Как найти количество размещений

Анализ данных  •  31 января  2023  •  5 мин чтения

Основы комбинаторики: перестановки, размещения, сочетания

Чтобы работать с теорией вероятностей и статистикой, нужно знать принципы комбинаторики — науки о подсчёте количества всевозможных комбинаций элементов.

  • Факториал, правила суммы и произведения
  • Перестановка
  • Размещение
  • Сочетание
  • Как использовать перестановки, размещения и сочетания в анализе данных
  • Совет эксперта

Факториал, правила суммы и произведения

Для таких расчётов понадобятся несколько понятий и правил.

Факториал натурального числа n — это произведение всех натуральных чисел от до n. Порядок множителей значения не имеет. Такое произведение обозначается через n!.

Самые популярные факториалы

Рекуррентная формула факториала

В этой формуле для получения следующего элемента необходимо знать предыдущий.

Правило суммы — если объект A можно выбрать способами, а объект B можно выбрать способами, то объект «A или B» можно выбрать n + m способами.

Правило произведения — если объект A можно выбрать n способами и после каждого такого выбора объект B можно выбрать m способами, то для пары «A и B» есть n ∙ m вариантов выбора.

Когда важно одно или другое — варианты выбора складываются, когда одно и другое — умножаются. Оба правила позволяют найти, сколько есть вариантов на выбор или, например, сколько есть способов различного расположения предметов.

Получить больше практики по расчёту количества комбинаций можно в модуле «Комбинаторика» тренажёра «Основы математики для цифровых профессий».

Повторите математику, чтобы решать рабочие задачи

Вспомните проценты, алгебру и другие темы посложнее в бесплатном тренажёре «Основы математики для цифровых профессий».

Перестановка

Перестановка n объектов/элементов — это способ их последовательного расположения с учётом порядка. Например, abc, bca и cab — это разные перестановки трёх букв.

Перестановку n объектов ещё называют перестановкой длины n. Количество всех таких перестановок обозначается как Pₙ.

Пример. На странице интернет-магазина одежды размещены три футболки. Если поменять их расположение на странице, получится новая перестановка. Сколькими способами можно расположить футболки на странице?

Решение. Три футболки можно расположить на странице способами: P₃ = 3! = 1 ∙ 2 ∙ 3.

Пример. Чтобы выполнить ежедневный квест, игроку нужно принести магу корзину с четырьмя кристаллами разного цвета. Первой необходимо найти корзину, а кристаллы можно сложить в неё в произвольном порядке. Как найти число способов выполнить задание?

Решение. Для выполнения квеста нужно 5 предметов. Корзину всегда находят первой, поэтому её позиция зафиксирована. Порядок сбора 4 оставшихся предметов равен числу перестановок 4 элементов. Всего есть 4! = 24 способа выполнить задание.

Размещение

Когда порядок расстановки важен, говорят о размещении.

Размещение из n по k — это упорядоченный набор из k различных элементов, взятых из некоторого множества с мощностью n, где k ≤ n. То есть некая перестановка k выбранных элементов из n.

Количество размещений из n по k обозначают и вычисляют так:

В отличие от перестановки, у размещения два параметра: из скольких элементов выбирают (n) и сколько именно выбирают (k).

Порядок выбора элементов важен, когда:

● Выбирают несколько элементов для разных целей, разных дней, разных ролей.
● В задачах на расположение, когда элементы различимы. Например, когда надо выбрать несколько человек из группы и разместить их на креслах в кинотеатре. Люди разные, поэтому имеет значение, кто где сядет.

Пример. Недалеко от пользователя есть 9 ресторанов. Из них надо выбрать 4, которые будут отображаться на главном экране. Сколько есть способов выбрать рестораны?

Решение. Порядок выбора важен, поэтому выбрать четыре ресторана поможет правило произведения: существует 9 ∙ 8 ∙ 7 ∙ 6 = 3024 способа. Это как раз и есть количество размещений из 9 по 4.

Пример. Сколькими способами можно заполнить спортивный пьедестал из трёх мест, если есть 10 претендентов?

Решение. Выбрать упорядоченную тройку можно 10 ∙ 9 ∙ 8 = 720 способами. По формуле для количества размещений это считается так:

Сочетание

Когда порядок выбора или расположения не важен, говорят о сочетании.

Сочетание из n по k — это неупорядоченный набор из k различных элементов, взятых из некоторого множества с мощностью n, где k ≤ n. То есть набор, для которого порядок выбора не имеет значения.

Количество сочетаний из n по k обозначают и вычисляют так:

Несколько частных значений для количества сочетаний:

Порядок выбора или расстановки не важен, когда:

● Выбирают несколько элементов одновременно. В учебниках по математике самый частый пример — мешок с шариками, откуда вытаскивают несколько шариков разом.
● Выбирают пару (тройку, группу) для взаимного или равноправного процесса. Например, двух человек для партии в шахматы, две команды для игры в хоккей, три бренда одежды для коллаборации, две точки для соединения отрезком, пять человек для хора.

Пример. Из 9 актёров выбирают четырёх для массовки. Порядок выбранных людей не важен. Сколько есть способов выбрать актёров?

Решение. Чтобы получить количество вариантов выбора 4 из 9 без учёта порядка, нужно

Это количество сочетаний из 9 по 4: сначала нашли количество способов выбрать 4 из 9, потом «склеили» все варианты с одним набором актёров, но разным порядком.

Пример. В сувенирном магазине продаются 6 видов кружек. Сколько есть способов выбрать 4 разные?

Решение. Общее количество перестановок для 6 элементов нужно разделить на (6 – 4)! и ещё на 4!, так как не нужно учитывать ни перестановки «невыбираемых» кружек, ни порядок среди выбираемых.

Поэтому для выбора 4 кружек из 6 есть

А если надо выбрать только 2 разные кружки?

Ответ получился такой же, потому что множители в знаменателе просто поменялись местами.

У этого есть и логическое обоснование: например, выбрать 4 кружки из 6 (и купить их) — это то же самое, что выбрать 2 кружки из 6 (и не купить их).

Аналогично получится, что

В общем виде это свойство выглядит так:

Его называют свойством симметрии для количества сочетаний.

Как использовать перестановки, размещения и сочетания в анализе данных

Зная число комбинаций, можно вычислить вероятность, а она открывает доступ к методам математической статистики: анализу данных и прогнозированию.

Комбинаторика вместе с другими дисциплинами из дискретной математики используется для построения алгоритмов. Например, алгоритмов поиска оптимального маршрута или оптимизации цепей поставок.

Комбинаторику применяют для оценки времени работы алгоритмов и для их ускорения. Это помогает делать эффективнее работу поисковых систем, голосовых помощников, навигаторов и других сервисов.

Совет эксперта

Диана Миронидис
Выбирать приходится каждый день: сколько блюд получится сделать из продуктов в холодильнике, сколькими способами можно добраться до работы — ответы на все эти вопросы даёт комбинаторика. Это отличный фундамент для изучения анализа данных и тех областей математики, которые связаны с теорией вероятностей и статистикой. Например, чтобы работать с биномиальным распределением, нужно знать, что такое биномиальные коэффициенты и как их находить. А это как раз комбинаторные задачи.

Автор и методист курсов по математике

Совместные и несовместные события в анализе данных

Как пересечение и объединение множеств используются в анализе данных

Формула числа размещений

Лучшее спасибо — порекомендовать эту страницу

Определение числа размещений

Пусть имеется $n$ различных объектов.
Будем выбирать из них $k$ объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок). Получившиеся комбинации называются размещениями из $n$ объектов по $k$, а их число равно

$$A_n^k=frac{n!}{(n-k)!}=ncdot (n-1)cdot … cdot (n-k+1) $$

Если вы уже знакомы с сочетаниями, то легко заметите, что чтобы найти размещения, надо взять все возможные сочетания, а потом в каждом еще поменять порядок всеми возможными способами (то есть фактически сделать еще перестановки). Поэтому число размещений еще выражается через число перестановок и сочетаний так:

$$A_n^k= C_n^k cdot k! = C_n^k cdot P_k.$$

число размещений из 3 элементов по 2

Получилась такая изящная формула, объединяющая три других формулы комбинаторики (три концепции: размещений, сочетаний и перестановок).

Пример всех размещений из $n=3$ объектов (различных фруктов) в группы по $m=2$ с учетом порядка — на картинке справа. Согласно формуле, их должно быть ровно $$A_3^2=3cdot (3-2+1)=3cdot 2 =6.$$

Чтобы вычислить число размещений $A_n^k$ онлайн, используйте калькулятор ниже.

Видеоролик о размещениях

Не все понятно? Посмотрите наш видеообзор для формулы размещений: как использовать Excel для нахождения числа размещений, как решать типовые задачи и использовать онлайн-калькулятор.

Расчетный файл из видео можно бесплатно скачать

Лучшее спасибо — порекомендовать эту страницу

Полезные ссылки

  • Онлайн-учебник по теории вероятностей
  • Как решать задачи по комбинаторике?
  • Примеры решений задач по теории вероятностей
  • Решить теорию вероятности на заказ

Решенные задачи

Число размещений

Пусть имеется n различных объектов.
Будем выбирать из них k объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок).
Получившиеся комбинации называются размещениями из n объектов по k, а их число равно:

Akn = n!(n — k)!

Пример размещений. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2).

Данный онлайн калькулятор позволяет найти число размещений из n элементов по k.

Поделиться страницей в социальных сетях:

Размещения

  1. Размещения без повторений
  2. Размещения с повторениями
  3. Примеры

п.1. Размещения без повторений

Размещениe без повторений – это упорядоченная ⟨n,k⟩ – выборка без повторений,     kn. Общее количество размещений без повторений: $$ mathrm{ A_n^k=frac{n!}{(n-k)!} } $$

Например:
Для создания 3-значного пароля используются символы из алфавита {+,*,A,!,2}.
Сколько всего паролей без повторения символов можно составить?
По условию n = 5, k = 3. Рассматриваем размещение 5 символов по 3 позициям без повторений: (mathrm{ A_5^3=frac{5!}{(5-3)!}=5cdot 4cdot 3 = 60 })
Всего 60 паролей.
Результат можно получить непосредственно из правила произведения. Действительно, на первой позиции – 5 вариантов символов, на второй – 4 оставшихся, на третьей – 3 оставшихся. Итого, по правилу произведения: 5 · 4 · 3 = 60 паролей.

п.2. Размещения с повторениями

Размещение с повторением – это упорядоченная ⟨n,k⟩ – выборка с повторениями. Общее количество размещений с повторениями: $$ mathrm{ overline{A}_n^k=n^k } $$

Например:
Для создания 3-значного пароля используются символы из алфавита {+,*,A,!,2}.
Сколько всего паролей можно составить?
По условию n=5, k=3. Рассматриваем размещение 5 символов по 3 позициям с повторениями: (mathrm{ overline{A}_5^3=5^3=125. })
Всего 125 паролей.
Результат можно получить непосредственно из правила произведения. Действительно, на первой позиции 5 вариантов символов, на второй – 5 вариантов, и на третьей – 5 вариантов. Итого, по правилу произведения: 5 · 5 · 5 = 53 = 125 паролей.

п.3. Примеры

Пример 1. Исследуйте различие между перестановкой без повторений и размещением без повторений ⟨3,2⟩-выборок для трёх разноцветных фишек. Изобразите полученные решения.

Рассматриваем фишки: Пример 1

1) Для перестановок, ⟨3,3⟩-выборок, получаем:

Пример 1 В каждом ряду – отдельная перестановка.
Видно, как образуется факториал. Для каждой отдельной фишки – одна перестановка. Для каждой пары фишек – две перестановки: 2 · 1. Когда добавляем третью, получаем: 3 · 2 · 1
Итого: P3 = 3 · 2 · 1 = 6 перестановок.

2) Для размещений без повторений, ⟨3,2⟩-выборок, получаем:

Пример 1 В каждом ряду – отдельное размещение.
В первом столбце слева – 3 варианта по цвету.
Во втором столбце остается только 2 варианта.
Итого: (mathrm{A_3^2=3cdot 2=6}) размещений.

Пример 2. Исследуйте перестановки без повторений и размещения для ⟨4,3⟩ выборок и для ⟨4,2⟩ выборок без повторений из 4 разноцветных фишек.
Изобразите полученные решения.

Рассматриваем фишки: Пример 2

Пример 3. Исследуйте различие между перестановкой с повторениями и размещением с повторениями. Сделайте вывод.
Перестановка с повторениями: сколько слов можно получить, переставляя буквы в слове «МАМА»? Запишите все эти слова в лексикографическом порядке.
Размещение с повторениями: сколько 4-буквенных слов можно получить, используя две буквы: «М» и «А»? Запишите все эти слова в лексикографическом порядке.

1) Для перестановки с повторениями получаем: begin{gather*} mathrm{ a_1=M,k_1=2, a_2=A,k_2=2 }\ mathrm{ k=k_1+k_2=2+2=4 }\ mathrm{ P_4(2;2)=frac{4!}{2!cdot 2!}=frac{24}{2cdot 2}=6 } end{gather*} Все 6 слов в лексикографическом порядке:

AAMM≺AMAM≺AMMA≺MAAM≺MAMA≺MMAA

2) Для размещения с повторениями получаем: begin{gather*} mathrm{ n=2, k=4 }\ mathrm{ overline{A}_2^4=2^4=16 } end{gather*} Все 16 слов в лексикографическом порядке:

AAAA≺AAAM≺AAMA≺AAMM≺AMAA≺AMAM≺AMMA≺AMMM≺
≺MAAA≺MAAM≺MAMA≺MAMM≺MMAA≺MMAM≺MMMA≺MMMM

Вывод: вариантов для размещения с повторениями получается больше, т.к. они включают слова с одной, тремя и четырьмя «М» и «А». А в перестановки с повторениями входят только слова с двумя «М» и двумя «А».

Пример 4. В базе данных с номерами телефонов содержатся все 7-значные номера.
1) Сколько в книге номеров, в которых цифры не повторяются?
2) Сколько в книге всего номеров?
3) Сколько в книге номеров, у которых 4 последних цифры одинаковые?
4) Сколько в книге номеров, у которых 4 последних цифры одинаковые, а 3 первых цифры отличаются от 4 последних?
1) Цифр – всего 10: {0;1;2;…;9}

n=10,   k=7

Количество семизначных номеров без повторений равно количеству размещений без повторений: $$ mathrm{ A_{10}^7=10cdot 9cdot 8cdot 7cdot 6cdot 5cdot 4=604800 } $$ 2) Количество всех семизначных номеров равно количеству размещений с повторениями: $$ mathrm{ overline{A}_{10}^7=10^7=10 000 000 } $$ 3) 4 последних одинаковых цифры рассматриваем как одну «склеенную» цифру;
а 7-значный номер – как 4-значный, с последней «склеенной цифрой».
Количество всех4-значных номеров равно количеству размещений с повторениями: $$ mathrm{ overline{A}_{10}^4=10^4=10 000 } $$ 4) Если 10 вариантов 4 последних цифр: {0;1;2;…;9}, тогда для каждой из 3 первых цифр остается 9 вариантов. Если 10 вариантов для 3 первых цифр, тогда для 4 последних остается 9 вариантов.
По правилу суммы и произведения общее количество таких номеров: $$ mathrm{ N=frac{9^3cdot 10+10^3cdot 9}{2}=8145 } $$ Ответ: 1) 604 800 2) 10 000 000; 3) 10 000; 4) 8145.

Размещением из (n) элементов по (m) элементов (

m≤n

) называется упорядоченная выборка элементов (m) из данного множества элементов (n).

Количество размещений из (n) элементов по (m) элементов обозначается

Anm

 (читается как «размещение из (n) элементов по (m) элементов»).

             a.bmp

 (m) показывает количество элементов размещения (сколько элементов выбирается)

     ↑

(n) показывает количество элементов данного множества

 

Размещения вычисляются по формуле

Anm=n!(n−m)!

.

1. Сколько двузначных чисел можно составить из цифр (2; 3; 4; 5; 6) (если цифры не должны повторяться)?

Решение:

выбираются (2) элемента из множества (5) элементов.

В данном случае (n = 5) (т. к. дано множество с (5) цифрами), а (m = 2) (т. к. нужно выбрать (2) цифры для числа).

По формуле:  

A52=5!5−2!=5!3!=5⋅4⋅3!3!=5⋅4⋅3!3!=20

.

Ответ: из данных цифр можно составить (20) двузначных чисел с различными цифрами.

2. Даны элементы (3) разных цветов: ELLLL.PNG. Сколькими различными способами можно выбрать (2) из них, если порядок важен?

Решение:

эту задачу можно решить двумя способами: полным перебором или подставив величины в формулу.

1) ELLLL1.PNG                    2) ELLLL2.PNG                    3) ELLLL4.PNG     

4) ELLLL3.PNG                    5) ELLLL5.PNG                    6) ELLLL6.PNG        

Как видно на картинке, два элемента из всех данных можно выбрать (6) различными способами.

Подставив величины в формулу ((n = 3) и (m= 2)), получаем такой же результат:

A32=3!(3−2)!=3!1!=1⋅2⋅31=61=6

.

3. У стола осталось (6) свободных мест. Сколькими различными способами места могут занять (4) человека?

Решение:

основное множество составляют (6) свободных мест, значит, (n = 6), выборку составляют (4) человека, значит, (m = 4). Так как важен порядок, в котором люди займут места, количество выборок равно количеству размещений из (6) элементов по (4) элемента, т. е.

A64=6!6−4!=6!2!=2!⋅3⋅4⋅5⋅62!=3⋅4⋅5⋅6=360

.

Ответ: за столом (6) свободных мест четыре человека могут занять (360) различными способами.

4. Упрости выражение:

a) 

An−13=(n−1)!(n−1−3)!=(n−1)!(n−4)!=(n−4)!⋅(n−3)⋅(n−2)⋅(n−1)(n−4)!==(n−3)⋅(n−2)⋅(n−1).

b) 

Ann−1=n!(n−(n−1))!=n!1!=n!1=n!

     (Запомни, (0! = 1)  и  (1! = 1)).

c) 

Ann=n!(n−n)!=n!0!=n!1=n!      

5. Вычисли значение выражения:

  A74−A53A52=7!(7−4)!−5!(5−3)!5!(5−2)!=7!3!−5!2!5!3!=7!2!⋅3−5!2!5!3!=7!−5!⋅33!5!3!==5!⋅6⋅7−5!⋅33!5!3!=5!6⋅7−3⋅3!3!⋅5!=6⋅7−3=42−3=39.

Понравилась статья? Поделить с друзьями:
  • Как найти общие издержки в монополии
  • Как найти процент от суммы целого процента
  • Как найти обновления для компа
  • Как найти подработку студенту без опыта работы
  • Как найти область определения функции алгоритм