Как найти количество зарядов в физике

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

1.1. Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + … +qn = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела – дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков – частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Рисунок 1.1.1.
Перенос заряда с заряженного тела на электрометр

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Рисунок 1.1.2.
Прибор Кулона

Рисунок 1.1.3.
Силы взаимодействия одноименных и разноименных зарядов

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

где – электрическая постоянная.
В системе СИ элементарный заряд e равен:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Рисунок 1.1.4.
Принцип суперпозиции электростатических сил

Модель. Взаимодействие точечных зарядов

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов.

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Положительные и отрицательные заряды

Два вида электрических зарядов

Носителями двух видов зарядов являются протоны и электроны. По историческим причинам заряд электрона считается отрицательным, имеет значение -1 и обозначается -e. Протон имеет положительный заряд +1 и обозначается +e.

Если тело содержит больше протонов, чем электронов, то оно считается положительно заряженным. Ярким примером положительного вида заряда в природе является заряд стеклянной палочки после того, как ее потрут шелковой тканью. Соответственно, если тело содержит больше электронов, чем протонов, оно полагается отрицательно заряженным. Этот вид электрического заряда наблюдается на пластиковой линейке, если ее потереть шерстью.

Отметим, что заряд протона и электрона хоть и очень маленький, он не является элементарным. Обнаружены кварки — «кирпичики», образующие элементарные частицы, которые имеют заряды ±1/3 и ±2/3 относительно заряда электрона и протона.

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Вам это будет интересно Особенности расчета делителя напряжения

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи. Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными». Бенджамин Франклин также исследовал этот вопрос и ввел понятия положительного и отрицательного заряда. На иллюстрации – Б. Франклин ловит молнию.

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. Задача состоит в определении первоначальных зарядов шаров.

Чтобы решить вторую задачу, нужно использовать ту же формулу Кулона, но немного видоизмененную: F=kq2/r2. Затем вывести из правила показатель q2. Он будет равен Fr2/k. Подставив известные значения и выполнив несложные расчеты, получится цифры в 10^-7 или 10 микрокулон.

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

Источник

Способы передачи электрического заряда и электризация

Демонстрация явления элекризации

Под электризацией понимается процесс, в результате которого электрически нейтральное тело приобретает отличный от нуля заряд. Этот процесс связан с перемещением элементарных носителей заряда, чаще всего электронов. Наэлектризовать тело можно с помощью следующих способов:

  • В результате контакта. Если заряженным телом прикоснуться к другому телу, состоящему из проводящего материала, то последнее приобретет электрический заряд.
  • Трение изолятора о другой материал.
  • Электрическая индукция. Суть этого явления заключается в перераспределении электрических зарядов внутри тела за счет воздействия электрического внешнего поля.
  • Явление фотоэффекта, при котором электроны вырываются из твердого тела за счет воздействия на него электромагнитного излучения.
  • Электролиз. Физико-химический процесс, который происходит в расплавах и растворах солей, кислот и щелочей.
  • Термоэлектрический эффект. В данном случае электризация возникает за счет градиентов температуры в теле.

Литература

  1. Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
  2. Мякишев Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. Для углубленного изучения физики /Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. – М.Ж Дрофа, 2005. – 476 с.
  3. Физика: Учеб. пособие для 10 кл. шк. и классов с углубл. изуч. физики/ О. Ф. Кабардин, В. А. Орлов, Э. Е. Эвенчик и др.; Под ред. А. А. Пинского. – 2-е изд. – М.: Просвещение, 1995. – 415 с.
  4. Элементарный учебник физики: Учебное пособие. В 3 т./ Под ред. Г.С. Ландсберга: Т. 2. Электричество и магнетизм. – М: ФИЗМАТЛИТ, 2003. – 480 с.

Электрометр

Для обнаружения и измерения электрических зарядов применяется электрометр

. Электрометр состоит из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 2). Стержень со стрелкой закреплен в плексигласовой втулке и помещен в металлический корпус цилиндрической формы, закрытый стеклянными крышками.

Принцип работы электрометра

. Прикоснемся положительно заряженной палочкой к стержню электрометра. Мы увидим, что стрелка электрометра отклоняется на некоторый угол (см. рис. 2). Поворот стрелки объясняется тем, что при соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стрелке и стержню. Силы отталкивания, действующие между одноименными электрическими зарядами на стержне и стрелке, вызывают поворот стрелки. Наэлектризуем эбонитовую палочку еще раз и вновь коснемся ею стержня электрометра. Опыт, показывает, что при увеличении электрического заряда на стержне угол отклонения стрелки от вертикального положения увеличивается. Следовательно, по углу отклонения стрелки электрометра можно судить о значении электрического заряда, переданного стержню электрометра.

Рис. 2

В чем выражается взаимодействие

Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется. Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику. При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.

По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.

Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.

Главная Онлайн учебники База репетиторов России Тренажеры по физике Подготовка к ЕГЭ 2020 онлайн

Глава 1. Электродинамика

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. Эти силы называют электромагнитными силами.

О существовании электромагнитных сил знали еще древние греки. Но систематическое, количественное изучение физических явлений, в которых проявляется электромагнитное взаимодействие тел, началось только в конце XVIII века. Трудами многих ученых в XIX веке завершилось создание стройной науки, изучающей электрические и магнитные явления. Эта наука, которая является одним из важнейших разделов физики, получила название электродинамики.

Основными объектами изучения в электродинамике являются электрические и магнитные поля, создаваемые электрическими зарядами и токами.

Введение

С электричеством вы сталкиваетесь постоянно. Вы видели молнию, вы освещаете комнату с помощью электрической лампочки, электрообогреватель выделяет тепло – все эти явления связаны с движением электрического заряда. С неподвижным электрическим зарядом вы тоже сталкивались, когда после расчесывания получали наэлектризованные волосы. Они разлетаются в разные стороны. Электрические заряды находятся без преувеличения везде, из них состоит любое вещество! На этом уроке мы выясним то, что нам известно про заряды.
Как известно, в природе встречаются заряды двух типов – положительные и отрицательные. Разноименные заряды притягиваются, одноименные – отталкиваются. Это взаимодействие происходит на любом расстоянии. Как же они тогда взаимодействуют? Для этого существует электрическое поле. Вокруг каждого заряда существует такое поле и если в него попадает еще один заряд, то он начинает «чувствовать» это поле: на него начинают действовать силы притяжения или отталкивания соответственно.

В природе есть много ненаблюдаемого. Например, мы не видим ветер, но видим, как он раскачивает ветви деревьев. Мы не видим температуру, но мы видим, как нагретые тела расширяются. По расширению, например, ртути в термометре, мы можем температуру измерять (см. рис. 1).

Рис. 1. Расширение ртути

Т. е. мы наблюдаем проявление чего-то и на основе этих наблюдений судим о том, чего непосредственно не наблюдаем. Заряд мы тоже изучаем по его проявлению. Мы не видим заряды, но наблюдаем их взаимодействие. Один заряд действует на другой на расстоянии через электрическое поле. Поле заряда – это пространство, где на другие заряды будет действовать сила.

Взаимодействие тел через поле нам уже знакомо. Тело, обладающее массой, создает вокруг себя поле – гравитационное, которое проявляется в действии на другое тело, обладающее массой. Их взаимодействие подчиняется закону всемирного тяготения (см. рис. 2).

Рис. 2. Взаимодействие массивных тел

Закон всемирного тяготения

Вокруг тела, обладающего массой, возникает гравитационное поле. Посредством этого поля массы взаимодействуют, притягиваются. Сила их притяжения пропорциональна величине каждой из масс и обратно пропорциональна квадрату расстояния между ними (см. рис. 3):

– константа, гравитационная постоянная, равна .

Рис. 3. Закон всемирного тяготения

Квадрат расстояния встречается во многих физических формулах, так что это позволяет говорить о законе, связывающем величину эффекта с квадратом расстояния от источника воздействия:

Эта пропорциональность справедлива для гравитационного, электрического, магнитного действия, силы звука, света, радиации, распространяющихся от источника. Связано это, конечно, с тем, что площадь поверхности сферы распространения эффекта увеличивается пропорционально квадрату расстояния (см. рис. 4). Это будет выглядеть естественным, если вспомнить, что площадь сферы пропорциональна квадрату радиуса:

и тогда понятно, что сила действия от источника вдали от него должна распределяться по сфере всё большего радиуса.

Рис. 4. Площадь сферы распространения эффекта увеличивается с увеличением радиуса сферы

Итак, электрические заряды взаимодействуют через электрическое поле, которое они вокруг себя создают.

Примечания

  1. Или, более точно, 1,602176487(40)⋅10−19 Кл.
  2. Или, более точно, 4,803250(21)⋅10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Сивухин Д. В.
    Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 16. — 656 с. — ISBN 5-9221-0227-3.
  6. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Электрический заряд

Электрический заряд – физическая величина, которая показывает способность тел участвовать в электромагнитных взаимодействиях.

Разные заряды будут взаимодействовать с разными силами. Измерить силы обычным способом – это легко разрешимая задача. По величине силы мы можем судить о величине заряда. Понятно, что чем больше заряды, тем сильнее они взаимодействуют. Но понятия больший или меньший заряд – нечеткие, а величину заряда нужно измерить точно.

Измерить заряд, используя уже известные единицы измерения, не получится. Мы не измерим заряд ни в метрах, ни, например, в килограммах. Это сущность, для которой нужна новая единица измерения. Единица измерения заряда – кулон.

Обозначается заряд чаще всего буквой .

Единицы измерения заряда

Заряд проявляется в воздействии на другой заряд. Измерять его можно по этому воздействию, то есть измерять силу, с которой этот заряд действует на другой заряд на некотором расстоянии. Тогда единицы измерения заряда можно выразить через килограмм, метр и секунду. Так раньше и поступали в системе СГС. В системе СИ заряд удобно измерять в Кл (кулонах).

Измерение

Простейший электроскоп
Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая способна вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

Электризация

Процесс сообщения телу электрического заряда называется электризацией. Часто он происходит при трении тел друг о друга. Например, если потереть эбонитовую палочку о шерсть (см. рис. 5), то и она, и шерсть приобретут электрические заряды (эбонитовая палочка зарядится отрицательно, а шерсть – положительно).

Рис. 5. Заряжание эбонитовой палочки

Проверить это просто: если поднести два наэлектризованных кусочка шерсти друг к другу, то они будут отталкиваться, так как заряжены зарядом одинакового знака (см. рис. 6).

Рис. 6. Оба кусочка шерсти заряжены положительно

Из этого следует вывод, что заряды одного типа отталкиваются. Если расчесывать волосы, то расческа заряжается отрицательно, а волосы – положительно (см. рис. 7).

Рис. 7. Заряжание волос

Собственно, поэтому, после расчесывания, волосы разлетаются в разные стороны (каждый волос заряжен положительно и отталкивается от остальных (см. рис. 8)).

Рис. 8. Каждый волос заряжен положительно

Путем простых опытов мы обнаружили, что существует два типа зарядов, которые взаимодействуют следующим образом: однотипные заряды отталкиваются, разнотипные – притягиваются.

Как определить, какой именно заряд приобретает тело при трении

Мы проводим много опытов с расческами, тканями и палочками, чтобы они приобретали электрический заряд. Одна и та же шерсть заряжается отрицательно при трении о стекло и положительно при трении о полиэтилен. Как можно заранее знать, какой тип заряда приобретает материал? Есть ли какое-то правило? Можно заниматься практическим определением (такие опыты были проведены много раз), и были получены трибоэлектрические ряды некоторых материалов (см. рис. 9), в которых любой взятый материал при трении с материалом, расположенным ниже него в ряду, заряжается положительно, и наоборот. Разные экспериментаторы получали свои ряды, и на рисунке их можно увидеть.

Рис. 9. Трибоэлектрические ряды

Сейчас известно, что носителями двух типов заряда являются элементарные частицы: электрон и протон. Элементарные частицы неделимы, поэтому заряд одной частицы, равный , – это минимальный заряд, обозначается часто или . Эти частицы имеют массу: и для электрона и протона соответственно.

Элементарные частицы

Что же происходит с телами при электризации? Представьте себе два одинаковых металлических шара, но только один из них заряжен отрицательно, а другой не заряжен (см. рис. 10).

Рис. 10. Заряженный и незаряженный шары

Известно, что все тела состоят из атомов, а те, в свою очередь, состоят из протонов, нейтронов, электронов (см. рис. 11).

Рис. 11. Атом

Протоны заряжены положительно, электроны – отрицательно. Будем называть их элементарными зарядами, то есть неделимыми. Так вот, в большинстве случаев в атоме количество протонов равняется количеству электронов и получается, что они полностью компенсируют друг друга и в целом атом нейтрален. Важно понимать, что в атоме заряды никуда не исчезают, там по-прежнему есть положительные и отрицательные частицы, просто их действие на далекие предметы полностью компенсируется (см. рис. 12).

Рис. 12. Действие частиц компенсировано

А вот в шаре, заряженном отрицательно, электронов больше, чем протонов, поэтому в целом в теле количество отрицательных элементарных зарядов больше, чем количество положительных элементарных зарядов, и тело заряжено отрицательно (см. рис. 13).

Рис. 13. Количество электронов в заряженном шаре

Заряд макроскопического тела (состоящего из большого количества атомов) – это величина, показывающая разность между положительными и отрицательными зарядами в теле. Если это количество одинаково, то заряд нулевой. Величина элементарного заряда известна и равна . Соответственно, заряд протона договорились считать положительным , а заряд электрона – отрицательным .

Что же происходит при трении тел друг о друга, например пластика о шерсть? Электроны с внешних оболочек атомов, входящих в состав шерсти, «перепрыгивают» на пластмассу (см. рис. 14).

Рис. 14. Движение электронов при трении

Получается, что в шерсти становится меньше отрицательных электронов и она заряжается положительно, а пластмасса – отрицательно, так как в ней появляется избыточное количество электронов. Можно даже сказать: если при контакте заряд одного тела увеличивается, то у другого уменьшается.

Что касается искр между людьми, то это происходит, если хотя бы один человек «заряжен» (допустим, человек ходил по шерстяному ковру, при трении подошвами по нему), и если другой человек не заряжен также, то заряд будет перетекать с одного человека на другого, иногда это перетекание может быть даже по воздуху, в таком случае и появляется искра. Стоит отметить, что искра появляется только благодаря движению электронов, протоны находятся в ядрах атомов, они менее подвижны и не могут покидать атомов отличие от электронов.

Зарядить тело можно и без контакта – через влияние электрическим полем. Представьте себе незаряженный шар, к которому подносят положительно заряженную палочку – разноименные заряды притягиваются, поэтому электроны, которые были в шаре, притянутся к положительно заряженной палочке и скопятся в той части шара, которая ближе к ней (см. рис. 15).

Рис. 15. Влияние положительно заряженной палочки на электроны

Почему незаряженные частицы фольги притягиваются к заряженной расческе?

Оказывается, незаряженный кусочек фольги будет притягиваться к заряженной расческе. Как же так? В целом кусочек фольги электрически нейтрален. Давайте посмотрим, что произойдет, если мы поднесем отрицательно заряженную расческу к кусочку фольги – отрицательно заряженная расческа притягивает к себе положительный заряд и отталкивает отрицательный. Поэтому электроны отодвинутся дальше от границы, а сторона, которая находится ближе к расческе, будет заряжена положительно (см. рис. 16) и притяжение будет сильнее, чем отталкивание, потому что положительная часть фольги находится ближе к расческе.

Рис. 16. Расположение электронов в фольге при поднесении расчески

Возьмём два одинаковых электрометра и один из них зарядим (рис. а). Его заряд соответствует (6) делениям шкалы.

00_01_8.png

Рис. (1). Электрометры

Если соединить эти электрометры стеклянной палочкой, то никаких изменений не произойдёт. Это подтверждает тот факт, что стекло является диэлектриком. Если же для соединения электрометров использовать металлический стержень А (рис. б), держа его за не проводящую электричество ручку В, то можно заметить, что первоначальный заряд разделится на две равные части: половина заряда перейдёт с первого шара на второй. Теперь заряд каждого электрометра соответствует (3) делениям шкалы. Продолжим опыт. Разъединим электрометры и коснёмся второго шара рукой. От этого он потеряет заряд — разрядится. Соединим его снова с первым шаром, на котором осталась половина первоначального заряда. Оставшийся заряд снова разделится на две равные части, и на первом шаре останется четвёртая часть первоначального заряда. Таким же образом можно получить одну восьмую часть, одну шестнадцатую часть первоначального заряда и т.д.
Возникает вопрос, до каких пор можно уменьшать заряд? Существует ли предел деления электрического заряда? Чтобы выяснить это, понадобилось выполнить более сложные и точные опыты, чем описанный выше, так как очень скоро оставшийся на шаре заряд оказывается столь малым, что обнаружить его при помощи школьного электрометра не удаётся. Более точные опыты показали, что электрический заряд нельзя уменьшать бесконечно: он имеет предел делимости.

Электрический заряд — это физическая величина, которую обозначают буквой (q).

За единицу электрического заряда принят кулон (Кл). Частицу, имеющую самый маленький заряд, назвали электроном. Этот заряд нельзя «снять» с электрона. Заряд электрона обозначают буквой е. Заряд электрона является отрицательным. (e = -0,00000000000000000016) Кл = (-)

1,6
·10
−19

()Кл. Этот заряд в миллиарды раз меньше того, что обычно получают в опытах по электризации тел трением.
Чтобы узнать заряд тела, необходимо заряд электрона умножить на количество зарядов n:

q=e
·n

.
Электрон — очень маленькая частица. Его масса (m =)9,1
·10
−31 
кг. Крылышко мухи имеет массу примерно в (5·10²²) большую, чем масса электрона.

Если тело не заряжено и при электризации оно приобрело электроны, то оно зарядится отрицательно. Его заряд будет равен сумме зарядов полученных электронов.

Обрати внимание!

Если тело заряжено отрицательно и при электризации оно ещё приобретает электроны, то отрицательный заряд тела возрастает.

Пример:

Например, до электризации тело с зарядом (2е) в ходе электризации приобретает ещё (4) заряда электрона. Тогда после электризации заряд тела равен (2е + 4е = 6е).

Обрати внимание!

Если тело заряжено отрицательно и при электризации оно теряет электроны, то отрицательный заряд тела уменьшается.

Например, до электризации тело с зарядом (8е) в ходе электризации теряет (3) заряда электрона. Тогда после электризации заряд тела равен (8е — 3е = 5е).

Все вещества состоят из атомов.

Обрати внимание!

Атом состоит из ядра, а вокруг него движутся электроны.

Модель атома можно представить себе следующим образом:

строение.png

Рис. (2). Модель атома

Обрати внимание!

Ядро тоже имеет свой состав: протоны и нейтроны.

Информация об этих частицах дана в таблице.

Частицы

Обозначение

Заряд 
(условные единицы)

Заряд,
Кл

Масса,
кг

Протон

p

+1

1,6
·10−19

1,7
·10−27

Нейтрон

n

0

(0)

1,7
·10−27

Электрон

e

-1

(-1,6·10^{-19})

9,1
·10−31

строение1.png

Рис. (3). Состав атома

Обрати внимание!

Атом не имеет заряда, т.к. количество электронов в атоме равно количеству протонов.

Количество нейтронов в атомах может быть отлично от количества протонов и электронов.
Атом, потерявший один или несколько электронов, не будет нейтральным, а будет иметь заряд  «+». Его называют положительным ионом.

Атом, потерявший один или несколько электронов, называют положительным ионом.

Атом, к которому присоединился электрон, приобретает заряд «-» и становится отрицательным ионом.

Атом, к которому присоединился один или несколько электронов, называется отрицательным ионом.

Нейтральный атом

Отрицательный ион

Положительный ион

нейтральный.svg

отрицательный.svg

положительный.svg

Рис. (4). Число протонов и электронов одинаково

Рис. (5). Число электронов больше числа протонов

Рис. (6). Число электронов меньше числа протонов

Узнать, сколько тех или иных частиц содержит нейтральный атом, поможет периодическая система химических элементов (таблица Менделеева). Любой элемент в таблице имеет порядковый номер и относительную атомную массу.

ТМ.svg

Рис. (7). Обозначение элемента в периодической таблице

Обрати внимание!

Количество протонов, а также электронов в нейтральном атоме всегда совпадает с порядковым номером.
Количество нейтронов равно разности относительной атомной массы (выраженной целым числом) и порядкового номера.

Например:

Элемент

Порядковый номер

Относительная  атомная масса

Число протонов

Число электронов

Число нейтронов

Медь

29

63,546

29

29

64 — 29=35

Зная строение атома, можно объяснить электризацию тел.

Обрати внимание!

При трении двух тел электроны переходят с одного тела (где силы притяжения к ядру меньше) на другое (в котором эти силы больше).

Зная строение атома, можно объяснить существование проводников и диэлектриков.

Проводник — это тело, внутри которого содержится достаточное количество свободных электрических зарядов.

Так, в металлах это — электроны, в растворах солей, кислот, щелочей — положительные и отрицательные ионы. Например, когда прикасаются металлической проволокой к отрицательно заряженному электрометру, свободные электроны передвигаются по проволоке, а электрометр разряжается.

Изолятор (или диэлектрик) — тело, не содержащее внутри свободные электрические заряды.

Поэтому прикосновение деревянной линейки к заряженному электрометру не вызывает никаких изменений.
Зная строение атома, можно объяснить явление притяжения ненаэлектризованных тел к наэлектризованным.

п1.svg

Рис. (8). Воздействие положительно заряженной палочки на гильзу

В металлической гильзе есть свободные электроны. Под действием электрического поля палочки они приходят в движение, так как начинают притягиваться к ней. В результате происходит перераспределение заряда. Электроны скапливаются на стороне, которая ближе к палочке, и она заряжается отрицательно. На противоположной стороне недостаток электронов, поэтому она заряжается положительно. Но в целом заряд гильзы равен нулю (в соответствии с законом сохранения заряда).

п2.svg

Рис. (9). Распределение заряда при воздействии на нейтральную гильзу положительно заряженной палочки

Если палочка будет заряжена отрицательно, то свободные электроны будут отталкиваться от неё и перемещаться в противоположную сторону.

п3.svg

Рис. (10). Распределение заряда при воздействии на нейтральную гильзу отрицательно заряженной палочки

По такому же принципу происходит отклонение листочков незаряженного электроскопа при поднесении к нему (не касаясь) заряженной палочки.

00_01_8_.png

Рис. (11). Распределение заряда на электроскопе

Электрическое поле палочки вызывает перераспределение зарядов в металлическом стержне электроскопа. В верхней части будет избыток электронов, а в нижней — недостаток. Поэтому оба листочка зарядятся положительно и оттолкнутся друг от друга.

Источники:

Рис. 1. Электрометры. © ЯКласс.
Рис. 2. Модель атома. © ЯКласс.
Рис. 3. Состав атома. © ЯКласс.
Рис. 4. Число протонов и электронов одинаково. © ЯКласс.
Рис. 5. Число электронов больше числа протонов. © ЯКласс.
Рис. 6. Число электронов меньше числа протонов. © ЯКласс.
Рис. 7. Обозначение элемента в периодической таблице. © ЯКласс.
Рис. 8. Воздействие положительно заряженной палочки на гильзу. © ЯКласс.
Рис. 9. Распределение заряда при воздействии на нейтральную гильзу положительно заряженной палочки. © ЯКласс.
Рис. 10. Распределение заряда при воздействии на нейтральную гильзу отрицательно заряженной палочки. © ЯКласс.
Рис. 11. Распределение заряда на электроскопе. © ЯКласс.

Так же как гравитационная масса тела в механике Ньютона, заряд в электродинамике относится к фундаментальным, основным понятиям.

Электрический заряд

Это физическая величина, означающая свойство некоторых частиц или тел вовлекаться в электромагнитные взаимодействия. В физике электрический заряд принято обозначать q, реже Q.

Из установленных экспериментальных фактов следуют следующие выводы:

  • в природе есть два типа электрических зарядов, условно «позитивные» (+) и «негативные» (-);
  • заряды передаются от одного тела к другому (допустим в случае прямого соприкосновения двух объектов). Поэтому электрический заряд, в отличие от массы тела, не является постоянной характеристикой конкретного тела. Одно и то же тело в разных условиях может иметь разные заряды.
  • Одинаковые заряды отталкиваются, противоположные – притягиваются. То есть «+» отталкивает «+», «-» отталкивает «-». Но «+» притягивает «-» и наоборот.

Закон Кулона

К одним из основных законов природы относится установленный экспериментально закон сохранения заряда (более известный как «Закон Кулона»).

В замкнутой системе алгебраическая сумма зарядов сохраняется:

q1+q2+q3+…+qn=constq_1 + q_2 + q_3 + … + q_n = const

Этот закон также значит, что в изолированной системе не могут происходить процессы появления или исчезновения зарядов только одного знака. То есть заряды рождаются и умирают парами («+» с «-»).

В современной науке, носителями заряда являются элементарные частицы. Все тела во Вселенной состоят из атомов. Но атомы в свою очередь состоят из таких элементарных частиц. Положительно заряженных протонов, отрицательных электронов и частиц без заряда — нейтронов. Протоны и нейтроны входят в состав ядра атома (поэтому оно позитивно заряжено), а электроны в состав оболочки (негативно заряженная). В нейтральном атоме заряд ядра равняется заряду всех электронов в оболочке. Заряд протона и электрона одинаковые по значению.

Экспериментально показано, что заряд может передаваться от одного тела к другому только целыми порциями или дискретно:

q=±ne(n=0,1,2,…),q = ± ne (n = 0, 1, 2, …),

ee – заряд электрона.

Измерение величины заряда

Стандартным методом обнаружения и измерения заряда, является прибор — электрометр. Он состоит из металлического стержня и стрелки, вращающейся вокруг горизонтальной оси. Стержень и стрелка изолированны от металлического корпуса прибора. Когда заряженное тело касается стержня прибора, электрические заряды одного знака перетекают по стержню и стрелке. Силы электростатического отталкивания поворачивают стрелку на некоторый угол. По величине угла можно судить о заряде, который был передан стержню электрометра.

На практике часто используют понятие точечного заряда. Точечным зарядом называют заряженное тело, размерами которого можно пренебречь.

Сила взаимодействия 2 зарядов

Сила взаимодействия неподвижных зарядов прямо пропорциональна модулю зарядов и обратно пропорциональна расстоянию между этими зарядами.

F=k∣q1∣⋅∣q2∣r2F = k frac{| q_1| cdot | q_2|}{r^2}

Закон Кулона хорошо согласуется когда заряды точечные, т.е когда размер заряженных тел гораздо меньше расстоянию между ними. Величина коэффициента kk зависит от выбора системы единиц.

В Международной системе СИ, принятой в большинстве стран:

k=14πε0k = frac {1} {4 pi varepsilon_0}

Также в СИ за 1 единицу заряда принят кулон (обозначается Кл). Кулон — это заряд, который проходит за время 1 с (одна секунда) через поперечное сечение проводника при силе тока 1А (один ампер).

Тест по теме «Электрический заряд. Закон Кулона»

Количество электричества (электрический заряд)

Количество электричества или электрический заряд — это произведение силы тока на время протекания тока.

Если:
Q — заряд, протекающий за время t через поперечное сечение проводника,
t — продолжительность протекания тока,
I — сила постоянного тока (не изменяющегося за время t),
То:

[ Q = It ]

Единица СИ заряда:

[ [Q] = ампер-секунда enspace (А cdot с) = кулон enspace (Кл) ]

Если сила тока не постоянна во времени, т.е. ток есть функция от времени, то

[ Q = int_{t_1}^{t_2} i(t) dt ]

Вычислить, найти количество электричества (электрический заряд) для постоянного тока по формуле (1)

Количество электричества (электрический заряд)

стр. 619

Понравилась статья? Поделить с друзьями:
  • Как в земле найти глину
  • Как найти снаряжение в оффчерче
  • Как составить опрос для курсовой
  • Как составить план выполнения работников
  • Как найти местоположение человека по фамилию