Как найти количество теплоты без удельной теплоемкости


Загрузить PDF


Загрузить PDF

Удельная теплоемкость — это энергия, необходимая для того, чтобы поднять температуру одного грамма чистого вещества на один градус Цельсия. Удельная теплоемкость вещества зависит от его химического состава и агрегатного состояния. Открытие удельной теплоемкости подстегнуло развитие термодинамики, науки о переходах энергии, касающейся теплоты и работы системы. Удельная теплоемкость и термодинамика широко используются в химии, ядерной инженерии и аэродинамики, а также в повседневной жизни для радиаторов и систем охлаждения автомобилей. Если вы хотите узнать, как вычислить удельную теплоемкость, следуйте приведенной ниже инструкции.

  1. Изображение с названием Calculate Specific Heat Step 1

    1

    Ознакомьтесь с величинами, которые используются для расчета удельной теплоемкости. Очень важно знать величины, которые используются для расчета удельной теплоемкости. Вы должны знать, как выглядит символ каждой величины, и понимать, что он означает. Далее приведены величины, которые обычно используются в выражении для расчета удельной теплоемкости вещества:

    • Дельта, или символ «Δ», подразумевает изменение величины.
      • Например, если ваша первая температура (T1) составляет 150 ºC, а вторая (T2) составляет 20 ºC, тогда ΔT, или изменение температуры, составит 150 ºC — 20 ºC = 130 ºC.
    • Масса образца обозначается буквой «m».
    • Количество теплоты обозначается буквой «Q». Единица измерения количества теплоты — «Дж», или Джоуль.
    • «T» — это температура вещества.
    • Удельная теплоемкость обозначается буквой «Cp».
  2. Изображение с названием Calculate Specific Heat Step 2

    2

    Освойте выражение для определения удельной теплоемкости. Ознакомившись с величинами, которые используются для вычисления удельной теплоемкости, вы должны выучить уравнение для определения удельной теплоемкости вещества. Формула имеет вид: Cp = Q/mΔT.

    • Вы можете оперировать этой формулой, если хотите узнать изменение количества теплоты вместо удельной теплоемкости. Вот как это будет выглядеть:
      • ΔQ = mCpΔT

    Реклама

  1. Изображение с названием Calculate Specific Heat Step 3

    1

    Изучите формулу. Сначала вам нужно изучить выражение для того, чтобы понять, что вам нужно сделать, чтобы найти удельную теплоемкость. Давайте рассмотрим следующую задачу: Определите удельную теплоемкость 350 г неизвестного вещества, если при сообщении ему 34 700 дж теплоты его температура поднялась с 22 до 173 ºC без фазовых переходов.

  2. Изображение с названием Calculate Specific Heat Step 4

    2

    Запишите известные и неизвестные факторы. Разобравшись с задачей, вы можете записать все известные и неизвестные переменные, чтобы лучше понять, с чем вы имеете дело. Вот как это делается:

    • m = 350 г
    • Q = 34 700 Дж
    • ΔT = 173 ºC — 22 ºC = 151 ºC
    • Cp = неизвестно
  3. Изображение с названием Calculate Specific Heat Step 5

    3

    Подставьте неизвестные факторы в уравнение. Известны все значения за исключением «Cpc», поэтому необходимо подставить в исходное уравнение все остальные факторы и найти «Cp». Делать это нужно так:

    • Исходное уравнение: Cp = Q/mΔT
    • c = 34 700 Дж/(350 г x 151 ºC)
  4. Изображение с названием Calculate Specific Heat Step 6

    4

    Найдите ответ. Теперь, после того как вы подставили известные величины в выражение, вам осталось выполнить несколько простейших арифметических действий, чтобы узнать ответ. Удельная теплоемкость — окончательный ответ — составляет 0,65657521286 Дж/(г x ºC).

    • Cp = 34,700 Дж/(350 г x 151 ºC)
    • Cp = 34,700 Дж/(52850 г x ºC)
    • Cp = 0,65657521286 Дж/(г x ºC)

    Реклама

Советы

  • Металл нагревается быстрее воды из-за низкой удельной теплоемкости.
  • При нахождении удельной теплоемкости сокращайте единицы измерения тогда, когда это возможно.
  • Удельную теплоемкость многих материалов можно найти в интернете для проверки вашего ответа.
  • Иногда для изучения процессе теплопередачи в процессе физических или химических превращений может использоваться калориметр.
  • Изменение температуры при прочих равных условиях значительнее для материалов с низкой удельной теплоемкостью.
  • Системная единица СИ (Международная система единиц измерения) удельной теплоемкости — джоуль на градус Цельсия на грамм. В странах с британской системой мер она измеряется в калориях на градус Фаренгейта на фунт.
  • Изучите формулу расчета удельной теплоемкости пищевых продуктов Cp = 4,180 x w + 1,711 x p + 1,928 x f + 1,547 x c + 0,908 x a — это уравнение для нахождения удельной теплоемкости, где «w» — процентное содержание воды в продукте, «p» — процентное содержание белков, «f» — процентное содержание жиров, «c» — процентное содержание углеводов и «a» — процентное содержание неорганических компонентов. Уравнение учитывает массовую долю (x) всех твердых веществ, которые составляют пищу. Расчет удельной теплоемкости приведен в кДж/(кг х K).

Реклама

Об этой статье

Эту страницу просматривали 112 773 раза.

Была ли эта статья полезной?

Физика под удельной теплоемкостью понимает количество теплоты, которое термодинамическое вещество или система способно поглотить до повышения температуры. 

Определение из учебника говорит, что это количество тепла, необходимое для создания температуры при нагревании.

Количество теплоты

Единица измерения — джоуль. Другой распространенной формой измерения является использование калорий.

Количество теплоты

Обозначается латинской буквой Q.

Удельная теплоемкость вещества

Это физическая величина, выражающая количество тепла, необходимое веществу на единицу массы для повышения температуры на одну единицу. 

Удельная теплоемкость

Таким образом, удельная теплоёмкость является свойством вещества, поскольку его значение является репрезентативным для каждого вещества, каждое из которых, в свою очередь, имеет различные значения в зависимости от того, в каком состоянии оно находится (жидкое, твердое или газообразное).

Удельная теплоёмкость обозначается маленькой буквой c и измеряется в Дж/кг∗°С, представляет собой коэффициент повышения температуры в одной единице всей системы или всей массы вещества. 

Кроме того, удельная теплоёмкость меняется в зависимости от физического состояния вещества, особенно в случае твердых частиц и газов, поскольку его молекулярная структура влияет на теплопередачу в системе частиц. То же самое относится и к условиям атмосферного давления: чем выше давление, тем ниже удельное тепло.

Основной состав удельной теплоты вещества должен быть с = С/m, т. е. удельная теплота равна соотношению калорийности и массы. Однако когда это применяется к данному изменению температуры, говорят о средней удельной теплоемкости, которая рассчитывается на основе следующей формулы:

110

где:

Q — передача тепловой энергии между системой и средой (Дж);

m — масса системы (кг);

Δt или (t2 — t1) — повышение температуры, которой она подвергается (°C).

Формула для нахождения количества теплоты Q:

Q = c∗m(t2 — t1)

Чем выше удельная теплоёмкость вещества, тем больше тепловой энергии потребуется, чтобы его температура повысилась. Например, для нагрева воды (своды = 4200 Дж/кг∗°С) потребуется больше тепловой энергии, чем для нагрева свинца (ссвинца = 140 Дж/кг∗°С).

Уравнение теплового баланса:

Q отданное + Q полученное = 0.

Ниже представлена таблица значений удельной теплоёмкости некоторых веществ:

Таблица теплоемкости

Примеры решения задач

Следующие задачи покажут примеры расчета необходимого количества теплоты.

Задача №1

Сколько теплоты нужно, чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С?

109

Решение:

111

Ответ: чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С, нужно взять 6,162 мегаджоулей теплоты.

Задача №2

В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100°С?

Начнем решение и отметим, что нагреваться будет и котёл, и вода. Разница температур составит 1000С — 100С = 900С. Т. е. и температура котла изменится на 90 градусов, и температура воды также изменится на 90 градусов. 

Количества теплоты, которые получили оба объекта (Q1
– для котла и Q2 — для воды), не будут одинаковыми. Мы найдем общее количество теплоты по формуле теплового баланса Q = Q1 + Q2.

111

Потребность в расчетах количества
теплоты в научной и инженерной практике
появилась задолго до «рождения»
термодинамики. Эта потребность
стимулировала появление специальной
науки – калориметрии, в которой
центральным понятием является понятие
теплоемкости. Исторически термин
«емкость теплоты» перешел в «теплоемкость»,
которая различается по многим
характеристикам.

Определение. Истинной теплоемкостью
вещества называется отношение бесконечно
малого количества теплоты к бесконечно
малому изменению температуры
:

Дж/К (2.9)

Смысл слова «истинная» состоит в том,
что бесконечно малое приращение
температуры dT берется от
какой-то температуры Т. Поэтому истинная
теплоемкость является функцией от самой
температуры (параметр, влияющий на
свойства вещества).

Наверное, понятно, что при одном и том
же изменении температуры dT элементарное
количество теплоты dQ и,
следовательно, теплоемкость при таком
изменении зависят от количественной
меры
вещества. В химической технологии
– это число молей (кмоль), в технике и
быту количество вещества определяют
или массой m (кг), или
объемом V0 при нормальных условиях
(нм3)(в химии р0 = 760 мм. рт. ст,
Т0 = 298К). Поэтому истинную теплоемкость
относят (уделяют) на одну из этих
мер. Соответственно, получается удельная
истинная теплоемкость массовая, мольная
и объемная. Их обозначения (не
стандартизованы) и размерность следующие:
[c] = Дж/кгК, [μc] = Дж/кмольК,
[c΄] = Дж/нм3К.

Определение. Средней теплоемкостью
называется

, ΔT = t2
– t1 (2.10)

Индекс «m» внизу у значка теплоемкости
присвоен для обозначения слова «средний»
(от английского слова middle или немецкого
mittel). По существу, средняя теплоемкость
– это средне интегральная величина
истинной теплоемкости.

Иными словами, средняя теплоемкость
вещества в каком-то интервале температуры
– это
количество теплоты, которое
надо подвести (отвести) к (от) рабочему
телу, чтобы изменить его температуру
на 1 градус
.

Так как удельное (полное) количество
теплоты q (Q) является функцией процесса,
то в калориметрии пришлось отдельно
рассматривать теплоемкости по процессам:
изохорную (v = const) и изобарную (p = const), так
как эти процессы наиболее часто
применяются на практике (емкости, трубы,
аппараты и т.д.) Обозначение этих
теплоемкостей (калорических величин)
следующее: ср, сv
или

,

для истинных и средних теплоемкостей
соответственно.

В итоге выстраивается обширная
классификация теплоемкостей: по
интервалам температур на истинные и
средние, по количествам вещества на
массовые, мольные и объемные; по свойствам
самих веществ; и, наконец, по множеству
видов процессов, среди которых чаще
всего встречаются изохорный и изобарный.
Это численное и содержательное обилие
теплоемкостей требует внимательного
отношения к символам и размерностям
рассмотренной калорической величины.
Мы рекомендуем студентам в своей учебной
работе всякий раз четко понимать и
обозначать
, о какой же теплоемкости
в их расчетах идет речь (а их оказалось
7 видов без учета свойств веществ, а с
ними и номенклатуры теплоемкостей). При
любых расчетах всегда надо
указывать размерность и номенклатуру
(т.е. название) используемой теплоемкости.

Тогда удельное количество теплоты
находится как:

q =

ΔT,
Дж/кг, q = μ

ΔT, Дж/кмоль, и q
=

ΔT,
Дж/нм3.

А полное количество теплоты находится
как:

Q = mq = m

ΔT, Q = nq
= n μ
ΔT,
Q = V0q
= V0

ΔT
, Дж.

Соотношение теплоемкостей, отнесенных
к разным количествам вещества следующее:

μс = μ∙с = с΄∙22,4 кДж/кмольК. (2.11)

Примечание: конкретное освоение и
расчет теплоемкостей рассматривается
на лабораторной работе №2 «Определение
объемной теплоемкости воздуха при
постоянном давлении».

. Существуют многочисленные табличные
данные в справочной литературе по этим
величинам теплоемкостей. Но для
прикидочных расчетов, в которых нет
особых требований к точности результата,
полезно пользоваться постоянными
величинами теплоемкостей, которые
приводятся в таблице ниже.

Таблица приближенных значений мольных

теплоемкостей газов при невысоких
температурах.

Газ

μcv,
кДж/кмоль К

Одноатомный

12,6

Двухатомный

20,9

Трех и более атомный

29,1

Окончательно: теплоемкость, как
калорическая (тепловая) величина, не
относится к категории функций состояния
и тем более к параметрам состояния.
Строго говоря, понятие теплоемкости
чуждо термодинамике, так как количество
термического воздействия внешней среды
на систему можно рассчитать и без
теплоемкости как dq = Tds. Тем не менее
обилие справочного материала по
теплоемкости для большого числа веществ
и привычка к этой калорической
характеристике сделали ее широко
употребительной в термодинамических
и других физико-химических расчетах.

Теперь с помощью простых физических
соображений покажем, что изобарная
теплоемкость любого вещества всегда
больше изохорной (ср > cv).

Сначала проведем мысленный эксперимент,
как бы используя экспериментальную
установку на рис.2.5.

Рис.2.5. Схема двух экспериментов.

Измеряемые величины: температура Т с
помощью термопар,

давление р с помощью манометра, количество
теплоты q.

В первом случае (слева) просто нагреваем
баллон с газом, во втором – нагреваем
и поддерживаем постоянное давление в
сосуде, позволяя газу расширяться.
Зададимся вопросом: «В каком случае
необходимо подвести больше теплоты,
если начальная температура Т и ее
изменение ΔТ в обоих случаях одинаковы?».
Или иначе: «Какая теплоемкость больше:
ср или сv?».

Ответ основывается на принципиальном
различии экспериментов: слева
термодинамическая система деформационно
изолирована от внешней среды, т.е. не
может совершить работу dw = pdv, а справа
– может. И газ по-прежнему нагревается
на ΔТ от подведенной теплоты qv
= cvΔT,
а во втором случае qp
= qv(ΔT)
+ q(w) ≡ cpΔT.
Поэтому ответ на поставленный вопрос:
ср > сv.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как вы думаете, что быстрее нагревается на плите: литр воды в кастрюльке или же сама кастрюлька массой 1 килограмм? Масса тел одинакова, можно предположить, что нагревание будет происходить с одинаковой скоростью.

А не тут-то было! Можете проделать эксперимент – поставьте пустую кастрюльку на огонь на несколько секунд, только не спалите, и запомните, до какой температуры она нагрелась. А потом налейте в кастрюлю воды ровно такого же веса, как и вес кастрюли. По идее, вода должна нагреться до такой же температуры, что и пустая кастрюля за вдвое большее время, так как в данном случае нагреваются они обе – и вода, и кастрюля.

Однако, даже если вы выждете втрое большее время, то убедитесь, что вода нагрелась все равно меньше. Воде потребуется почти в десять раз большее время, чтобы нагреться до такой же температуры, что и кастрюля того же веса. Почему это происходит? Что мешает воде нагреваться? Почему мы должны тратить лишний газ на подогрев воды при приготовлении пищи? Потому что существует физическая величина, называемая удельной теплоемкостью вещества.

Эта величина показывает, какое количество теплоты надо передать телу массой один килограмм, чтобы его температура увеличилась на один градус Цельсия. Измеряется в Дж/(кг * ˚С). Существует эта величина не по собственной прихоти, а по причине разности свойств различных веществ.

Удельная теплоемкость воды примерно в десять раз выше удельной теплоемкости железа, поэтому кастрюля нагреется в десять раз быстрее воды в ней. Любопытно, что удельная теплоемкость льда в два раза меньше теплоемкости воды. Поэтому лед будет нагреваться в два раза быстрее воды. Растопить лед проще, чем нагреть воду. Как ни странно звучит, но это факт.

Обозначается удельная теплоемкость буквой c и применяется в формуле для расчета количества теплоты:

где Q – это количество теплоты,
c – удельная теплоемкость,
m – масса тела,
t2 и t1 – соответственно, конечная и начальная температуры тела.

По этой формуле можно рассчитать количество тепла, которое нам необходимо, чтобы нагреть конкретное тело до определенной температуры. Удельную теплоемкость различных веществ можно найти из соответствующих таблиц.

А что насчет удельной теплоемкости газов? Тут все запутанней. С твердыми веществами и жидкостями дело обстоит намного проще. Их удельная теплоемкость – величина постоянная, известная, легко рассчитываемая. А что касается удельной теплоемкости газов, то величина эта очень различна в разных ситуациях. Возьмем для примера воздух. Удельная теплоемкость воздуха зависит от состава, влажности, атмосферного давления.

При этом, при увеличении температуры, газ увеличивается в объеме, и нам надо ввести еще одно значение – постоянного или переменного объема, что тоже повлияет на теплоемкость. Поэтому при расчетах количества теплоты для воздуха и других газов пользуются специальными графиками величин удельной теплоемкости газов в зависимости от различных факторов и условий.

Предыдущая тема: Количество теплоты: формула, расчет
Следующая тема:&nbsp&nbsp&nbspЭнергия топлива: удельная теплота сгорания + ПРИМЕРЫ

Все неприличные комментарии будут удаляться.

все для проектирования

Формула расчета конечной температуры воды после смещения холодной и горячей:

где: Тс — температура смещенной воды, град.

М1 — масса холодной воды, кг

М2 — масса горячей воды, кг

Т1 — температура холодной воды, град.

Т2 — температура горячей воды, град.

Пример 1:

холодная вода 10 литров температурой 5 град смешивается с горячей водой 8 литров 60 градусов.

Необходимо определить конечную температуру воды. Подставляем все значения в формулу 1:

Формула расчета количество холодной и горячей воды в зависимости от температуры:

Бывает задача стоит в обратном направлении. Когда наоборот известно какую температуру необходимо иметь на выходе и общий вес воды, но не известна масса холодной и горячей воды. Тогда из формула 1 выводим новую формулу:

Пример 2:

из циркуляционного душа воды выходит температурой 36 градусов и объемом 40 литров. Необходимо определить количество холодной и горячей воды.

Как правило холодная вода имеет расчетную температуру 5 градусов. Горячая вода — 60 градусов.

Подставляем значения в формулу 2 и 3:

М1=(36*40-60*40)/(5-60)=17,45 литров холодной воды

М2=40-17,45=22,55 литров горячей воды

Удачного Вам дня! И успешных проектов!

Выше конечной целью теплового расчете являлось определение поверхности нагрева и основных размеров теплообменника для его дальнейшего конструирования. Предположим теперь, что теплообменник уже имеется или по крайней мере спроектирован. В этом случае целью теплового расчета является определение конечных температур рабочих жидкостей. Это — так называемый поверочный расчет.

При решении такой задачи известными являются следующие величины: поверхность нагрева F, коэффициент теплопередачи k, водяные эквиваленты W1 и W2 и начальные температуры t1 и t2, а искомыми: конечные температуры t1 и t2 и количество переданного тепла Q.

В приближенных расчетах можно исходить из следующих представлений. Количество тепла, отдаваемое горячей жидкостью, равно:

(2.13)

откуда конечная температура ее t1 определяется соотношением:

(a)

Соответственно для холодной жидкости имеем:

(2.14)

(b)

Если принять, что температуры рабочих жидкостей меняются по линейному закону, то

(с)

Вместо неизвестных t1 и t2 подставим их значения из уравнений (а) и (b), тогда получим:

(d)

Произведя дальнейшее преобразование, имеем:

(e)

откуда окончательно получаем:

(2.15)

Зная количество переданного тепла Q, очень просто формулам (а) и (b) определить и конечные температуры рабочих жидкостей t1 и t2.

Приведенная схема расчета, хотя и проста, однако применима лишь для ориентировочных расчетов и в случае небольших изменений температур жидкостей. В общем же случае конечная температура зависит от схемы движения рабочих жидкостей. Поэтому для прямотока и противотока ниже приводится вывод более точных формул.

1. Прямоток. Выше было показано, что температурный напор изменяется по экспоненциальному закону:

(2.16)

Имея в виду, что

и, что в конце поверхности нагрева Δt” = t1’ – t2, то, подставляя эти значения в уравнение (19), последнее можно представить в следующем виде:

(2.17)

Однако, это уравнение дает лишь разности температур. Чтобы отсюда получить конечные температуры в отдельности, необходимо обе части равенства вычесть из единицы:

(2.18)

(2.19)

[см. разд.2.1 уравнение (2.5)].

то, подставляя это значение в левую часть уравнения (2.19), получаем:

(2.20)

Последнее уравнение, показывает, что изменение температуры горячей жидкости δt1 равно некоторой доле П располагаемого начального температурного напора, t1’ – t2; эта доля зависит только от двух безразмерных параметров и .

Аналогичным образом из уравнения (2.19) можно получить выражение и для изменения температуры холодной жидкости, а именно:

(2.21)

Определив изменения температур рабочих жидкостей и зная их начальные температуры, легко определить конечные:

(2.22)

Расход тепла определяется путем умножения водяного эквивалента жидкости на изменение ее температуры:

(2.23)

Значение функции приведено на рис. 2.5. Формулы (2.21) – (2.23) могут быть применены и для расчета промежуточных значений температуры рабочих жидкостей и количества тепла. В этом случае в, расчетные формулы вместо F надо подставить значение Fx.

Пример 2.2. Имеется водяной холодильник с поверхностью нагрева F=8 м 2 . Определить конечные температуры жидкостей и часовое количество передаваемого тепла Q, если заданы следующие величины: V1= 0,25 м 3 /час, γ1 = 1100 кг/м 3 , cp1 = 0,727 ккал/кг °С и t1 = 120 °С Для охлаждения в распоряжении имеется 1000 л воды в час при температуре t2 = 10 °С. Кроме того, известно значение коэффициента теплопередачи k = 30 ккал/м 2 час °С.

Соответствующее значение функции П находим из рис.2.5:

Рис. 2.5. — вспомогательная функция для расчета конечной температуры при прямотоке

Изменение (понижение) температуры горячей жидкости согласно уравнению (2.20) равно:

Следовательно, конечная температура ее равна:

Количество переданного тепла в час определится по уравнению (2.23)

Изменение температуры холодной жидкости определяется по уравнению (2.21). Но его можно также определить и из соотношения Q = W2 (t2” — t2’), откуда

2. Противоток. Для противотока расчетные формулы выводятся так же, как и для прямотока. Окончательно они имеют следующий вид:

(2.24)

(2.25)

(2.26)

В частном случае, когда формулы

(2.24) – (2.26) принимают вид:

(2.27)

(2.28)

(2.29)

Значение функции приведено на рис. 2.6.

Рис. 2.6. — вспомогательная функция для расчета конечной температуры при противотоке

Для расчета промежуточных значений температуры рабочих жидкостей и количества переданного тепла в формулах (2.23) – (2.29) в числителе значение F заменяется на Fx, а в знаменателе остается значение полной поверхности F.

Пример 2.3. Если взять тот же теплообменник, который был рассмотрен в условиях прямотока, и допустить, что условия теплопередачи остаются без изменения (k = 30 ккал/м 2 час °С), то получим следующие соотношения:

Из рис. 2.6 находим значение функции Z:

Изменение температуры горячей жидкости равно [уравнение (2.24)]:

Конечная температура ее:

Изменение температуры холодной жидкости [уравнение (2.25)];

Конечная температура ее:

Количество переданного тепла в час [уравнение (2.26)]:

Таким образом, в случае противотока в теплообменнике происходит более глубокое охлаждение горячей жидкости.

3. Сравнение прямотока с противотоком. Чтобы выявить преимущество одной схемы перед другой, достаточно сравнить количество передаваемого тепла при прямотоке и противотоке при равенстве прочих условий. Для этого необходимо уравнение (2.23) разделить на уравнение (2.26). В результате этого действия мы получаем новую функцию тех же двух безразмерных аргументов

характер изменения которой графически показан на рис. 2.7.

Рис. 2.7. -сравнение прямотока с противотоком

Из рисунка следует, что схемы можно считать равноценными в том случае, если водяные эквиваленты обеих жидкостей значительно отличаются один от другого (при и при ) или если значение параметра — мало. Первое условие равнозначно тому, что изменение температуры одной жидкости незначительно по сравнению с изменением температуры другой. Далее, поскольку , то второе условие соответствует случаю, когда средний температурный напор значительно превышает изменения температур рабочих жидкостей. Во всех остальных случаях при одной и той же поверхности нагрева и одинаковых крайних температурах теплоносителей при прямотоке передается меньше тепла, чем при противотоке. Поэтому с теплотехнической точки зрения всегда следует отдавать предпочтение противотоку, если какие-либо другие причины (например, конструктивные) не заставляют применять прямоток. При этом следует иметь в виду, что при противотоке создаются более тяжелые температурные условия для металла, ибо одни и те же участки стенок теплообменника с обеих сторон омываются рабочими жидкостями с наиболее высокой температурой.

При конденсации и кипении температура жидкости постоянна. Это означает, что водяной эквивалент такой жидкости бесконечно велик. В этом случае прямоток и противоток равнозначны, и уравнения (2.23) и (2.26) становятся тождественными. Конечная температура той жидкости, для которой водяной эквивалент имеет конечное значение, определяется следующим образом.

При конденсации паров;

(2.30)

(2.31)

При кипении жидкостей:

(2.32)

(2.33)

Вместо t1 и t2 в уравнения (2.30) – (2.33) можно подставить температуру стенки, значение которой при этом также постоянно. Значения функции находятся из таблиц показательных функций.

В случае перекрестного тока конечные температуры рабочих жидкостей находятся между конечными температурами для прямотока и противотока. Поэтому в приближенных расчетах можно пользоваться методом расчета одной из указанных схем. Если одна из жидкостей движется навстречу другой зигзагообразно (смешанный ток), то расчет может быть произведен, как для противотока.

4. Влияние тепловых потерь и проницаемости стенок.Все вышеприведенные формулы справедливы для случая, когда тепловые потери во внешнюю среду равны нулю. В действительности они всегда имеются. Более или менее точно учесть их влияние, вообще говоря, возможно, однако расчетные формулы при этом становятся громоздкими. Поэтому для учета влияния тепловых потерь в практике обычно применяется приближенный метод, который состоит в следующем.

Тепловые потери со стороны горячей жидкости вызывают более сильное падение ее .температуры. Это равносильно случаю, когда теплоотдающая жидкость в аппарате без потерь в окружающую среду имела бы меньшее значение водяного эквивалента. Поэтому влияние потерь в окружающую среду можно учесть, изменив водяной эквивалент теплоотдающей жидкости в тепловом аппарате таким образом, чтобы в последнем происходило такое же понижение температуры, как и при потоке с действительным водяным числом при наличии тепловых потерь. Внешние тепловые потери со стороны холодной жидкости оказывают обратное влияние, они уменьшают повышение температуры жидкости, что приводит к кажущемуся увеличению ее водяного эквивалента.

Наличие присоса наружного холодного воздуха оказывает такое же влияние, как и внешняя потеря тепла. Присосанный вездух на горячей стороне понижает температуру горячей жидкости (газа) точно так же, как если бы теплообменный аппарат был абсолютно непроницаем, но жидкость имела меньшее значение водяного эквивалента. Присос вездуха на холодной стороне понижает температуру холодной жидкости, что равносильно увеличению значения водяного эквивалента.

Если потеря тепла составляет р% к общему количеству передаваемого тепла, то вместо действительного значения водяного эквивалента W в расчетные формулы следует подставить значение W’ которое определяется следующим образом:

(2.34)

Знак минус (-) берется для горячей, а знак плюс (+) для холодной жидкости.

При таком способе учета внешних тепловых потерь все приведенные выше формулы для расчета конечных температур можно применять без какого-либо их изменения.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Расчет количества теплоты при нагревании и охлаждении:

Вы уже знаете, что изменить внутреннюю энергию тела можно передачей ему количества теплоты. Как связано изменение внутренней энергии тела, т. е. количество теплоты, с характеристиками самого тела?

Внутренняя энергия тела есть суммарная энергия всех его частиц. Значит, если массу данного тела увеличить в два или три раза, то и количество теплоты, необходимое для его нагревания на одно и то же число градусов, увеличится в два или три раза. Например, на нагревание двух килограммов воды от 20 °C до 80 °C потребуется в два раза больше теплоты, чем на нагревание одного килограмма воды (рис. 40, а).

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Очевидно также, что для нагревания воды на Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Из этих рассуждений следует подтвержденный опытами вывод. Количество теплоты, необходимое для нагревания тела, прямо пропорционально его массе и изменению температуры.

А зависит ли количество теплоты, идущее на нагревание, от рода вещества, которое нагревается?

Для ответа на этот вопрос проведем опыт. В два одинаковых стакана нальем по 150 г подсолнечного масла и воды. Поместим в них термометры и поставим на нагреватель (рис. 41).

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Получив за одинаковое время от нагревателя равное с водой количество теплоты, масло нагрелось больше, чем вода. Значит, для изменения температуры масла на одну и ту же величину требуется меньше теплоты, чем для изменения температуры такой же массы воды.

Поэтому для всех веществ вводят специальную величину — удельную теплоемкость вещества. Эту величину обозначают буквой с (от лат. capacite — емкость, вместимость). Теперь мы можем записать строгую формулу для количества теплоты, необходимого для нагревания:

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Выразим из этой формулы с:Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Удельная теплоемкость есть физическая величина, численно равная количеству теплоты, которое необходимо передать 1 кг данного вещества, чтобы изменить его температуру на 1 °C. Удельная теплоемкость измеряется в джоулях на килограмм-градус Цельсия Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Для любознательных:

Часто формулу Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами записывают в виде Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами Здесь величина Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами называется теплоемкостью тела (обратите внимание — не вещества). Она численно равна количеству теплоты, необходимому для нагревания всей массы тела на 1 °C. Измеряется теплоемкость тела в джоулях на градус Цельсия Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

В таблице 1 представлены значения удельной теплоемкости различных веществ (в различных состояниях). Как следует из этой таблицы, среди жидкостей максимальное значение удельной теплоемкости имеет вода: для нагревания 1 кг воды на 1 °C требуется 4200 Дж теплоты — это почти в 2,5 раза больше, чем для нагревания 1 кг подсолнечного масла, и в 35 раз больше, чем для нагревания 1 кг ртути.

Формула Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами дает возможность найти и выделяемую при охлаждении тела теплоту. Так как конечная температура Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами остывшего тела меньше начальной Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами то изменение температуры оказывается отрицательным числом. Значит, и выделяемое телом количество теплоты выражается отрицательным числом, что обозначает не рост, а убыль внутренней энергии тела.

В заключение заметим, что при теплообмене двух или нескольких тел абсолютное значение количества теплоты, которое отдано более нагретым телом (телами), равно количеству теплоты, которое получено более холодным телом (телами):
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Это равенство называется уравнением теплового баланса и выражает, по сути, закон сохранения энергии. Оно справедливо при отсутствии потерь теплоты.
Таблица 1. Удельная теплоемкость некоторых веществ

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Главные выводы:

  1. Количество теплоты, необходимое для нагревания тела (выделившееся при охлаждении), прямо пропорционально его массе, изменению температуры тела и зависит от вещества тела.
  2. Удельная теплоемкость вещества численно равна количеству теплоты, которое надо передать 1 кг данного вещества, чтобы изменить его температуру на 1 °C.
  3. При теплообмене количество теплоты, отданное более горячим телом, равно по модулю количеству теплоты, полученному более холодным телом, если нет потерь теплоты.
  • Заказать решение задач по физике

Пример решения задачи:

Для купания ребенка в ванночку влили холодную воду массой Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами= 20 кг при температуре Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 12 °C. Какую массу горячей воды при температуре Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 80 °C нужно добавить в ванночку, чтобы окончательная температура воды стала Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами = 37 °C? Удельная теплоемкость воды с = 4200 Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Дано:

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Решение

По закону сохранения энергии Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Отдавала теплоту горячая вода, изменяя свою температуру от Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Холодная вода получила эту теплоту и нагрелась от Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Так как нас интересует только модуль Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами то можно записать:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Тогда Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерамиРасчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

При решении мы пренебрегали потерями теплоты на нагревание ванночки, окружающего воздуха и т. д.

Возможен и другой вариант решения.

Рассчитаем сначала количество теплоты, которое было получено холодной водой:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Полагая, что эта теплота отдана горячей водой, запишем: Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами Выразим искомую массу:
Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами
Ответ: Расчет количества теплоты при нагревании и охлаждении в физике - формулы и определение с примерами

  • Удельная теплота сгорания топлива
  • Плавление и кристаллизация в физике 
  • Испарение жидкостей в физике
  • Поверхностное натяжение жидкости
  • Излучение тепла в физике
  • Виды излучений в физике
  • Инфракрасные излучения
  • Количество теплоты в физике

Понравилась статья? Поделить с друзьями:
  • Как найти самый востребованный товар
  • Как составить тест по мотивации
  • Как найти распредкоробку в квартире
  • Как составить договор аренды квартиры в казахстане
  • Маски ялунга как их найти