Как найти количество выделившейся теплоты физика

Содержание:

Количество теплоты:

В чём причина изменения внутренней энергии макроскопического тела при теплообмене?

Теплообмен

Другим способом изменения внутренней энергии термодинамической системы является теплообмен.

Теплообмен — самопроизвольный процесс передачи внутренней энергии от тела с большей температурой телу с меньшей температурой без совершения работы.

Теплообмен между контактирующими телами называют теплопередачей. За счёт переданной при этом энергии увеличивается внутренняя энергия одного тела и уменьшается внутренняя энергия другого. Если, например, привести в соприкосновение два тела с разными температурами, то частицы более нагретого тела будут передавать часть своей кинетической энергии частицам менее нагретого тела. В результате внутренняя энергия одного тела уменьшается, а другого увеличивается.

Таким образом, при теплопередаче не происходит превращения энергии из одной формы в другую: часть внутренней энергии более нагретого тела передаётся менее нагретому.

Количество теплоты и удельная теплоёмкость

Количественной мерой энергии, сообщённой телу (или отданной им) в процессе теплообмена, является количество теплоты.

В СИ единицей количества теплоты Q является джоуль (Дж). Иногда для измерения количества теплоты используют внесистемную единицу — калорию Количество теплоты в физике - формулы и определение с примерами

Если процесс теплообмена не сопровождается изменением агрегатного состояния вещества, то

Количество теплоты в физике - формулы и определение с примерами

где Количество теплоты в физике - формулы и определение с примерами — масса тела; Количество теплоты в физике - формулы и определение с примерами — разность температур в конце и в начале процесса теплообмена; с — удельная теплоёмкость вещества — физическая величина, численно равная количеству теплоты, которое получает вещество массой 1 кг при увеличении его температуры на 1 К. Удельную теплоёмкость измеряют в джоулях, деленных на килограмм, кельвин Количество теплоты в физике - формулы и определение с примерами

Удельная теплоёмкость зависит от свойств данного вещества и, как показывает опыт, в достаточно большом интервале температур практически не изменяется. Однако удельная теплоёмкость газа зависит от того, при каком процессе (изобарном или изохорном) осуществляется теплообмен.

Интересно знать:

Физическая величина, равная произведению массы тела на удельную теплоёмкость вещества, носит название теплоёмкость тела. Обозначают теплоёмкость С и измеряют в джоулях, деленных на кельвин Количество теплоты в физике - формулы и определение с примерамиТеплоёмкость в отличии от удельной теплоёмкости, является тепловой характеристикой тела, а не вещества.

Удельная теплота плавления

Физическую величину, численно равную количеству теплоты, необходимому для превращения кристаллического вещества массой 1 кг, взятого при температуре плавления, в жидкость той же температуры, называют удельной теплотой плавления Количество теплоты в физике - формулы и определение с примерами Эту величину измеряют в джоулях, делённых на килограмм Количество теплоты в физике - формулы и определение с примерами Для плавления тела массой Количество теплоты в физике - формулы и определение с примерами предварительно нагретого до температуры плавления, ему необходимо сообщить количество теплоты Количество теплоты в физике - формулы и определение с примерами При кристаллизации тела такое же количество теплоты выделяется: Количество теплоты в физике - формулы и определение с примерами

Удельная теплота парообразования

Физическую величину, численно равную количеству теплоты, которое необходимо передать жидкости массой 1 кг, находящейся при температуре кипения, для превращения её при постоянной температуре в пар, называют удельной теплотой парообразования L. Единицей измерения этой величины является джоуль, делённый на килограмм Количество теплоты в физике - формулы и определение с примерами Количество теплоты, необходимое для превращения жидкости массой Количество теплоты в физике - формулы и определение с примерамипредварительно нагретой до температуры кипения, в пар, определяют по формуле Количество теплоты в физике - формулы и определение с примерами Конденсация пара сопровождается выделением количества теплоты Количество теплоты в физике - формулы и определение с примерами

Удельная теплота сгорания топлива

Физическую величину, численно равную количеству теплоты, выделяющемуся при полном сгорании топлива массой 1 кг, называют удельной теплотой сгорания Количество теплоты в физике - формулы и определение с примерами топлива и измеряют в джоулях, делённых на килограмм Количество теплоты в физике - формулы и определение с примерами Количество теплоты, выделившееся при полном сгорании некоторой массы Количество теплоты в физике - формулы и определение с примерами топлива, определяют по формуле

Количество теплоты в физике - формулы и определение с примерами

Это количество теплоты передаётся телам, образующим термодинамическую систему, и по отношению к ним является положительной величиной.

Количество теплоты в физике - формулы и определение с примерами

  • Заказать решение задач по физике

Примеры решения задач

Количество теплоты в физике - формулы и определение с примерами

Пример №1

На рисунке 77 представлен график зависимости абсолютной температуры нагреваемого тела от переданного ему количества теплоты. Воспользовавшись таблицей на с. 84, определите вещество, из которого изготовлено тело, если его масса Количество теплоты в физике - формулы и определение с примерами

Решение:

Для того чтобы определить вещество, из которого изготовлено тело, найдём его удельную теплоёмкость с. Анализируя график, делаем вывод, что при нагревании тела от температуры Количество теплоты в физике - формулы и определение с примерами до температуры Количество теплоты в физике - формулы и определение с примерами ему было передано количество теплоты Количество теплоты в физике - формулы и определение с примерами которое можно рассчитать по формуле Количество теплоты в физике - формулы и определение с примерами

Следовательно, удельная теплоёмкость вещества Количество теплоты в физике - формулы и определение с примерами
Количество теплоты в физике - формулы и определение с примерами
Полученное значение удельной теплоёмкости соответствует олову.

Ответ: Количество теплоты в физике - формулы и определение с примерами — олово.

Пример №2

В налитую в сосуд воду, масса которой Количество теплоты в физике - формулы и определение с примерами и температура Количество теплоты в физике - формулы и определение с примерами добавили некоторое количество льда при температуре Количество теплоты в физике - формулы и определение с примерами Определите массу льда, если после достижения теплового равновесия температура содержимого сосуда Количество теплоты в физике - формулы и определение с примерами Теплоёмкостью сосуда и потерями тепла пренебречь. Удельная теплоёмкость воды Количество теплоты в физике - формулы и определение с примерами льда Количество теплоты в физике - формулы и определение с примерамиудельная теплота плавления льдаКоличество теплоты в физике - формулы и определение с примерами

Количество теплоты в физике - формулы и определение с примерами

Решение:

Количество теплоты в физике - формулы и определение с примерами

Ответ: Количество теплоты в физике - формулы и определение с примерами

  • Расчет количества теплоты при нагревании и охлаждении
  • Удельная теплота сгорания топлива
  • Плавление и кристаллизация в физике 
  • Испарение жидкостей в физике
  • Конвекция в физике
  • Излучение тепла в физике
  • Виды излучений в физике
  • Инфракрасные излучения

Количество теплоты. Удельная теплоемкость вещества

Количеством теплоты называют количественную меру изменения внутренней энергии тела при теплообмене.

Количество теплоты — это энергия, которую тело отдает при теплообмене (без совершения работы). Количество теплоты, как и энергия, измеряется в джоулях (Дж).

Удельная теплоемкость вещества

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на $1$ градус.

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, например, $1$ килограмма воды потребуется больше тепла, чем для нагрева $200$ граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой $400$ г, а в другой — растительное масло массой $400$ г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой температуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на $1°$С температуру воды массой $1$ кг, требуется количество теплоты, равное $4200$ Дж, а для нагревания на $1°$С такой же массы подсолнечного масла необходимо количество теплоты, равное $1700$ Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания $1$ кг вещества на $1°$С, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой $с$ и измеряется в джоулях на килограмм-градус (Дж/(кг$·°$С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна $4200$ Дж/(кг$·°$С), а удельная теплоемкость льда $2100$ Дж/(кг$·°$С); алюминий в твердом состоянии имеет удельную теплоемкость, равную $920$ Дж/(кг$·°$С), а в жидком — $1080$ Дж/(кг$·°$С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

$Q=cm(t_2-t_1)$

где $Q$ — количество теплоты, $c$ — удельная теплоемкость, $m$ — масса тела, $t_1$ — начальная температура, $t_2$ — конечная температура.

При нагревании тела $t_2 > t_1$ и, следовательно, $Q > 0$. При охлаждении тела $t_2 < t_1$ и, следовательно, $Q < 0$.

В случае, если известна теплоемкость всего тела $С, Q$ определяется по формуле

$Q=C(t_2-t_1)$

Удельная теплота парообразования, плавления, сгорания

Теплота парообразования (теплота испарения) — количество теплоты, которое необходимо сообщить веществу (при постоянном давлении и постоянной температуре) для полного превращения жидкого вещества в пар.

Теплота парообразования равна количеству теплоты, выделяющемуся при конденсации пара в жидкость.

Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением их потенциальной энергии, т. к. расстояние между молекулами существенно увеличивается.

Удельная теплота парообразования и конденсации. Опытами установлено, что для полного обращения в пар $1$ кг воды (при температуре кипения) необходимо затратить $2.3$ МДж энергии. Для обращения в пар других жидкостей требуется иное количество теплоты. Например, для спирта оно составляет $0.9$ МДж.

Физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить жидкость массой $1$ кг в пар без изменения температуры, называется удельной теплотой парообразования.

Удельную теплоту парообразования обозначают буквой $r$ и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты, необходимое для парообразования (или выделяющееся при конденсации). Чтобы вычислить количество теплоты $Q$, необходимое для превращения в пар жидкости любой массы, взятой при температуре кипения, нужно удельную теплоту парообразования $r$ умножить на массу $m$:

$Q=rm$

При конденсации пара происходит выделение такого же количества теплоты:

$Q=-rm$

Удельная теплота плавления

Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое.

Теплота плавления равна тому количеству теплоты, которое выделяется при кристаллизации вещества из жидкого состояния.

При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энергии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить $332$ Дж энергии, а для того чтобы расплавить $1$ кг свинца — $25$ кДж.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой $1$ кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой $λ$ (лямбда).

Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой $1$ кг выделяются те же $332$ Дж энергии, которые нужны для превращения такой же массы льда в воду.

Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:

$Q=λm$

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой $m$, следует пользоваться той же формулой, но со знаком «минус»:

$-Q=λm$

Удельная теплота сгорания

Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обычное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.

Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.

Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой $1$ кг, называется удельной теплотой сгорания топлива.

Удельную теплоту сгорания обозначают буквой $q$ и измеряют в джоулях на килограмм (Дж/кг).

Количество теплоты $Q$, выделяющееся при сгорании $m$ кг топлива, определяют по формуле:

$Q=qm$

Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.

Уравнение теплового баланса

В замкнутой (изолированной от внешних тел) термодинамической системе изменение внутренней энергии какого-либо тела системы $∆U_i$ не может приводить к изменению внутренней энергии всей системы. Следовательно,

$∆U_1+∆U_2+∆U_3+…+∆U_n=∑↙{i}↖{n}∆U_i=0$

Если внутри системы не совершается работа никакими телами, то, согласно первому закону термодинамики, изменение внутренней энергии любого тела происходит только за счет обмена теплом с другими телами этой системы: $∆U_i=Q_i$. Учитывая ($∆U_1+∆U_2+∆U_3+…+∆U_n=∑↙{i}↖{n}∆U_i=0$), получим:

$Q_1+Q_2+Q_3+…+Q_n=∑↙{i}↖{n}Q_i=0$

Это уравнение называется уравнением теплового баланса. Здесь $Q_i$ — количество теплоты, полученное или отданное $i$-м телом. Любое из количеств теплоты $Q_i$ может означать теплоту, выделяемую или поглощаемую при плавлении какого-либо тела, сгорании топлива, испарении или конденсации пара, если такие процессы происходят с различными телами системы, и будут определятся соответствующими соотношениями.

Уравнение теплового баланса является математическим выражением закона сохранения энергии при теплообмене.

На прошлых двух уроках мы
узнали, что такое количество теплоты и удельная теплоёмкость. Сегодня мы сможем
узнать, как рассчитывается количество теплоты. Рассмотрим некоторые примеры.
Допустим, нам нужно нагреть чугунную сковородку массой 5 кг от 20 оС
до 200 оС. Исходя из таблицы, удельная теплоёмкость чугуна
составляет 540 Дж/кг ∙ оС .

Как мы помним, это
означает, что для нагревания 1 кг чугуна на 1 оС потребуется 540 Дж.
Для нагревания 5 кг на 1 оС потребуется в 5 раз больше. Но нам нужно
нагреть сковородку не на 1 оС, а на 180 оС.
Следовательно, потребуется в 180 раз больше энергии. Из этого мы делаем вывод: чтобы
рассчитать количество теплоты, необходимое для нагревания тела или выделяемого
им при охлаждении, нужно удельную теплоёмкость тела умножить на массу и на
разность между начальной и конечной температурами
.

Получается, что
количество теплоты находится в линейной зависимости от всех трех величин,
необходимых для расчёта. Если мы сделаем проверку размерности, то убедимся, что
наш вывод был правильным:

Это вполне логично,
поскольку, если бы это было не так, то единицы измерения теплоёмкости были бы
иными.

Рассмотрим несколько
примеров решения задач на данную тему.

Задача 1. Оголённый
медный провод нагрелся до 230 ℃, после чего его выключили
из цепи. Какое количество теплоты он отдаст помещению с температурой 20 ℃,
если масса провода 2,5 кг?

Задача 2. В
алюминиевую кастрюлю массой 2 кг налили 1,5 л воды для нагревания до 80 ℃.
Начальная температура воды и кастрюли составляет 25 ℃.
Вычислите необходимое количество теплоты для нагревания. Плотность воды равна
1000   кг/м3.

Как мы помним, не все
тела нагреваются одинаково, кроме того, кастрюля и вода в данном случае имеют
разную массу. Поскольку между кастрюлей и водой происходит непрерывный
теплообмен, их температуры можно считать одинаковыми. Итак, для вычисления
необходимого количества теплоты, нам нужно рассчитать количество теплоты
отдельно для кастрюли и для воды, а потом сложить эти величины.

Задача 3. Для
охлаждения только что изготовленной стальной детали массой 12 кг, её положили в
воду. Известно, что использовали 20 л воды с начальной температурой 15 ℃.
Начальная температура детали 300 ℃.
Через некоторое время деталь вынули и измерили её температуру. Она оказалась 34
℃,
как и температура воды. Найдите количество теплоты, которое получила вода и
количество теплоты, которое потеряла деталь.

Этот результат не
случайный. Ведь теплопередача — передача энергии, поэтому, вода получила ровно
столько энергии, сколько отдала деталь.

Эта задача является
хорошим примером использования большой теплоёмкости воды: ведь масса воды не
превышала массу детали даже вдвое, в то время, как температура детали превышала
температуру воды в 20 раз.

Физика под удельной теплоемкостью понимает количество теплоты, которое термодинамическое вещество или система способно поглотить до повышения температуры. 

Определение из учебника говорит, что это количество тепла, необходимое для создания температуры при нагревании.

Количество теплоты

Единица измерения — джоуль. Другой распространенной формой измерения является использование калорий.

Количество теплоты

Обозначается латинской буквой Q.

Удельная теплоемкость вещества

Это физическая величина, выражающая количество тепла, необходимое веществу на единицу массы для повышения температуры на одну единицу. 

Удельная теплоемкость

Таким образом, удельная теплоёмкость является свойством вещества, поскольку его значение является репрезентативным для каждого вещества, каждое из которых, в свою очередь, имеет различные значения в зависимости от того, в каком состоянии оно находится (жидкое, твердое или газообразное).

Удельная теплоёмкость обозначается маленькой буквой c и измеряется в Дж/кг∗°С, представляет собой коэффициент повышения температуры в одной единице всей системы или всей массы вещества. 

Кроме того, удельная теплоёмкость меняется в зависимости от физического состояния вещества, особенно в случае твердых частиц и газов, поскольку его молекулярная структура влияет на теплопередачу в системе частиц. То же самое относится и к условиям атмосферного давления: чем выше давление, тем ниже удельное тепло.

Основной состав удельной теплоты вещества должен быть с = С/m, т. е. удельная теплота равна соотношению калорийности и массы. Однако когда это применяется к данному изменению температуры, говорят о средней удельной теплоемкости, которая рассчитывается на основе следующей формулы:

110

где:

Q — передача тепловой энергии между системой и средой (Дж);

m — масса системы (кг);

Δt или (t2 — t1) — повышение температуры, которой она подвергается (°C).

Формула для нахождения количества теплоты Q:

Q = c∗m(t2 — t1)

Чем выше удельная теплоёмкость вещества, тем больше тепловой энергии потребуется, чтобы его температура повысилась. Например, для нагрева воды (своды = 4200 Дж/кг∗°С) потребуется больше тепловой энергии, чем для нагрева свинца (ссвинца = 140 Дж/кг∗°С).

Уравнение теплового баланса:

Q отданное + Q полученное = 0.

Ниже представлена таблица значений удельной теплоёмкости некоторых веществ:

Таблица теплоемкости

Примеры решения задач

Следующие задачи покажут примеры расчета необходимого количества теплоты.

Задача №1

Сколько теплоты нужно, чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С?

109

Решение:

111

Ответ: чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С, нужно взять 6,162 мегаджоулей теплоты.

Задача №2

В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100°С?

Начнем решение и отметим, что нагреваться будет и котёл, и вода. Разница температур составит 1000С — 100С = 900С. Т. е. и температура котла изменится на 90 градусов, и температура воды также изменится на 90 градусов. 

Количества теплоты, которые получили оба объекта (Q1
– для котла и Q2 — для воды), не будут одинаковыми. Мы найдем общее количество теплоты по формуле теплового баланса Q = Q1 + Q2.

111

Количество теплоты — еще один изученный нами вид энергии. Эту энергию тело получает или отдает при теплопередаче. Мы установили, что количество теплоты, необходимое для нагревания тела, зависит от массы тела, разности температур и рода вещества. Нам известен физический смысл удельной теплоемкости и некоторые ее табличные значения для разных веществ. В этом уроке мы перейдем к численному расчету количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении. 

Зачем это нужно? На самом деле, на практике очень часто используют подобные расчеты.

При строительстве зданий и проектировании систем отопления важно знать, какое количество теплоты необходимо отдавать для полного обогрева всех помещений. С другой стороны, также необходима информация о том, какое количество теплоты будет уходить через окна, стены и двери. 

Формула для расчета количества теплоты

Допустим, на нужно узнать, какое количество теплоты получила при нагревании железная деталь. Масса детали $3 space кг$. Деталь нагрелась от $20 degree C$ до $300 degree C$. 

Возьмем значение теплоемкости железа из таблицы — $460 frac{Дж}{кг cdot degree C}$. Объясним смысл этой величины: на нагревание куска железа массой $1 space кг$ на $1 degree C$ необходимо затратить количество теплоты, равное $460 space Дж$. 

  • Масса детали у нас в 3 раза больше, значит, на ее нагрев потребуется в 3 раза большее количество теплоты — $1380 space Дж$
  • Температура изменилась не на $1 degree C$, а на $280 degree C$
  • Значит, необходимо в 280 раз большее количество теплоты: $1380 space Дж cdot 280 = 386 400 space Дж$

Тогда, формула для расчета количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении примет вид:

$Q = cm(t_2 — t_1)$,

где $Q$ — количество теплоты,
$c$ — удельная теплоемкость вещества, из которого состоит тело,
$m$ — масса тела,
$t_1$ — начальная температура тела,
$t_2$ — конечная температура тела.

Чтобы рассчитать количество теплоты, которое необходимо затратить для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость умножить на массу тела и на разность конечной и начальной температур.

Рассмотрим подробнее особенности расчета количества теплоты на примерах решения задач.

Расчет количества теплоты, затраченного на нагревание двух тел

В железный котелок массой $4 space кг$ налили воду массой $10 space кг$ (рисунок 1). Их температура $25 degree C$. Какое количество теплоты нужно затратить, чтобы нагреть котелок и воду до температуры $100 degree C$?

Рисунок 1. Нагревание воды в котелке.

Обратите внимание, что нагреваться будут сразу два тела: и котелок, и вода в нем. Между постоянно будет происходить теплообмен. Поэтому их температуры мы можем считать одинаковыми. 

Отметим, что массы котелка и воды различные. Также они имеют различные теплоемкости. Значит, полученные ими количества теплоты будет различными.

Теперь мы можем записать условие задачи и решить ее.

Дано:
$m_1 = 4 space кг$
$c_1 = 460 frac{Дж}{кг cdot degree C}$
$m_2 = 10 space кг$
$c_2 = 4200 frac{Дж}{кг cdot degree C}$
$t_1 = 25 degree C$
$t_2 = 100 degree C$

Q-?

Посмотреть решение и ответ

Скрыть

Решение:

Для расчета полученного количества теплоты используем формулу $Q = cm(t_2 — t_1)$.

Запишем эту формулу для количества теплоты, полученного котелком:
$Q_1 = c_1m_1(t_2 — t_1)$.

Рассчитаем это количество теплоты:
$Q_1 = 460 frac{Дж}{кг cdot degree C} cdot 4 space кг cdot (100 degree C — 25 degree C) = 1840 frac{Дж}{degree C} cdot 75 degree C = 138 000 space Дж = 138 space кДж$.

Количество теплоты, полученное водой при нагревании будет равно:
$Q_2 = c_2m_2(t_2 — t_1)$.

Подставим численные значения и рассчитаем:
$Q_2 = 4200 frac{Дж}{кг cdot degree C} cdot 10 space кг cdot (100 degree C — 25 degree C) = 42000 frac{Дж}{degree C} cdot 75 degree C = 3 150 000 space Дж = 3150 space кДж$.

Общее количество теплоты, затраченное на нагревание котелка и воды:
$Q = Q_1 +Q_2$,
$Q = 138 space кДж + 3150 space кДж = 3288 space кДж$.

Ответ: $Q = 3288 space кДж$.

Расчет количества теплоты при смешивании жидкостей

Горячую воду разбавили холодной и получили температуру смеси $30 degree C$. Горячей воды с температурой $100 degree C$ при этом было $0.3 space кг$. Холодная вода имела массу $1.4 space кг$ и температуру $15 degree C$. Рассчитайте, какое количество теплоты было отдано горячей водой при остывании и получила холодная вода при нагревании. Сравните эти количества теплоты.

Дано:
$c_1 = c_2 = c = 4200 frac{Дж}{кг cdot degree C}$
$m_1 = 0.3 space кг$
$m_2 = 1.4 space кг$
$t_1 = 100 degree C$
$t_2 = 15 degree C$
$t = 30 degree C$

$Q_1 — ?$
$Q_2 — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Запишем формулу для расчета количества теплоты, отданного горячей водой при остывании от $100 degree C$ до $30 degree C$:
$Q_1 = cm_1(t_1 — t)$.

Рассчитаем эту величину:
$Q_1 = 4200 frac{Дж}{кг cdot degree C} cdot 0.3 space кг cdot (100 degree C — 30 degree C) = 1260 frac{Дж}{degree C} cdot 70 degree C = 88 200 space Дж = 88.2 space кДж$.

Запишем формулу для расчета количества теплоты, полученного холодной водой при нагревании от $15 degree C$ до $30 degree C$:
$Q_2 = cm_2(t — t_2)$.

Рассчитаем эту величину:
$Q_1 = 4200 frac{Дж}{кг cdot degree C} cdot 1.4 space кг cdot (30 degree C — 15 degree C) = 5880 frac{Дж}{degree C} cdot 15 degree C = 88 200 space Дж = 88.2 space кДж$.

$Q_1 = Q_2 = 88.2 space кДж$.

Ответ: $Q_1 = Q_2 = 88.2 space кДж$.

В ходе решения этой задачи мы увидели, что количество теплоты, отданное горячей водой, и количество теплоты, полученное холодной водой, равны. Другие опыты дают схожие результаты. 

Значит,

Если между телами происходит теплоообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

На практике часто получается так, что отданная горячей водой энергия больше, чем полученная холодной. На самом деле, горячая вода при охлаждении передает какую-то часть своей внутренней энергии воздуху и сосуду, в котором происходит смешивание.

Есть 2 способа учесть этот фактор:

  • Если мы максимально сократим потери энергии, то добьемся приблизительного равенства отданной и полученной энергий
  • Если рассчитать и учесть потери энергии, то можно получить точное равенство

Расчет температуры при известной величине количества теплоты

При нагревании куска меди было затрачено $22 space кДж$. Масса этого куска составляет $300 space г$. Начальная температура была равна $20 degree C$. До какой температуры нагрели кусок меди?

Дано:
$m = 300 space г$
$t_1 = 20 degree C$
$c = 400 frac{Дж}{кг cdot degree C}$
$Q = 22 space кДж$

СИ:
$0.3 space кг$

$22 000 space Дж$

$t_2 — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Запишем формулу для расчета количества теплоты:
$Q = cm(t_2 — t_1)$.

Постепенно выразим из этой формулы искомую температуру $t_2$:
$t_2 — t_1 = frac{Q}{cm}$,
$t_2 = frac{Q}{cm} + t_1$.

Рассчитаем $t_2$:
$t_2 = frac{22 000 space Дж}{400 frac{Дж}{кг cdot degree C} cdot 0.3 space кг} + 20 degree C approx 183 degree C + 20 degree C approx 203 degree C$.

Ответ: $t_2 approx 203 degree C$.

Понравилась статья? Поделить с друзьями:
  • Как найти плюсовой провод мультиметром в автомобиле
  • Как найти решение всех проблем
  • Характеристика как правильно написать составить
  • Как найти крестец на позвоночнике
  • Как найти длину отрезка если известны точки