Анализ данных • 31 января 2023 • 5 мин чтения
Основы комбинаторики: перестановки, размещения, сочетания
Чтобы работать с теорией вероятностей и статистикой, нужно знать принципы комбинаторики — науки о подсчёте количества всевозможных комбинаций элементов.
- Факториал, правила суммы и произведения
- Перестановка
- Размещение
- Сочетание
- Как использовать перестановки, размещения и сочетания в анализе данных
- Совет эксперта
Факториал, правила суммы и произведения
Для таких расчётов понадобятся несколько понятий и правил.
Факториал натурального числа n — это произведение всех натуральных чисел от до n. Порядок множителей значения не имеет. Такое произведение обозначается через n!.
Самые популярные факториалы
Рекуррентная формула факториала
В этой формуле для получения следующего элемента необходимо знать предыдущий.
Правило суммы — если объект A можно выбрать способами, а объект B можно выбрать способами, то объект «A или B» можно выбрать n + m способами.
Правило произведения — если объект A можно выбрать n способами и после каждого такого выбора объект B можно выбрать m способами, то для пары «A и B» есть n ∙ m вариантов выбора.
Когда важно одно или другое — варианты выбора складываются, когда одно и другое — умножаются. Оба правила позволяют найти, сколько есть вариантов на выбор или, например, сколько есть способов различного расположения предметов.
Получить больше практики по расчёту количества комбинаций можно в модуле «Комбинаторика» тренажёра «Основы математики для цифровых профессий».
Повторите математику, чтобы решать рабочие задачи
Вспомните проценты, алгебру и другие темы посложнее в бесплатном тренажёре «Основы математики для цифровых профессий».
Перестановка
Перестановка n объектов/элементов — это способ их последовательного расположения с учётом порядка. Например, abc, bca и cab — это разные перестановки трёх букв.
Перестановку n объектов ещё называют перестановкой длины n. Количество всех таких перестановок обозначается как Pₙ.
Пример. На странице интернет-магазина одежды размещены три футболки. Если поменять их расположение на странице, получится новая перестановка. Сколькими способами можно расположить футболки на странице?
Решение. Три футболки можно расположить на странице способами: P₃ = 3! = 1 ∙ 2 ∙ 3.
Пример. Чтобы выполнить ежедневный квест, игроку нужно принести магу корзину с четырьмя кристаллами разного цвета. Первой необходимо найти корзину, а кристаллы можно сложить в неё в произвольном порядке. Как найти число способов выполнить задание?
Решение. Для выполнения квеста нужно 5 предметов. Корзину всегда находят первой, поэтому её позиция зафиксирована. Порядок сбора 4 оставшихся предметов равен числу перестановок 4 элементов. Всего есть 4! = 24 способа выполнить задание.
Размещение
Когда порядок расстановки важен, говорят о размещении.
Размещение из n по k — это упорядоченный набор из k различных элементов, взятых из некоторого множества с мощностью n, где k ≤ n. То есть некая перестановка k выбранных элементов из n.
Количество размещений из n по k обозначают и вычисляют так:
В отличие от перестановки, у размещения два параметра: из скольких элементов выбирают (n) и сколько именно выбирают (k).
Порядок выбора элементов важен, когда:
● Выбирают несколько элементов для разных целей, разных дней, разных ролей.
● В задачах на расположение, когда элементы различимы. Например, когда надо выбрать несколько человек из группы и разместить их на креслах в кинотеатре. Люди разные, поэтому имеет значение, кто где сядет.
Пример. Недалеко от пользователя есть 9 ресторанов. Из них надо выбрать 4, которые будут отображаться на главном экране. Сколько есть способов выбрать рестораны?
Решение. Порядок выбора важен, поэтому выбрать четыре ресторана поможет правило произведения: существует 9 ∙ 8 ∙ 7 ∙ 6 = 3024 способа. Это как раз и есть количество размещений из 9 по 4.
Пример. Сколькими способами можно заполнить спортивный пьедестал из трёх мест, если есть 10 претендентов?
Решение. Выбрать упорядоченную тройку можно 10 ∙ 9 ∙ 8 = 720 способами. По формуле для количества размещений это считается так:
Сочетание
Когда порядок выбора или расположения не важен, говорят о сочетании.
Сочетание из n по k — это неупорядоченный набор из k различных элементов, взятых из некоторого множества с мощностью n, где k ≤ n. То есть набор, для которого порядок выбора не имеет значения.
Количество сочетаний из n по k обозначают и вычисляют так:
Несколько частных значений для количества сочетаний:
Порядок выбора или расстановки не важен, когда:
● Выбирают несколько элементов одновременно. В учебниках по математике самый частый пример — мешок с шариками, откуда вытаскивают несколько шариков разом.
● Выбирают пару (тройку, группу) для взаимного или равноправного процесса. Например, двух человек для партии в шахматы, две команды для игры в хоккей, три бренда одежды для коллаборации, две точки для соединения отрезком, пять человек для хора.
Пример. Из 9 актёров выбирают четырёх для массовки. Порядок выбранных людей не важен. Сколько есть способов выбрать актёров?
Решение. Чтобы получить количество вариантов выбора 4 из 9 без учёта порядка, нужно
Это количество сочетаний из 9 по 4: сначала нашли количество способов выбрать 4 из 9, потом «склеили» все варианты с одним набором актёров, но разным порядком.
Пример. В сувенирном магазине продаются 6 видов кружек. Сколько есть способов выбрать 4 разные?
Решение. Общее количество перестановок для 6 элементов нужно разделить на (6 – 4)! и ещё на 4!, так как не нужно учитывать ни перестановки «невыбираемых» кружек, ни порядок среди выбираемых.
Поэтому для выбора 4 кружек из 6 есть
А если надо выбрать только 2 разные кружки?
Ответ получился такой же, потому что множители в знаменателе просто поменялись местами.
У этого есть и логическое обоснование: например, выбрать 4 кружки из 6 (и купить их) — это то же самое, что выбрать 2 кружки из 6 (и не купить их).
Аналогично получится, что
В общем виде это свойство выглядит так:
Его называют свойством симметрии для количества сочетаний.
Как использовать перестановки, размещения и сочетания в анализе данных
Зная число комбинаций, можно вычислить вероятность, а она открывает доступ к методам математической статистики: анализу данных и прогнозированию.
Комбинаторика вместе с другими дисциплинами из дискретной математики используется для построения алгоритмов. Например, алгоритмов поиска оптимального маршрута или оптимизации цепей поставок.
Комбинаторику применяют для оценки времени работы алгоритмов и для их ускорения. Это помогает делать эффективнее работу поисковых систем, голосовых помощников, навигаторов и других сервисов.
Совет эксперта
Диана Миронидис
Выбирать приходится каждый день: сколько блюд получится сделать из продуктов в холодильнике, сколькими способами можно добраться до работы — ответы на все эти вопросы даёт комбинаторика. Это отличный фундамент для изучения анализа данных и тех областей математики, которые связаны с теорией вероятностей и статистикой. Например, чтобы работать с биномиальным распределением, нужно знать, что такое биномиальные коэффициенты и как их находить. А это как раз комбинаторные задачи.
Автор и методист курсов по математике
Совместные и несовместные события в анализе данных
Как пересечение и объединение множеств используются в анализе данных
Формула числа размещений
Лучшее спасибо — порекомендовать эту страницу
Определение числа размещений
Пусть имеется $n$ различных объектов.
Будем выбирать из них $k$ объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок). Получившиеся комбинации называются размещениями из $n$ объектов по $k$, а их число равно
$$A_n^k=frac{n!}{(n-k)!}=ncdot (n-1)cdot … cdot (n-k+1) $$
Если вы уже знакомы с сочетаниями, то легко заметите, что чтобы найти размещения, надо взять все возможные сочетания, а потом в каждом еще поменять порядок всеми возможными способами (то есть фактически сделать еще перестановки). Поэтому число размещений еще выражается через число перестановок и сочетаний так:
$$A_n^k= C_n^k cdot k! = C_n^k cdot P_k.$$
Получилась такая изящная формула, объединяющая три других формулы комбинаторики (три концепции: размещений, сочетаний и перестановок).
Пример всех размещений из $n=3$ объектов (различных фруктов) в группы по $m=2$ с учетом порядка — на картинке справа. Согласно формуле, их должно быть ровно $$A_3^2=3cdot (3-2+1)=3cdot 2 =6.$$
Чтобы вычислить число размещений $A_n^k$ онлайн, используйте калькулятор ниже.
Видеоролик о размещениях
Не все понятно? Посмотрите наш видеообзор для формулы размещений: как использовать Excel для нахождения числа размещений, как решать типовые задачи и использовать онлайн-калькулятор.
Расчетный файл из видео можно бесплатно скачать
Лучшее спасибо — порекомендовать эту страницу
Полезные ссылки
- Онлайн-учебник по теории вероятностей
- Как решать задачи по комбинаторике?
- Примеры решений задач по теории вероятностей
- Решить теорию вероятности на заказ
Решенные задачи
Число размещений
Пусть имеется n различных объектов.
Будем выбирать из них k объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок).
Получившиеся комбинации называются размещениями из n объектов по k, а их число равно:
Akn = n!(n — k)!
Пример размещений. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2).
Данный онлайн калькулятор позволяет найти число размещений из n элементов по k.
Поделиться страницей в социальных сетях:
Размещения
- Размещения без повторений
- Размещения с повторениями
- Примеры
п.1. Размещения без повторений
Размещениe без повторений – это упорядоченная ⟨n,k⟩ – выборка без повторений, k ≤ n. Общее количество размещений без повторений: $$ mathrm{ A_n^k=frac{n!}{(n-k)!} } $$
Например:
Для создания 3-значного пароля используются символы из алфавита {+,*,A,!,2}.
Сколько всего паролей без повторения символов можно составить?
По условию n = 5, k = 3. Рассматриваем размещение 5 символов по 3 позициям без повторений: (mathrm{ A_5^3=frac{5!}{(5-3)!}=5cdot 4cdot 3 = 60 })
Всего 60 паролей.
Результат можно получить непосредственно из правила произведения. Действительно, на первой позиции – 5 вариантов символов, на второй – 4 оставшихся, на третьей – 3 оставшихся. Итого, по правилу произведения: 5 · 4 · 3 = 60 паролей.
п.2. Размещения с повторениями
Размещение с повторением – это упорядоченная ⟨n,k⟩ – выборка с повторениями. Общее количество размещений с повторениями: $$ mathrm{ overline{A}_n^k=n^k } $$
Например:
Для создания 3-значного пароля используются символы из алфавита {+,*,A,!,2}.
Сколько всего паролей можно составить?
По условию n=5, k=3. Рассматриваем размещение 5 символов по 3 позициям с повторениями: (mathrm{ overline{A}_5^3=5^3=125. })
Всего 125 паролей.
Результат можно получить непосредственно из правила произведения. Действительно, на первой позиции 5 вариантов символов, на второй – 5 вариантов, и на третьей – 5 вариантов. Итого, по правилу произведения: 5 · 5 · 5 = 53 = 125 паролей.
п.3. Примеры
Пример 1. Исследуйте различие между перестановкой без повторений и размещением без повторений ⟨3,2⟩-выборок для трёх разноцветных фишек. Изобразите полученные решения.
Рассматриваем фишки:
1) Для перестановок, ⟨3,3⟩-выборок, получаем:
В каждом ряду – отдельная перестановка. Видно, как образуется факториал. Для каждой отдельной фишки – одна перестановка. Для каждой пары фишек – две перестановки: 2 · 1. Когда добавляем третью, получаем: 3 · 2 · 1 Итого: P3 = 3 · 2 · 1 = 6 перестановок. |
2) Для размещений без повторений, ⟨3,2⟩-выборок, получаем:
В каждом ряду – отдельное размещение. В первом столбце слева – 3 варианта по цвету. Во втором столбце остается только 2 варианта. Итого: (mathrm{A_3^2=3cdot 2=6}) размещений. |
Пример 2. Исследуйте перестановки без повторений и размещения для ⟨4,3⟩ выборок и для ⟨4,2⟩ выборок без повторений из 4 разноцветных фишек.
Изобразите полученные решения.
Рассматриваем фишки:
Пример 3. Исследуйте различие между перестановкой с повторениями и размещением с повторениями. Сделайте вывод.
Перестановка с повторениями: сколько слов можно получить, переставляя буквы в слове «МАМА»? Запишите все эти слова в лексикографическом порядке.
Размещение с повторениями: сколько 4-буквенных слов можно получить, используя две буквы: «М» и «А»? Запишите все эти слова в лексикографическом порядке.
1) Для перестановки с повторениями получаем: begin{gather*} mathrm{ a_1=M,k_1=2, a_2=A,k_2=2 }\ mathrm{ k=k_1+k_2=2+2=4 }\ mathrm{ P_4(2;2)=frac{4!}{2!cdot 2!}=frac{24}{2cdot 2}=6 } end{gather*} Все 6 слов в лексикографическом порядке:
AAMM≺AMAM≺AMMA≺MAAM≺MAMA≺MMAA
2) Для размещения с повторениями получаем: begin{gather*} mathrm{ n=2, k=4 }\ mathrm{ overline{A}_2^4=2^4=16 } end{gather*} Все 16 слов в лексикографическом порядке:
AAAA≺AAAM≺AAMA≺AAMM≺AMAA≺AMAM≺AMMA≺AMMM≺
≺MAAA≺MAAM≺MAMA≺MAMM≺MMAA≺MMAM≺MMMA≺MMMM
Вывод: вариантов для размещения с повторениями получается больше, т.к. они включают слова с одной, тремя и четырьмя «М» и «А». А в перестановки с повторениями входят только слова с двумя «М» и двумя «А».
Пример 4. В базе данных с номерами телефонов содержатся все 7-значные номера.
1) Сколько в книге номеров, в которых цифры не повторяются?
2) Сколько в книге всего номеров?
3) Сколько в книге номеров, у которых 4 последних цифры одинаковые?
4) Сколько в книге номеров, у которых 4 последних цифры одинаковые, а 3 первых цифры отличаются от 4 последних?
1) Цифр – всего 10: {0;1;2;…;9}
n=10, k=7
Количество семизначных номеров без повторений равно количеству размещений без повторений: $$ mathrm{ A_{10}^7=10cdot 9cdot 8cdot 7cdot 6cdot 5cdot 4=604800 } $$ 2) Количество всех семизначных номеров равно количеству размещений с повторениями: $$ mathrm{ overline{A}_{10}^7=10^7=10 000 000 } $$ 3) 4 последних одинаковых цифры рассматриваем как одну «склеенную» цифру;
а 7-значный номер – как 4-значный, с последней «склеенной цифрой».
Количество всех4-значных номеров равно количеству размещений с повторениями: $$ mathrm{ overline{A}_{10}^4=10^4=10 000 } $$ 4) Если 10 вариантов 4 последних цифр: {0;1;2;…;9}, тогда для каждой из 3 первых цифр остается 9 вариантов. Если 10 вариантов для 3 первых цифр, тогда для 4 последних остается 9 вариантов.
По правилу суммы и произведения общее количество таких номеров: $$ mathrm{ N=frac{9^3cdot 10+10^3cdot 9}{2}=8145 } $$ Ответ: 1) 604 800 2) 10 000 000; 3) 10 000; 4) 8145.
Размещением из (n) элементов по (m) элементов (
m≤n
) называется упорядоченная выборка элементов (m) из данного множества элементов (n).
Количество размещений из (n) элементов по (m) элементов обозначается
Anm
(читается как «размещение из (n) элементов по (m) элементов»).
←
(m) показывает количество элементов размещения (сколько элементов выбирается) |
|
↑ (n) показывает количество элементов данного множества |
Размещения вычисляются по формуле
Anm=n!(n−m)!
.
1. Сколько двузначных чисел можно составить из цифр (2; 3; 4; 5; 6) (если цифры не должны повторяться)?
Решение:
выбираются (2) элемента из множества (5) элементов.
В данном случае (n = 5) (т. к. дано множество с (5) цифрами), а (m = 2) (т. к. нужно выбрать (2) цифры для числа).
По формуле:
A52=5!5−2!=5!3!=5⋅4⋅3!3!=5⋅4⋅3!3!=20
.
Ответ: из данных цифр можно составить (20) двузначных чисел с различными цифрами.
2. Даны элементы (3) разных цветов: . Сколькими различными способами можно выбрать (2) из них, если порядок важен?
Решение:
эту задачу можно решить двумя способами: полным перебором или подставив величины в формулу.
1) 2) 3)
4) 5) 6)
Как видно на картинке, два элемента из всех данных можно выбрать (6) различными способами.
Подставив величины в формулу ((n = 3) и (m= 2)), получаем такой же результат:
A32=3!(3−2)!=3!1!=1⋅2⋅31=61=6
.
3. У стола осталось (6) свободных мест. Сколькими различными способами места могут занять (4) человека?
Решение:
основное множество составляют (6) свободных мест, значит, (n = 6), выборку составляют (4) человека, значит, (m = 4). Так как важен порядок, в котором люди займут места, количество выборок равно количеству размещений из (6) элементов по (4) элемента, т. е.
A64=6!6−4!=6!2!=2!⋅3⋅4⋅5⋅62!=3⋅4⋅5⋅6=360
.
Ответ: за столом (6) свободных мест четыре человека могут занять (360) различными способами.
4. Упрости выражение:
a)
An−13=(n−1)!(n−1−3)!=(n−1)!(n−4)!=(n−4)!⋅(n−3)⋅(n−2)⋅(n−1)(n−4)!==(n−3)⋅(n−2)⋅(n−1).
b)
Ann−1=n!(n−(n−1))!=n!1!=n!1=n!
(Запомни, (0! = 1) и (1! = 1)).
c)
Ann=n!(n−n)!=n!0!=n!1=n!
5. Вычисли значение выражения:
A74−A53A52=7!(7−4)!−5!(5−3)!5!(5−2)!=7!3!−5!2!5!3!=7!2!⋅3−5!2!5!3!=7!−5!⋅33!5!3!==5!⋅6⋅7−5!⋅33!5!3!=5!6⋅7−3⋅3!3!⋅5!=6⋅7−3=42−3=39.