Radioactive decay is the release of alpha, beta, and gamma particles from unbalanced atoms known as radionuclides. Some substances, like uranium, have no stable forms and are therefore always radioactive. Radioactive substances are referred to as radionuclides. Rate of Decay is calculated to tell the exact amount of radioactive material that is being radiated. In this article, we will learn about the rate of decay formula and its examples in detail.
Half-Life of Radioactive Substances
A radionuclide decays into a different atom known as a decay product. Until the atoms achieve a stable state and stop being radioactive, they continue to change into new decay products. Most radionuclides only undergo one decay before stabilizing. Series radionuclides are those that decay in more than one step. The decay chain is the collection of decay products produced to achieve this equilibrium.
Each radionuclide has a unique decay rate that is measured by its “half-life.” The amount of time it takes for half of the radioactive atoms present to decay is known as the radioactive half-life. Others have half-lives of hundreds, millions, or billions of years. Some radionuclides have half-lives of just a few seconds.
The time it takes for the activity of a specific quantity of a radioactive substance to decay to half of its initial value is known as the half-life (t1/2).
t1/2 = ln(2) / λ = τ ln(2)
where,
t1/2 is the half-life of a radioactive substance.
λ is the mean lifetime of a radioactive substance.
τ is the average lifetime of a radioactive substance before decay.
Rate of Decay Formula
The breakdown of radioactive particles into new types of particles from the parent radionuclide is known as radioactive decay. There are three types of radioactive decay, alpha, beta, and gamma decay, and the half-lives of each type of decay have different values depending on the type of ionization. Due to the emission of many particle kinds, the decay rate differs for each type of decay.
It’s been observed that radioactive disintegration only happens when the nucleus is unstable. Alpha, beta, and gamma radiations are released by the unstable nucleus along with other ionizing particles and radiations as it loses energy. A radioactive element is one that has a nucleus that is unstable. Usually, the radioactive substance splits into two parts.
The term “Parent nuclide” denotes to one component of a radioactive element. The other component disintegrates into a “Daughter nuclide,” a modified atom that differs from the parent radionuclide as a result of the bombardment. The decay product is another name for the daughter nuclide. This is due to the fact that the parent nuclide’s atoms continue to decay and transform into new decay products. The decay product stops decaying when it reaches a stable state where its radioactivity disappears.
A first-order decay process determines the rate of radioactive particle decay. This indicates that it exhibits an exponential decline pattern, which is simple to calculate.
Nt = N0 e-λt
where,
Nt is the amount of radioactive particles at time (t)
N0 is the amount of radioactive particles at time (0)
λ is the rate of decay constant
t is time
Since this decay rate is exponential, taking the natural log on both sides of the equation will result in:
ln (Nt /N0) = -λt
Read, More
- Radioactivity
- Types of Radioactivity
- Radioactive Isotopes
Solved Examples on Rate of Decay Formula
Example 1: If U-238 has a half-life of 4.468 × 109 years, determine its rate of decay constant.
Solution:
The problem refers to half life of U-238, Half of the original sample has already decayed. Hence the ratio N0/Nt = 0.5.
ln (Nt /N0) = -λt
ln 0.5 = -λ × 4.468 × 109
λ = 1.55 x 10-10 years-1
Rate of decay constant (λ) is 8.38 x 10-11 years-1
Example 2: If U-238 has a 35% life of 5.142 × 109 years, determine its rate of decay constant.
Solution:
35% half life of U-238 has already decayed, Hence the ratio N0/Nt = 0.65 as 65 percent of original sample remains.
ln (Nt /N0) = -λt
ln 0.65 = -λ × 5.142 × 109
λ = 0.838 x 10-10 years-1
Rate of decay constant (λ) is 8.38 x 10-11 years-1
Example 3: Determine the amount of time it will take for 25% of a sample of U-238 to radioactively decay with a decay constant of 1.55 x 10-10 years-1.
Solution:
Since 75% of the original sample is still present, the ratio Nt/N0 = 0.75. Where 25% of the sample has undergone radioactive decay.
Rate of decay constant (λ) = 1.55 × 10-10 years-1
ln (Nt /N0) = -λt
ln 0.75 = -1.55 × 10-10 years-1 × t
t = 1.86 x 109 years
The amount of time for 25% radioactive U-238 decay is 1.86 x 109 years
Example 4: Determine the amount of time it will take for 45% of a sample of U-238 to radioactively decay with a decay constant of 1.55 x 10-10 years-1.
Solution:
Since 55% of the original sample is still present, the ratio Nt/N0 = 0.75. Where 45% of the sample has undergone radioactive decay.
Rate of decay constant (λ) = 1.55 × 10-10 years-1
ln (Nt /N0) = -λt
ln 0.55 = -1.55 × 10-10 years-1 × t
t = 3.86 x 109 years
The amount of time for 45% radioactive U-238 decay is 3.86 x 109 years
Example 5: The half-life of PD-100 is 3.6 days. How many atoms will remain after 20.0 days, if one has 6.02 x 1023 at the beginning?
Solution:
Time = 20 days
Half-life = 3.6 days
Initial atoms = 6.02 ×1023 atoms
Formula used to determine number of atoms after 20 days.
N = N0 × 1/2 × t/t1/2
N = 6.02 ×1023 × 1/2 × 20/3.6
= 1.28 × 1022
The number of atoms present is 1.28 × 1022
FAQs on Rate of Decay
Question 1: What is radioactive decay?
Answer:
The radioactive atom (radionuclide) changes into another nuclide as the nucleus releases radiation or breaks down. It is known as radioactive decay.
Question 2: What are the different types of radioactive decay?
Answer:
Alpha, beta, and gamma decay are the three main types of radioactive decay. The number of protons in an atom’s nucleus can change by alpha and beta decay, which transforms the atom into a different element. The atom does not convert into a different element due to gamma decay because it does not alter the proton number.
Question 3: What are examples of radioactive decay?
Answer:
Alpha decay, proton emission, double proton emission, beta decay, gamma decay, electron capture, and neutron emission are common examples of radioactive decay.
Question 4: What is the importance of radioactive decay?
Answer:
Radioactive decay is useful for many aspects of human life, including health, the creation of electricity, and astronomy, etc.
Question 5: What are the effects of radioactive decay on humans?
Answer:
The energy released into the environment as radioactive material decays or breaks down can injure a body in two different ways. It has the potential to directly destroy cells or to alter DNA. The cell may develop cancer if certain mutations are not fixed.
Question 6: What is the importance of radioactive half-life?
Answer:
Because long-lived radionuclides persist longer after release than shorter-lived species, the radiological half-life is essential for radiation control. Radionuclides with longer half-lives will remain in the environment longer than those with shorter half-lives.
Last Updated :
17 Apr, 2023
Like Article
Save Article
Основной закон радиоактивного распада радионуклида
В
результате всех видов радиоактивных
превращений количество ядер данного
изотопа постепенно уменьшается. Убывание
количества распадающихся ядер происходит
по экспоненте и записывается в следующем
виде:
N=N0е–t, (10)
где
N0 –
количество ядер радионуклида в момент
начала отсчета времени (t=0); — постоянная
распада, которая для различных
радионуклидов разная;N
– количество ядер радионуклида спустя
времяt; е–
основание натурального логарифма (е =
2,713….). Это и есть основной закон
радиоактивного распада.
Вывод
формулы (10).Естественный радиоактивный
распад ядер протекает самопроизвольно,
без всякого воздействия извне. Этот
процесс статистический, и для отдельно
взятого ядра можно лишь указать
вероятность распада за определенное
время. Поэтому скорость распада можно
характеризовать временемt.
Пусть имеется числоNатомов
радионуклида. Тогда, число распадающихся
атомовdNза времяdtпропорционально
числу атомовNи промежутку времениdt:
(11)
Знак
минус показывает, что число N
исходных атомов уменьшается во
времени. Экспериментально показано,
что свойства ядер со временем не меняются.
Отсюда следует, чтоlесть величина постоянная и носит название
– постоянная распада. Из (11) следует,
чтоl= –dN/N=const, приdt= 1, т.е. постояннаяlравна вероятности распада одного
радионуклида за единицу времени.
В
уравнении (11) поделим правую и левую
части на Nи проинтегрируем:
dN/N
= – ldt (12)
(13)
ln
N/N0 =
– λt и N = N0
е– λt , (14)
где
N0 есть
начальное число распадающихся атомов
(N0приt=0).
Формула
(14) имеет два недостатка. Для определения
числа распадающихся ядер необходимо
знать N0. Прибора
для его определения не существует.
Второй недостаток – хотя постоянная
распадаλ имеется
в таблицах, но прямой информации о
скорости распада она не несет.
Чтобы
избавиться от величины λвводится понятиепериод полураспада
Т (иногда в литературе обозначается
Т1/2). Периодом полураспада называется
промежуток времени, в течение которого
исходное число радиоактивных ядер
уменьшается вдвое, а число распадающихся
ядер за времяТостается постоянным
(λ=const).
В
уравнении (10) правую и левую часть поделим
на N, и приведем к
виду:
N0/N
= еt (15)
Полагая,
что N0/N
= 2, при t = T,получимln2 = Т,
откуда:
ln2
= 0,693 =
0,693/T (16)
Подставив
выражение (16) в (10) получим:
N
= N0е–0.693t/T (17)
На
графике (рис.2.) показана зависимость
числа распадающихся атомов от времени
распада. Теоретически кривая экспонента
никогда не может слиться с осью абсцисс,
но на практике можно считать, что примерно
через 10–20 периодов полураспада
радиоактивное вещество распадается
полностью.
Для
того, чтобы избавиться от величин NиN0,пользуются
следующим свойством явления радиоактивности.
Есть приборы, которые регистрируют
каждый распад. Очевидно, что можно
определить количество распадов за
определенный промежуток времени. Это
есть не что иное, как скорость распада
радионуклида, которую можно назвать
активностью: чем больше распадается за
одно и тоже время ядер, тем больше
активность.
Итак,
активность– это физическая величина,
характеризующая число радиоактивных
распадов в единицу времени:
А
= dN/dt(18)
Исходя
из определения активности, следует, что
она характеризует скорость ядерных
переходов в единицу времени. С другой
стороны, количество ядерных переходов
зависит от постоянной распада l.
Можно показать, что:
A
= A0е–0,693t/T (19)
Вывод
формулы (19). Активность радионуклида
характеризует число распадов в единицу
времени (в секунду) и равна производной
по времени от уравнения (14):
А
= dN/dt
= lN0е–-t
= lN (20)
Соответственно
начальная активность в момент времени
t = 0 равна:
Аo
= lNo(21)
Исходя
из уравнения (20) и с учетом (21), получим:
А
= Аoе–tилиА
= А0е– 0,693t/T (22)
Единицей
активности в системе СИ принят 1
распад/с=1 Бк(назван Беккерелем в
честь французского ученого (1852–1908 г),
открывшего в 1896 году естественную
радиоактивность солей урана). Используют
также кратные единицы: 1 ГБк=109 Бк
– гигабеккерель, 1 МБк=106 Бк –
мегабеккерель, 1 кБк=103Бк –
килобеккерель и др.
Существует
и внесистемная единица Кюри, которая
изымается из употребления согласно
ГОСТ 8.417-81 и РД 50-454-84. Однако на практике
и в литературе она используется. За1Кuпринята активность 1г радия.
1Кu
= 3,71010
Бк; 1Бк = 2,710–11Ки(23)
Используют
также кратную единицу мегакюри
1Мки=1106Ки и
дольные – милликюри, 1мКи=10–3Ки;
микрокюри, 1мкКи=10–6Ки.
Радиоактивные
вещества могут находиться в различном
агрегатном состоянии, в том числе
аэрозольном, взвешенном состоянии в
жидкости или в воздухе. Поэтому в
дозиметрической практике часто используют
величину удельной, поверхностной или
объемной активности или концентрации
радиоактивных веществ в воздухе, жидкости
и в почве.
Удельную,
объемную и поверхностную активность
можно записать соответственно в виде:
Аm
= А/m; Аv = А/v; Аs
= A/s(24)
где:
m– масса вещества;v– объем вещества;s–
площадь поверхности вещества.
Очевидно,
что:
Аm
= A/m
= A/srh
= Аs/rh
= Av/r(25)
где:
r– плотность почвы, принимается в
Республике Беларусь равной 1000кг/м3;h– корнеобитаемый слой почвы,
принимается равным 0,2м;s– площадь
радиоактивного заражения, м2.
Тогда:
Аm
= 510–3
Аs ;
Аm =
10–3 Av
(26)
Аmможет быть выражена в Бк/кг или Кu/кг;Asможет быть выражена в Бк/м2,Кu/ м2,
Кu/км2;Avможет быть выражена в Бк/м3или
Кu/м3.
На
практике могут быть использованы как
укрупненные, так и дробные единицы
измерения. Например: Кu/ км2, Бк/см2,
Бк/г и др.
В
нормах радиационной безопасности
НРБ-2000 дополнительно введены еще
несколько единиц активности, которыми
удобно пользоваться при решении задач
радиационной безопасности.
Активность
минимально значимая (МЗА) –
активность открытого источника
ионизирующего излучения в помещении
или на рабочем месте, при превышении
которой требуется разрешение органов
санитарно-эпидемиологической службы
Министерства здравоохранения на
использование этих источников, если
при этом также превышено значение
минимально значимой удельной активности.
Активность
минимально значимая удельная (МЗУА)– удельная активность открытого
источника ионизирующего излучения в
помещении или на рабочем месте, при
превышении которой требуется разрешение
органов санитарно-эпидемиологической
службы Министерства здравоохранения
на использование этого источника, если
при этом также превышено значение
минимально значимой активности.
Активность
эквивалентная равновесная (ЭРОА)дочерних продуктов изотопов радона222Rnи220Rn– взвешенная сумма объемных активностей
короткоживущих дочерних продуктов
изотопов радона –218Ро (RaA);
214Pb
(RaB); 212Pb
(ThB); 212Вi
(ThC)соответственно:
(ЭРОА)Rn
= 0,10 АRaA
+ 0,52 АRaB
+ 0,38 АRaC ;
(ЭРОА)Th
= 0,91 АThB +
0,09 АThC
,
где
А – объемные активности
дочерних продуктов изотопов радона и
тория.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Серия
экспериментов, проведённая с соля́ми урана в период 1899—1900 гг., показала,
что радиоактивное излучение в сильном магнитном поле распадается на три составляющие:
лучи
первого типа отклоняются так же, как поток положительно заряженных частиц. Их
назвали альфа-лучами;
лучи
второго типа обычно отклоняются в магнитном поле так же, как поток отрицательно
заряженных частиц, их назвали бета-лучами (существуют, однако, позитронные
бета-лучи, отклоняющиеся в противоположную сторону);
а
лучи третьего типа, которые не отклоняются магнитным полем, назвали гамма-излучением.
Хотя
в ходе исследований были обнаружены и другие типы частиц, испускающихся при
радиоактивном распаде, эти названия сохранились до сих пор, поскольку
соответствующие типы распадов наиболее распространены.
Позже
было установлено, что альфа-лучи представляют собой поток ядер атома гелия. А
продуктом распада материнского ядра оказывается элемент, зарядовое число
которого на две единицы меньше, а массовое число на четыре единицы меньше, чем
у материнского ядра:
При
бета-минус-распаде ядро атома испускает один электрон и антинейтрино, в
результате чего образуется ядро нового элемента с тем же самым массовым числом,
но с атомным номером на единицу больше, чем у материнского ядра:
А
при бета-плюс-распаде ядра самопроизвольно испускают позитрон и электронное
нейтрино. Ядро нового химического элемента имеет то же самое массовое число, но
его атомный номер уменьшается на единицу:
Исследование
изотопов различных химических элементов показало, что большинство из них превращается
в более устойчивые изотопы путём радиоактивного распада. При этом очевидно, что
в процессе радиоактивного распада число ядер со временем уменьшается. Но предсказать,
когда именно распадётся то или иное ядро, оказалось невозможным. Однако было
установлено, что для каждого радиоактивного ядра существует некоторое характерное
время, называемое периодом полураспада, спустя которое в исходном
состоянии остаётся половина первоначального количества радиоактивных
ядер. При этом распавшиеся ядра превращаются в ядра других, более
устойчивых изотопов.
Период
полураспада характеризует такое свойство, как активность радионуклида. Данная
величина указывает на интенсивность радиоактивных превращений, т. е. на
количество радиоактивных распадов атомных ядер, происходящих за единицу времени.
В
СИ единицей активности является беккерель. 1 Бк — это активность
радиоактивного препарата, в котором происходит распад одного ядра за одну
секунду. Внесистемной единицей активности служит кюри (1 Ки = 3,7 · 1010
Бк).
Таким
образом, чем меньше период полураспада радионуклида, тем быстрее происходит его
распад и тем активнее элемент.
Отметим
также, что период полураспада не зависит от того, в каком состоянии находится
вещество: твёрдом, жидком или газообразном. Кроме того, период полураспада не
зависит от времени, места и условий, в которых находится радиоактивное
вещество. Поэтому количество радиоактивных ядер «тогда», и «сейчас» зависит
только от промежутка времени, прошедшего с момента начала регистрации процесса
распада ядер.
Как
мы говорили, точно предсказать, когда произойдёт распад данного ядра невозможно.
Однако можно оценить среднее число ядер, которые распадутся за данный
промежуток времени. Закон, который описывает интенсивность
радиоактивного распада от времени и количества радиоактивных атомов в образце,
был открыт Фредериком Содди и Эрнестом Резерфордом в 1903 году. В своих работах
«Сравнительное изучение радиоактивности радия и тория» и «Радиоактивные
превращения» они сформулировали закон радиоактивного распада следующим образом:
«Во всех случаях, когда отделяли один из радиоактивных продуктов и
исследовали его активность независимо от радиоактивности вещества, из которого
он образовался, было обнаружено, что активность при всех исследованиях
уменьшается со временем по закону геометрической прогрессии».
Давайте с вами получим
математическую форму закона радиоактивного распада. Для этого будем считать,
что в начальный момент времени число радиоактивных ядер составляло «Эн
нулевое». Тогда, через промежуток времени, равный периоду полураспада, у нас
останется? Правильно, половина от их первоначального количества.
За второй период полураспада у
нас распадётся половина от половины исходного числа ядер. То есть
нераспавшимися останется четверть от начального числа ядер. Рассуждая далее аналогичным
образом, найдём, что за промежуток времени, равный n периодам
полураспада, радиоактивных ядер останется:
Поскольку n
— это отношение времени наблюдения к периоду полураспада радиоактивного
элемента, то последнюю запись можно представить в том виде, который вы сейчас
видите на экране:
Полученное соотношение и
выражает математическую запись закона радиоактивного распада. С его
помощью можно найти число нераспавшихся ядер в любой момент времени.
Для примера давайте с вами решим
такую задачу. Изотоп является β–-радиоактивным с
периодом полураспада 30 лет. Определите заряд β-частиц, испущенных
этим изотопом за 15 лет, если масса исходного препарата равна 2 г.
Отметим, что закон
радиоактивного распада является статистическим, так как он справедлив до тех
пор, пока число нераспавшихся ядер остаётся достаточно большим.
Вы видите теоретический и
экспериментальный графики распада 47 ядер изотопа фермия-256, период
полураспада которого равен 3,5 часам. Из графиков хорошо видно, что пока ядер
было достаточно много (от 47 до 12), показательная функция хорошо описывала
закон распада. Однако при меньшем числе ядер истинная зависимость существенно
отличается от показательной функции.
Теперь давайте с вами выясним,
от чего же зависит активность радионуклида. Для этого вспомним, что в процессе
радиоактивного распада количество нераспавшихся ядер уменьшается, значит,
активность образца равна скорости уменьшения количества нераспавшихся ядер:
Подставим в данное уравнение
математическую запись закона радиоактивного распада и возьмём первую
производную по времени полученного выражения.
После всех математических
преобразований получим, что активность источника прямо пропорциональна числу
радиоактивных ядер, имеющихся в образце в данный момент времени, и обратно
пропорциональна периоду полураспада данного радиоактивного вещества.
Представим полученную нами
формулу в том виде, как это показано на экране:
Произведение, стоящее в
знаменателе формулы представляет собой среднее время жизни радиоактивного
изотопа. Оно также равно периоду, за который количество нераспавшихся ядер
уменьшается в е ≅ 2,72 раз.
Как вы уже знаете, все
радиоактивные ядра данного изотопа одинаковы. Поэтому и вероятность распада для
каждого из них одинакова в каждую секунду. То есть распад ядра — это, так
сказать, не «смерть от старости», а скорее «несчастный случай» в его жизни. Ядро
может распасться сейчас, а может прожить в образце неопределённо долго без
распада.
Вероятность
распада одного ядра данного изотопа за одну секунду называется постоянной
распада и обозначается греческой буквой лямбда (λ). Для
любого ядра данного изотопа постоянная распада одинакова. Но для ядер различных
изотопов постоянная распада различна.
Давайте предположим, что в некотором
радиоактивном образце имеется N ядер. Тогда вероятность
распада равна той части ядер (|dN/N|) образца,
которая распадётся за единицу времени:
(знак «–» в
уравнении указывает на убывание числа радиоактивных ядер данного изотопа с
течением времени). Из этой формулы следует, что доля распавшихся ядер
равна произведению постоянной распада на малый промежуток времени, за который
они распались:
Проинтегрируем это выражение от
начального до произвольного момента времени:
Воспользовавшись свойствами
логарифма, мы с вами получим второй вариант записи закона радиоактивного
распада:
На основании полученного
уравнения мы с вами можем определить, от чего зависит постоянная радиоактивного
распада. Итак, предположим, что время наблюдения за радиоактивным препаратом
равно его периоду полураспада. Значит, через этот промежуток времени в образце
останется половина от первоначального количества ядер:
Перепишем закон радиоактивного
распада с учётом этого выражения.
И прологарифмируем полученное
равенство по основанию «Е».
Из полученной записи видно,
что постоянная распада обратно пропорциональна периоду полураспада
радиоактивного элемента:
Сравнивая эти формулы с
формулой, полученной нами ранее для активности вещества, видим, что активность
образца равна произведению постоянной распада и числа радиоактивных ядер в
образце в данный момент:
Появление «ручных» сцинтилляционных счетчиков и, главным образом, счётчиков Гейгера–Мюллера, которые помогли автоматизировать подсчёты частиц (см. § 15-е), привело физиков к важному выводу. Любой радиоактивный изотоп характеризуется самопроизвольным ослабеванием радиоактивности, выражающимся в уменьшении количества распадающихся ядер в единицу времени.
Построение графиков активности различных радиоактивных изотопов приводило учёных к одной и той же зависимости, выражающейся показательной функцией (см. график). По горизонтальной оси отложено время наблюдения, а по вертикальной – количество нераспавшихся ядер. Кривизна линий могла быть различной, однако сама функция, которой выражались описываемые графиками зависимости, оставалась одной и той же:
N – количество нераспавшихся ядер N0 – начальное количество ядер t – время наблюдения, с T – период полураспада, с |
Эта формула выражает закон радиоактивного распада: количество нераспавшихся с течением времени ядер определяется как произведение начального количества ядер на 2 в степени, равной отношению времени наблюдения к периоду полураспада, взятой с отрицательным знаком.
Как выяснилось в ходе опытов, различные радиоактивные вещества можно охарактеризовать различным периодом полураспада – временем, за которое количество ещё нераспавшихся ядер уменьшается вдвое (см. таблицу).
Йод-129 | 15 млн лет | Углерод-14 | 5,7 тыс лет | |
Йод-131 | 8 дней | Уран-235 | 0,7 млрд лет | |
Йод-135 | 7 часов | Уран-238 | 4,5 млрд лет |
Период полураспада – общепринятая физическая величина, характеризующая скорость радиоактивного распада. Многочисленные опыты показывают, что даже при очень длительном наблюдении за радиоактивным веществом его период полураспада постоянен, то есть не зависит от числа уже распавшихся атомов. Поэтому закон радиоактивного распада нашёл применение в методе определения возраста археологических и геологических находок.
Метод радиоуглеродного анализа. Углерод – очень распространённый на Земле химический элемент, в состав которого входят стабильные изотопы углерод-12, углерод-13 и радиоактивный изотоп углерод-14, период полураспада которого составляет 5,7 тысяч лет (см. таблицу). Живые организмы, потребляя пищу, накапливают в своих тканях все три изотопа. После прекращения жизни организма поступление углерода прекращается, и с течением времени его содержание убывает естественным путём, за счёт радиоактивного распада. Поскольку распадается только углерод-14, с течением веков и тысячелетий изменяется соотношение изотопов углерода в ископаемых останках живых организмов. Измерив эту «углеродную пропорцию», можно судить о возрасте археологической находки.
Метод радиоуглеродного анализа применим и для геологических пород, а также для ископаемых предметов быта человека, но при условии, что соотношение изотопов в образце не было нарушено за время его существования, например, пожаром или действием сильного источника радиации. Неучёт подобных причин сразу после открытия этого метода приводил к ошибкам на несколько веков и тысячелетий. Сегодня применяются «вековые калибровочные шкалы» для изотопа углерода-14, исходя из его распределения в долгоживущих деревьях (например, в американской тысячелетней секвойе). Их возраст можно подсчитать весьма точно – по годовым кольцам древесины.
Предел применения метода радиоуглеродного анализа в начале XXI века составлял 60 000 лет. Для измерения возраста более древних образцов, например горных пород или метеоритов, используют аналогичный метод, но вместо углерода наблюдают за изотопами урана или других элементов в зависимости от происхождения исследуемого образца.
Random converter
Перевести единицы: распад в секунду в микрокюри [мкКи]
1 распад в секунду = 2,7027027027027E-05 микрокюри [мкКи]
Подробнее о радиоактивном распаде
Общие сведения
Знаки, предупреждающие о радиации
Радиоактивный распад — это процесс, во время которого атом испускает радиоактивные частицы. Существует несколько видов радиоактивного распада: альфа-, бета- и гамма-распад, по названию частиц, которые выделяются при этом распаде. Во время радиоактивного распада частицы забирают энергию у ядра атома. Иногда при этом ядро изменяет свое состояние или превращается в другое ядро.
Виды радиоактивного распада
Альфа-распад
Альфа-частицы, которые выделяются во время альфа-распада, состоят из двух нейтронов и двух протонов. По сравнению с другими частицами, большая часть альфа-частиц, возникших во время радиоактивного распада, имеет очень низкую степень проникновения. Они не проникают даже через тонкие барьеры, такие как бумага, кожа, и слой воздуха. Если они все же попали в организм человека или животного, то риск для здоровья огромен, намного больше, чем от бета- и гамма-частиц. Одно из недавних громких дел с отравлением радиацией связанно именно с альфа-частицами, выделяющимися во время радиоактивного распада полония-210. Александр Литвиненко, бывший сотрудник ФСБ России, был отравлен в 2006 году, когда во время делового обеда в его еду без его ведома был добавлен полоний-210. Он умер через 23 дня после отравления. Этот случай получил большую огласку не только потому, что Литвиненко был политически неугоден Российскому правительству, но и потому, что убийство произошло не в России, а в Великобритании, где Литвиненко получил политическое убежище.
Бета-распад
Бета-частицы, выделяемые во время бета-распада — это позитроны или электроны. Их проникающая способность выше, чем у альфа-частиц, но они не могут проникнуть сквозь слой алюминия, а также некоторые другие материалы. При достаточно сильном облучении бета-частицы проникают сквозь кожу в организм, и поэтому опасны для здоровья. Несмотря на эту опасность, вернее именно из-за нее, их способность разрушать клетки живых организмов используются для лечения от рака, во время радиотерапии. В этом случае излучение, направленное в пораженные раком участки, разрушает раковые клетки.
При бета-распаде иногда происходит интересное явление — необычное красивое голубое свечение, называемое эффектом Вавилова — Черникова. Для этого частицы должны двигаться с большой скоростью. В примере ниже о радиационном облучении в Гоянии те, кто нашел радиоактивный цезий-137, наблюдали именно это явление. Из-за этого свечения люди думали, что цезий-137 обладает магическими свойствами, и хвастались этой диковинкой друзьям.
Средства индивидуальной защиты от облучения. Военный музей на бывшей базе подводных лодок (Объект 825 ГТС) в Балаклаве, Крым, Россия.
Гамма-распад
Уровень проникновения гамма-лучей, образованных во время гамма-распада, намного выше, чем проникновение бета-лучей. Чтобы предотвратить их попадание в организм, защитные средства делают из толстого слоя свинца, бетона, или других материалов. Определение гамма-лучей менялось на протяжении многих лет, но сейчас их определяют как лучи, выделяемые ядром атома, не считая лучей, которые выделяются при астрономических явлениях. Гамма-лучи отличают от рентгеновских тем, что рентгеновские лучи излучаются электронами, не находящимися внутри ядра.
Период полураспада
Период полураспада радиоактивной частицы — это время, за которое общее количество радиоактивного вещества уменьшается вдвое. Эта величина измеряется в тех же единицах, что и время, то есть в секундах, минутах, часах, днях, годах и так далее, в зависимости от того, насколько велик период полураспада для измеряемой частицы. К примеру, период полураспада йода-131 и цезия-137 — двух наиболее распространенных радиоактивных веществ в районе Чернобыльской АЭС после аварии — 8 дней и 30 лет, соответственно. Время, которое требуется для полного распада радиоактивного вещества, зависит от периода полураспада и от общего количества вещества.
Авария на Чернобыльской АЭС
Авария в 1986 году на Чернобыльской АЭС на территории нынешней Украины печально известна выбросами большого количества радиоактивных веществ в атмосферу и связанным с этим загрязнением окружающей среды Украины, России, Белоруссии и стран Европы. Выбросы радиоактивных изотопов включали йод-131, цезий-137, стронций-90 и плутоний-241. Все эти вещества подвергаются бета-распаду и могут легко попасть в организм, если человек не защищен специальной одеждой, что повышает вероятность заболевания раком и повреждения клеток и тканей.
Йод-131
Йод-131
Период полураспада йода-131 — самый короткий по сравнению с другими радиоактивными веществами в Чернобыле — всего 8 дней. Поэтому он представлял наибольшую опасность для здоровья сразу после аварии. В результате аварии в окружающую среду попало около 1760 петабеккерелей. Один петабеккерель равен десяти в 15-й степени беккерелям. Благодаря короткому периоду полураспада сейчас на территории, загрязненной во время аварии, почти не осталось радиоактивного йода-131.
Йод-131 легко попадает в организм, особенно в щитовидную железу, и повышает риск заболевания раком. Высока вероятность заражения через облученные молоко и зеленые листовые овощи, такие как салат и капуста. Такое заражение особенно вероятно для детей. После Чернобыльской аварии Советское правительство не сразу проинформировало население о том, что произошел выброс радиации, о связанных с этим опасностях и о том, как предотвратить облучение. Кроме людей, эвакуированных из зоны отчуждения, и тех, кто знал об аварии так как напрямую был с ней связан по работе, жители близлежащих районов не подозревали об аварии до того, как о ней объявили в СМИ. Это произошло только через неделю и к тому времени многие взрослые и дети, не зная об этом, получили дозу облучения через молоко и другие продукты питания. В результате намного увеличились случаи заболевания раком щитовидной железы в зараженных районах, особенно среди детей.
Цезий-137
Другие вещества
Районы вокруг АЭС до сих пор загрязнены цезием-137, стронцием-90 и плутонием-241 из-за их более длительного периода полураспада в 30, 29 и 14 лет, соответственно. Всего было выброшено 85, 10 и 6 петабеккерелей каждого радиоизотопа соответственно. Йод-131 составлял всего 10-15% от общего количества радиоактивных веществ. Цезия-137 и стронция-90 было намного больше — они составляли почти 2/3 всех выбросов, и пройдет еще около 300 лет пока эти вещества, наконец, распадутся.
Стронций-90
На данный момент наибольшую опасность для людей, работающих и посещающих 30-ти километровую зону отчуждения в Чернобыле, представляет цезий-137. Бо́льшая часть радиоизотопов на зараженной площади вокруг АЭС в префектуре Фукусима также состоит из цезия-137. Он легко попадает в организм, так как похож по своей структуре на калий, который нужен организму для нормальной жизнедеятельности. Обычно он собирается в мышечной ткани и разрушает ее. Это особенно пагубно для одного из самых главных органов, состоящих из мышечной ткани — сердца. В последнее время в районах, зараженных радиацией после аварии в Чернобыле, увеличилось число сердечных заболеваний, особенно среди детей. Цезий-137 также вызывает раковые заболевания.
Плутоний-241
Всего по данным Советского правительства было выброшено от 50 до 100 миллионов кюри (от 2 до 4 миллионов терабеккелей) радиоактивных веществ. На основе статистики о раковых и других заболеваний ученые многих стран предполагают, что в действительности эти цифры должны быть в 10 раз выше.
Ликвидационные работы
Согласно данным Всемирной организации здравоохранения, Советское правительство призвало 600 000 человек на работы по ликвидации последствий аварии. Этих людей так и называли — ликвидаторами. Призывались как кадровые военные, так и военнослужащие запаса. Некоторые из них были специалистами в области химии и физики, но многие не имели знаний и подготовки по работе с радиоактивными веществами. Одними из первых ликвидаторов были пожарные; многие из них получили большие дозы облучения и умерли вскоре после аварии. Многих ликвидаторов посылали на опасные работы, такие как очистка крыши от радиоактивного мусора, который попал туда во время взрыва реактора. Роботы, которые должны были производить очистку, не выдерживали излучения, поэтому вместо них работали люди, «биороботы», как называли себя некоторые ликвидаторы в своих мемуарах. С крыш убирали, в том числе и обломки радиоактивных графитовых стержней, находившихся внутри реактора и выброшенных во время взрыва.
Одной из самых важных задач было не допустить того, чтобы радиоактивные частицы поднялись в воздух, поэтому больша́я часть ликвидационных работ была направлена на уборку и захоронение радиоактивного мусора — бетона, арматуры, и так далее — а также облученной почвы, и других предметов. В самом начале работ ликвидаторы также занимались захоронением облученных продуктов питания в эвакуированных селах и уничтожали домашних животных. Работы по ликвидации последствий аварии ведутся до сих пор.
Ликвидаторы
Персональный дозиметр L-746. 1980-е гг. Дифенбункер — Канадский музей холодной войны
Большую часть ликвидаторов призвали на ликвидационные работы из запаса, и никто из них не имел права отказаться. Военная служба была в Советском Союзе обязательной, и все, кто отслужил или окончил некоторые учебные заведения, становились военнослужащими запаса. Каждого из них могли снова призвать на службу в любой момент, независимо от их работы, и именно так и произошло после Чернобыльской аварии. В Чернобыль в основном призывали мужчин старше 30-ти. Некоторым удавалось избежать призыва, если им не позволяло здоровье или они могли достать справку о том, что они не могут работать ликвидаторами по состоянию здоровья. Альтернативой был тюремный срок за уклонение от призыва. Не все работали принудительно, были и те, кто добровольно отправлялся на эти работы, понимая, несмотря на риск, что кто-то должен эту работу делать. Многие надеялись, что с ними ничего не случится.
Некоторые ликвидаторы описали условия, в которых им приходилось работать, в своих мемуарах. Часто в них встречаются описания нарушений правил безопасности. В своем фильме «Чернобыль. Хроника трудных недель» режиссер Владимир Шевченко показал ликвидаторов, которые работали на высоко загрязненных участках. Некоторые из них не носили респираторов, игнорируя правила безопасности, так как в респираторах было трудно дышать и работать. Один из ликвидаторов описал в своих мемуарах как на его участке снимали показания дозиметров. По правилам каждому ликвидатору полагалось носить дозиметр во время работы, чтобы фиксировать общее количество полученного облучения. Несмотря на правила, информация эта не записывалась теми, кто следил за показаниями. Вместо этого каждому работнику записывали приблизительную дозу, основанную на предыдущих измерениях на участке, где он в этот день работал. Иногда даже эти дозы занижали, чтобы продлить длительность пребывания того или иного человека на участке. Некоторые ликвидаторы также рассказывают, что даже в «чистых» жилых зонах был завышен радиационный фон, так как некоторые работники возвращались после работ в грязной форме, или вообще не имели специальной рабочей формы. Также иногда для обустройства жилой зоны использовались облученные стройматериалы. Сами работники приносили телевизоры из зараженных домов, чем увеличивали радиационный фон в жилой зоне.
Саркофаг
Вскоре поле аварии над взорвавшимся реактором построили бетонный купол, чтобы не дать радиоактивному мусору подняться в воздух и заражать окрестности. Назвали этот купол саркофагом — как напоминание о смертоносных веществах, под ним похороненных.
Радиометр-дозиметр. 1980-е гг. Дифенбункер — Канадский музей холодной войны
Сейчас корпус саркофага обветшал и начал в некоторых местах разрушаться. Зимой 2013 года часть строения обвалилась. О ненадежности этой конструкции было давно известно, поэтому недавно, еще до зимы 2013, началось строительство нового купола. Во время обвала строительные работы временно приостановили, но через неделю продолжили. На данный момент новый купол планируют закончить к 2015 году. Если саркофаг оставить как есть, без нового купола, то он в конце концов полностью разрушится, и в результате произойдет еще один выброс радиоактивных частиц в атмосферу.
Туризм в Чернобыле
В середине 90-х, благодаря работам по ликвидации последствий катастрофы, удалось значительно снизить радиационный фон на территории 30-ти километровой зоны отчуждения. С тех пор в зоне появились туристы. До недавнего времени людей по зоне отчуждения водили неофициальные «экскурсоводы», в народе называемые «сталкерами». Чаще всего это — местные жители, которые вернулись домой. Они показывали людям наиболее безопасные тропы и рассказывали о местных достопримечательностях. Кто-то водил людей ради денег, а кто-то — бесплатно, из желания показать как можно большему количеству человек последствия катастрофы в Чернобыле. Некоторые знакомили туристов и журналистов с местными жителями, «самоселами», которые вернулись домой несмотря на повышенный радиационный фон.
С 1995 года информационное агентство по проблемам на Чернобыльской АЭС Чернобыльинтеринформ начало организовывать официальные экскурсии в зону отчуждения. До 2010 года въезд на зону был строго ограничен, но с тех пор правительство Украины разрешило въезд на территорию всем желающим, путешествующим в рамках официальной экскурсии. В 2011 территорию на полгода снова закрыли, и сейчас доступ стал более ограниченным, чем раньше, но экскурсии продолжаются. Цены 2013 года за экскурсию начинаются с $150 долларов США с человека и зависят от количества человек в группе и продолжительности экскурсии.
Аварии и проблемы, связанные с радиацией
С тех пор, как ученые начали исследовать радиацию, за ее столетнюю историю по всему миру произошло много аварий и проблем, с ней связанных. Кроме непосредственно аварий на атомных электростанциях, большинство этих происшествий связано с нарушением правил безопасности по хранению, захоронению и работе с радиоактивными веществами. При этом люди, к которым попадали облученные или излучающие предметы, часто не знали, что они являются радиоактивными. Часть этих инцидентов произошла потому, что цезий-137 и другие радиоизотопы попали в металлолом. Нередко это было вызвано тем, что части устройств для радиотерапии не были утилизированы согласно инструкции и попадали на свалку.
Два таких случая произошли на предприятии по переработке отходов в Испании и на сталелитейном заводе в Китае. Другие подобные ситуации случаются при неправильной работе с радиоактивными веществами из-за того, что работающие с ними люди не знают об опасности. Иногда причина радиационного загрязнения неизвестна, как, например, в России, где с 1994 по 1996 годы находили радиоактивные банкноты.
Система обнаружения радиации и сигнализации AN/FJW-1. 1960-е годы. Дифенбункер — Канадский музей холодной войны
За последние сто лет произошло очень много несчастных случаев и инцидентов, связанных с радиацией. Внизу описаны только некоторые самые известные случаи. Большая их часть — результат неадекватных правил и законов о безопасности работы с радиоактивными веществами, или несоблюдение таких правил. Описанные здесь проблемы существуют как в развивающихся так и в развитых странах.
«Радиевые девушки»
В США между 1917 и 1926, а в некоторых странах — до начала 1960-х гг. добавляли радий в краски, чтобы они светились в темноте. Такую краску использовали на часовых циферблатах. Работницы завода, где производили эти циферблаты, в основном молодые девушки, во время работы вдыхали и даже глотали радий, будучи уверены, что он безвреден. Часто, чтобы получить более тонкие штрихи, они облизывали кисточки, а некоторые даже рисовали себе узоры на коже и ногтях, так как им нравилась красивая краска.
Позже многие из них заболели раком. У некоторых частично или полностью разрушились кости челюсти. Завод долго не соглашался заплатить девушкам компенсацию, утверждая, что их состояние вызвано другими заболеваниями, такими как сифилис. Несколько девушек подали судебный иск и в конце концов выиграли дело. Каждая получила по $10 000 и ежегодную пенсию в $600 на всю жизнь. Этот процесс был громким и получил широкую огласку. Это послужило прецедентом для последующих судебных процессов между работниками и их работодателями, особенно в отношении травм, полученных на производстве. После этого случая Американское правительство начало разрабатывать законодательство об обеспечении безопасности на рабочем месте.
Утечка урана на заводе «Чёрч Рок»
В 1979 году на фабрике по производству урана «Черч Рок» в штате Нью-Мексико в США переполнился бассейн радиоактивных отходов, и часть содержимого вылилась через край. В этом происшествии были виноваты рабочие, которые не выполняли правила безопасности и наполнили бассейн выше допустимой нормы. Радиоактивные отходы просочились в реку Пуэрко и вода принесла их в резервацию навахо. Несколько дней жители резервации не подозревали об опасности, и использовали загрязненную воду в хозяйстве и для сельскохозяйственных нужд. Радиоактивный распад в каждом литре воды составлял 128 000 пикокюри. В целом во всей реке это составило 4 кюри с начала утечки радиоактивных отходов.
Правительство распространяло сообщения об опасности в основном по-английски — на языке, которым владели далеко не все жители в резервации. Даже те, кто знали английский и поняли сообщение, не осознавали всей опасности происходящего, так как не знали об угрозе облучения для здоровья. Кроме этого помощь, оказанная правительством пострадавшим, как больным, так и оставшимся без чистой воды людям, была недостаточной. На протяжении многих лет после аварии люди переживали последствия радиоактивного загрязнения и облучения.
Земледелие и скотоводство очень важны для людей навахо, населяющих этот район, поэтому гибель рогатого скота из-за зараженной воды пагубно сказалась на их жизни. Некоторые люди, в том числе и дети, получили серьезные кожные повреждения; самые тяжелые из них закончились ампутациями. Число заболеваний раком также возросло. Некоторые районы были полностью отрезаны от водоснабжения, так как все запасы чистой воды были загрязнены радиоактивными отходами.
На некоторое время после аварии фабрику закрыли, но вскоре она возобновила работу, продолжая загрязнять окружающую среду. Дело решили без суда, примерно через год после аварии. Местные жители получили компенсацию в размере $525 000 долларов США. Во время очистки территории были убраны далеко не все радиоактивные отходы. После первого этапа уборки прошло больше 20-ти лет, но, наконец, в 2004 и в 2007 годах уборку возобновили. В 2008 и 2012 провели еще более тщательную очистку, но и в этот раз она не закончена. Сейчас (лето 2013) организация, ответственная за полную очистку территории от радиоактивного загрязнения разрабатывает новую программу по очистке местности.
Облученные квартиры на Тайване
Кусок стали с атомной электростанции, зараженный радиоактивным кобальтом-60, попал на Тайване в металлолом и был переплавлен на строительные материалы. Позже, между 1982 и 1984 годами из арматуры, которая содержала этот металл, построили до 2000 многоквартирных домов, общественных зданий, и около 30 школ в Тайбэе, Чжанхуа, Таоюани и Цзилуне.
В 1992 году один из жителей в таком многоквартирном доме принес с работы дозиметр. Обнаружив в квартире радиацию выше нормы, он стал жаловаться в соответствующие инстанции. В результате расследования оказалось, что Совет по атомной энергии Тайваня знал об этой проблеме с 1985, но не предпринял соответствующие меры.
В результате проверок, проведенных правительством в 1992 году, радиационное загрязнение было найдено в ряде многоквартирных домов, офисов, общественных зданий, школ и детских садов. Среди людей, которые жили, учились или работали в этих зданиях, чаще встречались случаи заболевания раком, так как они подвергались небольшим дозам облучения на протяжении многих лет. Во время исследований в этой области было установлено 39 случаев смертей, связанных с облучением, хотя неизвестно, сколько еще неустановленных смертей связано с этим происшествием. Также исследователи заметили, что среди детей, которые жили в зараженных квартирах, были повышены случаи заболевания катарактой.
Во многих квартирах до сих пор повышен радиоактивный фон, так как не были проведены работы по очистке. Агентства, которые сдают их внаем, знают о проблеме, но, несмотря на это, квартиры не пустуют, и неизвестно знают ли новые жильцы о повышенном радиационном фоне. В некоторых других домах хозяева квартир отказываются переезжать, потому что они не могут их продать по цене, которая позволит купить новую квартиру, а правительство отказывается оказать им финансовую поддержку.
Заражение в Гоянии
Город Гояния в Бразилии печально известен как место, где в 1987 году произошел инцидент, связанный с утечкой радиации. Лаборатория радиотерапии «IGR» переехала в новое здание, оставив в старом устаревшую установку для радиотерапии с радиоактивным изотопом цезием-137 внутри. Хозяева здания, которое снимала лаборатория, не смогли договориться с лабораторией мирным путем об аренде помещения, и решали эту проблему через суд. Несмотря на протесты работников лаборатории об опасности такого решения, суд постановил, что представителям «IGR» запрещено находиться на территории этого здания, поэтому они не смогли вернуться и вывезти брошенную установку для радиотерапии. Когда сторож, нанятый охранять помещение, не пришел на работу, два мародера воспользовались его отсутствием и украли установку для радиотерапии. Они намеревались продать ее как металлолом, и не подозревали об опасности находящегося внутри радиоактивного вещества.
Дома воры разобрали установку и нашли капсулу с цезием-137. Один просверлил в ней отверстие и увидел внутри светящееся вещество. Оба получили большую дозу облучения, пока работали с установкой, и чувствовали недомогание, но не знали, что оно вызвано облучением. Позже одному из них ампутировали часть пальца, а второму — часть руки. Через несколько дней после кражи установки, они продали ее вместе с капсулой как металлолом владельцу городского склада металлолома, который и заметил капсулу. Ему понравилось ее красивое голубое свечение, вызванное эффектом Вавилова — Черникова, который описан выше. Он принес ее домой, где показывал ее родственникам и друзьям. Позже он попросил товарища извлечь светящийся порошок из капсулы, и дарил его друзьям и соседям. Он даже хотел сделать из него кольцо и подарить жене.
Брат хозяина тоже получил в подарок немного порошка. Он украсил им стены и полдома, а также оставил немного на обеденном столе. Во время еды его маленькая дочь трогала порошок, и проглотила часть вместе с едой. В результате она получила смертельную дозу радиации и позже умерла в больнице. Ей было всего шесть лет. Во время похорон окрестные жители устроили протест на кладбище, так как боялись, что кладбище будет заражено радиацией.
Жена хозяина заболела вскоре после контакта с порошком, и ее мать приехала ухаживать за ней в больницу. Позже мать вернулась в свою деревню, распространяя и там радиоактивное загрязнение. Двое наемных работников на складе также вскоре заболели, потому что они извлекали из установки ценные металлы, такие как свинец, и в результате они оба получили большие дозы облучения.
Жена хозяина склада металлолома начала подозревать, что эта капсула виновата в недомоганиях и болезнях ее родственников. Она нашла радиоактивный металл на другом складе, куда его к тому времени продали, и отвезла его в больницу на экспертизу. Вначале врачи думали, что ее симптомы и симптомы ее родственников вызваны тропическим заболеванием, но после обследования металла, который она привезла, они поняли, что это не так.
По просьбе врачей эксперт-физик проверил металл, и заключил, что он радиоактивен. После этого врачи сообщили об этом правительству Бразилии, и вскоре начались ликвидационные работы. К этому времени прошло уже больше двух недель с того дня, как установка была украдена. В результате радиацией была загрязнена большая территория в городе и за его пределами. Жена хозяина спасла много людей и предотвратила более обширное загрязнение тем, что привезла подозрительный металл в больницу на проверку.
Спасти ее, к сожалению, не удалось. Кроме нее и ее маленькой племянницы, погибли также и оба наемных работника, извлекавших из установки свинец. Доза, которую получил сам хозяин, была больше, чем дозы других облученных людей, но, несмотря на это, он выжил. Вероятно это потому, что он был облучен меньшими дозами на протяжении большего времени, в то время как его жена, племянница, и работники получили большую дозу за один раз. Из-за облучения в больницу попало много людей. Также было снесено несколько домов, чтобы захоронить загрязненные радиацией материалы.
Радиоактивное заражение в Краматорске
В конце 1970-х годов в карьере в Краматорске (нынешняя территория Украины) была утеряна ампула с радиоактивным цезием-137. Она была частью измерительного прибора, и излучала 200 рентген в час. Начались поиски, но через некоторое время их прекратили, так и не найдя капсулу. Позже она случайно была замурована в одну из панелей, из которых в 1980 построили многоэтажный жилой дом. В семье, которая жила в одной из квартир этого дома, умерли двое детей и мать. Квартира освободилась и позже в новой семье, которая туда переехала, также умер ребенок. Отец ребенка стал жаловаться и добился того, что в доме провели проверку и обнаружили недопустимый уровень радиации. За все время, пока капсулу не изъяли из стены, в доме умерло двое взрослых и четверо детей.
Облучение в Сарагосе
Иногда радиационное облучение — результат халатности медицинского и обслуживающего персонала в радиологических клиниках. Именно этим была вызвана гибель больных в городе Сарагосе в Испании. Работник, который выполнял техническое обслуживание установки для радиотерапии, используемой в городской больнице для лечения раковых заболеваний, по ошибке увеличил дозу излучения более, чем в пять раз. В результате одиннадцать из двадцати пяти раковых больных погибло от передозировки облучения.
Радиоактивное заражение в Самутпракане
Инцидент в провинции Самутпракан в Таиланде произошел в 2000 году. Занимающиеся сбором металлолома местные жители украли и вскрыли капсулу с кобальтом-60, которая излучала 15.7 терабеккелей. Эта капсула была частью установки для радиотерапии в больнице в Бангкоке. Больница купила новую установку, а старую продала электрической компании, у которой купила новую. Необходимые документы о продаже оформлены не были, и эта установка не была зарегистрирована в агентстве, которое следит за местонахождением всех радиоактивных объектов в Таиланде. Компания, которая купила установку, отправила ее на хранение вместе с двумя другими незарегистрированными приборами. Место, где они хранились, плохо охранялось, поэтому установка и была украдена.
Не установлено, как именно ее украли, но сборщики металлолома, у которых она находилась вначале инцидента, утверждают, что они купили ее у неизвестных лиц. С помощью работников склада металлолома капсулу распилили и вскрыли. Каждый, кто в этом участвовал, получил большую дозу облучения, и у них в большей или меньшей степени появились симптомы лучевой болезни. Радиационный фон был завышен на свалке и в окрестностях. Через несколько дней после того, как в больницу поступили первые больные, доктора стали подозревать, что виновата радиация. Из больницы немедленно сообщили о проблеме в агентство, которое следит за радиационными объектами в стране. К тому времени после вскрытия капсулы с кобальтом-60 прошло уже 17 дней.
Вскоре начались работы по очистке и захоронению зараженных объектов, и были найдены две оставшиеся незарегистрированные установки. Из-за большого облучения умерли два работника и муж хозяйки склада металлолома. Одному из людей, который принес капсулу на склад, ампутировали пальцы, и у нескольких других человек проявилась лучевая болезнь. Несмотря на то, что правительство Таиланда пыталось предотвратить последующие похожие проблемы, металлолом со следами радиоактивных веществ был дважды найден в 2008 году, во время торговли металлолом. В обоих случаях никто не пострадал, так как контейнеры, содержащие радиоактивное вещество, не были вскрыты, и работники склада металлолома сообщили о проблеме властям. В одном случае работник склада узнал логотип, обозначающий радиоактивные вещества. Этот логотип был разработан после инцидента в Самутпракане, чтобы предотвратить подобные проблемы в будущем.
Природный ядерный реактор
Габон, страна на западном берегу Африки, граничащая с Камеруном и Конго, известна тем, что на ее территории находится природный ядерный реактор. Это место называется Окло. В районе, где образовался этот реактор, находятся большие залежи урана. В этом месте около двух миллионов лет назад протекала ядерная реакция деления, для которой там были все необходимые условия. Топливом для реакции служил уран-235, и реакция продолжалась, пока это топливо не закончилось. Она происходила в Окло в нескольких местах. На данный момент это — единственное место на Земле, о котором известно ученым, где протекала такая ядерная реакция. Исследователи полагают, что на Марсе также имеются благоприятные условия для природных атомных реакторов.
«Лечение» радиацией
Первые двадцать-тридцать лет после открытия радиации, ученые не знали о ее опасности для здоровья. Как и со всеми новшествами, шарлатаны, псевдоврачи, и псевдоученые, а иногда и настоящие врачи, не понимающие опасности облучения, пытались всячески заработать деньги на этом открытии. Также было и с электричеством, и с магнетизмом, с разницей в том, что радиация представляла большую опасность. Те, кто зарабатывал на радиации, утверждали, что она имеет почти магические свойства и лечит от многих болезней.
«Радитор»
«Радитор» — одно из наиболее известных таких «лекарств». Его делали из дистиллированной воды, в которую добавляли один микрокюри или 37 000 беккелей радия и тория. Это лжелекарство стало известно тем, что от него в США умер известный промышленник, светский человек и спортсмен, Эбен МакБерни Байерс. О его история болезни и смерти много писали журналисты и поэтому многие узнали о вреде «Радитора» и облучения именно из-за этого случая. Он принимал «Радитор» с 1927 по 1930 годы, по совету физиотерапевта. Вначале ему до того понравились результаты приема этого средства, что он рекомендовал его друзьям, и даже посылал ящики «Радитора» им в подарок. Постепенно он начал заболевать, так как последствия нескольких лет облучения давали о себе знать. Он начал терять вес, лысеть, появились боли, и начали разрушаться костные ткани. Он прекратил принимать «Радитор», но было уже поздно. После его смерти правительство ввело более жесткий контроль лекарств и продуктов питания.
«Ревигаторы» (англ. Revigator) до сих пор продаются. Их можно купить на eBay.
Другие лжелекарства
Существовало множество других подобных «снадобий», например, «Радиоактивная зубная паста Дорамад» с торием. Торий в то время рекламировали как антибактериальное средство. Также продавали банки с радиоактивным покрытием внутри, например, из радия — в них можно было делать «лечебную» радиоактивную воду. С 1900 до 1930 годов популярны были таблетки, порошки и различные жидкости, содержащие радий или уран. Также можно было купить компрессы и соли для ванной с радием. Даже производители минеральной воды «Боржоми» рекламировали ее как радиоактивную лечебную воду.
Литература
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
Радиация и радиология
Ионизирующее излучение (радиация) — различные виды микрочастиц и физических полей, способные ионизировать атомы и молекулы вещества без увеличения температуры вещества. Ионизирующее излучение появляется в результате ядерных реакций, при очень высокой температуре (солнечная корона), в результате образования частиц высоких энергий в ускорителях или в результате ускорения заряженных частиц электромагнитными полями естественного происхождения (от молнии до взрыва сверхновых звезд).
Радиоактивность. Конвертер радиоактивного распада
Радиоактивный распад — спонтанное изменение состава нестабильных атомных ядер путём испускания элементарных частиц или ядерных фрагментов. Процесс радиоактивного распада также называют радиоактивностью, а соответствующие элементы — радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.
Единицей измерения активности радиоактивного источника в Международной системе единиц (СИ) является беккерель (Бк). Один беккерель определяется как активность источника, в котором за одну секунду происходит в среднем один радиоактивный распад. Через другие единицы измерения СИ беккерель выражается как Бк = с⁻¹. При измерении радиоактивности с помощью детектора часто используют «отсчеты в секунду» и «отсчеты в минуту». Иногда радиометры калибруются в «распадах в секунду». Все эти единицы можно преобразовать в абсолютную активность образца в беккерелях. Однако для этого нужно сделать значительное число преобразований с учетом радиационного фона, эффективности детектора, формы подсчета, размера образца и поглощения излучения в самом образце.
Для измерения активности используется также внесистемные единицы измерения кюри (Ки) и резерфорд (Рд). Кюри 1 Ки = 3,7·10¹º Бк. 1 Рд = 1·10⁶ Бк = 1 МБк. Для измерения удельной (массовой), объёмной и поверхностной активности используются соответственно единицы беккерель на килограмм (Бк/кг), беккерель на кубический метр (Бк/м³), беккерель на квадратный метр (Бк/м²), а также их различные производные (Бк/г, Бк/т; Бк/л, Бк/см³; Бк/м² и т. д.).
Использование конвертера «Радиоактивность. Конвертер радиоактивного распада»
На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.
Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие.
Примечание. В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.
Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x. Например: 1 103 000 = 1,103 · 106 = 1,103E+6. Здесь E (сокращение от exponent) — означает «· 10^», то есть «…умножить на десять в степени…». Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.
- Выберите единицу, с которой выполняется преобразование, из левого списка единиц измерения.
- Выберите единицу, в которую выполняется преобразование, из правого списка единиц измерения.
- Введите число (например, «15») в поле «Исходная величина».
- Результат сразу появится в поле «Результат» и в поле «Преобразованная величина».
- Можно также ввести число в правое поле «Преобразованная величина» и считать результат преобразования в полях «Исходная величина» и «Результат».
Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.
Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!
Канал Конвертера единиц TranslatorsCafe.com на YouTube