную. Затем приступают к вычислению показателей описательной статистики при условии, что тип распределения вариант соответствует нормальному или логнормальному закону распределения. В иных случаях с выборкой работают как с непараметрической, на которые теория вероятности не распространяется.

При установлении типа распределения принимается следующий порядок действий. Сначала определяется величина классового интервала i, которая зависит от принятого числа классов k и объема выборки N:

i = (хmaxxmin) / k.(1.3)

Число классов в зависимости от объема выборки определяется по формуле:

k = 1 + 3,3 lg N.(1.4)

Исходя из формулы (1.4), можно рекомендовать следующее число классов в зависимости от объема выборки:

N

30–50

51–10

101–400

401–1000

1001–2000

k

4–5

6–7

8–9

9–10

11–12

Величина классового интервала должна быть одинаковой на протяжении всего вариационного ряда. Границы классов выбираются такими, чтобы каждая варианта могла быть отнесена только к одному классу. Примеры правильной границы классов: 5–9, 10–14, 15–19 или 5,1–9,1, 9,2–13,2, 13,3–17,3, первый и последний классы могут быть неполными. Границы классов желательно выбирать так, чтобы крайние варианты ряда по возможности оказались ближе к середине интервала своего класса.

Пример. Пусть в выборке объемом N = 64 по количеству осадков за время наблюдения хmax = 179 мм, xmin = 103 мм. Согласно формуле (1.4), вариационный ряд разбиваем на 8 классов. Затем находим классовый интервал:

i = (179 – 103) / 8 = 9,5, или округленно 10.

Исходя из величины классового интервала и минимального значения в выборке, за начало левой границы первого класса удобно принять величину 100. Прибавляя к 100 классовый интервал 10, получаем левые границы последующих классов: 110, 120, 130, 140, 150, 160, 170 мм. Правые границы классов должны отличаться на единицу точности наблюдения от левой границы следующего класса, чтобы граничные значения вариант были отнесены к определенному классу. В нашем примере точность измерения составляет 1,0 мм, поэтому правые границы классов будут следующими: 109, 119, 129, 139, 149, 159, 169, 179 (табл. 1.1).

Срединное значение класса (х)вычисляем путем сложением границ классов и делением суммы на два. Для первого класса срединное значение равно: (100 + 109) / 2 = 104,5. Срединное значение последующих классов определяется путем последовательного прибавления классового интервала к срединному значению предыдущего класса: 104,5 + 10= =114,5. Узнать какая сейчас погода Полтаве, вы сможете на сайте meteoprog.ua. Снег, дождь, солнце, ветер, облачно все эти характеристики погодных условий берутся из численной модель прогноза погоды WRF (Weather Research and Forecasting), установленной на собственном высокопроизводительном компьютерном кластере, что дает надежный  и качественный прогноз погоды.

Затем производим разноску вариант по классам (подсчитываем количество вариант, вошедших в тот или иной класс в зависимости от их абсолютных величин). Получаем частоту (f) класса (см. табл. 1.1). Сумма частот должна соответствовать объему выборки (64), сумма частостей fч (частота, выраженная в процентах) должна равняться 100 %.

Таблица 1.1

Группировка вариант в классы при дискретной изменчивости признака

Границы класса

Середина класса, х

Частота, f

Частость, fч, %

100–109

104,5

6

9,37

110–119

114,5

10

15,62

120–129

124,5

12

18,75

130–139

134,5

14

21,87

140–149

144,5

10

15,62

150–159

155,5

6

9,37

160–169

165,5

4

6,25

170–179

175,5

2

3,12

i = 10

k = 8

N = 64

∑ 100,00   

По частоте и середине класса представим вариационный ряд графически в виде полигона и кривой распределения частот (рис. 1.1).

Рис. 1.1. Способы графического представления вариационного ряда: кривая распределения и гистограмма

При построении вариационной кривой по оси абсцисс откладываются значения середины класса, по оси ординат – частоты. При построении гистограммы по оси абсцисс откладываются границы классов, а число вариант каждого класса обозначается высотой или площадью соответствующего прямоугольника. При сравнении изменчивости одинаковых условий или признаков полученные вариационные кривые распределения частот наносятся на один график. Группировка вариант в классы для сравниваемых выборок должна быть одинаковой. Если объем выборок не одинаков, все частоты должны быть выражены в процентах от объема выборки по каждой совокупности.

Понравилась статья? Поделить с друзьями:
  • Как найти тест поинт на плате
  • Как найти наибольшее наименьшее значение на графике
  • Как найти учетную запись майкрософт на телефоне
  • Как исправить ошибку 0xc000007b при запуске программы на windows 7
  • Скачать аудио как ты как меня нашел