Как найти количество вершин в многограннике


Download Article


Download Article

There are multiple mathematical functions that use vertices. Polyhedrons have vertices, systems of inequalities can have one vertex or multiple vertices, and parabolas or quadratic equations can have a vertex, as well. Finding the vertex[1]
varies depending on the situation, but here’s what you need to know about finding vertices for each scenario.

  1. Image titled Find the Vertex Step 1

    1

    Learn Euler’s Formula. Euler’s Formula, as it is used in reference to geometry and graphs, states that for any polyhedron that does not intersect itself, the number of faces plus the number of vertices, minus the number of edges, will always equal two.[2]

    • Written out as an equation, the formula looks like: F + V — E = 2
      • F refers to the number of faces
      • V refers to the number of vertices, or corner points
      • E refers to the number of edges
  2. Image titled Find the Vertex Step 2

    2

    Rearrange the formula to find the number of vertices. If you know how many faces and edges the polyhedron has, you can quickly count the number of vertices by using Euler’s Formula. Subtract F from both sides of the equation and add E to both sides, isolating V on one side.[3]

    • V = 2 — F + E

    Advertisement

  3. Image titled Find the Vertex Step 3

    3

    Plug the numbers in and solve. All you need to do at this point is to plug the number of sides and edges into the equation before adding and subtracting like normal. The answer you get should tell you the number of vertices and complete the problem.[4]

    • Example: For a polyhedron that has 6 faces and 12 edges…
      • V = 2 — F + E
      • V = 2 — 6 + 12
      • V = -4 + 12
      • V = 8
  4. Advertisement

  1. Image titled Find the Vertex Step 4

    1

    Graph the solutions of the system of linear inequalities. In some instances, graphing the solutions for all inequalities in the system can visually show you where some, if not all, of the vertices lie. When it does not, however, you will need to find the vertex algebraically.[5]

    • If using a graphing calculator to graph the inequalities, you can usually scroll over to the vertices and find the coordinates that way.
  2. Image titled Find the Vertex Step 5

    2

    Change the inequalities to equations. In order to solve for the system of inequalities, you will need to temporarily change the inequalities to equations, allowing you the ability to find values for x and y.[6]

    • Example: For the system of inequalities:
      • y < x
      • y > -x + 4
    • Change the inequalities to:
      • y = x
      • y = -x + 4
  3. Image titled Find the Vertex Step 6

    3

    Substitute one variable for the other. While there are a couple of different ways you can solve for x and y, substitution is often the easiest to use. Plug the value of y from one equation into the other equation, effectively «substituting» y in the other equation with additional x values.

    • Example: If:
      • y = x
      • y = -x + 4
    • Then y = -x + 4 can be written as:
      • x = -x + 4
  4. Image titled Find the Vertex Step 7

    4

    Solve for the first variable. Now that you only have one variable in the equation, you can easily solve for that variable, x, as you would in any other equation: by adding, subtracting, dividing, and multiplying.

    • Example: x = -x + 4
      • x + x = -x + x + 4
      • 2x = 4
      • 2x / 2 = 4 / 2
      • x = 2
  5. Image titled Find the Vertex Step 8

    5

    Solve for the remaining variable. Plug your new value for x into one of the original equations to find the value of y.

    • Example: y = x
      • y = 2
  6. Image titled Find the Vertex Step 9

    6

    Determine the vertex. The vertex is simply the coordinate consisting of your new x and y values.[7]

    • Example: (2, 2)
  7. Advertisement

  1. Image titled Find the Vertex Step 10

    1

    Factor the equation. Rewrite the quadratic equation in its factored form. There are several ways to factor out a quadratic equation, but when done, you should be left with two sets of parentheses that, when multiplied together, equal your original equation.

    • Example: (using decomposition)
      • 3×2 — 6x — 45
      • Factor out the common factor: 3 (x2 — 2x — 15)
      • Multiply the a and c terms: 1 * -15 = -15
      • Find two numbers with a product that equals -15 and a sum that equals the b value, -2: 3 * -5 = -15; 3 — 5 = -2
      • Substitute the two values into the equation ax2 + kx + hx + c: 3(x2 + 3x — 5x — 15)
      • Factor the polynomial by grouping: f(x) = 3 * (x + 3) * (x — 5)
  2. Image titled Find the Vertex Step 11

    2

    Find the point at which the equation crosses the x-axis.[8]
    Whenever the function of x, f(x), equals 0, the parabola will cross the x-axis. This will occur when either set of factors equals 0.

    • Example: 3 * (x + 3) * (x — 5) = 0
      • х +3 = 0
      • х — 5 = 0
      • х = -3 ; х = 5
      • Therefore, the roots are: (-3, 0) and (5, 0)
  3. Image titled Find the Vertex Step 12

    3

    Calculate the midway point. The axis of symmetry for the equation[9]
    will lie directly in between the two roots of the equation. You need to know the axis of symmetry since the vertex lies on it.

    • Example: x = 1; this value lies directly between -3 and 5
  4. Image titled Find the Vertex Step 13

    4

    Plug the x value into the original equation. Plug the x value for your axis of symmetry into either equation for your parabola. The y value will be the y value for your vertex.[10]

    • Example: y = 3×2 — 6x — 45 = 3(1)2 — 6(1) — 45 = -48
  5. Image titled Find the Vertex Step 14

    5

    Write down the vertex point. At this point, your last calculated x and y values should give you the coordinates of your vertex.

    • Example: (1, -48)
  6. Advertisement

  1. Image titled Find the Vertex Step 15

    1

    Rewrite the original equation in its vertex form. The «vertex» form of an equation is written as y = a(x — h)^2 + k, and the vertex point will be (h, k). Your current quadratic equation will need to be rewritten into this form, and in order to do that, you’ll need to complete the square.[11]

    • Example: y = -x^2 — 8x — 15
  2. Image titled Find the Vertex Step 16

    2

    Isolate the a value. Factor out the coefficient of the first term, a from the first two terms in the equation. Leave the final term, c, alone for now.[12]

    • Example: -1 (x^2 + 8x) — 15
  3. Image titled Find the Vertex Step 17

    3

    Find a third term for the parentheses. The third term must complete the set in the parentheses so that the values in parentheses form a perfect square. This new term is the squared value of half the coefficient of the middle term.

    • Example: 8 / 2 = 4; 4 * 4 = 16; therefore,
      • -1(x^2 + 8x + 16)
      • Also keep in mind that what you do to the inside must also be done to the outside:
      • y = -1(x^2 + 8x + 16) — 15 + 16
  4. Image titled Find the Vertex Step 18

    4

    Simplify the equation. Since your parentheses now form a perfect square, you can simplify the parenthetical portion to its factored form. Simultaneously, you can do any addition or subtraction needed to the values outside of the parentheses.[13]

    • Example: y = -1(x + 4)^2 + 1
  5. Image titled Find the Vertex Step 19

    5

    Figure out what the coordinates are based on the vertex equation. Recall that the vertex form of an equation is y = a(x — h)^2 + k, with (h, k) representing the coordinates of the vertex. You now have enough information to plug values into the h and k slots and complete the problem.

    • k = 1
    • h = -4
    • Therefore, the vertex of this equation can be found at: (-4, 1)
  6. Advertisement

  1. Image titled Find the Vertex Step 20

    1

    Find the x coordinate of the vertex directly. When the equation of your parabola can be written as y = ax^2 + bx + c, the x of the vertex can be found using the formula x = -b / 2a. Simply plug the a and b values from your equation into this formula to find x.

    • Example: y = -x^2 — 8x — 15
    • x = -b / 2a = -(-8)/(2*(-1)) = 8/(-2) = -4
    • x = -4
  2. Image titled Find the Vertex Step 21

    2

    Plug this value into the original equation. By plugging a value for x into the equation, you can solve for y. This y value will be the y coordinate of your vertex.

    • Example: y = -x^2 — 8x — 15 = -(-4)^2 — 8(-4) — 15 = -(16) — (-32) — 15 = -16 + 32 — 15 = 1
      • y = 1
  3. Image titled Find the Vertex Step 22

    3

    Write down your vertex coordinates. The x and y values you have are the coordinates of your vertex point.

    • Example: (-4, 1)
  4. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Things You’ll Need

  • Calculator
  • Pencil
  • Paper

References

About This Article

Article SummaryX

To find the vertex of a parabola with axis of symmetry, factor the quadratic equation and find the point at which the equation crosses the x-axis. Next, calculate the midway point, which will lie directly in between the two roots of the equation. Then, plug the x value into either equation for your parabola. Your calculated x and y values are the coordinates of the vertex. For tips on finding a vertex in other mathematical scenarios, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 62,655 times.

Reader Success Stories

  • Parmod K.

    «So helpful.»

Did this article help you?

План урока:

Понятие многогранника

Теорема Эйлера

Призма

Типичные задачи на призмы

Понятие многогранника

Ранее мы уже познакомились с тетраэдром и параллелепипедом. Поверхность тетраэдра состоит из 4 треугольников, а параллелепипеда – из 6 параллелограммов. Они являются частными случаями такой фигуры, как многогранник.

1 mnogogranniki

Надо понимать, что под многогранником понимают одновременно как поверхность, составленную из многоуг-ков, так и тот объем, который эта поверхность ограничивает. Иногда, чтобы отличать два этих понятия, используют термин «поверхность многогранника».

Каждый многоугольник, образующий поверхность многогранника, именуется гранью многогранника. При этом предполагается, что любые две соседние грани находятся в разных плос-тях.

Многоугольники, образующие поверхность многогранника, имеют свои стороны,которые именуют ребрами многогранника. Вершины же этих многоуг-ков именуют вершинами многогранников. Можно утверждать, что ребра – это отрезки, по которым пересекаются соседние грани. В свою очередь вершины – это точки, где пересекаются соседние ребра. Отрезок, соединяющий две вершины, которые не принадлежат одной грани, именуется диагональю многогранника. Важно отметить, что каждое ребро принадлежит ровно 2 граням. Вершина принадлежит как минимум трем граням, однако может принадлежать и большему их числу.

2 mnogogranniki

Если все точки многогранника находятся по одну сторону от любой плос-ти, проходящей через какую-либо грань многогранника, то он называется выпуклым. В противном случае, если через одну из граней проходит плос-ть, «разрезающая» многогранник на две других фигуры, многогранник именуют невыпуклым. На бытовом уровне это означает, что выпуклый многогранник можно поставить на ровную поверхность (например, стол) на любую грань. А вот у невыпуклого многогранника найдется такая грань, на которую его поставить нельзя. Покажем несколько примеров:

3 mnogogranniki

На рисунке у невыпуклых многогранников красным цветом показаны плос-ти, которые рассекают многогранник. На эти грани не получится «поставить» многогранник – будет мешать выступающая часть. Заметим, что в выпуклом многограннике всякая диагональ лежит внутри фигуры. А вот у невыпуклого многогранника можно соединить вершины отрезком, лежащим вне объема фигуры. Добавим, что у выпуклого многогранника каждая грань обязательно является выпуклым многоугольником.

Теорема Эйлера

У каждого многогранника можно подсчитать количество граней, вершин и ребер. Например, у тетраэдра 4 грани, 4 вершины и 6 ребер. В свою очередь у параллелепипеда уже 6 граней, 8 вершин и 12 граней. Есть ли какая-то взаимосвязь между этими числами?

Можно заметить, что если у тетраэдра сложить число вершин и граней, а далее вычесть из суммы количество ребер, то получится число 2:

4 + 4 — 6 = 2

Если выполнить такие же действия для параллелепипеда, то снова получится двойка:

6 + 8 — 12 = 2

Оказывается, это не просто совпадение. Для любого выпуклого многогранника справедлива теорема Эйлера:

4 mnogogranniki

Мы не будем доказывать эту теорему, так как ее доказательство достаточно сложное. Отдельно отметим, что для невыпуклых многогранников эта теорема может и не выполняться.

Задание. Известно, что некоторый выпуклый многогранник состоит из 20 граней и имеет 30 ребер. Сколько у него вершин?

Решение. Запишем теорему Эйлера:

5 mnogogranniki

Задание. Поверхность выпуклого многогранника составлена из 12 пятиугольников. Сколько у такого многогранника ребер и вершин?

Решение. У многогранника будет ровно 12 граней. Попробуем подсчитать количество ребер. Так как каждая представляет собой пятиугольник, то все вместе они имеют 12•5 = 60 ребер. Однако при этом мы каждое ребро подсчитали дважды, ведь любое ребро принадлежит строго 2 граням. То есть на самом деле есть только 60:2 = 30 ребер. По теореме Эйлера легко подсчитаем и количество вершин:

6 mnogogranniki

Задание. Выпуклый многогранник имеет 8 граней, из них 4 – это четырехугольники, а ещё 4 – пятиугольники. Сколько у него ребер и вершин?

Решение. Как и в предыдущей задаче, снова сложим количество сторон всех граней:

7 mnogogranniki

Задание. Существует ли выпуклый многогранник, каждая грань которого является шестиугольником?

Предположим, что такой многогранник существует, и у него Г граней. Тогда его грани имеют в сумме 6Г сторон. Но каждая из этих сторон будет ребром ровно для 2 граней, поэтому всего будет 3Г ребер:

8 mnogogranniki

Теперь вспомним, что в каждой вершине сходятся не менее трех ребер. Значит, если мы посчитаем все ребра, выходящие из каждого ребра, то получим величину, не меньшую 3В. Но, так как каждое ребро проходит строго через 2 вершины, мы снова подсчитали ребра дважды. То есть количество ребер будет не меньше 3/2В, или 1,5В:

9 mnogogranniki

Это неравенство противоречит полученному ранее равенству Р = 3Г. Противоречие показывает, что на самом деле не может существовать выпуклый многогранник, каждая грань которого – шестиугольник, ч. т. д.

Примечание. Аналогично можно продемонстрировать, что не может существовать и выпуклый многогранник, поверхность которого состоит из многоуг-ков, каждый из которых имеет не менее 6 сторон. Другими словами, любой выпуклый многогранник имеет хотя бы одну грань, которая является треугольником, четырехугольником или пятиугольником.

Призма

Пусть в некоторой плос-ти α есть n-угольник с вершинами А1, А2, А3,…, Аn. Пусть в другой плос-ти β, которая параллельна α, есть равный ему многоуг-к В1В2В3…Вn, причем отрезки А1В1, А2В2, А3В3…, АnВпараллельны друг другу:

10 mnogogranniki

В результате мы получили геометрическую фигуру, которую именуют призмой. Многоуг-ки А1А2А3…Аn и В1В2В3…Вименуются основаниями призмы, а все остальные грани – это боковые грани призмы. Можно доказать, что боковые грани – это параллелограммы. Действительно, в четырехуг-ке А1А2В2В1 стороны А1В1 и А2В2 параллельны по условию. Также они равны по теореме 12 из этого урока. Это и значит, что А1А2В2В1 – это параллелограмм (по одному из его признаков). Тоже самое можно доказать и для остальных боковых граней. Теперь мы можем сформулировать определение призмы:

11 mnogogranniki

Ребра призмы, не принадлежащие основанию, именуются боковыми ребрами призмы. Ясно, что любые два соседних ребра параллельны, ведь они являются сторонами параллелограммами. Но тогда по свойству транзитивности параллельности получается, что вообще любые два боковых ребра параллельны. Если из какой-нибудь точки основания построен перпендикуляр к противоположному основанию, то он именуется высотой призмы:

12 mnogogranniki

Естественно, что высота перпендикулярна обоим основаниям. Возможна ситуация, когда высота падает не на основание, а на какую-нибудь точку плос-ти основания, не находящуюся внутри него. Ясно, что все высоты призмы имеют одинаковую длину независимо от того, через какие точки они проведены, ведь высота по своей сути – это расстояние между плос-тями оснований.

Особый интерес вызывают призмы, где боковые ребра и основания перпендикулярны друг другу. Такие призмы именуются прямыми. Ясно, что у них боковые грани оказываются уже не просто параллелограммами, а уже прямоуг-ками. При этом любое боковое ребро одновременно является и высотой. Все остальные призмы именуют наклонными.

13 mnogogranniki

Если в основании призмы находится n-угольник, то призму называют n-угольной. В частности, в основании треугольной призмы лежит треуг-к, в основании десятиугольной призмы находится десятиугольник и т. д. Наконец, в особую группу выделяют прямые призмы, основаниями которых представляют собой правильные многоуг-ки. Их так и именуют – правильные призмы.

14 mnogogranniki

Если сложить площадь всех граней призмы, то получится сумма, которую именуют площадью полной поверхности призмы. Обычно ее обозначают как Sполн. Если же складываются только площади боковых граней, то в сумме получается площадь боковой поверхности призмы, обозначаемая как Sбок. Если площадь основания призмы обозначить как Sосн., то справедлива будет очевидная формула:

15 mnogogranniki

Действительно, пусть есть прямая призма с основаниями А1А2…Аn и B1B2…Bn:

16 mnogogranniki

Так как ее боковые ребра перпендикулярны основаниям, то они должны быть перпендикулярны и тем ребрам, которые образуют основания. Это значит, каждая боковая грань – это прямоуг-к. При этом боковые ребра – это одновременно и высоты призмы. Тогда площадь боковых граней вычисляется так:

17 mnogogranniki

Отметим наконец, что параллелепипед можно считать частным случаем призмы, а прямоугольный параллелепипед – частным случаем прямой призмы.

Типичные задачи на призмы

Призмы нередко встречаются в заданиях ЕГЭ, поэтому важно уметь решать задачи, в которых используются эти фигуры.

Задание. Сколько диагоналей имеет n-угольная призма?

Решение. В любом многограннике диагональ соединяет точки, не лежащие на одной грани. Каждая вершина призмы принадлежит одному из оснований, причем в n-угольной призме каждому основанию принадлежат n вершин.

Возьмем произвольную вершину на одном из оснований и посчитаем, сколько диагоналей из нее можно провести. Если соединять ее отрезками с другими вершинами, принадлежащему тому же основанию, то получатся диагонали грани, но не диагонали призмы (зеленые линии на рисунке):

18 mnogogranniki

Значит, остается только провести прямые к тем вершинами, которые лежат в другом основании. Так как в другом основании находятся n вершин, то и отрезков будет ровно n. Однако три из них не будут диагоналями (показаны на рисунке синим цветом), так как будут либо являться одним из ребер призмы либо одной из диагоналей. Получается, что из вершины можно провести (n – 3) диагоналей. Так как в основании находятся n вершин, то всего можно построить n•(n– 3) диагоналей.

Ответ: n•(n – 3) диагоналей.

Задание. Длина стороны правильной треугольной призмы составляет 8 см, а ее боковое ребро имеет длину 6 см. Через сторону основания проведено сечение, которое пересекает другое основание в противолежащей вершине. Какова площадь этого сечения?

Решение. Выполним построение по условию задачи:

19 mnogogranniki

Здесь сечение проведено через ребро В1С1 и противолежащую ей вершину А. Призма правильная, поэтому ее основания ∆АВС и ∆А1В1С1 – это равносторонние треуг-ки, и все их стороны равны 8 см. По определению правильная призма обязательно ещё и прямая. Тогда боковые грани – прямоуг-ки.

∆АВВ1 – прямоугольный, с помощью теоремы Пифагора мы можем вычислить его гипотенузу АВ1:

20 mnogogranniki

Аналогично можно вычислить, что и диагональ АС1 также равна 10 см. Вообще в правильных призмах все грани – это равные друг другу прямоуг-ки, поэтому и диагонали у них одинаковы.

Длина ребра В1С1 составляет 8 см. Получается, нам надо вычислить площадь равнобедренного ∆АВ1С1 с основанием 8 см и боковыми сторонами 10 см. Это можно сделать множеством способов. Самый простой из них заключается в использовании формулы Герона. Для ее применения сначала вычислим полупериметр ∆АВ1С1:

21 mnogogranniki

Задание. В основании призмы находится равносторонний ∆АВС. Ребро АА1 образует одинаковые углы с ребрами АС и АВ. Докажите, что ребра АА1 и ВС перпендикулярны и что СС1В1В – прямоуг-к.

Решение. Выполняем построение:

22 mnogogranniki

По условию ∠А1АВ и ∠А1АС одинаковы. Проведем диагонали А1В и А1С. В итоге мы получим ∆А1АВ и А1АС. У них есть АА1 – общая сторона, стороны АВ и АС одинаковы (ведь ∆АВС – равносторонний), а углы между ними одинаковы. Значит, ∆А1АВ и А1АС равны, и тогда диагонали А1В и А1С одинаковы.

Получается, что точка А1 равноудалена вершин В и С. Аналогично и точка А равноудалена от В и С, ведь АВ и АС одинаковы. Это значит, что и А1, и А лежат на серединных перпендикулярах, проведенных к отрезку ВС:

23 mnogogranniki

Обозначим середину ВС как Н, тогда НА1 и НА – серединные перпендикулярны. То есть ВС⊥АН и ВС⊥А1Н. Но это значит (по признаку перпендикулярности прямой и плос-ти), что ВС перпендикулярен всей плос-ти АНА1. Из этого вытекает, что ВС⊥АА1, ч. т. д.

Осталось показать, что грань СС1В1В – это прямоуг-к. Так как ВВ1||АА1, и ВС⊥АА1, то и ВС⊥ВВ1. Значит в параллелограмме СС1В1В (напомним, что в призме все боковые грани – параллелограммы) есть прямой угол. Это значит, что он является прямоуг-ком, ч. т. д.

Задание. Призма АВСА1В1С1 – наклонная. Известно, что АС = АВ = 13 и ВС = 10. Боковые ребра призмы образуют с основанием АВС угол 45°. Проекция точки А1 на плос-ть АВС совпадает с точкой пересечения медиан в ∆АВС. Какова площадь грани СС1В1В?

Решение. Снова выполняем построение:

24 mnogogranniki

Здесь О – это проекция точки А1 и одновременно точка пересечения медиан. H– середина отрезка ВС, то есть АН – как раз одна из медиан. Заметим, что так как ∆АВС равнобедренный, и ВС – это его основание, то АН одновременно является и высотой, то есть ∠ВНА = 90°. Раз Н – середина ВС, то ВН будет вдвое короче ВС:

25 mnogogranniki

Напомним, точка пересечения медиан делит их в отношении 2:1, поэтому мы можем найти ОА:

26 mnogogranniki

Понятно, что ОА – это проекция прямой ОА на плос-ть АВС. Тогда угол между ребром АА1 и плос-тью АВС, по условию равный 45° – это ∠ОАА1.

Из прямоугольного ∆АОА1 с помощью тригонометрии мы найдем длину ребра АА1:

27 mnogogranniki

Теперь покажем, что грань СС1В1В – прямоуг-к. Ясно, что ОА1⊥ВН, ведь ОА1 – перпендикуляр ко всей плос-ти АВС. Но также ВН⊥АН. Значит, ВН перпендикулярен плос-ти АОА1, и, в частности, перпендикулярен ребру АА1. Но тогда и ВВ1⊥ВН, ведь ВВ1||АА1. Значит, грань СС1В1В – прямоуг-к, ведь в ней есть прямой угол. Для нахождения площади прямоуг-ка надо перемножить две его смежные стороны:

28 mnogogranniki

Задание. Ребро при основании правильной 6-угольной призмы имеет длину 23, а боковое ребро равно 50. Вычислите площадь поверхности призмы (и полную, и боковую).

Решение.

29 mnogogranniki

Сначала найдем площадь и периметр основания. Формулы для правильных многоуг-ков мы уже изучали:

30 mnogogranniki

Здесь а – сторона шестиугольника, R и r – радиусы описанной и вписанной окружности, n– число сторон шестиугольника. Во второй формуле мы использовали известный факт, что длина стороны правильного 6-угольника совпадает с радиусом описанной около него окружности.

Далее вычисляем площадь боковой поверхности:

31 mnogogranniki

Добавив к этому значению удвоенную площадь поверхности основания, найдем и полную площадь призмы:

32 mnogogranniki

Задание. В правильной треугольной призме АВСА1В1С1, у которой все ребра одинаковы и равны единице, вычислите угол между гранью АВС и сечением АСВ1:

33 mnogogranniki

Решение. Вспомним, что для нахождения угла между плос-тями необходимо построить в этих плос-тях перпендикуляры к линии их пересечения, причем эти перпендикуляры должны падать на одну и ту же точку.

Пересекаются плос-ти АВС и АСВ1 по грани АС. Заметим, что и ∆АВС, и ∆АСВ1 – равнобедренные, причем у них общее основание АС. Действительно, АВ = ВС, так как в основании правильной призмы лежит равносторонний треуг-к, а АВ1 = СВ1, так как это диагонали равных граней АВВ1А1 и ВСС1В1.

Если мы отметим середину отрезка АС (например, точкой Н) и соединим ее с В и В1, то мы получим две медианы НВ и НВ1, которые одновременно будут и высотой. Это значит, что именно ∠ВНВ1 и будет искомым углом между плос-тями:

34 mnogogranniki

Осталось найти ∠ВНВ1. Длину ВВ1 мы уже знаем, она составляет 1.

АН вдвое короче АС:

35 mnogogranniki

Теперь заметим, что ∆НВВ1 – прямоугольный, поэтому для него можно использовать тригонометрию:

36 mnogogranniki

Задание. Найдите угол между прямыми А1D и СD1 в правильной призме, показанной на рисунке:

37 mnogogranniki

Все ребра этой призмы равны единице.

Решение. Сначала внимательно рассмотрим верхнее основание призмы. Так как оно представляет собой правильный многоуг-к, то вокруг него можно описать окружность. Обозначим центр этой окружности как О и проведем радиусы к вершинам:

38 mnogogranniki

Так как в правильном шестиуг-ке радиус описанной окружности равен стороне шестиугольника, то получается, что ∆А1ОВ1, ∆В1ОС1 и ∆С1ОD1 – равносторонние. Тогда ∠А1ОВ1, ∠B1OC1 и ∠С1ОD1 составляют по 60°. Тогда ∠А1ОD1 равен 180°, то есть точки А1, О и D1 находятся на одной прямой А1D1. Также заметим, что эта прямая параллельна ребру В1С1, ведь ∠D1OC1и ∠ОС1B1 являются накрест лежащими для этих прямых (при секущей ОС1) и при том они одинаковы. Так как отрезки А1О и D1O как стороны равносторонних треуг-ков равны 1, то

39 mnogogranniki

Теперь вернемся к призме:

40 mnogogranniki

Так как А1D1||В1С1 и В1С1||ВС, то и А1D1||ВС. Это значит, что через А1D1 и ВС можно провести плос-ть, в которой будут лежать и интересующие нас прямые А1В и СD1. Для нахождения угла между ними надо рассмотреть четырехуг-к А1D1CB. Раз А1D1||ВС, то этот четырехуг-к является трапецией.

Далее найдем длину А1В. Для этого используем ∆АВА1:

41 mnogogranniki

Аналогично из ∆СDD1 можно определить, что СDимеет такую же длину. Это значит, что А1D1CB – равнобедренная трапеция.

Теперь рассмотрим отдельно эту трапецию, чтобы найти искомый угол:

42 mnogogranniki

Опустим из вершин трапеции В и С перпендикуляры на А1D1. В итоге получим прямоуг-к ВСРН, где

43 mnogogranniki

44 mnogogranniki

Сегодня мы более детально изучили понятие многогранника и познакомились с новой геометрической фигурой – призмой. Призма довольно часто встречается в задаче С2 на ЕГЭ. Также мы узнали о теореме Эйлера, из которой вытекают некоторые важные факты. Один из них заключается в том, что не бывает выпуклых многогранников, у которых ни одна грань не является треуг-ком, четырехуг-ком или пятиуг-ком.


Загрузить PDF


Загрузить PDF

В математике существует ряд задач, в которых требуется найти вершину. Например, вершину многогранника, вершину или несколько вершин области системы неравенств, вершину параболы или квадратного уравнения. Эта статья расскажет вам, как найти вершину в разных задачах.

  1. Изображение с названием Find the Vertex Step 1

    1

    Теорема Эйлера. Теорема утверждает, что в любом многограннике число его вершин плюс число его граней минус число его ребер всегда равно двум.[1]

    • Формула, описывающая теорему Эйлера: F + V — E = 2
      • F — число граней.
      • V — число вершин.
      • E — число ребер.
  2. Изображение с названием Find the Vertex Step 2

    2

    Перепишите формулу, чтобы найти число вершин. Если вам дано число граней и число ребер многогранника, вы можете быстро найти число его вершин с помощью формулы Эйлера.

    • V = 2 — F + E
  3. Изображение с названием Find the Vertex Step 3

    3

    Подставьте данные вам значения в эту формулу. В результате вы получите число вершин многогранника.

    • Пример: найдите число вершин многогранника, у которого 6 граней и 12 ребер.
      • V = 2 — F + E
      • V = 2 — 6 + 12
      • V = -4 + 12
      • V = 8

    Реклама

  1. Изображение с названием Find the Vertex Step 4

    1

    Постройте график решения (области) системы линейных неравенств. В определенных случаях на графике можно увидеть некоторые или все вершины области системы линейных неравенств. В противном случае вам придется найти вершину алгебраически.

    • При использовании графического калькулятора вы можете посмотреть весь график и найти координаты вершин.
  2. Изображение с названием Find the Vertex Step 5

    2

    Преобразуйте неравенства в уравнения. Для того, чтобы решить систему неравенств (то есть найти «х» и «у»), вам необходимо вместо знаков неравенства поставить знак «равно».

    • Пример: дана система неравенств:
      • у < х
      • у> — х + 4
    • Преобразуйте неравенства в уравнения:
      • у = х
      • у = — х + 4
  3. Изображение с названием Find the Vertex Step 6

    3

    Теперь выразите любую переменную в одном уравнении и подставьте ее в другое уравнение. В нашем примере подставьте значение «у» из первого уравнения во второе уравнение.

    • Пример:
      • у = х
      • у = — х + 4
    • Подставляем у = х в у = — х + 4:
      • х = — х + 4
  4. Изображение с названием Find the Vertex Step 7

    4

    Найдите одну из переменных. Сейчас у вас есть уравнение только с одной переменной «х», которую легко найти.

    • Пример: х = — х + 4
      • х + х = 4
      • 2x = 4
      • 2x/2 = 4/2
      • х = 2
  5. Изображение с названием Find the Vertex Step 8

    5

    Найдите другую переменную. Подставьте найденное значение «х» в любое из уравнений и найдите значение «у».

    • Пример: у = х
      • у = 2
  6. Изображение с названием Find the Vertex Step 9

    6

    Найдите вершину. Вершина имеет координаты, равные найденным значениям «х» и «у».

    • Пример: вершина области данной системы неравенств есть точка О(2,2).

    Реклама

  1. Изображение с названием Find the Vertex Step 10

    1

    Разложите уравнение на множители. Есть несколько способов разложения квадратного уравнения на множители. В результате разложения вы получаете два двучлена, которые при перемножении приведут к исходному уравнению.

    • Пример: дано квадратное уравнение
      • 3×2 — 6x — 45
      • Сначала вынесите за скобку общий множитель: 3(x2 — 2x — 15)
      • Перемножьте коэффициенты «а» и «с»: 1 * (-15) = -15.
      • Найдите два числа, результат умножения которых равен -15, а их сумма равна коэффициенту «b» (b = -2): 3 * (-5) = -15; 3 — 5 = -2.
      • Подставьте найденные значения в уравнение ax2 + kx + hx + c: 3(x2 + 3x — 5x — 15).
      • Разложите исходное уравнение: f(x) = 3 * (x + 3) * (x — 5)
  2. Изображение с названием Find the Vertex Step 11

    2

    Найдите точку (точки), в которой график функции (в данном случае парабола) пересекает ось абсцисс.[3]
    График пересекает ось Х при f(x) = 0.

    • Пример: 3 * (x + 3) * (x — 5) = 0
      • х +3 = 0
      • х — 5 = 0
      • х = -3; х = 5
      • Таким образом, корни уравнения (или точки пересечения с осью Х): А(-3, 0 ) и В(5, 0)
  3. Изображение с названием Find the Vertex Step 12

    3

    Найдите ось симметрии. Ось симметрии функции проходит через точку, лежащую посередине между двумя корнями. При этом вершина лежит на оси симметрии.

    • Пример: х = 1; это значение лежит посередине между -3 и +5.
  4. Изображение с названием Find the Vertex Step 13

    4

    Подставьте значение «х» в исходное уравнение и найдите значение «у». Эти значения «х» и «у» — координаты вершины параболы.

    • Пример: у = 3×2 — 6x — 45 = 3(1)2 — 6(1) — 45 = -48
  5. Изображение с названием Find the Vertex Step 14

    5

    Запишите ответ.

    • Пример: вершина данного квадратного уравнения есть точка О(1,-48)

    Реклама

  1. Изображение с названием Find the Vertex Step 15

    1

    Перепишите исходное уравнение в виде[4]
    :
    y = a(x — h)^2 + k, при этом вершина лежит в точке с координатами (h,k). Для этого нужно дополнить исходное квадратное уравнение до полного квадрата.

    • Пример: дана квадратичная функция у = — х^2 — 8x — 15.
  2. Изображение с названием Find the Vertex Step 16

    2

    Рассмотрите первые два члена. Вынесите за скобку коэффициент первого члена (при этом свободный член игнорируется).

    • Пример: -1(х^2 + 8x) — 15.
  3. Изображение с названием Find the Vertex Step 17

    3

    Разложите свободный член (-15) на два числа так, чтобы одно из них дополнило выражение в скобках до полного квадрата. Одно из чисел должно быть равно квадрату половины коэффициента второго члена (из выражения в скобках).

    • Пример: 8/2 = 4; 4*4 = 16; поэтому
      • -1(х^2 + 8x + 16)
      • -15 = -16 + 1
      • у = -1 (х ^ 2 + 8x + 16) + 1
  4. Изображение с названием Find the Vertex Step 18

    4

    Упростите уравнение. Так как выражение в скобках есть полный квадрат, можно переписать это уравнение в следующем виде (если необходимо, проведите операции сложения или вычитания за скобками):

    • Пример: у = -1(х + 4)^2 + 1
  5. Изображение с названием Find the Vertex Step 19

    5

    Найдите координаты вершины. Напомним, что координаты вершины функции вида y = a(x — h)^2 + k равны (h,k).

    • k = 1
    • h = -4
    • Таким образом, вершина исходной функции есть точка О(-4,1).

    Реклама

  1. Изображение с названием Find the Vertex Step 20

    1

    Найдите координату «х» по формуле: x = -b/2a (для функции вида y = ax^2 + bx + c). Подставьте значения «a» и «b» в формулу и найдите координату «х».

    • Пример: дана квадратичная функция у = — х^2 — 8x — 15.
    • х = -b/2a = -(-8)/(2*(-1)) = 8/(-2) = -4
    • х = -4
  2. Изображение с названием Find the Vertex Step 21

    2

    Подставьте найденное значение «х» в исходное уравнение. Таким образом вы найдете «у». Эти значения «х» и «у» — координаты вершины параболы.

    • Пример: у = — х^2 — 8x — 15 = -(-4 )^2 — 8(-4) — 15 = -(16) -(-32) — 15 = -16 + 32 — 15 = 1
      • у = 1
  3. Изображение с названием Find the Vertex Step 22

    3

    Запишите ответ.

    • Пример: вершина исходной функции есть точка О(-4,1).

    Реклама

Что вам понадобится

  • Калькулятор
  • Карандаш
  • Бумага

Об этой статье

Эту страницу просматривали 11 693 раза.

Была ли эта статья полезной?

:oops: Fsq!

Вам сюда

http://www.genon.ru/GetAnswer.aspx?qid= … e4230f59fb

Диагональ в многоугольнике (многограннике) — отрезок, соединяющий любые две несмежные вершины, то есть, вершины, не принадлежащие одной стороне многоугольника (одному ребру многогранника).

У многогранников различают диагонали граней (рассматриваемых как плоские многоугольники) и пространственные диагонали, выходящие за пределы граней. У многогранников, имеющих треугольные грани есть только пространственные диагонали.

Подсчет диагоналей

Диагоналей нет у треугольника на плоскости и у тетраэдра в пространстве, поскольку все вершины этих фигур попарно связаны сторонами (ребрами).

Количество диагоналей N у многоугольника легко вычислить по формуле:

N = n*(n – 3)/2,

где n — число вершин многоугольника. По этой формуле нетрудно найти, что
у треугольника — 0 диагоналей
у прямоугольника — 2 диагонали
у пятиугольника — 5 диагоналей
у шестиугольника — 9 диагоналей
у восьмиугольника — 20 диагоналей
у 12-угольника — 54 диагонали
у 24-угольника — 252 диагонали

Количество диагоналей многогранника с числом вершин n легко подсчитать только для случая, когда в каждой вершине многогранника сходится одинаковое число ребер k. Тогда можно пользоваться формулой:

N = n*(n – k – 1)/2,

которая даем сумманое число пространственных и граневых диагоналей. Отсюда можно найти, что
у тетраэдра (n=4, k=3) — 0 диагоналей
у октаэдра (n=6, k=4) — 3 диагонали (все пространственные)
у куба (n=8, k=3) — 16 диагоналей (12 граневых и 4 пространственных)
у икосаэдра (n=12, k=5) — 36 диагоналей (все пространственные)
у додекаэдра (n=20, k=3) — 160 диагоналей (25 граневых и 135 пространственных)

Если в разных вершинах многогранника сходится разное число ребер, подсчет заметно усложняется и должен проводится индивидуально для каждого случая.

Фигуры с равными диагоналями

На плоскости существует два правильных многоугольника, у которых все диагонали равны между собой. Это квадрат и правильный пятиугольник. У квадрата две одинаковых диагонали, пересекающихся в центре под прямым углом. У правильного пятиугольника пять одинаковых диагоналей, которые вместе образуют рисунок пятиконечной звезды (пентаграммы).

Единственный правильный многогранник, у которого все диагонали равны между собой — правильный восьмигранник октаэдр. У него три диагонали, которые попарно перпендикулярно пересекаются в центре. Все диагонали октаэдра — пространственные (диагоналей граней у октаэдра нет, т.к. у него треугольные грани).

Помимо октаэдра есть еще один правильный многогранник, у которого все пространственные диагонали равны между собой. Это куб (гексаэдр). У куба четыре одинаковых пространственных диагонали, которые также пересекаются в центре. Угол между дигоналями куба состаляет либо arccos(1/3) ≈ 70,5° (для пары диагоналей, проведенных к смежным вершинам), либо arccos(–1/3) ≈ 109,5° (для пары диагоналей, проведенных к несмежным вершинам).

Ссылки:
ru.wikipedia.org — Википедия: Диагональ
dic.academic.ru — иллюстрация разницы между граневой и пространственной диагоналями многогранника

Дополнительно в базе данных Генона:
Как найти диагональ прямоугольника?
Сколько вершин, ребер и граней у тетраэдра?
Сколько вершин, ребер и граней у куба (гексаэдра)?

Время на прочтение
8 мин

Количество просмотров 90K

Введение. Постановка вопроса.

В школьной программе, к сожалению, сферическую геометрию и геометрию Лобачевского не изучают. Тем временем, их изучение совместно с Евклидовой геометрией, позволяет глубже понять происходящее с объектами. Например, понять связь правильных многогранников с разбиениями сферы, разбиениями плоскости Евклида и разбиениями плоскости Лобачевского.
Знания геометрии пространств постоянной кривизны помогает подниматься над трёхмерием и выявлять многогранники в пространствах размерности 4 и выше. Вопросы нахождения многогранников, нахождения разбиений пространств постоянной кривизны, вывода формулы двугранного угла правильного многогранника в n-мерном пространстве — так тесно переплетены, что выносить всё это в название статьи оказалось проблематично. Пусть в центре внимания будут, всем понятные, правильные многогранники, хотя они не только результат всех выводов, но и, одновременно, инструмент для постижения пространств высших размерностей и равномерно искривлённых пространств.

Для тех кто не знает (забыл) сообщаю (напоминаю), что в привычном нам трёхмерном Евклидовом пространстве всего пять правильных многогранников:

1. Тетраэдр: 2. Куб: 3. Октаэдр: 4. Додекаэдр: 5. Икосаэдр:

В трёхмерном пространстве правильным многогранником называется выпуклый многогранник, у которого все вершины равны между собой, все рёбра равны между собой, все грани равны между собой и грани являются правильными многоугольниками.

Правильный многоугольник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между собой равны.

Вершины равны между собой означает, что количество рёбер и количество граней подходящих к каждой вершине одинаковое и подходят они под одинаковыми углами, в каждой вершине.

Оказывается, правильные многогранники удобно обозначать их символом Шлефли {p1, p2}, характеризующим их комбинаторное строение. Который означает, что p1 угольники, сошлись по p2 штук в вершине. Т.е. по определению p1, p2 — целые числа, большие либо равные 3. Для тех кто не знаком с понятием Символ Шлефли написал отдельную статью с картинками Символ Шлефли. Часть 2.6

В такой записи наши многогранники получат обозначения:
1. Тетраэдр {3, 3},
2. Куб {4, 3},
3. Октаэдр {3, 4},
4. Додекаэдр {5, 3},
5. Икосаэдр {3, 5}
Например, {4, 3} — куб имеет 4 угольные грани, в каждой вершине сходится по 3 таких грани.
У октаэдра {3, 4} наоборот, грани 3 угольные, сходятся по 4 штуки в вершине.
Таким образом символ Шлефли полностью определяет комбинаторное строение многогранника.

Почему правильных многогранников всего 5? Может быть их больше?

Чтобы сполна дать ответ на этот вопрос, нужно сначала получить интуитивное представление о геометрии на сфере и на плоскости Лобачевского. Тем у кого такого представления ещё нет постараюсь дать необходимые объяснения.

Сфера

1. Что такое точка на сфере? Думаю, что всем интуитивно понятно. Мысленно не сложно представить точку на сфере.

image

2. Что такое отрезок на сфере? Берём две точки и соединяем их кратчайшим расстоянием на сфере, получится дуга, если смотреть на сферу со стороны.

image

3. Если продолжить этот отрезок в обе стороны, то он замкнётся и получится окружность. При этом плоскость окружности содержит центр сферы, это следует из того, что две исходные точки мы соединили кратчайшим, а не произвольным, расстоянием. Это со стороны она выглядит, как окружность, а в терминах сферической геометрии это прямая, так как была получена из отрезка, продолжением до бесконечности в обе стороны.

image

4. И, наконец, что такое треугольник на сфере? Берём три точки на сфере и соединяем их отрезками.

image

По аналогии с треугольником можно нарисовать произвольный многоугольник на сфере. Для нас принципиально важно свойство сферического треугольника, заключающееся в том, что сумма углов у такого треугольника больше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных сферических треугольников различна. Чем больше треугольник, тем БОЛЬШЕ у него сумма углов.

image

Соответственно, появляется 4-й признак равенства треугольников на сфере — по трём углам: два сферических треугольника равны между собой, если у них соответствующие углы равны.

Для простоты саму сферу проще не рисовать, тогда треугольник будет выглядеть немного раздутым:

image

Сферу ещё называют пространством постоянной положительной кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.

Лобачевский

Теперь, когда мы познакомились с геометрией на сфере, понять геометрию на гиперболической плоскости, открытую великим русским учёным Николаем Ивановичем Лобачевским, будет тоже не сложно, так как тут всё происходит аналогично сфере, только «наизнанку», «наоборот». Если дуги на сфере мы проводили окружностями, с центром внутри сферы, то теперь дуги надо проводить окружностями с центром за пределами сферы.

Приступим. Плоскость Лобачевского будем представлять в интерпретации Пуанкаре II (Жюль Анри́ Пуанкаре́, великий французский учёный), эту интерпретацию геометрии Лобачевского ещё называют диском Пуанкаре.

1. Точка в плоскости Лобачевского. Точка — она и в Африке точка.

image

2. Отрезок на плоскости Лобачевского. Соединяем две точки линией по кратчайшему расстоянию в смысле плоскости Лобачевского.

image

Кратчайшее расстояние строится следующим образом:

image

Надо провести окружность ортогональную диску Пуанкаре, через заданные две точки (Z и V на рисунке). Центр этой окружности будет находиться всегда за пределами диска. Дуга соединяющая исходные две точки будет кратчайшим расстоянием в смысле плоскости Лобачевского.

3. Убрав вспомогательные дуги, получим прямую E1 — H1 в плоскости Лобачевского.

image

Точки E1, H1 «лежат» на бесконечности плоскости Лобачевского, вообще край диска Пуанкаре — это всё бесконечно удалённые точки плоскости Лобачевского.

4. И наконец, что такое треугольник в плоскости Лобачевского? Берём три точки и соединяем их отрезками.

image

По аналогии с треугольником, можно нарисовать произвольный многоугольник на плоскости Лобачевского. Для нас принципиально важно свойство гиперболического треугольника, заключающееся в том, что сумма углов у такого треугольника всегда меньше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных гиперболических треугольников различна. Чем больше треугольник по площади, тем МЕНЬШЕ у него сумма углов.

image

Соответственно, тут тоже имеет место 4-й признак равенства гиперболических треугольников — по трём углам: два гиперболических треугольника равны между собой, если у них соответствующие углы равны.

Для простоты сам диск Пуанкаре иногда можно не рисовать, тогда треугольник будет выглядеть немного «усохшим», «сдутым»:

image

Плоскость Лобачевского (и вообще пространство Лобачевского любой размерности) ещё называют пространством постоянной ОТРИЦАТЕЛЬНОЙ кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.

Правильные разбиения двумерной Сферы и правильные трёхмерные многогранники

Всё сказанное про сферу и плоскость Лобачевского относится к двумерию, т.е. поверхность сферы — двумерна. Какое это имеет отношению к трёхмерию, указанному в заголовке статьи? Оказывается, каждому трёхмерному правильному Евклидову многограннику взаимно однозначно соответствует своё разбиение двумерной сферы. Лучше всего это видно на рисунке:

image

Чтобы из правильного многогранника получить разбиение сферы, нужно описать вокруг многогранника сферу. Вершины многогранника окажутся на поверхности сферы, соединив эти точки отрезками на сфере (дугами), получим разбиение двумерной сферы на правильные сферические многоугольники. Для примера сделана видео демонстрация как икосаэдр соответствует разбиению сферы на сферические треугольники и обратно, как разбиение сферы на сферические треугольники, сходящиеся по пять штук в вершине, соответствует икосаэдру.

Чтобы по разбиению сферы построить многогранник, соответствующие дугам вершины разбиения нужно соединить обычными, прямолинейными, Евклидовыми отрезками.

Соответственно символ Шлефли икосаэдра {3, 5} — трёхугольники, сходящиеся по пять штук в вершине, задаёт не только структуру этого многогранника, но и структуру разбиения двумерной сферы. Аналогично и с другими многогранниками, их символы Шлефли задают и структуру соответствующих разбиений. Более того, разбиения плоскости Евклида и плоскости Лобачевского на правильные многоугольники, тоже можно задавать символом Шлефли. Например, {4, 4} — четырёхугольники, сходящиеся по четыре — это всем привычная нам тетрадь в клеточку, т.е. это разбиение плоскости Евклида на квадраты. А есть ли другие разбиения плоскости Евклида? Увидим дальше.

Построение разбиений двумерной сферы, плоскости Евклида и плоскости Лобачевского

Для построения разбиений двумерных пространств постоянной кривизны (таково общее название этих трёх пространств) нам потребуется элементарная школьная геометрия и знание того, что сумма углов сферического треугольника больше 180 градусов (больше Пи), что сумма углов гиперболического треугольника меньше 180 градусов (меньше Пи) и что такое символ Шлефли. Обо всём об этом уже сказано выше.

Итак, возьмём произвольный символ Шлефли {p1, p2}, он задаёт разбиение одного из трёх пространств постоянной кривизны (для плоскости это верно, для пространств высших размерностей дело обстоит сложнее, но ничто нам не мешает исследовать все комбинации символа).

image

Рассмотрим правильный p1 угольник, проведём отрезки, соединяющие его центр и вершины. Получим p1 штук равнобедренных треугольника (на рисунке показан только один такой треугольник). Сумму углов каждого из этих треугольников обозначим за t и выразим t через пи и коэффициент лямда.

image

Тогда если лямда = 1, то треугольник Евклидов, т.е. находится в Евклидовой плоскости, если лямда в интервале (1, 3), то это значит, что сумма углов больше пи и значит этот треугольник сферический (не трудно представить, что при увеличении сферического треугольника в пределе получается окружность с тремя точками на ней, в каждой точке угол треугольника получается равным пи, а в сумме 3*пи. Это объясняет верхнюю границу интервала = 3). Если же лямда в интервале (0, 1), то треугольник гиперболический, так как сумма углов у него меньше пи (т.е. меньше 180 градусов). Коротко это можно записать так:

image

Не трудно посчитать, что:

image

С другой стороны, для сходимости в вершине p2 штук (т.е. целого числа) таких же многоугольников нужно, чтобы

image

Приравнивая выражения для 2*бетта, найденные из условия сходимости и из многоугольника:

image

Получили уравнение которое показывает какое из трёх пространств разбивает фигура заданная своим символом Шлефли {p1, p2}. Для решения этого уравнения надо вспомнить, так же, что p1, p2 — целые числа, большие либо равные 3. Это, так сказать, следует из их физического смысла, так как это p1 угольники (не меньше 3 углов), сходящиеся по p2 штук в вершине (тоже не меньше 3, иначе это не вершина получится).

Решение этого уравнения заключается в переборе всех возможных значений для p1, p2 больших либо равных 3 и вычислении значения лямда. Если оно получится равным 1, то {p1, p2} разбивает плоскость Евклида, если больше 1 но меньше 3, то это разбиение Сферы, если от 0 до 1, то это разбиение плоскости Лобачевского. Все эти вычисления удобно свести в таблицу.

image

Откуда видно, что:
1. Сфере соответствует всего 5 решений, когда лямда больше 1 и меньше 3, они выделены зелёным цветом в таблице. Это: {3, 3} — тетраэдр, {3, 4} — октаэдр, {3, 5} — икосаэдр, {4, 3} — куб, {5, 3} — додекаэдр. Их картинки были представлены в начале статьи.
2. Разбиениям Евклидовой плоскости соответствует всего три решения, когда лямда = 1, они выделены синим цветом в таблице. Вот как выглядят эти разбиения.



3. И наконец, все остальные комбинации {p1, p2} соответствуют разбиениям плоскости Лобачевского, соответственно таких разбиений бесконечное (счётное) количество. Осталось только проиллюстрировать некоторые из них, для примера.

{3, 7}

{4, 5}

{4, 6}

{4, 7}

{5, 4}

{5, 5}

{5, 6}

{5, 7}

{6, 4}

Итоги

Таким образом, правильных многогранников всего 5, они соответствуют пяти разбиениям двумерной сферы, разбиений плоскости Евклида всего 3, и разбиений плоскости Лобачевского счётное количество.
Какое приложение этих знаний?

Есть люди, которые напрямую интересуются разбиениями сферы: dxdy.ru/topic62800.html,
Есть статьи на Хабре (вот), где также рассматриваются интерпретации геометрии Лобачевского. Данная статья, возможно поможет кому-то лучше понять и познакомиться с геометрией Лобачевского.

Знание многогранников так же помогает ответить на вопрос: сколько у футбольного мяча правильных шестиугольников и сколько пятиугольников. Зная, что футбольный мяч — это усечённый икосаэдр, сразу можно дать ответ на этот вопрос: пятиугольников столько, сколько вершин у икосаэдра, шестиугольников столько, сколько граней у икосаэдра, значит, пятиугольников 12, шестиугольников 20.

Да, хотелось бы ещё рассказать про комбинаторную формулу вычисления количества вершин, рёбер и граней у этих пяти правильных многогранников, но это уже в следующий раз. И без того как-то сложновато получилось, хотя я рассчитывал на школьный уровень знаний читателей.

Так же в следующей статье при наличии интереса читателей планирую показать, как обобщается данный подход на пространства высших размерностей.

Лично для меня знание разбиений позволяет понять структуру этих пространств, особенно это актуально в размерностях выше 3.

Если вам мало трёхмерного пространства, вам понятна эта публикация и хочется забраться повыше, по размерности, то «переходите на следующий уровень» :)
Ссылки:
Правильные многогранники. Часть 1. Трёхмерие
Правильные многогранники. Часть 2. Четырёхмерие
Правильные многогранники. Часть 2.5 (вспомогательная)
Символ Шлефли. Часть 2.6

Понравилась статья? Поделить с друзьями:
  • Как найти гребень в френ боу
  • Айон как найти фабио
  • Ошибка диск поврежден как его исправить
  • Подключение не защищено как исправить в хроме андроид на телефоне
  • Как найти наушники sony wf1000xm3