Как найти концентрацию кислоты через плотность

Как определить концентрацию кислоты

Концентрация — размерная величина, посредством которой выражается состав раствора (в частности, содержание в нем растворенного вещества). Порой случается такое, что эта самая величина неизвестна. К примеру, в лаборатории среди множества бутылей может оказаться один, подписанный просто — HCl (соляная кислота). Для проведения же многих опытов информации требуется гораздо больше, нежели только название. Поэтому приходится задействовать экспериментальные методы, такие как титрование или определение плотности.

Как определить концентрацию кислоты

Вам понадобится

  • -раствор щелочи точной коцентрации
  • -бюретка
  • -конические колбы
  • -мерные пипетки
  • -индикатор
  • -набор ареометров

Инструкция

Одним из наиболее простых способов определения концентрации кислоты является прямое титрование (процесс постепенного добавления раствора с известной концентрацией(титранта) к раствору определяемого вещества с целью зафиксировать точку эквивалентности (конец реакции)). В данном случае удобно использовать нейтрализацию щелочью. Завершение ее можно легко определить с помощью добавления индикатора (к примеру, в кислоте фенолфталеин прозрачен, а при добавлении щелочи становится малиновым; метиловый оранжевый в кислой среде — розовый, а в щелочной — оранжевый).

Возьмите бюретку (объемом 15-20 мл), установите ее в штативе с помощью лапки. Она должна быть четко зафиксирована, иначе с раскачивающего кончика могут упасть несколько лишних капель, которые испортят вам весь процесс. Порой одна капелька меняет цвет индикатора. Этот момент необходимо засечь.

Запаситесь посудой и реактивами: коническими колбами для титрования (4-5 штук небольшого объема), несколькими пипетками (как Мора — без делений, так и размерными), мерной колбой на 1 л, фиксаналом щелочи, индикатором, дистиллированной водой.

Приготовьте раствор щелочи точной концентрации (к примеру, NaOH). Для этого лучше используйте фиксанал (ампула с запаянным в нее веществом, при разведении которого в 1л воды получается 0,1 нормальный раствор). Конечно, можно пустить в ход точную навеску. Но первый вариант точнее и надежнее.

Далее заполните бюретку раствором щелочи. В коническую колбу поместите 15 мл кислоты неизвестной концентрации (возможно, HCl), в нее же добавьте 2-3 капли индикатора. И приступайте непосредственно к титрованию. Как только индикатор изменит цвет и примерно 30 с будет таким оставаться, прекращайте процесс. Запишите, сколько ушло щелочи (к примеру, 2,5 мл).

Затем выполните данный ход работы еще 2-3 раза. Это делается для получения белее точного результата. После подсчитайте средний объем щелочи. Vср = (V1+V2+V3)/3, V1 — результат первого титрования, мл, V2 — результат второго, мл, V3 — объем третьего, мл, 3 — количество проделанных реакций. Например, Vср = (2,5+2,7+2,4)/3 = 2,53 мл.

После проведения эксперимента, можно приступить к основным подсчетам. В данной ситуации справедливо соотношение: C1*V1 = C2*V2, где C1 — концентрация раствора щелочи, нормальная (н), V1 — средний объем израсходованной на реакцию щелочи, мл, С2 — концентрация раствора кислоты, н, V2 — объем кислоты, участвующей в реакции, мл. С2 — величина неизвестная. Значит, ее необходимо выразить через известные данные. С2 = (C1*V1)/V2, т.е. С2 = (0,1 * 2,53)/ 15 = 0,02 н. Вывод: при титровании HCl раствором 0,1 н NaOH, была выяснена концентрация кислоты — 0,02 н.

Еще одним распространненым способом выяснить концентрацию кислоты — это, для начала, узнать ее плотность. Для этого приобретите набор ареометров (в специализированном химическом или магазине, также можно заказать по интернету или посетить точки торговли принадлежностей для автомобилистов).

Налейте кислоту в химический стакан и помещайте в него ареометры до тех пор, пока они не престанут тонуть или выталкиваться на поверхность. Когда же прибор станет, как поплавок, отметьте числовое значение на нем. Данная цифра и есть плотность кислоты. Далее, используя соответствующую литературу (можно справочник Лурье), не составит труда определить по таблице нужную концентрацию.

В независимости от того, какой способ вы выберите, не забывайте про соблюдение техники безопасности.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Тема: Определение плотности.Расчёты и техника приготовления растворов кислот.

Практическое занятие №25, 26.

Тема: Расчеты и техника приготовления растворов щелочей

Расчёты и техника приготовления растворов щелочей.

Расчёт количества щелочи, необходимого для приготовления раствора той или иной концентрации, производят так же как для растворов солей. Однако твердая щелочь, особенно не очень хорошо очищенная, содержит много примесей, поэтому рекомендуется отвешивать щелочи в количестве, больше рассчитанного на 2-3%.

Техника приготовления растворов щелочей имеет свои особенности. При приготовлении растворов щелочей нужно соблюдать следующие правила:

1. Кусочки щелочи следует брать щипцами, пинцетом, а если необходимо взять их руками, то обязательно в резиновых перчатках. Гранулированную щелочь в виде маленьких лепешечек насыпают фарфоровой ложкой.

2. Отвешивать щелочь на бумаге нельзя; /для этого следует использовать только стеклянную или фарфоровую посуду.

3. Щелочь нельзя растворять в толстостенных бутылях, так как при
растворении происходит сильное разогревание и бутыль может лопнуть.

Отвешенное на технохимических весах количество щелочи помещают в большую фарфоровую чашку или стакан. В эту посуду наливают такое количество воды, чтобы раствор имел концентрацию 35-40%. Перемешивают раствор стеклянной палочкой, пока вся щелочь не растворится. Затем раствор оставляют стоять до остывания и выпадения осадка. Осадок представляет собой примеси (в основном карбонаты), которые не растворяются в концентрированных растворах щелочей. Оставшуюся щелочь осторожно сливают в другой сосуд (лучше с помощью сифона), куда доливают нужное количество воды.

Раствор щелочи не всегда удается приготовить заданной концентрации, поэтому, приготовив раствор, следует определить при помощи ареометра его плотность и но таблице найти процентное содержание щелочи.

Тема: Определение плотности.Расчёты и техника приготовления растворов кислот.

Погружать ареометр в испытываемую жидкость следует осторожно, не касаясь стенок цилиндра. Ареометр не выпускают из рук до тех пор, пока не станет очевидным, что он плавает. При определении относительной плотности ареометр должен находиться в центре цилиндра и не должен касаться дна. Отсчет по делениям шкалы ареометра производят по верхнему мениску жидкости. По окончании работы ареометр промывают в воде и, вытерев его насухо, убирают в специальный футляр или ящик. Ареометры очень хрупкие, поэтому обращаться с ними следует очень осторожно.

Источник

Концентрация растворов. Способы выражения концентрации растворов.

Концентрация раствора может выражаться как в безразмерных единицах (долях, процентах), так и в размерных величинах (массовых долях, молярности, титрах, мольных долях).

Способы выражения концентрации растворов.

1. Массовая доля (или процентная концентрация вещества) – это отношение массы растворенного вещества m к общей массе раствора. Для бинарного раствора, состоящего из растворённого вещества и растворителя:

21044646005557b403a6b5c5.10502872,

ω – массовая доля растворенного вещества;

mв-ва – масса растворённого вещества;

Массовую долю выражают в долях от единицы или в процентах.

2. Молярная концентрация или молярность – это количество молей растворённого вещества в одном литре раствора V:

10534643125557b419664d93.21407605,

C – молярная концентрация растворённого вещества, моль/л (возможно также обозначение М, например, 0,2 М HCl);

n – количество растворенного вещества, моль;

V – объём раствора, л.

Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества, децимолярным – растворено 0,1 моля вещества, сантимолярным – растворено 0,01 моля вещества, миллимолярным – растворено 0,001 моля вещества.

3. Моляльная концентрация (моляльность) раствора С(x) показывает количество молей n растворенного вещества в 1 кг растворителя m:

1494749005557b42d86cdb3.97802338,

С (x) – моляльность, моль/кг;

n – количество растворенного вещества, моль;

4. Титр – содержание вещества в граммах в 1 мл раствора:

944004265557b43fefc290.38591295,

T – титр растворённого вещества, г/мл;

mв-ва – масса растворенного вещества, г;

5. Мольная доля растворённого вещества – безразмерная величина, равная отношению количества растворенного вещества n к общему количеству веществ в растворе:

14808398395557b4545dbac9.15086672,

N – мольная доля растворённого вещества;

n – количество растворённого вещества, моль;

nр-ля – количество вещества растворителя, моль.

Сумма мольных долей должна равняться 1:

Иногда при решении задач необходимо переходить от одних единиц выражения к другим:

16308557b50e9114a53.57151084

М(Х) – молярная масса растворенного вещества;

ρ= m/(1000V) – плотность раствора. 6. Нормальная концентрация растворов (нормальность или молярная концентрация эквивалента) – число грамм-эквивалентов данного вещества в одном литре раствора.

Грамм-эквивалент вещества – количество граммов вещества, численно равное его эквиваленту.

Эквивалент – это условная единица, равноценная одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях.

Для записи концентрации таких растворов используют сокращения н или N. Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.

1351945045557b46ea60c07.59307704,

СН – нормальная концентрация, моль-экв/л;

z – число эквивалентности;

853248557b5104288fb6.56522999

Коэффициент растворимости – отношение массы вещества, образующего насыщенный раствор при конкретной температуре, к массе растворителя:

Источник

Определение концентрации растворов кислот и щелочей по плотности

Для установления концентрации растворов едкого натра и едкого кали в качестве исходных веществ применяют кристаллогидрат щавелевой кислоты H2C2O4•2H2O, янтарную кислоту H2C4H4O4, сульфаминовую кислоту HSO3NH2 или титрованные растворы соляной и серной кислот (последние обычно используют для проверки концентрации растворов едких щелочей).

Концентрацию растворов гидроокиси бария или кальция и щелочной смеси устанавливают по титрованному раствору соляной кислоты. Для определения концентрации 0,1 н. растворов едкого натра или едкого кали удобно пользоваться растворами щавелевой или соляной кислот, приготовленными из фиксаналов. Для приготовления раствора щавелевой кислоты применяют дистиллированную воду, не содержащую углекислого газа.

Титрование раствора щелочи раствором щавелевой кислоты ведут в присутствии 2—3 капель 0,1%-ного раствора фенолфталеина до обесцвечивания розовой окраски раствора.

Титрование раствора щелочи соляной кислотой ведут вначале в присутствии фенолфталеина, а после исчезновения розовой окраски добавляют 1—2 капли раствора метилового оранжевого и титруют до перехода желтой окраски раствора в оранжево-розовую.

Концентрацию раствора щелочи вычисляют по формулам:

по метиловому оранжевому:

где V1 — объем раствора кислоты, израсходованный на титрование с фенолфталеином;

V2 — суммарный объем раствора кислоты, израсходованный на титрование с фенолфталеином и метиловым оранжевым.

Разница в концентрации, установленной по фенолфталеину и метиловому оранжевому, указывает на загрязнение щелочи карбонатами. Эта разница не должна превышать 0,4%.

При установлении или при проверке концентрации раствора щелочи по раствору кислоты нормальные концентрации этих растворов должны быть близкими. В противном случае один из растворов (более концентрированный) перед титрованием разбавляют в мерной колбе.

При использовании титрованного раствора щелочи результаты анализа рассчитывают по концентрации щелочи, полученной при установлении титра ее с тем индикатором, который применяют при анализе.

Для определения концентрации раствора едкой щелочи по янтарной кислоте обычно пользуются методом титрования навесок янтарной кислоты. Эквивалент янтарной кислоты равен 59,05.

Пример 1. На титрование 15,00 мл раствора едкого натра израсходовано 16,20 мл 0,1000 н. раствора щавелевой кислоты (средний сходящийся результат титрования). Определить нормальную концентрацию раствора щелочи.

Нормальная концентрация раствора едкого натра:

0,1 • 16,2 / 15 = 1070 н.

Пример 2. На титрование 25,00 мл раствора едкого натра с фенолфталеином было израсходовано 24,80 мл 0,1000 н. раствора соляной кислоты, затем был добавлен раствор метилового оранжевого, после чего титрование продолжено.

При этом суммарный объем израсходованной соляной кислоты равен 24,88 мл. Определить нормальную концентрацию раствора щелочи и ее пригодность для анализа.

Нормальная концентрация едкого натра по фенолфталеину:

0,1 • 24,8 / 25 = 0,09920 н.

Нормальная концентрация едкого натра по метиловому оранжевому:

0,1 • 24,88 / 25 = 0,09952 н.

Разность концентраций в %:

т. е. меньше предельно допустимого. Раствор щелочи пригоден как рабочий раствор для анализа.

Пример 3. Определить массу отдельной навески янтарной кислоты для установления концентрации 0,1 н. раствора щелочи, если для титрования применяют бюретку емкостью 25 мл.

Предполагаем израсходовать на титрование 20 мл раствора щелочи.

Масса навески янтарной кислоты:

59,05 • 0,1 • 20 / 1000 = 0,12 г.

Пример 4. Навеска янтарной кислоты 1,064 г оттитрована 35,50 мл раствора едкого натра. Определить нормальную концентрацию раствора.

1000 • 1,064 / 59,05 • 35,5 = 0,5070 н.

Растворы щелочей хранят в склянках, закрытых резиновыми (кроме растворов аммиака) или полиэтиленовыми пробками. Для раствора аммиака обычно применяют стеклянные пробки. Если склянка для хранения сообщается с бюреткой, то в пробку вставляют хлоркальциевую трубку, заполненную натровой (натронной) известью для поглощения углекислоты воздуха.

При длительном хранении растворов щелочей внутреннюю поверхность склянок парафинируют.

Источник

Растворы кислот

Приблизительные растворы. В большинстве случаев в лаборатории приходится пользоваться соляной, серной и азотной кислотами. Кислоты имеются в продаже в виде концентрированных растворов, процентное содержание которых определяют по их плотности.

Кислоты, применяемые в лаборатории, бывают технические и чистые. Технические кислоты содержат примеси, а потому при аналитических работах не употребляются.

Концентрированная соляная кислота на воздухе дымит, поэтому работать с ней нужно в вытяжном шкафу. Наиболее концентрированная соляная кислота имеет плотность 1,2 г/см3 и содержит 39,11%’ хлористого водорода.

Разбавление кислоты проводят по расчету, описайному выше.

Пример. Нужно приготовить 1 л 5%-ного раствора соляной кислоты, пользуясь раствором ее с плотностью 1,19 г/см3. По справочнику узнаем, что 5%,-ный раствор нмеет плотность 1,024 г/см3; следовательно, 1 л ее будет весить 1,024*1000 = 1024 г. В этом количестве должно содержаться чистого хлористого водорода:

0394 394 1

Кислота с плотностью 1,19 г/см3 содержит 37,23% HCl (находим также по справочнику). Чтобы узнать, сколько следует взять этой кислоты, составляют пропорцию:

0394 394 2

или 137,5/1,19 = 115,5 кислоты с плотностью 1,19 г/см3, Отмерив 116 мл раствора кислоты, доводят объем его до 1 л.

Так же разбавляют серную кислоту. При разбавлении ее следует помнить, что нужно приливать кислотук воде

, а не наоборот. При разбавлении происходит сильное разогревание, и если приливать воду к кислоте, то возможно разбрызгивание ее, что опасно, так как серная кислота вызывает тяжелые ожоги. Если кислота попала на одежду или обувь, следует быстро обмыть облитое место большим количеством воды, а затем нейтрализовать кислоту углекислым натрием или раствором аммиака. При попадании на кожу рук или лица нужно сразу же обмыть это место большим количеством воды.

Особой осторожности требует обращение с олеумом, представляющим моногидрат серной кислоты, насыщенный серным ангидридом SO3. По содержанию последнего олеум бывает нескольких концентраций.

Следует помнить, что при небольшом охлаждении олеум закристаллизовывается и в жидком состоянии находится только при комнатной температуре. На воздухе он дымит с выделением SO3, который образует пары серной кислоты при взаимодействии с влагой воздуха.

Большие трудности вызывает переливание олеума из крупной тары в мелкую. Эту операцию следует проводить или под тягой, или на воздухе, но там, где образующаяся серная кислота и SO3 не могут оказать какого-либо вредного действия на людей и окружающие предметы.

Если олеум затвердел, его следует вначале нагреть, поместив тару с ним в теплое помещение. Когда олеум расплавится и превратится в маслянистую жидкость, его нужно вынести на воздух и там переливать в более мелкую посуду, пользуясь для этого способом передавлива-ния при помощи воздуха (сухого) или инертного газа (азота).

При смешивании с водой азотной кислоты также происходит разогревание (не такое, правда, сильное, как в случае серной кислоты), и поэтому меры предосторожности должны применяться и при работе с ней.

В лабораторной практике находят применение твердые органические кислоты. Обращение с ними много проще и удобнее, чем с жидкими. В этом случае следует заботиться лишь о том, чтобы кислоты не загрязнялись чем-либо посторонним. При необходимости твердые органические кислоты очищают перекристаллизацией (см, гл. 15 «Кристаллизация»),

Точные растворы. Точные растворы кислот готовят так же, как и приблизительные, с той только разницей, что вначале стремятся получить раствор несколько большей концентрации, чтобы после можно было его точно, по расчету, разбавить. Для точных растворов берут только химически чистые препараты.

Нужное количество концентрированных кислот обычно берут по объему, вычисленному на основании плотности.

Пример. Нужно приготовить 0,1 и. раствор H2SO4. Это значит, что в I л раствора должно содержаться:

0394 396 1

Кислота с плотностью 1,84 гсмг содержит 95,6% H2SO4 н для приготовления 1 л 0,1 н. раствора нужно взять следующее количество (х) ее (в г):

0394 396 2

Соответствующий объем кислоты составит:

0394 396 3

Отмерив из бюретки точно 2,8 мл кислоты, разбавляют ее до 1 л в мерной колбе и затем титруют раствором щелочи п устанавливают нормальность полученного раствора. Если раствор получится более концентрированный), к нему добавляют из бюретки рассчитанное количество воды. Например, при титровании установлено, что 1 мл 6,1 н. раствора H2SO4 содержит не 0,0049 г H2SO4, а 0,0051 г. Для вычисления количества воды, которое необходимо для приготовления точно 0,1 н. раствора, составляем пропорцию:

0394 396 4

Расчет показывает, что этот объем равен 1041 мл раствор нужно добавить 1041 — 1000 = 41 мл воды. Следует еще учесть то количество раствора, которое взято для титрования. Пусть взято 20 мл, что составляет 20/1000 = 0,02 от имеющегося объема. Следовательно, воды нужно добавить не 41 мл, а меньше: 41 — (41*0,02) = = 41 —0,8 = 40,2 мл.

Исправленный раствор следует снова проверить на содержание вещества, взятого для растворения. Точные растворы соляной кислоты готовят также ионообменным способом, исходя из точной рассчитанной навески хлористого натрия. Рассчитанную и отвешенную на аналитических весах навеску растворяют в дистиллированной или деминерализованной воде, полученный раствор пропускают через хроматографическую колонку, наполненную катионитом в Н-форме. Раствор, вытекающий из колонки, будет содержать эквивалентное количество HCl.

Как правило, точные (или титрованные) растворы следует сохранять в плотно закрытых колбах, В пробку сосуда обязательно нужно вставлять хлоркальциевую трубку, заполненную в случае раствора щелочи натронной известью или аскаритом, а в случае кислоты — хлористым кальцием или просто ватой.

Для проверки нормальности кислот часто применяют прокаленный углекислый натрий Na2COs. Однако он обладает гигроскопичностью и поэтому не полностью удовлетворяет требованиям аналитиков. Значительно удобнее пользоваться для этих целей кислым углекислым калием KHCO3, высушенным в эксикаторе над CaCl2.

При титровании полезно пользоваться «свидетелем», для приготовления которого в дистиллированную или деминерализованную воду добавляют одну каплю кислоты (если титруют щелочь) или щелочи (если титруют кислоту) и столько капель индикаторного раствора, сколько добавлено в титруемый раствор.

Приготовление эмпирических, по определяемому веществу, и стандартных растворов, кислот проводят по расчету с применением формул, приведенных для этих и описанных выше случаев.

Источник

Определение концентрации растворов кислот и щелочей по плотности

ГОСТ 28959-91
(ИСО 2990-74)

КИСЛОТА АЗОТНАЯ ТЕХНИЧЕСКАЯ

МЕТОД ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ПО ИЗМЕРЕНИЮ ПЛОТНОСТИ

Nitric acid for industrial use. Evaluation of the nitric acid concentration by measurement of density

Дата введения 1992-07-01

1. Стандарт подготовлен Ассоциацией «Агрохим» методом прямого применения международного стандарта ИСО 2990-74* «Кислота азотная техническая. Определение концентрации по измерению плотности» и полностью ему соответствует

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 03.04.91 N 435

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, подпункта

5. ПЕРЕИЗДАНИЕ. Октябрь 2004 г.

Настоящий стандарт устанавливает метод приблизительного определения концентрации технической азотной кислоты по измерению плотности при температуре 20 °С с помощью ареометра.

1. ОТБОР ПРОБ

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3. АППАРАТУРА

3.1. Ареометр АОН-2 1400-1480; 1480-1570 по ГОСТ 18481.

3.3. Термометр по ГОСТ 28498 с несмачивающей жидкостью типа Б, диапазоном измерения 0-100 °С, ценой деления 0,5 °С.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. Определение плотности

500 см испытуемого образца помещают в стеклянный цилиндр и доводят до метки при температуре (20±0,5) °С. Ареометр помещают в цилиндр и, когда он приходит в состояние покоя, убеждаются в том, что температура кислоты составляет (20±0,5) °С. По шкале ареометра отсчитывают показания плотности.

4.2. Определение концентрации азотной кислоты

Концентрацию азотной кислоты, соответствующую величине плотности полученной с помощью ареометра, определяют по таблице.

Плотность и концентрации водных растворов азотной кислоты

Плотность при температуре 20 °С, кг/м

Источник

Цель работы:
изучить способы выражения концентрации
растворов, научиться рассчитывать
концентрацию растворов.

Задание:
приготовить приблизительно 0,1 н раствор
соляной кислоты и установить нормальность
и титр кислоты. Выполнить требования к
результатам работы, оформить отчет,
решить задачу.

Теоретическое введение

Один из методов
определения концентрации растворов –
объемный анализ. Он сводится к измерению
объемов реагирующих веществ, концентрация
одного из которых известна.

Такое измерение
производится постепенным прибавлением
одного раствора к другому до окончания
реакции. Этот процесс называется
титрованием. Окончание реакции
определяется с помощью индикатора.

При определении
объемов растворов целесообразно
использовать следующие способы выражения
концентрации растворов:

Молярная
концентрация эквивалентов вещества В
или нормальность
(
(В)
или н) – отношение
количества эквивалентов растворенного
вещества
к
объему

раствора:


,
моль/л,

где nэк(В)
– количество эквивалентов вещества В,
моль; mB
– масса вещества В, г; Мэк(В)
– молярная масса эквивалентов вещества
В, г/моль; Vр
– объем раствора, л.

Массовая доля
растворенного вещества В
В)
отношение
(обычно –
процентное)
массы

растворенного
вещества
к
массе раствора:


,

где mB
– масса вещества В, г; mр
– масса раствора, г.

Если выражать
массу раствора через его плотность (ρ)
и объем (Vр),
то

Титр раствора
вещества В
В)
показывает массу
растворенного
вещества,
содержащегося в 1 мл (см
3)
раствора
:


,
г/мл,

где
mB
– масса растворенного вещества В, г;
Vp
– объем раствора, мл.

Титр также можно
рассчитать по формуле:


,
г/мл,

где Мэк(В)
– молярная масса эквивалентов вещества
В, г/моль;

(В)
– молярная концентрация эквивалентов,
моль/л.

Выполнение работы Опыт 1. Приготовление приблизительно 0,1 н раствора соляной кислоты

Налить (под тягой)
в цилиндр концентрированный раствор
соляной кислоты и ареометром определить
его плотность. По измеренной плотности
по таблице 1 найти массовую долю (%)
кислоты в растворе. Рассчитать массу
кислоты, необходимую для приготовления
250 мл 0,1 н раствора HCl по
формуле:


,
откуда m = сэк ·
Мэк(HCl) · V,

где m
– масса кислоты, г; Мэк(HCl)
– молярная масса эквивалентов кислоты,
г/моль; сэк – молярная концентрация
эквивалентов, моль/л; V –
объем кислоты, л.

Полученную величину
(m) пересчитать на объем,
который требуется для приготовления
250 мл 0,1 н раствора кислоты по формуле:


,
откуда V =

,

где V
– объем кислоты, мл; m –
масса кислоты, г; ω – массовая доля
в % HCl, найденная по таблице
1; ρ – плотность
кислоты, г/см3, измеренная ареометром.

Пипеткой отобрать
рассчитанный объем раствора кислоты,
перенести его в мерную колбу, разбавить
водой до метки и хорошо перемешать.

Опыт 2. Установление нормальности и титра кислоты

Отмерить пипеткой
10 мл приготовленного раствора кислоты,
перенести его в коническую колбу,
добавить 1-2 капли фенолфталеина.

В бюретку налить
0,1 н раствор NaOH. Оттитровать
раствор кислоты. Для этого медленно
приливать из бюретки щелочь в колбу с
раствором кислоты, непрерывно перемешивая
его в процессе титрования. Место, в
которое падают капли щелочи, окрашивается
в розовый цвет, исчезающий при взбалтывании.
Титрование проводить до тех пор, пока
от одной капли щелочи раствор примет
неисчезающую окраску. Титрование
повторить. Результаты не должны отличаться
более чем на 0,1 мл.

Требования к
результату опыта
:

Данные опыта
занести в таблицу:

№ п/п

V (HCl)

(объем
кислоты)

V
(NaOH)

(объем
щелочи)

Vср
(NaOH)

(среднее
значение объема щелочи)

1

2

3

Вычислить:

1. Молярную
концентрацию эквивалентов раствора
кислоты по закону эквивалентов:

сэк (HCl)∙V(HCl)
= сэк (NaOH)∙V(NaOH),
откуда


,
моль/л

где сэк
(HCl) и сэк (NaOH)
– молярные концентрации эквивалентов
растворов; V(HCl)
и V(NaOH) –
объемы реагирующих растворов.

2. Титр раствора
НСl по формуле:


,
г/мл

Таблица 1.

Плотность раствора
соляной кислоты

Плотность ρ,
г/см3

Массовая доля
кислоты, %

1,100

20,01

1,105

20,97

1,110

21,92

1,115

22,86

1,120

23,82

1,125

24,78

1,130

25,75

1,135

26,70

1,140

27,66

1,145

28,61

1,150

29,57

1,155

30,55

1,160

31,52

1,165

32,49

1,170

33,46

1,175

34,42

1,180

35,39

1,185

36,31

1,190

37,23

1,195

38,16

1,200

39,11

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Относительная плотность водных растворов соляной кислоты при 20°С (d20)

Концентрация соляной кислоты по плотности

Относительная плотность водных растворов серной кислоты при 20°С (d20)

Концентрация серной кислоты по плотности.

Относительная плотность водных растворов ортофосфорной кислоты при 20°С (d20)

000085

Относительная плотность водных растворов азотной кислоты при 20°С (d20)

концентрация азотной кислоты по плотности

Титр раствора. Формула для его расчета достаточно проста и чем-то напоминает формулу для расчета плотности раствора, так как выражается в тех же единицах.

Титр раствора: формула для расчета

Титр – один из способов выражения количественного состава раствора.  Является основной концентрацией в титриметрическом анализе.

Титр (Т) – это масса вещества (в граммах), которая  содержится в 1 мл (1 см3) раствора.

Например, титр раствора азотной кислоты равен 0,005672 г/мл. Это означает, что в каждом одном миллилитре раствора содержится 0,005672 г азотной кислоты.

Переход от титра раствора к другим видам концентраций

В титриметрическом анализе применяются и другие концентрации: молярная  (См) и нормальная (Сн). Между ними и титром существует взаимосвязь: можно от одной концентрации перейти к другой. Например, взаимосвязь титра и молярной концентрации.

Для См объем измеряется в литрах (л) , для Т – в миллилитрах (мл), то есть в 1000 раз меньше. Учтем это и получим:

Аналогичные преобразования можно провести и с нормальной концентрацией (Сн). В результате получим:

Титр связан и с массовой долей растворенного вещества:

 Титр раствора: формула и примеры расчетов

Приведем конкретные примеры вычисления титра раствора и других концентраций, связанных с ним.

Пример 1. Какая масса азотной кислоты содержится в 500 мл раствора, если его титр равен 0,00630 г/мл?

titr-rastvora-formula

Пример 2. В 1 кг воды растворили 250 г NaOH. Плотность полученного раствора равна 1,219 г/мл. Какова массовая доля NaOH, титр, молярная и нормальная концентрации раствора щелочи.

titr-rastvora-formula

Пример 3. Титр раствора HCl равен 0,003592 г/мл. Вычислите его нормальную концентрацию.

titr-rastvora-formula

Пример 4. Нормальная концентрация раствора H2SO4 составляет 0,1205 н. Определите его титр.

titr-rastvora-formula

Пример 5. Какова нормальная концентрация раствора H2C2O4·2H2O, полученного растворением 1,7334 г ее в мерной колбе вместимостью 250 мл?

Пример 6. Питьевую соду массой 4,2 г растворили в дистиллированной воде. Объем раствора составил 200 мл. Каковы титр и молярная концентрация полученного раствора?

titr-rastvora-formula

Пример 7. В 100 г раствора (ρ = 1г/мл) хлорида цинка ZnCl2 содержится 5 г соли. Определите титр, массовую долю, молярную и нормальную концентрации раствора.

titr-rastvora-formula

Таким образом, зная титр раствора, формулу для вычисления его значения, можно перейти к другим видам концентрации раствора, и наоборот.

Чтобы самыми первыми узнавать о новых публикациях на сайте, присоединяйтесь к нашей группе ВКонтакте.

himzadacha.ru

Пожалуйста, оцените публикацию. Большая просьба, если вы оцениваете публикацию от 1 до 3 звезд, обязательно оставьте свой комментарий с указанием того, что не так с этой публикацией. Мы постараемся устранить недостатки.

Ваше мнение для нас важно!

Понравилась статья? Поделить с друзьями:
  • Как найти трудоемкость единицы продукции
  • Как найти файлы в capture one
  • Как найти сайт где я зарегистрировалась
  • Как найти уклон по горизонталями
  • Как найти невидимую папку в телефоне