Как найти комплексный коэффициент передачи

  1. Комплексный коэффициент передачи,

АЧХ и ФЧХ цифрового
фильтра

Комплексным коэффициентом передачи
фильтра

называется отношение комплексной
амплитуды

выходного сигнала фильтра yn
к комплексной амплитуде

входного синусоидального сигнала xn


.

Коэффициентом передачи фильтра
называется модуль комплексного
коэффициента передачи

Частотной характеристикой цифрового
фильтра

называется зависимость комплексного
коэффициента передачи фильтра от
частоты.

Амплитудно-частотной характеристикой
(АЧХ)

называется зависимость модуля комплексного
коэффициента передачи от частоты


.

Фазочастотной характеристикой
(ФЧХ) называется зависимость аргумента
комплексного коэффициента передачи
фильтра от частоты.


.

Для нахождения комплексного коэффициента
передачи нужно в выражении для системной
функции H(z)
заменить z на

,
где

f — текущая частота, FД
– частота дискретизации, TД
= 1 / FД – интервал
дискретизации, ω = 2πf.

Задача №4.1

На рисунке 4.1
приведены временные диаграммы входного
и выходного сигналов фильтра. Начертите
графики АЧХ и ФЧХ фильтра в интервале

.

Рисунок 4.1 –
Временные диаграммы входного xn
и

выходного yn
сигналов фильтра

Решение задачи
№4.1

1. Определим
Z- преобразование входного
сигнала

2. Определим
Z- преобразование выходного
сигнала

3. Определим
системную функцию фильтра

4. Найдем комплексный
коэффициент передачи фильтра

5. Найдем АЧХ K(θ)
и ФЧХ φ(θ)
фильтра, обозначив


,


,


,

Рисунок 4.2 —
Функция A(θ)

Рисунок 4.3
–АЧХ фильтра

Рисунок 4.4. – ФЧХ фильтра

Задача №4.2

Определите
максимальный по абсолютной величине
фазовый сдвиг, вносимый цифровым фильтром
рисунка 4.5 при А = — 0.5. Постройте график
ФЧХ в интервале

.

Рисунок 4.5

Решение задачи №4.2

1. Согласно схеме цифрового фильтра
разностное уравнение имеет вид:


.

2. Выразим Z-преобразование
выходного сигнала фильтра через
Z-преобразование входного
сигнала


,


,

3. Определим системную функцию фильтра


.

4. Найдем комплексный коэффициент
передачи фильтра


.

5. Определим ФЧХ фильтра


.

6. Определим значение

,
при котором имеет место экстремум ФЧХ.

Поскольку экстремальное значение
функции arctg соответствует
экстремальному значению её аргумента,
определим производную аргумента
арктангенса и приравняем её нулю

Откуда


.

График ФЧХ приведен на рисунке 4.6.

Рисунок 4.6 –
ФЧХ фильтра

Задача №4.3

Определите комплексный коэффициент
передачи, АЧХ и ФЧХ фильтра, если его
системная функция определяется
соотношением


.

Константа A = 0.9. Постройте
графики АЧХ и ФЧХ в интервале Котельникова.

Решение задачи №4.3

Для нахождения комплексного коэффициента
передачи фильтра подставим в выражение
системной функции

,
где


круговая частота, TД
– интервал дискретизации

Определим АЧХ фильтра


.

Построим график АЧХ при изменении

от 0 до

с шагом

(один
градус). Принятый интервал изменения

соответствует интервалу частот от 0 до

.
Внутри этого интервала (кроме частоты

)
выполняется теорема Котельникова.

Рисунок 4.7 – АЧХ фильтра

Из графика АЧХ следует, что данный фильтр
является режекторным. Его коэффициент
передачи равен нулю при

,
т.е. на частоте, равной половине частоты
дискретизации.

Определим ФЧХ фильтра


,

где

,


.

На рисунке 4.8 приведены три составляющие
ФЧХ, а на рисунке 4.9 результирующая
ФЧХ


Рисунок
4.8 – Составляющие ФЧХ фильтра



Рисунок
4.9 – ФЧХ фильтра

Фазочастотные характеристики принято
представлять по оси ординат в пределах
интервала от

до

.
В рассмотренном случае фазовый сдвиг,
вносимый фильтром, не выходит за пределы
этого интервала. Поэтому полученный
результат следует считать окончательным.

Задача №4.4

Определите АЧХ и ФЧХ цифрового фильтра
рисунка 4.10 при B=1. Постойте
графики АЧХ и ФЧХ в пределах интервала
Котельникова

Рисунок 4.10

Решение задачи №4.4

Из схемы рисунка 4.10 следует, что

Выразим Z – преобразование
выходного сигнала фильтра через Z
– преобразование входного сигнала и
определим системную функцию фильтра

Определим комплексный коэффициент
передачи фильтра, используя подстановку

где


круговая частота, TД
– интервал дискретизации


.

Определим АЧХ фильтра

График АЧХ приведен на рисунке 4.11.

Рисунок 4.11 – АЧХ фильтра

Определим ФЧХ фильтра

где

На рисунке 4.12 приведен график линейной
составляющей ФЧХ — функции φ1(θ),
на рисунке 4.13 представлены косинусоида
cos(2θ) и составляющая ФЧХ
φ2(θ), а на рисунке 4.14 их сумма
φ0(θ).

Фазочастотные характеристики принято
представлять по оси ординат в пределах
интервала от

до

путем прибавления или вычитания 2π m,
где m – целое число.

В рассматриваемом случае φ0(θ)
выходит за пределы заданного интервала,
поэтому преобразуем полученную
характеристику следующим образом:

Рисунок 4.12 –
Составляющая ФЧХ φ1(θ)

Рисунок 4.13 —
Составляющая ФЧХ φ2(θ)

Рисунок 4.14 –
ФЧХ φ2(θ)

Окончательный вариант ФЧХ приведен на
рисунке 4.15

Рисунок 4.15 –
ФЧХ фильтра

Задача №4.5

Докажите, что коэффициент передачи K(θ)
цифровой цепи рисунка 4.16 не зависит от
θ = ωTД и равен
единице.

Постройте график ФЧХ этой цепи при a
= -0.5.

Решение задачи №4.5

Из схемы следует, что

Рисунок 4.16

Используя свойства Z –
преобразования, выразим Z
– преобразование Y(z)
выходного сигнала yn
через Z – преобразование
X(z) входного
сигнала

Определим системную функцию

Воспользовавшись подстановкой

,
определим комплексный коэффициент
передачи

Определим АЧХ цифровой цепи

Так как модули двух комплексно-сопряженных
чисел равны, то в последнем соотношении
числитель дроби равен знаменателю.

Так как K(θ)
не зависит от частоты, эта цифровая цепь
называется всепропускающей.

Определим ФЧХ цифровой цепи

График ФЧХ приведен на рисунке 4.17.

Рисунок 4.17 – ФЧХ всепропускающей
цифровой цепи

при a = — 0.5

Задача №4.6

На входе цифрового фильтра рисунка 4.18
действует сигнал

где ωТД =
π / 2, X = 0.2.

Чему равна амплитуда выходного сигнала
фильтра в установившемся режиме?

Рисунок 4.18

Решение задачи №4.6

Для определения амплитуды выходного
сигнала следует найти коэффициент
передачи фильтра на частоте входного
сигнала, т.е. при θ = π / 2.

Из схемы видно, что

Определим системную функцию фильтр

Определим комплексный коэффициент
передачи и его модуль при θ = π / 2

Амплитуда выходного сигнала Y
равна произведению амплитуды входного
сигнала X = 0.2 на коэффициент
передачи фильтра на частоте входного
сигнала K=2. Следовательно,
Y=0.4.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    10.06.20155.07 Mб14Методичка_ВТиИТ.rtf

  • #

5.4.1. Классический метод

5.4.2. Временной метод

5.4.3. Спектральный метод

5.4.4. Операторный метод

Основной задачей анализа является определение реакции (выходного) сигнала цепи при действии на её входе сигнала известной формы. При этом, входной сигнал может быть описан как во временной, так и в частотной области. В связи с этим различают следующие методы анализа: классический, временной (или метод интеграла наложения), спектральный и операторный. Выбор того или иного метода зависит от структуры цепи, вида воздействующего на неё сигнала, формы представления (временная или частотная) входного сигнала.

5.4.1. Классический метод

Классический метод основывается на решении дифференциального уравнения вида (5.16), описывающего линейную цепь. Решение этого уравнения представляет собой сумму двух слагаемых

, (5.19)

где первое слагаемое представляет собой общее решение однородного дифференциального уравнения

, (5.20)

а второе слагаемое – частотное решение (5.16) при , где – правая часть уравнения (5.16). Физически – свободная составляющая полного отклика (выходного сигнала), представляет собой реакцию цепи на отключение(или включение) входного сигнала и характеризует переходные процессы в цепи. Второе слагаемое – вынужденная составляющая, является реакцией цепи после окончания переходных процессов и характеризует установившейся(стационарный) режим преобразования цепью входного сигнала. Обычно, классический метод используется для изучения переходных процессов, что приводит к необходимости решения уравнения (5.20). Общее решение однородного уравнения (5.20) имеет вид

, (5.21)

где , ,…, – постоянные коэффициенты, определяемые начальными условиями,

, ,…, – корни характеристического уравнения:

. (5.22)

Это уравнение имеет ровно n корней, при этом корни могут быть либо вещественными, либо комплексными, что определяет характер переходных процессов. Что же касается , то если входной сигнал является постоянным или периодическим, то после окончания переходных процессов выходной сигнал принимает форму входного сигнала. Так, если представляет собой гармонический сигнал, то также будет гармоническим, отличаясь от входного сигнала амплитудой и начальной фазой.

В качестве примера рассмотрим, что собой представляет отклик RC-цепи (рис. 5.3,8) на входной сигнал вида .

Дифференциальное уравнение цепи (5.15) перепишем в виде

,

где – постоянная времени.

Поскольку дифференциальное уравнение имеет порядок n=1, решение однородного уравнения

согласно (5.21), запишется в виде

,

где – корень характеристического уравнения

,

откуда следует . Тогда

.

До поступления входного сигнала ёмкость С разряжена. В момент поступления входного сигнала (скачка) ёмкость не может мгновенно зарядиться до , это произойдёт по мере перехода к установившемуся режиму. Очевидно в установившемся режиме

.

Таким образом, суммарный выходной сигнал

.

Коэффициент найдём из начальных условий. Начальными условиями при исследовании линейных цепей называют значения токов в индуктивностях и напряжений на емкостях в момент времени . Так как в этот момент времени , то можно записать

,

Откуда следует . Тогда окончательно суммарный выходной сигнал

.

На рис. 5.4. изображены эпюры напряжений на входе и выходе исследуемой RC-цепи.

5.4.2. Временной метод

Временной метод (метод интеграла положения, метод интеграла Дюамеля) основывается на представлении входного сигнала цепи в виде суммы элементарных сигналов вида единичного скачка или очень короткого импульса ( – функции). Тогда, зная отклик линейной цепи на каждый элементарный сигнал и суммируя их можно получить в соответствии с принципом суперпозиции (наложения) полный отклик цепи на входной сигнал сложной формы.

Выберем в качестве элементарного сигнала – функцию. Тогда входной сигнал в соответствии с (1.19) можно записать следующим образом

.

Очевидно, выходной сигнал

.

Так как оператор не зависит от времени, его можно внести под знак интеграла. Тогда, с учётом (5.5)

. (5.23)

Если момент появления входного сигнала , то с учётом того, что выходной сигнал не может появиться ранее входного, выражение (5.23) принимает вид

. (5.24)

Таким образом, сигнал на выходе линейной цепи представляет собой свёртку входного сигнала с импульсной характеристикой цепи. Линейная цепь с постоянными параметрами при преобразовании проводит операцию взвешенного суммирования всех мгновенных значений входного сигнала, начиная с момента и заканчивая текущим моментом времени . Роль весовой функции выполняет импульсная характеристика цепи.

Выражение (5.24) носит название интеграла Дюамеля. Это выражение было получено в предположении, что входной сигнал представлен в виде суммы элементарных сигналов вида – функций. Если входной сигнал представить в виде (1.15) комбинаций сигналов вида единичного скачка, то можно получить другие формы интеграла Дюамеля, в частности

. (5.25)

Здесь – переходная характеристика цепи.

Итак, для использования метода интеграла наложения необходимо знать импульсную характеристику или переходную характеристику . Эти характеристики можно определить несколькими способами. Прямой (непосредственный способ состоит в решении дифференциального уравнения (5.20) в предположении, что входной сигнал является очень коротким импульсом(для определения импульсной характеристики) или сигналом вида единичного скачка( для определения переходной характеристики).

В выше приведённом примере было решено дифференциальное уравнение и найден отклик RC-цепи на воздействие сигнала

.

Очевидно, форма отклика не изменится, если входной сигнал будет единичным скачком, при этом масштаб отклика изменится в раз. Тогда выходной сигнал

, (5.26)

поскольку реакция цепи на единичный скачок является переходной характеристикой. В соответствии с (5.7) определяется импульсная характеристика

(5.27)

Второй способ определения импульсной или переходной характеристики, назовём его косвенным, состоит в использовании однозначного соответствия между импульсной характеристикой и комплексным коэффициентом передачи.

5.4.3. Спектральный метод

При рассмотрении характеристик линейной цепи было получено соотношение (5.10), связывающее спектральные характеристики входного и выходного сигнала с комплексным коэффициентом передачи цепи. Это соотношение лежит в основе спектрального анализа. Если задачей анализа является определение частотных характеристик выходного сигнала, то при известных и использование (5.10) полностью решает эту задачу. В ряде случаев сигнал представлен во временной области и требует найти отклик цепи как функцию времени. При этом использование метода интеграла наложения может быть затруднено сложностью нахождения импульсной характеристики цепи. В то же время комплексный коэффициент передачи найти достаточно просто. Тогда спектральный метод анализа сводится к следующим операциям:

— для входного сигнала прямым преобразованием Фурье находится комплексный спектр ;

— определяется комплексный коэффициент передачи цепи ;

— в соответствии с (5.10) определяется комплексный спектр выходного сигнала ;

— обратным преобразованием Фурье вычисляется форма сигнала на выходе цепи.

Итак, важнейшим условием использования спектрального метода является знание комплексного коэффициента передачи исследуемой цепи. Найти комплексный коэффициент передачи можно, используя методы теории цепей (метод узловых потенциалов или метод контурных токов). Если известно аналитическое описание цепи дифференциальным уравнением (5.16), то комплексный коэффициент передачи находится в соответствии с (5.18). Наконец, цепь можно представить в виде делителя напряжения, элементами которого являются комплексные сопротивления

; ; .

Проиллюстрируем последний подход на примере уже рассматривавшейся выше RC-цепи. Если представить цепь как делитель напряжения, то выходной сигнал представляет собой напряжение на ёмкости С. Тогда, если комплексный ток, протекающий в цепи, то

,

и комплексный коэффициент передачи

,

что совпадает с результатом, полученным в подразделе 5.3.

5.4.4. Операторный метод

Операторный метод является обобщением спектрального метода. В основе метода лежит преобразование Лапласа. Рассмотрим некоторый сигнал , определённый на интервале времени (0, ). Умножим этот сигнал на и полученный новый сигнал подвергнем преобразованию Фурье

.

Обозначая через , получим

. (5.28)

Выражение (5.28) называется односторонним преобразованием Лапласа функции . При этом, называют оригиналом, а изображением.

Нетрудно убедиться, что при выражение (5.28) преобразуется к виду

,

что соответствует преобразованию Фурье. Таким образом если преобразование Фурье представляет собой спектральное разложение сигнала по гармоническим составляющим , то преобразование Лапласа – разложение сигнала по экспоненциально – косинусным составляющим . Действительно, представим

.

Здесь использована формула Эйлера

.

С другой стороны

,

где .

Тогда окончательно

представляет собой экспоненциально – косинусную функцию.

Переход от изображения к оригиналу осуществляется при помощи обратного преобразования Лапласа

. (5.29)

Для значительной части функций широко используемых при описании оригиналов были рассчитаны изображения по Лапласу. Некоторая часть оригиналов и изображений приведена в таблице 5.1.

Поскольку преобразование Лапласа является обобщением преобразования Фурье, то оно обладает теми же свойствами, что и преобразование Фурье. Остановимся на некоторых из них, которые будем использовать в дальнейшем. Пару преобразований (прямое и обратное) будем обозначать следующим образом

.

1. Линейность преобразований Лапласа

(5.30)

2. Свойство временного сдвига

(5.31)

3. Операция дифференцирования

; (5.32)

4. Операция интегрирования

. (5.33)

Применим к обеим частям уравнения (5.16) прямое преобразования Лапласа. Тогда с учётом (5.32), получим

(5.34)

откуда следует

. (5.35)

Это отношение называется передаточной функцией цепи или её операторным коэффициентом. Таким образом, передаточная функция является оператором преобразования линейной цепью в базисе экспоненциально – косинусных сигналов.

Сравним выражение комплексного коэффициента передачи (5.18) с выражением (5.35). Из этого сравнения следует, что комплексный коэффициент передачи является частным случаем при , т.е.

(5.36)

Таким образом, если известна передаточная функция цепи, то операторный метод поиска отклика цепи состоит в следующем:

— находится изображение по Лапласу входного сигнала

; (5.37)

— находится изображение выходного сигнала как произведение

; (5.38)

— определяется оригинал выходного сигнала

. (5.39)

Установим связь между временными характеристиками и передаточной функцией. Произведя в (5.12) замену на , получим

.

Таким образом, передаточная функция и импульсная характеристика связаны между собой преобразованием Лапласа

.

Что касается переходной характеристики, то применяя к (5.8) преобразование Лапласа и учитывая (5.33), получим

.

В заключение отметим, что операторный метод позволяет сводить линейные дифференциальные уравнения вида (5.16) к алгебраическим уравнениям (5.34), что позволяет в ряде случаев упростить анализ цепей. Помимо этого, учитывая широкое распространение таблиц преобразований Лапласа для большого числа функций, можно исключить громоздкие вычисления, непосредственно обращаясь к этим таблицам.

Рассмотрим применение операторного метода на примере анализа определения отклика RC-цепи на входной сигнал вида . Эта задача была решена классическими временными методами. Спектральным методом был найден комплексным коэффициент передачи. Заменив в выражении для цепи на , получим передаточную функцию цепи

.

Следуя операторному методу найдём изображение по Лапласу входного сигнала, воспользовавшись при этом таблицей 5.1

.

Далее, в соответствии с (5.38), определим изображение выходного сигнала

.

И наконец, по таблице 5.1 (позиция 5) находим оригинал

,

что совпадает с полученными ранее результатами.

Автор статьи

Демьян Бондарь

Эксперт по предмету «Электроника, электротехника, радиотехника»

преподавательский стаж — 5 лет

Задать вопрос автору статьи

Комплексный коэффициент передачи

Определение 1

Комплексный коэффициент передачи – это отношение комплексного сигнала на выходе к комплексному сигналу на входе при установившемся режиме работы устройства или системы (сигнал на входе действует бесконечно долго).

Формула для определения комплексного коэффициента передачи выглядит следующим образом:

$W(jw) = Y(jw) / X(jw)$

где, Y(jw) — комплексная амплитуда выходного сигнала; X(jw) — комплексная амплитуда входного сигнала.

Понятие комплексного коэффициента передачи, как правило, используется в акустике, оптике, электротехнике, электронике. Например, коэффициент усиления усилителей, ослабление электромагнитного излучения в поглощающих средах, коэффициент затухания сигнала в линиях электропередачи, усиление света в активных средах лазера.

Существуют следующие методы измерения коэффициента передачи:

  1. Использование измерителя комплексных коэффициентов передачи и импеданса (комплексное сопротивление между двумя узлами электрической цепи).
  2. Прямое измерение, заключающееся в измерении амплитуды сигнала на выходе и входе системы и последующее вычисление. Для этого применяются специальные электрические и оптические приборы.
  3. Измерение методом сравнения, которое осуществляется при помощи аттенюатора (прибор для фиксированного понижения интенсивности электрических и электромагнитных колебаний).

Амплитудно-частотная характеристика и фазо-частотная характеристика цепи

Определение 2

Амплитудно-частотная характеристика – это зависимость амплитуды колебаний (установившихся) выходного сигнала системы от частоты входного гармонического сигнала.

Понятие амплитудно-частотной широко используется в средствах связи, радиолокации и других радиотехнических приложениях. Данный показатель характеризует степень защищенности системы от помех. В многоканальных системах, таких как цифровые антенны, важная роль принадлежит межканальная идентичность амплитудно-частотной характеристики с коэффициентом корреляции, значение которого может достигать 0,999. Чем выше данный показатель (и чем шире полоса частот), тем лучше и проще можно минимизировать мультипликативные помехи, возникающие во время межканальной обработки сигналов.

«Комплексный коэффициент передачи. АЧХ и ФЧХ цепи» 👇

Традиционный метод измерения амплитудно-частотной характеристики заключается в подаче на вход исследуемого объекта гармонического сигнала с изменяемой частотой и с известной или постоянной амплитудой. В этом случае измерению подвергаются отношение модулей амплитуды выходного и выходного сигналов (коэффициент передачи) для разных значений частоты.

Для того, чтобы сократить время, за которое формируется амплитудно-частотная характеристика, используются специальный генератор, способный перестраивать частоту собственного сигнала с не меняющейся во времени амплитудой (генератор качающейся частоты). Данные генераторы плавно изменяют частоту генерации от низких до высоких, после чего переключают частоту на низшую, данный процесс повторяется периодически. Недостатками данных методов являются:

  1. Они являются непригодными для устройств с функционирующей регулировкой усиления, задача которой заключается в выравнивании различий в значениях амплитудно-частотных характеристик.
  2. Они не позволяют произвести оценку интермодуляционных искажений, возникающих между сигналами разных частот.
  3. Они не позволяют когерентное накопление во времени напряжений сигнала для частотных компонентов.

Существуют измерители амплитудно-частотной характеристики, которые подают на вход рассматриваемой системы широкополосные сигнал или импульс с коротким фронтом, а также измерители с шумовым сигналом, имеющий постоянную спектральную плотность мощности. Отклик анализируется анализатором спектра или фурье-измерителем амплитудно-частотной характеристики, который автоматически выполняет фурье-преобразование.

Фазо-частотная характеристика представляет собой зависимость между частотой сдвига выходного напряжения (сигнала) и входным напряжением при усилении гармонических колебаний.

Если фазо-частотная характеристика не искажает форму усиливаемых колебаний, то она представляет собой линейную зависимость фазового сдвига от частоты:

$j(f) = –t3 • 2 • p • f$

где, j(f) — фазовый сдвиг между входным и выходным напряжением; t3 — время задержки; f — частота, на которой осуществляется измерение фазового сдвига.

Для идеальной фазо-частотной характеристики сдвиг j прямо пропорционален частоте. Угол наклона такой фазо-частотной характеристики определяет время запаздывания сигнала на выходе. Если данный угол равен нулю, то это означает, что выходной сигнал появляется одновременно с входным. По графику фазо-частотной характеристики производится оценка фазовых искажений, вносящихся усилителем. Пример фазо-частотной характеристики изображен на рисунке ниже.

Фазо-частотная характеристика. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Фазо-частотная характеристика. Автор24 — интернет-биржа студенческих работ

Фазовые искажения должны обязательно учитываться в устройствах, которые охвачены глубокой обратной связью, а также в усилителях высококачественного воспроизведения, стереофонических усилителях и т.п.

Амплитудно-частотная и фазо-частотная характеристики представляют собой одни из самых важнейших характеристик систем и приборов, использующихся в радиотехнике, электротехнике и электронике.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Содержание:

Частотные методы анализа электрических цепей:

Частотные характеристики являются компонентами комплексных функций цепи.

Комплексная функция цепи (КФЦ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-частотная характеристика (АЧХ)

Частотные методы анализа и расчёта электрических цепей

Фазочастотная характеристика (ФЧХ)

Частотные методы анализа и расчёта электрических цепей

Амплитудно-фазовая частотная характеристика (АФЧХ) (комплексная функция цепи)

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— вещественная частотная характеристика (ВЧХ); Частотные методы анализа и расчёта электрических цепей— мнимая частотная характеристика (МЧХ).

Комплексные функции простых цепей можно рассчитать непосредственно по закону Ома.

На рис.4.1 показаны АЧХ и ФЧХ, а на рис.4.2 — АФЧХ простейшей интегрирующей цепи (апериодического звена). По АЧХ определяют полосу пропускания

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Полосой пропускания П называется диапазон частот, на границах которого мощность сигнала уменьшается в 2 раза, а амплитуда (действующее значение) напряжения (тока) — в Частотные методы анализа и расчёта электрических цепей раз по сравнению с максимальными значениями.

Полоса пропускания может измеряться в радианах в секунду Частотные методы анализа и расчёта электрических цепей или в герцах (Гц).

Например, для простой интегрирующей цепи полоса пропускания (см. рис. 4.1)

Частотные методы анализа и расчёта электрических цепей

Для сложных цепей КФЦ рассчитывают по MKT или МУН. В табл. 4.1 приведены соотношения для расчета КФЦ, выраженные через определитель и алгебраические дополнения матрицы контурных сопротивлений и узловых проводимостей.
Частотные методы анализа и расчёта электрических цепей

Частотные характеристики цепей с одним реактивным элементом

Примеры решения типовых задач:

Пример 4.2.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего RC-контура (рис.4.3, а), рассчитать и построить графики АЧХ и ФЧХ.

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.3, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим комплексное напряжение на выходе цепи в виде 

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся зa скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей. После преобразований получимЧастотные методы анализа и расчёта электрических цепей
Следовательно.

Частотные методы анализа и расчёта электрических цепей

Введем обозначения:

Частотные методы анализа и расчёта электрических цепей
Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина Частотные методы анализа и расчёта электрических цепей имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей

 С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений АЧХ и ФЧХ запишем комплексную функцию в показательной форме.
Так как выражение (4.2) есть отношение двух полиномов, то удобно числитель и знаменатель записать отдельно в показательной форме, а затем разделить:

Частотные методы анализа и расчёта электрических цепей

3. Из (4.3) запишем АЧХ и ФЧХ соответственно:

Частотные методы анализа и расчёта электрических цепей

4. Построим график АЧХ и ФЧХ качественно по двум точкам. Для этого рассчитаем значения Частотные методы анализа и расчёта электрических цепей для крайних значений частот:

Частотные методы анализа и расчёта электрических цепей

График АЧХ Частотные методы анализа и расчёта электрических цепей (рис. 4.4, а) является кривой, монотонно возрастающей от значения Частотные методы анализа и расчёта электрических цепей

График функции ФЧХ Частотные методы анализа и расчёта электрических цепей можно построить качественно как сумму двух графиков (рис. 4.4). Из рис. 4.4,б видно, что оба слагаемых монотонно увеличиваются: первое от нуля до +90° и вносит опережение по фазе. Второе до -90° и вносит отставание по фазе. Но первое слагаемое растет быстрее, так как Частотные методы анализа и расчёта электрических цепейчто следует из формулы (4.1). Поэтому функция Частотные методы анализа и расчёта электрических цепейследовательно, дифференцирующий -контур вносит опережение по фазе.

Исследуя функцию (4.5) на экстремум, можно показать, что она имеет максимум на частоте

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в (4.5), получим

Частотные методы анализа и расчёта электрических цепей

Графики АЧХ и ФЧХ изображены на рис. 4.4.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.2.

Для электрической цепи, изображенной на рис. 4.5, определить АЧХ Частотные методы анализа и расчёта электрических цепей граничную частоту полосы пропускания. Рассчитать АЧХ, ФЧХ и построить графики, если параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию К(; (/ш) но формуле делителя напряжения
Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду
Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Отсюда: АЧХ
Частотные методы анализа и расчёта электрических цепей

ФЧХ

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем граничную частоту. По определению
Частотные методы анализа и расчёта электрических цепей

Из (4.7) найдем
Частотные методы анализа и расчёта электрических цепей

Следовательно,
Частотные методы анализа и расчёта электрических цепей

Из уравнения (4.9) получаем, что

Частотные методы анализа и расчёта электрических цепей

Отсюда    Частотные методы анализа и расчёта электрических цепей

3. Построим график функций.

Вычислим значения (4.7) и (4.8) для частот с дискретностью Частотные методы анализа и расчёта электрических цепей

Графики и таблицы выполним в среде Mathcad (рис. 4.6).

Пример 4.2.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.7, а), используя метод контурных токов. Построить в среде Mathcad график АЧХ, определить полосу пропускания.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Представим цепь комплексной схемой замещения (рис. 4.7, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направления контурных токов выбираем одинаковыми.

2.Составим матрицы контурных сопротивлений для двух независимых контуров
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки равно Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем 

Частотные методы анализа и расчёта электрических цепей

или Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей С ростом частоты емкостное сопротивление уменьшается. ЕслиЧастотные методы анализа и расчёта электрических цепей то Частотные методы анализа и расчёта электрических цепей и шунтирует сопротивление Частотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей    = 0.

По полученным выражениям строим график АЧХ (рис. 4.8) и среде Mathcad.

Частотные методы анализа и расчёта электрических цепей

5. Определяем полосу пропускания. По определению
Частотные методы анализа и расчёта электрических цепей

Поэтому из (4.11) имеем
Частотные методы анализа и расчёта электрических цепей

После преобразований уравнения (4.12) получаем

Частотные методы анализа и расчёта электрических цепей

откуда

Частотные методы анализа и расчёта электрических цепей

или

Частотные методы анализа и расчёта электрических цепей

Следовательно, цепь имеет полосу пропускания 

Частотные методы анализа и расчёта электрических цепей

На рис. 4.8 указана граничная частота Частотные методы анализа и расчёта электрических цепей

Данная цепь представляет собой фильтр нижних частот с полосой пропускания Частотные методы анализа и расчёта электрических цепей сигналы на частотах Частотные методы анализа и расчёта электрических цепей проходят с большим затуханием.

Пример 4.2.4.

Найти комплексную передаточную проводимость Частотные методы анализа и расчёта электрических цепей для цепи, изображенной на рис. 4.9, а методом узловых напряжений.

Параметры цепи: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить АЧХ и ФЧХ, построить их графики в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.9, б). Схема имеет два независимых узла. В данном случае Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

2. Составим матрицу узловых проводимостей. При определении собственной проводимости узлов необходимо помнить, что собственная проводимость ветви, состоящей  из последовательно включенных пассивных элементов, находится из соотношения Частотные методы анализа и расчёта электрических цепей, гдеЧастотные методы анализа и расчёта электрических цепей — эквивалентное сопротивление ветви. Как найти проводимость ветви с последовательно включенными Частотные методы анализа и расчёта электрических цепей

В начале рассчитывают комплексное сопротивление этой ветви, Частотные методы анализа и расчёта электрических цепей, а затем комплексную проводимость

Частотные методы анализа и расчёта электрических цепей

Составим матрицу проводимостей цепи 1 2
Частотные методы анализа и расчёта электрических цепей

Как видим, общие проводимости узлов взяты со знаком минус, так как узловые напряжения Частотные методы анализа и расчёта электрических цепей направлены одинаково, к базисному yзлy.

3.Определим комплексную передаточную проводимость по соотношению, приведенному в табл. 4.1

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-комплексная проводимость ветви, по которой протекает ток Частотные методы анализа и расчёта электрических цепей,так как по определению

Частотные методы анализа и расчёта электрических цепей

Найдем алгебраические дополнения:

Частотные методы анализа и расчёта электрических цепей

После подстановки найденных значений получим

Частотные методы анализа и расчёта электрических цепей

Для определении АЧХ и ФЧХ запишем выражения для модуля и аргумента Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем значения Частотные методы анализа и расчёта электрических цепей на частотах Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Примечание. Эти значения можно найти без вывода аналитического выражения для Частотные методы анализа и расчёта электрических цепей Для этого достаточно воспользоваться эквивалентными схемами цепи на рассматриваемых частотах.

Учитывая, что Частотные методы анализа и расчёта электрических цепей получим две схемы, показанные на рис. 4.10. а, б, соответственно.
Частотные методы анализа и расчёта электрических цепей

Для первой схемы:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Аналогично для второй схемы получим 

Частотные методы анализа и расчёта электрических цепей

При расчете сложных схем такой прием можно применять для проверки правильности полученного аналитического выражения КФЦ.

Из (4.13) видно, что функция наметен монотонной, но для качественного построения графика АЧХ (рис. 4.11) необходимо воспользоваться ПЭВМ, например построить функцию в среде Mathcad.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.2.5.

Для интегрирующего -контура (рис.4.12,а) определить комплексный коэффициент передачи по напряжению, рассчитать АЧХ, ФЧХ, ВЧХ, МЧХ. Построить графики АЧХ, ФЧХ. АФЧХ, если

Частотные методы анализа и расчёта электрических цепей

Решение

1. Составим комплексную схему замещения цепи (рис. 4.12, б).
Частотные методы анализа и расчёта электрических цепей

2. Определим Частотные методы анализа и расчёта электрических цепей из соотношения Частотные методы анализа и расчёта электрических цепей где

Частотные методы анализа и расчёта электрических цепей

Следовательно.

Частотные методы анализа и расчёта электрических цепей

3. Для нахождения АЧХ и ФЧХ комплексную функцию Частотные методы анализа и расчёта электрических цепейпредставленную в виде отношения двух полиномов мнимой частоты Частотные методы анализа и расчёта электрических цепей записывают в показательной форме

Частотные методы анализа и расчёта электрических цепей

Найдем модуль (АЧХ) и аргумент (ФЧХ) комплексной функции;

Частотные методы анализа и расчёта электрических цепей

Для определения вещественной и мнимой частотных характеристик запишем КФЦ в алгебраической форме. Для этого умножим и разделим (4.14) на комплексно-сопряженный знаменатель:

Частотные методы анализа и расчёта электрических цепей

4. Для приближенного построения графиков АЧХ, ФЧХ. АФХ найдем значения Частотные методы анализа и расчёта электрических цепей для трех значений частот: Частотные методы анализа и расчёта электрических цепейРезультаты расчетов для удобства построения графиков сведем в табл. 4.2.

Частотные методы анализа и расчёта электрических цепей

Для более точного и наглядного представления графиков воспользуемся ПЭВМ и математической средой Mathcad.

 Графики характеристик приведены на рис. 4.13.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

АЧХ представляет монотонно убывающую функцию (рис. 4.13, а).

ФЧХ принимает отрицательные значения, т.е. контур вносит фазовое отставание, а на частоте Частотные методы анализа и расчёта электрических цепей ФЧХ имеет экстремум (рис.4.13, б). Найдем из соотношения

Частотные методы анализа и расчёта электрических цепей

Взяв производную, получим

Частотные методы анализа и расчёта электрических цепей

Решая полученное уравнение относительно Частотные методы анализа и расчёта электрических цепей, найдем

Частотные методы анализа и расчёта электрических цепей

Подставляя Частотные методы анализа и расчёта электрических цепей в выражение Частотные методы анализа и расчёта электрических цепей определим максимальное значение фазовой частотной характеристики.

Частотные методы анализа и расчёта электрических цепей

АФХ (рис. 4.13, в) представляет собой полуокружность, расположенную в 4-м квадрате. Центр окружности находится на оси Частотные методы анализа и расчёта электрических цепей в точке с абсциссой, равной

Частотные методы анализа и расчёта электрических цепей

Радиус окружности нетрудно определить из соотношения:

Частотные методы анализа и расчёта электрических цепей

МЧХ:

Частотные методы анализа и расчёта электрических цепей

Отрицательное значение Частотные методы анализа и расчёта электрических цепей свидетельствует о том, что 

Частотные методы анализа и расчёта электрических цепей принимает отрицательное значения, т.е. интегрирующий контур вносит запаздывание по фазе.

5. Проверка расчетов АЧХ. Воспользуемся эквивалентными схемами цепи для  частот Частотные методы анализа и расчёта электрических цепей(рис. 4.14).

На частоте Частотные методы анализа и расчёта электрических цепей цепь разомкнута (рис. 4.14, а), поэтому

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей схема представляет собой резистивный делитель напряжения (рис. 4.14, б) с коэффициентом передачи

Частотные методы анализа и расчёта электрических цепей

Подставляя эти значения частот в аналитическое выражение (4.14) для Частотные методы анализа и расчёта электрических цепейполучаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, расчет АЧХ выполнен верно.

Частотные характеристики последовательного колебательного контура

Основные теоретические сведения:

В последовательном колебательном контуре (рис. 4.21) возникает резонанс напряжений, если выполняется условие    

Частотные методы анализа и расчёта электрических цепей

 т. е. Частотные методы анализа и расчёта электрических цепей                     

Частотные методы анализа и расчёта электрических цепей

Резонансная частота

Частотные методы анализа и расчёта электрических цепей

Волновое сопротивление контура Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе Частотные методы анализа и расчёта электрических цепей

Собственная добротность контура  Частотные методы анализа и расчёта электрических цепей

Добротность нагруженного контура Частотные методы анализа и расчёта электрических цепей

Затухание контура  Частотные методы анализа и расчёта электрических цепей

Абсолютная расстройка   Частотные методы анализа и расчёта электрических цепей

Относительная расстройка   Частотные методы анализа и расчёта электрических цепей

Обобщенная расстройка

Частотные методы анализа и расчёта электрических цепей

Фактор расстройки:  Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.22)
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Для нагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Комплексные коэффициенты передачи по напряжению:

на активном сопротивлении
Частотные методы анализа и расчёта электрических цепей
на индуктивности
Частотные методы анализа и расчёта электрических цепей

на емкости 

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.3.1.

Последовательный колебательный контур (рис. 4.23) подключен к источнику напряжению. Контур настроен в резонанс.

Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить резонансную частоту, волновое сопротивление. добротность и полосу пропускания, ток и напряжения на элементах контура.

Построить АЧХ и ФЧХ по напряжению на конденсаторе в среде Mathcad.    

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определяем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

2. Находим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

3. Вычисляем добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

4. Определяем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

5. Рассчитываем ток и напряжения на элементах контура при резонансе

Частотные методы анализа и расчёта электрических цепей

Напряжение на R равно

Частотные методы анализа и расчёта электрических цепей

Напряжения на реактивных элементах

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем АЧХ и ФЧХ комплексного коэффициента передачи напряжения с емкости.

Учитывая (4.22), из (4.29) получим:

Частотные методы анализа и расчёта электрических цепей

Для построения графиков АЧХ и ФЧХ, выполнения расчетов используем среду Mathcad. АЧХ, ФЧХ в виде графиков и таблиц приведены на рис. 4.24.

Следует заметить, что максимум А11Х достигается на частоте

Частотные методы анализа и расчёта электрических цепей

т.е. при Частотные методы анализа и расчёта электрических цепей смещение максимума мало, тогда Частотные методы анализа и расчёта электрических цепей

Задача 4.3.2.

К последовательному колебательному контуру (рис. 4.25) с параметрами Частотные методы анализа и расчёта электрических цепей подключена нагрузка Частотные методы анализа и расчёта электрических цепей

Определить собственную добротность и добротность нагруженного контура, полосу пропускания нагруженного и ненагруженного контура.

Решение

1. Рассчитаем вторичные параметры ненагруженного контура:

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2.Определим вторичные параметры наруженного контура. Так как сопротивление нагрузки активное, причем Частотные методы анализа и расчёта электрических цепей то согласно (4.15) и (4.16) резонансная частота и волновое сопротивление не изменяются.

Для определения добротности рассчитаем сопротивление Частотные методы анализа и расчёта электрических цепей, вносимое в контур за счет нагрузки, и построим эквивалентную схему нагруженного контура (рис. 4.25, б). Так как Частотные методы анализа и расчёта электрических цепейто
Частотные методы анализа и расчёта электрических цепей
Следовательно,

Частотные методы анализа и расчёта электрических цепей

Вывод. Подключение нагрузки ухудшает добротность контура, что приводит к расширению полосы пропускания.

Пример 4.3.3.

На рис. 4.26, а изображена входная цепь приемника, а на рис. 4.26, б — ее эквивалентная схема. Известны входное сопротивление и входная емкость транзистора входного каскада УВЧ: Частотные методы анализа и расчёта электрических цепей. На резонансной частоте антенна наводит в контуре ЭДС Частотные методы анализа и расчёта электрических цепей Емкость конденсатора Частотные методы анализа и расчёта электрических цепейкатушка индуктивности имеет Частотные методы анализа и расчёта электрических цепей

Определить абсолютную полосу пропускания и ток в контуре на резонансной частоте.

Решение

1. Определяем эквивалентную емкость контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитываем резонансную частоту контура

Частотные методы анализа и расчёта электрических цепей

3. Находим волновое сопротивление и сопротивление, вносимое в контур за счет транзистора усилителя (рис. 4.26, в):

Частотные методы анализа и расчёта электрических цепей

4. Определяем добротность нагруженного контура
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем абсолютную полосу пропускания нагруженного контура

Частотные методы анализа и расчёта электрических цепей

6. Находим ток в контуре

Частотные методы анализа и расчёта электрических цепей

Пример 4.3.4.

Рассчитать емкость последовательного колебательного контура, если резонансная частота контура Частотные методы анализа и расчёта электрических цепей полоса пропускания Частотные методы анализа и расчёта электрических цепейпри сопротивлении потерь 0,5 Ом.

Построить АЧХ и ФЧХ комплексного коэффициента передачи напряжения с индуктивности в среде Mаthcad.

Решение

1. Определим требуемую добротность контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем емкость конденсатора. Из формулы Частотные методы анализа и расчёта электрических цепейнайдем

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем АЧХ и ФЧХ.

Воспользуемся комплексным коэффициентом передачи напряжения с индуктивности по формуле (4.28). Учитывая 4.22), запишем:

Частотные методы анализа и расчёта электрических цепей

Вычислим значения функций на частотах:

Частотные методы анализа и расчёта электрических цепей

Определим частоту, при которой АЧХ имеет максимум

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Смещением частоты Частотные методы анализа и расчёта электрических цепей можно пренебречь.

Результаты расчетов АЧХ и ФЧХ б графическом и табличном видах приведены на рис. 4.27.

Частотные методы анализа и расчёта электрических цепей

Частотные характеристики параллельного колебательного контура

Основные теоретические сведения:

Параллельный колебательный контур образуется путем параллельного соединения катушки индуктивности и конденсатора. Оба элемента, кроме основного эффекта (запасания энергии), имеют потери энергии. В расчетной схеме (рис. 4.29, а) тепловые потери в элементах учтены включением условных сопротивлений Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

где резонансная частота колебанийЧастотные методы анализа и расчёта электрических цепей

Для реального контура Частотные методы анализа и расчёта электрических цепей поэтому при расчете можно полагать, что

Частотные методы анализа и расчёта электрических цепей

При резонансе сопротивление контура является активным, поэтому ток Частотные методы анализа и расчёта электрических цепей в цепи и напряжение Частотные методы анализа и расчёта электрических цепей в контуре синфазны. Эквивалентные схемы цепи в режиме резонанса токов показаны на рис. 4.31, а, б.

Сопротивление параллельного колебательного контура при резонансе максимально и равно (без учета внешней цепи)
Частотные методы анализа и расчёта электрических цепей
где  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
Добротность Частотные методы анализа и расчёта электрических цепей нагруженного контура меньше собственной добротности Частотные методы анализа и расчёта электрических цепей Ее можно выразить через сопротивления элементов цепи

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

или через их проводимости

Частотные методы анализа и расчёта электрических цепей

Важными параметрами цепи при резонансе являются токи в ветвях и напряжение на контуре. Ток в обшей ветви (ток источника) при резонансе минимален и равен (см. рис. 4.31)

Частотные методы анализа и расчёта электрических цепей

При этом напряжение на контуре максимально и равно

Частотные методы анализа и расчёта электрических цепей

Токи в индуктивности и в емкости при резонансе равны по значению и противоположны по направлению. Они образуют замкнутый ток в контуре, равный

Частотные методы анализа и расчёта электрических цепей

Частотные свойства параллельного колебательного контура обычно оценивают по нормированной АЧХ

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей-обобщенная расстройка контура без учета внешних цепей; Частотные методы анализа и расчёта электрических цепей — фактор расстройки.

Параллельный контур, показанный на рис. 4.29, имеет по одной реактивности в ветвях. Такой контур называется простым или контуром I вида. Для уменьшения шунтирующего действия внешних цепей часто применяют сложные параллельные контуры.

На рис. 4.32, а, б, в показаны контуры II, (III и IV) видов, соответственно.

Частотные методы анализа и расчёта электрических цепей

Главной особенностью этих контуров является то, что их резонансное сопротивление меньше резонансного сопротивления простого контура с такими же параметрами.

Сопротивление контуров (рис.4.32) при резонансе рассчитывается по формулам, соответственно:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — коэффициенты включения:

Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.4.1.

Параллельный контур (см. рис. 4.29, а) подключен к источнику с параметрами Частотные методы анализа и расчёта электрических цепей Контур настроен в резонанс на длину волны, равную 1000 м.

Параметры катушки индуктивности: Частотные методы анализа и расчёта электрических цепей

Определить действующие значения тока в контуре, тока на входе цепи и напряжения на контуре при резонансе, абсолютную и относительную полосы пропускания контура, добавочное сопротивление необходимое для расширения полосы пропускания в 2 раза.

Решение

1. Определим резонансную частоту колебания

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем волновое сопротивление

Частотные методы анализа и расчёта электрических цепей

3. Определим сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Найдем действующее значение тока на входе контура (см. рис. 4.31, а) при резонансе

Частотные методы анализа и расчёта электрических цепей

5. Определим соответственную добротность контура

Частотные методы анализа и расчёта электрических цепей

6. Найдем ток в контуре и напряжение на нем:

Частотные методы анализа и расчёта электрических цепей

7.  Определим добротность нагруженного контура

Частотные методы анализа и расчёта электрических цепей

8. Рассчитаем абсолютную и относительную полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

9.  Определяем добавочное cопротивление Частотные методы анализа и расчёта электрических цепей из (4.31)

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.2.

Рассчитать полосу пропускания колебательного контура (см. рис. 4.30, а).

Дано: Частотные методы анализа и расчёта электрических цепей

Определить сопротивление Частотные методы анализа и расчёта электрических цепей шунта, необходимого для расширения полосы пропускания до 10 кГц.

Решение

1. Рассчитаем волновое сопротивление и резонансную частоту контура:

Частотные методы анализа и расчёта электрических цепей

2.Рассчитаем добротность цепи без шунта. Воспользуемся трехветвевой эквивалентной схемой цепи и соотношением (4.32). Найдем проводимость элементов схемы:

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

3. Определим полосу пропускания

Частотные методы анализа и расчёта электрических цепей

4. Найдем сопротивление шунта, необходимою для расширения полосы до 10 кГц,

В этом случае добротность цепи должна быть равна

Частотные методы анализа и расчёта электрических цепей

Тогда из (4.32) получаем

Частотные методы анализа и расчёта электрических цепей

Следовательно, сопротивление шунта должно быть равно

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.3.

Параллельный колебательный контур с параметрами: Частотные методы анализа и расчёта электрических цепей подключен к источникуЧастотные методы анализа и расчёта электрических цепей

Определить собственную добротность контура, добротность нагруженного контура, абсолютную полосу пропускания и граничные частоты полосы пропускания. Построить резонансную кривую по напряжению на ЭВМ.

Решение

1. Определим волновое сопротивление контура

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем собственную добротность контура

Частотные методы анализа и расчёта электрических цепей

3. Найдем сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим добротность нагруженного контура по формуле (4.31)

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем резонансную частоту

Частотные методы анализа и расчёта электрических цепей

6. Найдем полосу пропускания

Частотные методы анализа и расчёта электрических цепей

7. Определим граничные частоты полосы пропускания:

Частотные методы анализа и расчёта электрических цепей

8. Построим резонансную характеристику контура но напряжению. Из выражения (4.33) запишем

Частотные методы анализа и расчёта электрических цепей

Напряжение па контуре при резонансе 

Частотные методы анализа и расчёта электрических цепей

Для построения резонансной характеристики задаемся характерными значениями частот: Частотные методы анализа и расчёта электрических цепей Результаты расчетов в графическом виде представлены на рис. 4.33.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.4.4.

Определить резонансную частоту, эквивалентное сопротивление при резонансе и добротность сложного контура (рис. 4.32, а), подключенного к источнику напряжения.

Дано: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим резонансную частоту и сопротивление параллельного контура при резонансе:

Частотные методы анализа и расчёта электрических цепей

Сопротивление контура при резонансе

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем эквивалентное сопротивление сложного контура II вида

Частотные методы анализа и расчёта электрических цепей

3. Найдем добротность нагруженного контура II  вида

Частотные методы анализа и расчёта электрических цепей

Сравним значения Частотные методы анализа и расчёта электрических цепей с добротностью простого нагруженного контура

Частотные методы анализа и расчёта электрических цепей

Вывод. За счет неполного включения индуктивности Частотные методы анализа и расчёта электрических цепей уменьшилось шунтирующее действие источника. Поэтому добротность сложного контура больше, чем простого с теми же параметрами элементов.

Частотные характеристики связанных колебательных контуров

Основные теоретические сведения:

С целью повышения коэффициента прямоугольности АЧХ контуров применяют связанные контуры последовательного и параллельного питания (рис. 4.37, а, б).

Частотные характеристики связанных контуров рассмотрим на примере системы из двух контуров.
Частотные методы анализа и расчёта электрических цепей

Эквивалентные схемы связанных контуров

Во всех случаях систему связанных контуров можно представить в виде Т- или П-образной эквивалентной схемы (рис. 4.38).

Количественной характеристикой связи является сопротивление связи Частотные методы анализа и расчёта электрических цепей в Т-образной эквивалентной схеме (рис. 4.38,а) или проводимость связи Частотные методы анализа и расчёта электрических цепей в П-образной эквивалентной схеме (рис. 4.38, б).

Удобным параметром для оценки связи является коэффициент связи

В случае реактивной связи для Т-образной схемы

Для П-образной схемы

где — сопротивление (проводимость) связи;Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей— сопротивления (проводимости) контуров, однотипные элементу связи. Для анализа связанных контуров удобно применять схемы, приведенные к первичному (рис. 4.39, а) или ко вторичному (рис. 4.39, б) контуру.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для этого используют понятия вносимого сопротивления Частотные методы анализа и расчёта электрических цепей и вносимой проводимости Частотные методы анализа и расчёта электрических цепей Эти схемы представляют собой одиночные последовательные (параллельные) контуры с параметрами:

Частотные методы анализа и расчёта электрических цепей

Резонансы в связанных контурах:

При настройке контуров в резонанс добиваются максимального тока (напряжения) во вторичном контуре.

Настройка связанных контуров может производиться различными способами, поэтому различают шесть резонансов. В табл. 4.3, 4.4 приведены виды и условия резонансов, способы настройки и соотношения для токов (напряжений) в связанных контурах последовательного (параллельного) питания.

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Резонансные характеристики связанных контуров:

Для двух неидентичных связанных контуров: последовательного питания

Частотные методы анализа и расчёта электрических цепей

где   Частотные методы анализа и расчёта электрических цепей

параллельного питания:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей— параметр связи. 

Если контуры идентичны, то обобщенная расстройка Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

На рис. 4.40 приведены резонансные характеристики при различных факторах связи.

Относительная полоса пропускания:

а) связь слабая Частотные методы анализа и расчёта электрических цепей

б) связь критическая Частотные методы анализа и расчёта электрических цепей

в) связь сильная Частотные методы анализа и расчёта электрических цепей

При Частотные методы анализа и расчёта электрических цепей достигается максимально возможная полоса пропускания Частотные методы анализа и расчёта электрических цепей

Примеры решения типовых задач:

Пример 4.5.1.

В системе двух индуктивно связанных контуров (см. рис.4.37,а) известны следующие параметры: коэффициент связи

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Определить емкость Частотные методы анализа и расчёта электрических цепей при которой в системе наступает первый частный резонанс, если частота источника равна 500 кГц.

Решение

Емкость конденсатора Частотные методы анализа и расчёта электрических цепей определим но реактивному сопротивлению первого контура:

Частотные методы анализа и расчёта электрических цепей

отсюда

Частотные методы анализа и расчёта электрических цепей

Определим реактивное сопротивление Частотные методы анализа и расчёта электрических цепей, первого контура из условия первого частного резонанса (см. табл. 4.3)

Частотные методы анализа и расчёта электрических цепей

Peaктивное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Рассчитаем полное сопротивление второго контура 

Частотные методы анализа и расчёта электрических цепей

Определим сопротивление связи контуров

Частотные методы анализа и расчёта электрических цепей

Следовательно

Частотные методы анализа и расчёта электрических цепей

Находим емкость первого контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.2.

Рассчитать емкости связанных контуров (см. рис. 4.37,а) и оптимальное сопротивление связи, если система настроена и полный резонанс. Определить токи, мощности в контурах при этом режиме, а также КПД системы.

Дано: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим емкость конденсатора Частотные методы анализа и расчёта электрических цепей, полагая, что

Частотные методы анализа и расчёта электрических цепей

Отсюда

Частотные методы анализа и расчёта электрических цепей

2.  Сопротивление оптимальной связи при полном резонансе

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем токи в первом и втором контурах при полном резонансе

Частотные методы анализа и расчёта электрических цепей

4. Определим активные мощности в первом и втором контурах и КПД связанных контуров:

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.3.

На рис. 4.37, а показана система из двух идентичных связанных контуров с параметрами: Частотные методы анализа и расчёта электрических цепей Рассчитать полосы пропускания одиночного контура и связанных контуров при различной связи: Частотные методы анализа и расчёта электрических цепей

Решение

1. Определим полосу пропускания одиночного контура 

Частотные методы анализа и расчёта электрических цепей

2. Рассчитаем полосу пропускания системы связанных контуров:

1)  определим параметр связи для Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Таким образом при Частотные методы анализа и расчёта электрических цепей связь меньше критической Частотные методы анализа и расчёта электрических цепей При этом относительная полоса пропускания

Частотные методы анализа и расчёта электрических цепей

Абсолютная полоса пропускания (рис. 4.41, резонансная кривая А = 0,5)

Частотные методы анализа и расчёта электрических цепей

2) при Частотные методы анализа и расчёта электрических цепей параметр связи Частотные методы анализа и расчёта электрических цепей Таким образом, коэффициент связи является оптимальным, а связь критическая, система настроена в полный резонанс. Полоса пропускания в этом случае

Частотные методы анализа и расчёта электрических цепей

3) если Частотные методы анализа и расчёта электрических цепей то параметр связи Частотные методы анализа и расчёта электрических цепей следовательно, связь больше критической.

Рассчитаем полосу пропускания для этого случая.

Частотные методы анализа и расчёта электрических цепей

Вид резонансных кривых по току и полоса пропускания для критической и сильной связи показаны на рис. 4.41, кривые А = 1 и А = 2.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.4.

Антенный контур (см. рис. 4.37,б) индуктивно связан с входным контуром усилителя высокой частоты. Оба контура настроены в резонанс на частоту Частотные методы анализа и расчёта электрических цепей принимаемого сигнала. В антенном контуре наводится Частотные методы анализа и расчёта электрических цепей

Дано: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

Входное сопротивление УВЧ считать бесконечно большим.

Определить емкости и добротности контуров, их взаимную индуктивность, а также ток и напряжение на емкости во вторичном контуре.

Решение

1.Емкости контуров определим из формулы резонансной частоты. Емкость конденсатора первого контура

Частотные методы анализа и расчёта электрических цепей

Емкость конденсатора второго контура

Частотные методы анализа и расчёта электрических цепей
2. Рассчитаем волновое сопротивление контуров:

Частотные методы анализа и расчёта электрических цепей
3. Рассчитаем добротности контуров и параметр связи:

Частотные методы анализа и расчёта электрических цепей
4. Определим взаимную индуктивность двух связанных контуров

Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем ток во вторичном контуре. Известно (см. табл. 4.3), что при полном резонансе Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс, то из (4.34) получаем

Частотные методы анализа и расчёта электрических цепей

Оба контура по условию настроены в резонанс, поэтому расстройки равны нулю:

Частотные методы анализа и расчёта электрических цепей

С учетом этого рассчитаем ток во втором контуре

Частотные методы анализа и расчёта электрических цепей

6. Найдем напряжение на конденсаторе вторичного контура

Частотные методы анализа и расчёта электрических цепей

Пример 4.5.5.

На рис. 4.42 приведена схема одного каскада УПЧ радиоприемника, в котором избирательность обеспечивается двумя связанными контурами с емкостной связью. Оба контура настроены в резонанс на промежуточную частоту Частотные методы анализа и расчёта электрических цепей

Эквивалентная схема этого каскада (рис. 4.43) имеет следующие параметры: Частотные методы анализа и расчёта электрических цепей Частотные методы анализа и расчёта электрических цепей

Определить емкости и добротности контуров, емкость связи, напряжение на емкости во вторичном контуре, а также полосу пропускания каскада УПЧ.

Решение

1. Из формулы резонансной частоты найдем емкость первого контура. С учетом влияния выходной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа получаем

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Емкость второго контура с учетом влияния входной емкости транзистора Частотные методы анализа и расчёта электрических цепей и емкости монтажа

Частотные методы анализа и расчёта электрических цепей

2. Определим емкость связи

Частотные методы анализа и расчёта электрических цепей

3. Рассчитаем добротности нагруженных контуров при отсутствии связи между ними. Для расчета воспользуемся формулой (4.31)
Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

где

Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем параметр связи Частотные методы анализа и расчёта электрических цепей

5. Рассчитаем напряжение на втором контуре. Известно (см. табл. 4.4), что при полном резонансе

Частотные методы анализа и расчёта электрических цепей

Тогда, учитывая, что контуры настроены в резонанс Частотные методы анализа и расчёта электрических цепейиз (4.35) получаем

Частотные методы анализа и расчёта электрических цепей

Найдем проводимость контуров

Частотные методы анализа и расчёта электрических цепей

Тогда

Частотные методы анализа и расчёта электрических цепей

6. Рассчитаем полосу пропускания каскадов УПЧ. учитывая, что А = 1,2.

Частотные методы анализа и расчёта электрических цепей

Частотные методы расчета и построения переходных и установившихся процессов в электрических цепях

Основные теоретические сведения:

Зная частотную характеристику электрической цепи Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей можно определить ее выходную величину при подаче на вход синусоидального (гармонического) сигнала. Действительно, если на вход цепи подано синусоидальное напряжение комплексное изображение которого Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей то в установившемся режиме комплексное изображение выходного напряжения

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей амплитуда и сдвиг по фазе выходных колебаний соответственно.

С помощью частотной характеристики электрической цели можно не только определить выходную величину цепи в установившемся режиме при гармоническом входном воздействии, но и найти реакцию цепи в переходном процессе на произвольное воздействие Частотные методы анализа и расчёта электрических цепей. Действительно, представляя это воздействие в зависимости от того, является оно периодической или непериодической функцией, в виде ряда или интеграла Фурье, т.е. в виде бесконечной суммы гармонических колебаний. По частотной характеристике можно определить реакцию электрической цепи на каждое из этих элементарных колебаний, а затем, просуммировав все реакции, найти результирующую реакцию в виде суммы или интеграла [4].

Найдем реакцию цепи на единичную ступенчатую функцию (т.е. найдем переходную функцию цепи), используя ее частотную характеристику. Как известно, интеграл Фурье для единичной ступенчатой функции имеет вид

Частотные методы анализа и расчёта электрических цепей

т.е. единичная ступенчатая функция может быть представлена как бесконечная сумма элементарных колебаний вида Частотные методы анализа и расчёта электрических цепей

Каждому из этих колебаний соответствует выходное колебание Частотные методы анализа и расчёта электрических цепей а реакция системы на единичную ступенчатую функцию выражается интегралом

Частотные методы анализа и расчёта электрических цепей

Представляя Частотные методы анализа и расчёта электрических цепей в алгебраической форме Частотные методы анализа и расчёта электрических цепей и преобразуя выражение (4.37), получаем следующую формулу для переходной функции |4, 6|:

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная частотная характеристика (ВЧХ) КФ электрической цепи. Полученное выражение связывает ВЧХ КПФ цепи с ее переходной функцией. Таким образом, при частотном методе анализа косвенной характеристикой переходной функции является вещественная частотная характеристика КФ электрической цепи.

Построение переходной функции с помощью вещественной частотной характеристики методами численного интегрирования:

Выражение (4.38) позволяет вычислить переходную функцию ЭЦ и определить качество переходного процесса. Однако интегрирование этого выражения аналитическими методами — задача весьма трудоемкая, а чаще всего просто практически невыполнимая. С применением современных ЭВМ и методов численного интегрирования (метод прямоугольников, трапеций, метод Симпсона и др.) эта задача существенно упрощается, ее решение сводится к составлению программы для ПЭВМ. В инженерной практике интегрирование достаточно осуществлять в области существенных частот от Частотные методы анализа и расчёта электрических цепей В области частот Частотные методы анализа и расчёта электрических цепей влияние ВЧХ Частотные методы анализа и расчёта электрических цепей на переходную функцию (4.38) мало и им можно пренебречь. В dtom случае используют модифицированное выражение от (4.38) [4]

Частотные методы анализа и расчёта электрических цепей

В результате интегрирования получают совокупность значений Частотные методы анализа и расчёта электрических цепейпереходной функции системы и исследуемом интервале времени и строят график переходной функции, по которой определяют показатели качества переходного процесса.

В качестве примера построения алгоритма численного интегрирования рассмотрим интегрирование с точки зрения простоты вычислений и точности результата. Сущность метода заключается в следующем. Пусть необходимо вычислить определенный интеграл

Частотные методы анализа и расчёта электрических цепей

Вид подынтегральной функции, соответствующей выражению

Частотные методы анализа и расчёта электрических цепей

при фиксированном времени Частотные методы анализа и расчёта электрических цепей приведен на рис. 4.47, кривая Частотные методы анализа и расчёта электрических цепей для t = 10 с, кривая 2 для Частотные методы анализа и расчёта электрических цепей, а кривая 3 изображает ВЧХ электрической цепи. Функция Частотные методы анализа и расчёта электрических цепей представляет функцию Частотные методы анализа и расчёта электрических цепей модулированную «замечательным» синусом. Известно, что интеграл (4.40) численно равен площади под кривой функции Частотные методы анализа и расчёта электрических цепей Если интервал аргумента Частотные методы анализа и расчёта электрических цепей разбить на Частотные методы анализа и расчёта электрических цепей равных частей, то длина одного интервала будет равна Частотные методы анализа и расчёта электрических цепей Площадь под кривой можно аппроксимировать суммой площадей прямоугольных трапеций с основаниями Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей и высотой Частотные методы анализа и расчёта электрических цепейТогда интеграл (4.40) можно представить как сумму площадей прямоугольных трапеций:

Частотные методы анализа и расчёта электрических цепей

Очевидно, что погрешность численного интегрирования зависит и от выбора числа интервалов Частотные методы анализа и расчёта электрических цепей разбиения аргумента Частотные методы анализа и расчёта электрических цепей при конкретном времени Частотные методы анализа и расчёта электрических цепей При увеличении времени , как видно из рис. 4.47, период подынтегральной функции уменьшается. Следовательно, необходимо увеличивать число интервалов, которое определился выражением
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

При этом одно полное колебание подынтегральной функции представляется не менее чем шестнадцатью трапециями.

В качестве примера для построения переходной функции возьмем электрическую цепь, ВЧХ которой была построена и приведена на рис. 4.47 (кривая 3). На рис. 4.48 приведена переходная функция этой сложной электрической цепи.

Переходная функция на рис. 4.48 получена с помощью пакета ПП «Сигнал» [5].

Для вычисления интеграла (4.39) необходимо определить значение частоты для верхнего предела интегрирования Частотные методы анализа и расчёта электрических цепей Это значение легко может быть определено из кривой вещественной частотной характеристики (ВЧХ) КФ электрической цепи. В качестве примера возьмем простую интегрирующую цепь (см. рис. 4.1), КФ которой имеет вид

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Алгебраическая форма КФ
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей — вещественная и мнимая части КФ. Построим кривуюЧастотные методы анализа и расчёта электрических цепей (рис. 4.49) в среде Mathcad, если Частотные методы анализа и расчёта электрических цепей.

Из графика ВЧХ видно, что при Частотные методы анализа и расчёта электрических цепей Влияние ВЧХ в области больших частот на переходную функцию несущественно, поэтому за частоту Частотные методы анализа и расчёта электрических цепейможно принять частоту, при которой ВЧХ принимает значение Частотные методы анализа и расчёта электрических цепей Эту частоту принято называть «существенной частотой» и обозначать Частотные методы анализа и расчёта электрических цепей. В нашем примере Частотные методы анализа и расчёта электрических цепей Переходная функция, вычисленная по выражению (4.39), приведена на рис. 4.49.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Для случая электрических цепей с дифференцирующими свойствами может оказаться, что при Частотные методы анализа и расчёта электрических цепей ВЧХ КФ этой цепи Частотные методы анализа и расчёта электрических цепейТогда для расчета переходной функции необходимо использовать мнимую частотную характеристику (МЧХ) в соответствии с выражением

Частотные методы анализа и расчёта электрических цепей

Приведенный пример наглядно показывает, что использование частотных характеристик для построения временных характеристик с помощью ЭВМ существенно расширяет возможности частотных методов анализа электрических цепей.

Спектральный метод расчета и построения выходных величин электрических цепей при сложных входных воздействиях:

Применение частотных методов при анализе и синтезе электрических цепей с требуемыми динамическими характеристиками и использованием ЭВМ позволяет не только строить переходные характеристики, но и строить реакцию цепи на любые детерминированные воздействия, оценивать их в установившихся режимах.

Математической основой частотных методов анализа электрических цепей и систем автоматического управления является обратное преобразование Фурье, позволяющее получать изображение выходного сигнала системы y(t) с помощью вещественной и мнимой частотных характеристик систем. В свою очередь, по вещественной или мнимой частотным характеристикам можно построить переходный процесс выходной величины и оценить реакцию цепи в переходном и установившемся режимах.

Как известно, реакция системы определяется по формуле обратного преобразования Фурье [4]

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

После соответствующих преобразований выражение (4.46) примет вид:

I) для ступенчатой входной функции Частотные методы анализа и расчёта электрических цепей спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

2) для линейной входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей
Частотные методы анализа и расчёта электрических цепей
y{t) = vP(0)t+±l
2 r0(
Л» И
(4.48)
О)
3) для параболической входной функции Частотные методы анализа и расчёта электрических цепей со спектром Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей
4) для полиномиального воздействия видаЧастотные методы анализа и расчёта электрических цепей 

Частотные методы анализа и расчёта электрических цепей

Применение ЭВМ и численных методов интегрирования позволяет отказаться от графических и табличных методов построения переходных и других необходимых функций в электрических цепях.

Примеры решения типовых задач:

Пример 4.6.1.

Определить комплексный коэффициент передачи по напряжению для дифференцирующего Частотные методы анализа и расчёта электрических цепей-контура (рис. 4.50,а), рассчитать и построить переходную функцию контура с помощью ВЧХ.

Частотные методы анализа и расчёта электрических цепей

Решение

1. Изобразим комплексную схему замещения цепи (рис. 4.50, б).

2. Определим комплексное напряжение на выходе цепи в виде

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение, вынеся за скобки в числителе и знаменателе члены, не содержащие Частотные методы анализа и расчёта электрических цепей После преобразований получим
Частотные методы анализа и расчёта электрических цепей
Следовательно
Частотные методы анализа и расчёта электрических цепей
Введем обозначения:

Частотные методы анализа и расчёта электрических цепей

Величина Частотные методы анализа и расчёта электрических цепей называется постоянной времени цепи и измеряется в секундах. Величина k имеет смысл коэффициента усиления по напряжению на постоянном токе, т. е. на частоте Частотные методы анализа и расчёта электрических цепей С учетом принятых обозначений

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Примем:Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.51).

Из частотных характеристик КПФ принимаем Частотные методы анализа и расчёта электрических цепей Для построения переходной функции воспользуемся выражением (4.45). Построение проведем также в среде Mathcad.Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Переходная функция, показанная на рис.4.52, соответствует дифференцирую щему фазоопережающему контуру, который широко применяется в электронных и радиотехнических устройствах, системах автоматического управления.

Пример 4.6.2.

Для электрической цепи, изображенной на рис, 4.53, определить КПФ Частотные методы анализа и расчёта электрических цепей построить ВЧХ Частотные методы анализа и расчёта электрических цепей и МЧХ Частотные методы анализа и расчёта электрических цепей. Рассчитать и построить график переходной функции. Параметры цепи: Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей  Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1. Найдем комплексную функцию Частотные методы анализа и расчёта электрических цепей по формуле делителя напряжения

Частотные методы анализа и расчёта электрических цепей

Преобразуем полученное выражение к виду 

Частотные методы анализа и расчёта электрических цепей

Обозначим:

Частотные методы анализа и расчёта электрических цепей

Следовательно,

Частотные методы анализа и расчёта электрических цепей

Для получения аналитических выражений ВЧХ и МЧХ запишем комплексную функцию и алгебраической форме

Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей

Для определения частоты Частотные методы анализа и расчёта электрических цепей в среде Mathcad построим кривые ВЧХ и МЧХ (рис. 4.54).

По виду ВЧХ и МЧХ определяем, что для построения переходной функции необходимо применить МЧХ. Примем из графика МЧХ Частотные методы анализа и расчёта электрических цепей Переходная функция и программа для ее вычисления и построения приведена на рис. 4.55.

Из рис. 4.55 видно, что переходная функция соответствует интегрирующему контуру.
Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Пример 4.6.3.

Определить комплексный коэффициент передачи интегрирующей цепи (рис. 4.56, а), используя метод контурных токов. Построить в среде Mathcad графики АЧХ, ВЧХ, МЧХ. Рассчитать и построить эпюру входного и выходного напряжения, если на вход цепи поступает напряжение вида Частотные методы анализа и расчёта электрических цепей где Частотные методы анализа и расчёта электрических цепей

Параметры цепи: Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Решение

1.Представим цепь комплексной схемой замещения (рис. 4.56, б). Данная цепь имеет два независимых контура. Ток Частотные методы анализа и расчёта электрических цепей в первом контуре замыкается через источник, который на схеме не изображен. Направление контурных тиков выбираем одинаковым.

2.Составим матрицы контурных сопротивлений для двух независимых контуров

Частотные методы анализа и расчёта электрических цепей

3.Определим комплексный коэффициент передачи, используя соотношение, приведенное в табл. 4.1.

Частотные методы анализа и расчёта электрических цепей

где сопротивление нагрузки Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Подставляя найденные выражения, получаем
Частотные методы анализа и расчёта электрических цепейЧастотные методы анализа и расчёта электрических цепей

т.е.  Частотные методы анализа и расчёта электрических цепей

где  Частотные методы анализа и расчёта электрических цепей

4. Рассчитаем Частотные методы анализа и расчёта электрических цепей для крайних значений частоты Частотные методы анализа и расчёта электрических цепей и Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

Объяснить полученные результаты можно, рассуждая так: на нулевой частоте (режим постоянного тока) сопротивление емкости бесконечно велико, ток в ней равен нулю, что эквивалентно разрыву этой ветви. При этом цепь становится резистивным делителем напряжения с передаточной функцией Частотные методы анализа и расчёта электрических цепей = = 0,75. С ростом частоты емкостное сопротивление уменьшается. Если Частотные методы анализа и расчёта электрических цепей   тоЧастотные методы анализа и расчёта электрических цепей и шунтирует сопротивлениеЧастотные методы анализа и расчёта электрических цепей. При этом

Частотные методы анализа и расчёта электрических цепей

5.Определим выражения для АЧХ, ВЧХ, МЧХ. Представим КГ1Ф (4.55) в алгебраической форме

Частотные методы анализа и расчёта электрических цепей

где Частотные методы анализа и расчёта электрических цепей вещественная частотная характеристика:

Частотные методы анализа и расчёта электрических цепей — мнимая частотная характеристика.
Амплитудно-частотную характеристику запишем в виде

Частотные методы анализа и расчёта электрических цепей

6. В среде Mathcad построим частотные характеристики и определим Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

По ВЧХ на рис. 4.57 определяем, что существенная частота Частотные методы анализа и расчёта электрических цепей

7. Построим переходную функцию электрической цепи, которая представлена на рис. 4.58.

Переходная функция электрической цепи соответствует апериодическому звену.

Частотные методы анализа и расчёта электрических цепей

8. Построим реакцию электрической цепи на напряжение, изменяющееся но линейному закону (рис. 4.59).

Частотные методы анализа и расчёта электрических цепей

Частотные методы анализа и расчёта электрических цепей

  • Операторные передаточные функции
  • Свободные колебания в пассивных электрических цепях
  • Цепи с распределёнными параметрами
  • Волновые параметры длинной линии
  • Энергетические характеристики двухполюсников
  • Комплексные функции электрических цепей
  • Гармонические колебания в колебательном контуре
  • Частотные характеристики линейных электрических цепей

Понравилась статья? Поделить с друзьями:
  • Актуальные незасвидетельствованные как исправить
  • Как найти неполный квадрат разности
  • Как найти работу по траектории
  • Как найти положение линзы по известному изображению
  • Как найти осенние песни