Как найти конечную скорость тела формула

Здесь, в этой статье, мы обсудим, как найти конечную скорость с ускорением и расстоянием и как на нее влияют импульс и сила. 

Мы рассчитываем конечную скорость объекта, используя различные уравнения, содержащие силу, массу, время, расстояние и импульс. Для каждой переменной мы можем использовать разные уравнения для определения конечной скорости. 

Например, чтобы найти конечную скорость, используя импульс объекта, можно использовать уравнение импульса, котороеР = мв где m — масса объекта, P — импульс объекта, а v — скорость объекта.

Это уравнение содержит скорость, импульс и массу, поэтому оно может помочь в вычислении конечной скорости, когда известны масса и импульс. Точно так же, если масса дана без импульса, то мы можем использовать математическую форму второго закона движения Ньютона, то есть F = ma, где m — масса объекта, F — передняя работа над объектом, а a — ускорение объекта. Наконец, для времени и расстояния кинематические уравнения движения являются лучшими инструментами для определения скорости кого-либо или объекта.

как найти конечную скорость через ускорение и расстояние

Изображение предоставлено: Быстрая коза
График силы, импульса, ускорения и скорости

Как найти конечную скорость через силу, массу и время?

Как я уже упоминал, математическая форма второго закона движения Ньютона для нахождения конечной скорости с использованием силы, массы и времени. Математическая форма второго закона движения F = ма, где m — масса объекта, F — передняя работа над объектом, а — ускорение объекта. 

Уравнение содержит непосредственно силу, массу и ускорение. 

Как мы знаем, ускорение — это «скорость изменения скорости по отношению ко времени».

Итак, по этой формуле мы можем найти скорость, зная массу, силу и время. Если тело движется с переменной скоростью, что влечет за собой изменение скорости и/или направления, считается, что изменение происходит в этом движении.

Второй закон движения Ньютона, который подразумевает, как сила производит корректировку в движении, касается этого движения. Второй закон движения Ньютона иллюстрирует числовую связь между силой, массой и ускорением и используется для количественной оценки того, что происходит в сценариях, включающих силы и движение. Второй закон чаще всего формулируется численно как F = ма

Как найти конечную скорость через расстояние и время?

Используя первое, второе и третье уравнения движения.

Первое кинематическое уравнение v=u+at представляет собой комбинацию конечной скорости, начальной скорости, ускорения, расстояния и времени. То, какое уравнение следует использовать, будет зависеть от конкретного случая. Иногда можно использовать более одного уравнения.  

Чтобы найти конечную скорость, когда известны начальная скорость и расстояние, третье уравнение движения, которое v2=u2+ 2к может быть использован. И если время дано с расстоянием, и нам нужно вычислить конечную скорость, то, во-первых, мы можем узнать начальную скорость, используя второе уравнение движения, которое s=ut+1/2 в2 а затем, используя третье уравнение движения, которое v2 = ты2+ 2к, мы можем рассчитать конечную скорость объекта. 

Вычисление начальной и конечной скорости является частью нескольких физических формулировок и уравнений. В моделях для сохранение импульса или законы движения, разрыв между начальной и конечной скоростью говорит вам о скорости предмета до и после, что угодно происходит. Это может быть сила, приложенная к предмету, удар или что-то еще, что изменяет траекторию и скорость объекта.

Соответствующее уравнение движения можно использовать для вычисления конечной скорости объекта, испытывающего постоянное ускорение. Чтобы связать их друг с другом, эти уравнения требуют сочетания расстояния, начальной скорости, конечной скорости, ускорения и времени.

Как найти конечную скорость по импульсу?

Используя уравнение импульс то есть P = mv], где m — масса объекта, P — импульс объекта, а v — скорость объекта.

Это уравнение содержит массу объекта и скорость объекта. Выражение, подобное приведенному выше, можно рассматривать как технику решения вопросов. Можно определить последнюю переменную в формуле, имея целочисленные данные всех переменных, кроме одной, в формулах.

Точно так же выражение можно рассматривать как фразу, объясняющую значимое отношение между двумя переменными. В выражении две переменные можно рассматривать либо как линейно коррелированные, либо как обратно связанные. И масса, и скорость прямо пропорциональны импульсу. При неизменной скорости увеличение массы приведет к увеличению импульса, переносимого предметом.

Соответственно, увеличение скорости (при неизменной массе) приведет к увеличению мамы предмета.энтум. Мы можем предсказать, насколько сильно изменение одной переменной повлияет на другую, рассматривая и вычисляя пропорционально количества. Импульс — это элемент вектора, который имеет величину (математическую величину), а также направление. Вектор импульса обычно движется по той же траектории, что и вектор скорости.

С импульс — это вектор, сложение двух векторов импульса выполняется так же, как сложение любых двух других векторов. Когда два вектора направлены в разные стороны, один из них считается отрицательным, а другой — положительным. В большинстве вопросов этой группы задач для эффективного решения необходимо учитывать векторный характер импульса.

Как найти конечную скорость после столкновения?

Использование выражения для упругих и неупругих столкновений.

Импульс P, то есть P = mv, где m — масса объекта, P — импульс объекта, а v — скорость объекта.

По закону сохранения импульса: «Импульс до столкновение = импульс после столкновение»

Выражение для упругих столкновений

Формула для расчета конечной скорости данного объекта

v1f=m1-m2/m1+m2 (v1) +2m1-m2/m1+m2 (v2i)

Формула для расчета конечной скорости сталкивающегося объекта

v2f=m2-m1/m1+m2 (v1) +2m1-m2/m1+m2 (vi)

Выражение для неупругого столкновения

m1v1+m2v2=m1v1f+m2v2f

где m1 — масса объекта до столкновения, v1 — скорость данного объекта до столкновения, m2  — масса сталкивающегося объекта до столкновения, v2 – скорость сталкивающегося объекта до столкновения, а v1f – конечная скорость данного объекта, а v2f — конечная скорость сталкивающегося объекта. 

Эластичный или неэластичный столкновения возможны. Оба импульс и кинетическая энергия сохраняются при упругих столкновениях, а кинетическая энергия не сохраняется при неупругих столкновениях. Неупругие столкновения происходят, когда кинетическая энергия не сохраняется, например, при столкновении транспортных средств. Сохранение импульс относится к неупругим столкновениям.

В результате импульс до удара равен импульсу после контакта. Слово «импульс» соответствует количеству переменных, содержащихся в движущемся предмете. Произведение массы на скорость — вот как это называется. а его единицы — кгм/с.

Можно эффективно определить скорость транспортного средства после столкновения, используя приведенную ниже формулу, если мы знаем начальную массу и скорость транспортного средства и сталкивающегося объекта.

Когда частицы сталкиваются в неупругое столкновение, они не действуют как упругие во время столкновения. Это указывает на то, что частицы не деформируются упруго в месте столкновения; вместо этого они могут необратимо деформироваться, что приводит к рассеиванию энергии во время столкновения. Это отличается от упругого столкновения, при котором частицы упруго изгибаются в месте удара, ведя себя как безупречно упругие пружины, поглощая и высвобождая равное количество энергии.   

Как найти конечную скорость без учета времени?

С помощью третьего уравнения движения. 

Третье уравнение движения не содержит времени, поэтому оно не зависит от времени.  

Третье уравнение движения, которое есть v2=u2+2asis комбинация начальной скорости, конечной скорости, ускорения и расстояния. Таким образом, мы можем легко вычислить конечную скорость, когда известны другие переменные. И ему не нужно время, чтобы быть Познанным. 

Если положение объекта меняется относительно стандартного местоположения, считается, что он находится в движении относительно этой стандартной точки, а если нет, то считается, что он находится в неподвижном состоянии относительно этой точки. Мы создаем несколько классических формул, относящихся к определениям расстояния, смещения, скорости, скорости и ускорения объекта, с помощью формул, называемых уравнениями движения для хорошего понимания или взаимодействия с различными условиями покоя и движения.  

Как найти конечную скорость без ускорения? 

Как мы обсуждали ранее, приведенная ниже формула содержит начальную скорость объекта и сталкивающегося объекта до столкновения, а также массу объекта и сталкивающегося объекта до столкновения и конечную скорость. Итак, отсюда легко вычислить конечную энергию объекта, не зная его ускорения.  

Учитывая м1 — масса объекта до столкновения, v1 — скорость данного объекта до столкновения, м2  — масса сталкивающегося объекта до столкновения, v2 — скорость сталкивающегося объекта до столкновения, а v1f — конечная скорость данного объекта и v2f — конечная скорость сталкивающегося объекта. 

Для упругого столкновения;  

v1f=m1-m2/m1+m2 (v1) +2m1-m2/m1+m2 (v2i)

v2f=m2-m1/m1+m2 (v1) +2m1-m2/m1+m2 (v1i) 

Для неупругого столкновения; 

m1v1+m2v2=m1v1f+m2v2f

Если у нас есть исходная масса и скорость предоставленного объекта и сталкивающегося предмета, мы можем использовать приведенную ниже формулу для вычисления скорости предмета после столкновения. 

Как найти конечную скорость без начальной скорости?

Если начальная скорость объекта не указана, то можно считать, что изначально объект находился в состоянии покоя.

Таким образом, мы можем рассчитать конечную скорость по различным формулам, таким как кинематические уравнения, приравняв начальную скорость к нулю. Также мы можем найти скорость объекта по числовой форме второго закона движения, если известна масса объекта. Другой способ найти скорость — использовать формулу импульса, если известны масса и импульс объекта.  

Примеры 

Пример 1 

Допустим, автомобиль массой 100 кг движется со скоростью 80 м/с. Другой автомобиль массой 120 кг движется со скоростью 100 м/с. Они сталкиваются друг с другом. Конечная скорость первого автомобиля после столкновения равна 100 м/с. Какой будет конечная скорость второго автомобиля после столкновения? 

дорожный знак-дорожный-знак-щит-6771.png

Изображение предоставлено: Быстрая коза
Столкнулись две машины

Решения

В этом случае масса m1 то есть масса первого автомобиля до столкновения, скорость v1 первого автомобиля перед столкновением, масса m2 второго автомобиля до столкновения, скорость v2 второго автомобиля перед столкновением и конечной скоростью v1f первого автомобиля после столкновения известны. 

Данный; 

m1= 100 кг

v1= 80 м/см2= 120 кг

v2= 100 м / с

v1f = 100 м / с

Используя формулу упругого столкновения, мы можем вычислить конечную скорость второго автомобиля после столкновения. 

v2f=m2-m1/m1+m2 (vf)+m1-m2/m1+m2 (vi)  

v2f=(120- 100/120+ 100)100+(120(100+20))80

v2f= (0.090) 100 + 43.6363

v2f= 52.64 м / с

Таким образом, конечная скорость второго автомобиля после столкновения равна v.2f= 52.64 м / с.

Пример 2  

Автомобиль начал двигаться с начальной скоростью 30 м/с и преодолел расстояние 5 км. Автомобиль достигает ускорения a=10 м/с.2. Какой должна быть конечная скорость автомобиля и сколько времени это займет? 

В этом примере известна начальная скорость автомобиля, ускорение автомобиля и перемещение автомобиля, а конечная скорость автомобиля и время, затраченное автомобилем, задаются.  

Для нахождения конечной скорости мы будем использовать третье уравнение движения, которое представляет собой комбинацию начальной скорости, конечной скорости, смещения и ускорения. 

Данный; 

Начальная скорость, u = 30 м / с

Ускорение, а=10м/с2

Водоизмещение, с=5000м

Для нахождения конечной скорости мы будем использовать третье уравнение движения, то есть; 

v2 = u2 + 2as

где v — конечная скорость объекта, u — начальная скорость объекта, а — ускорение объекта при смещении объекта.   

Ввод заданных значений в приведенную выше формулу 

v2= 30 м / с2+2(10м2s2)(5000м)

v2= 900 m2s2+(20м/s2)(5000м)

v2= 900 m2s2+100000m2/s2

v2= 100900 m2/s2

v = 317.645 м / с

Значит, конечная скорость автомобиля будет равна 317.645 м/с.

Теперь, чтобы найти время, необходимое для покрытия заданного перемещения, мы будем использовать первое уравнение движения, которое имеет вид v=u+at. 

Подставляя заданные значения в это уравнение, мы получим 

317.645 м/с=30 м/с+ 10 м/с2t

317.645 м/с-30 м/с= 10м/с2t

287.645 м/с = 10м/с2t

t=287.645 м/с / 10 м/с}

t = 28.7 с

Таким образом, время, которое потребуется машине, чтобы добраться до конечной точки, составляет 28.7 секунды.  

Часто задаваемые вопросы | Часто задаваемые вопросы  

В. С точки зрения физики, что такое импульс? 

Импульс — это двумерная величина, которая включает в себя как величину, так и направление. Поскольку у импульса есть направление, его можно использовать для прогнозирования направления и скорости движения сталкивающихся тел. 

В. Какую роль играет импульс в движении? 

Когда два тела сталкиваются друг с другом, тело, имеющее большую скорость, что приводит к большему импульсу, передает большую мощность телу, имеющему меньшую скорость или движущемуся медленнее. 

Тело с малой стартовой скоростью должно сместиться с большей скоростью и импульсом по сравнению с телом с большей скоростью при старте после столкновения. 

В. Каковы подходы к сохранению импульса? 

Переменная, называемая импульсом, которая определяет движение в замкнутом наборе компонентов и никогда не меняется в соответствии с принципом сохранения импульса; то есть «общий импульс системы остается постоянным». 

Импульс эквивалентен импульсу, необходимому для остановки предмета за заданный промежуток времени, когда его масса умножается на его скорость. Общий импульс набора сущностей равен сумме их различных импульсов.

Однако, поскольку импульс — это вектор, который включает в себя как направление, так и амплитуда движения, импульсы объектов, движущихся в противоположных направлениях, могут компенсироваться, давая общую сумму нулю. 

Нахождение скорости по формулам и единица её измерения

Понятие и основные термины

Под скоростью понимается величина, определяющая быстроту и направление перемещения материальной точки в выбранной системе отсчёта. Термин широко применяется в математике, физике, химии. Так, с его помощью описывают реакции, изменения температуры, передвижение тел, используют как производную рассматриваемой величины.

Слово «скорость» произошло от латинского «velocitas», обозначающее движение. В качестве единицы измерения, согласно Международной системе единиц (СИ), для неё выбран метр, делённый на секунду (м/с). Обозначается скорость буквой V, вне зависимости от науки, в которой её применяют. Простейшая формула, с помощью которой определяют величину, выглядит следующим образом: V = S: t. Где:

  • S — расстояние (путь), пройденное материальной точкой или телом (м);
  • T — время за которое она преодолела путь (с).

Нахождение скорости по формулам

Это обобщённое уравнение, но в то же время позволяющее получить представление о понятии. Часто это неравенство называют уравнением пути. Формула используется для вычисления только в том случае, если движение не изменяется на всём исследуемом участке.

Впервые с выражением знакомят учащихся на уроках математики в пятом классе. Учитель предлагает научиться решать простые задачи на нахождение характеристики при известной длине пройденного пути и потраченного на это времени. Например, автомобиль за четыре часа проехал 16 километров. Необходимо найти, с какой скоростью он двигался. Решение задачи сводится к двум действиям. В первом все заданные величины переводятся в систему СИ: 4 часа = 240 минут = 10240 секунд; 16 километров = 16000 метров. Во втором действии данные подставляют в формулу и вычисляют ответ: V = 16000/10240 = 1,6 м/с.

Но, помимо равномерного движения, то есть при котором скорость является константой, есть ещё и другие виды перемещений. Использовать обобщённое уравнение для них нельзя. Для каждого вида движения применяется своя формула. Существующую скорость разделяют на следующие виды:

Нахождение скорости

  • неравномерную;
  • среднюю;
  • равномерно-переменную;
  • поступательную;
  • вращательную;
  • ускоренную.

Равноускоренное движение

Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.

Равноускоренное движение

Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.

В произвольно взятой точке скорость перемещения равна ускорению свободного падения.

Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:

  • V0 — начальная скорость;
  • A — ускорение (имеет постоянное значение);
  • t — время движения.

Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.

Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r-1(t). То есть, с математической точки зрения, это первая производная.

Исходя из этого можно утверждать, что движение Δs = v*Δt. Так как произведение ускорения на время определяется разницей V -V0, то верной будет запись: S = V0*t + A*t2/2 = (V2 — V20) /2*A.

Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V20 — 2* A * s)½. Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s)½.

Среднее значение

В кинематике для нахождения характеристики используется усреднённый параметр. Используют его при изучении движения материальной точки или любого физического тела. Для определения средней скорости используют две величины: скалярную и векторную. Первой обозначают путевое движение, а второй — перемещение.

Путевая скорость определяется как отношение расстояния пройденного тела ко времени, затраченному на его прохождение: V = Σs / Σt.

Среднее значение скорости

По сути, среднее значение находится как среднеарифметическое от всех скоростей, если рассматриваемая точка передвигалась одинаковые отрезки времени. В ином же случае найденная величина будет взвешенной среднеарифметической величиной.

Математически формулу средней скорости записывают так: V (t + Δ t) = Δ s/ Δ t = (s (t + Δ t) — s (t)) / Δ t. Учитывая, что Δs зависит от длины пути, которую преодолела точка за время Δt, верной будет запись: Δ s = s (t + Δt) — s (t). Если же затраченное время стремится к нулю, получится формула, совпадающая с выражением для нахождения мгновенной скорости.

Вектор материальной точки находится из отношения положения тела к отрезку времени: V (t + Δt) = Δr / Δt = (r (t + Δt) — r (t)) / Δt, где r — радиус-вектор. Когда тело выполняет равномерно-прямолинейное перемещение, то справедливым будет равенство: {V} = V.

Например, мяч первую половину пути длиной 100 метров катился с одной скоростью в течение двадцати секунд, а вторую с другой и одну минуту. Необходимо вычислить среднюю скорость. Согласно формулам, интервал движения на первом участке пути будет равен: t1 = s/2*V1, а на втором t2 = s/2*V2. Решением задачи будет: Vср = s/(t1+t2) = s/(s/2*v1 + s/2*v2) = 2*V1*V2/(V1+V2) = 100/(20 +60) = 1,25 м/с.

Угловая скорость

Угловая скорость

Проявляется этот вид при вращении тела вокруг оси. Траектория представляет собой круговое движение. Основным параметром, учитывающимся при его нахождении, является угол поворота (f). Все элементарные угловые движения являются векторами. Обычный поворот равен углу вращения тела df за небольшой отрезок времени dt в противоположную сторону от хода часовой стрелки.

В математике формулу для нахождения углового параметра записывают как w = df/dt. Угловая скорость — аксиальная величина, располагающаяся вдоль мгновенной оси и совпадающая с поступательным вращением правого винта. Равномерное вращение, то есть движение, при котором происходит поворот на один и тот же угол, называют равномерным. Модуль угловой скорости определяют по формуле: w = f/t, где f — угол поворота, t — время, в течение которого происходило вращение. Учитывая, что Δf = 2p, формулу можно переписать до вида: w = 2p/T, то есть с использованием периода.

Существует связь между угловой скоростью и числом оборотов: w = 2*p*v. Это понятие используется для решения заданий при описании неравномерного вращения. Есть также выражение, связывающее линейную скорость с угловой: v = [w*R], где R — компонента, проведённая перпендикулярно к радиус-вектору. В качестве единицы измерения параметра используется радиан, делённый на секунду (рад/с).

Например, необходимо определить угловую скорость вариатора в тот момент, когда подвешенная масса пройдёт расстояние, равное 10 метрам. Радиус плеча составляет 40 сантиметров. В начальный момент подвес находится в состоянии покоя, а затем начинает опускаться с ускорением A = 0,04 м/с2.

Учитывая, что линейная скорость вариатора совпадает с движением груза по прямой, можно записать: V = (2*a*S)½. Должен получится ответ: V = (4*0,04*10)½ = 1,26 м/с. Угловую же скорость находят по формуле: w = v/R, так как R = 40 см = 0,4 м, то W = 1,26/0,4 = 3,15 рад/с.

Закон сложения

Для разных систем отсчёта движения материальных точек существует закон, связывающий их между собой. Согласно ему, скорость чего-либо относительно системы, находящейся в покое, определяется суммой силы перемещения скоростей в подвижной области и более быстрой системы отсчёта по отношению к неподвижной.

Закон сложения скоростей

Чтобы понять суть закона, лучше всего рассмотреть простой пример. Пусть по железной дороге движется вагон со скоростью 80 км/ч. В этом вагоне перемещается пассажир со скоростью 3 км/ч. Приняв за систему отсчёта неподвижный железнодорожный путь, можно утверждать, что скорость пассажира относительно неё равна сумме скорости вагона и человека.

Если движение вагона и пассажира происходит в одном направлении, то значения просто складываются, V = 80+3 = 83 км/ч, в противоположном — вычитаются V = 80−3 = 77 км/ч. Но это правило будет верным лишь тогда, когда перемещение происходит по одной линии. Поэтому, если человек будет передвигаться в вагоне под углом, следует учитывать и этот фактор, так как по своей сути искомый параметр — величина векторная. Фактически рассчитываются две скорости: сближения и удаления.

Рассматриваемое событие происходит за время Δt. За этот промежуток человек преодолеет расстояние ΔS1, вагон же сможет проехать путь ΔS2. Используя закон, перемещение пассажира будет определяться по формуле: ΔS = ΔS1 + ΔS2. Собственное движение человека относительно железнодорожного пути будет равно V = ΔS1 / Δ t. Выразив значение из формулы нахождения ΔS, можно найти скорость вагона относительно железной дороги: V2 = ΔS2 / Δt.

Использование онлайн-калькулятора

Онлайн-калькулятор по физике

В интернете существуют сервисы, позволяющие находить параметр даже тем, кто не знает формулы или слабо ориентируется в теме. С их помощью можно решать довольно сложные задания, которые требуют скрупулёзного расчёта и немалой затраты времени. Онлайн-вычисление обычно занимает не более нескольких секунд, а за достоверность результата можно не беспокоиться.

Воспользоваться сайтами-калькуляторами сможет любой пользователь, имеющий подключение к интернету и установленный веб-браузер с поддержкой Flash-технологии. Никакой регистрации или указания личных данных сервисы, предлагающие такого рода услуги, не требуют. Система автоматически рассчитает ответ.

Из множества сайтов можно выделить три наиболее популярных среди потребителей:

  1. Справочный портал «Калькулятор».
  2. Allcalc.
  3. Fxyz.

Все они имеют интуитивно понятный интерфейс и, что примечательно, на своих страницах содержат таблицы всех формул, используемых для решения заданий, правильные условные обозначения и описания процессов вычисления.

Расчёт скорости любого тела несложен. Главное, знать формулы и правильно определить вид перемещения. При этом всегда можно воспользоваться услугами онлайн-калькуляторов. Через них решить поставленную задачу или проверить свои расчёты.

Many formulae and equations in physics problems involve calculating an initial and final velocity. The difference between initial and final velocity in equations for conservation of momentum or equations of motion tell you the velocity of an object before and after something happens. This could be a force applied to the object, a collision or anything that could change its trajectory and motion.

The final velocity of an object is an instantaneous velocity at a certain time t at the end of an interval. It measures the final speed (with a directional component) after a given time.

To calculate final velocity for an object under uniform acceleration, you can use the corresponding equation of motion. These equations use combinations of distance, initial velocity, final velocity, acceleration and time to relate them to one another.

Final Velocity Formula

Determining changes in velocity relies on the acceleration of an object. Acceleration is the change in velocity over time. For example, the final velocity (vf ) formula that uses initial velocity (‌vi‌), acceleration (‌a‌) and time (‌t‌) is:

v_f = v_i + aDelta t

For a given initial velocity of an object, you can multiply the acceleration due to a force by the time the force is applied and add it to the initial velocity to get the final velocity. The «delta» Δ in front of the ‌t‌ means it’s a change in time that can be written as ‌tf− ti.

Tips

  • This formula only works with a constant acceleration (or in the case of variable acceleration, an average acceleration over the time interval).

This is ideal for a ball falling toward the ground due to gravity. In this example, the acceleration due to the force of gravity would be the gravitational acceleration constant ‌g‌ = 9.8 m/s2. This acceleration constant tells you how fast any object accelerates when you drop it on Earth, no matter what the mass of the object is.

If you drop a ball from a given height and calculate how long it takes the ball to reach the ground, then you can determine the velocity just before it hits the ground as the final velocity. The initial velocity would be 0 if you dropped the ball without any external force. Using the equation above, you can determine the final velocity of the object ‌vf‌.

Alternative Final Velocity Calculator Equations

You can always use the other kinematic equations for whichever situation you’re working with, as they are always logically and mathematically equivalent with one another. If you knew the distance an object traveled (Δ‌x‌), along with the initial velocity and time it took to travel that distance, you could calculate final velocity using the equation for final position after an elapsed time, based on the average velocity:

Delta x = bar{v} t = frac{1}{2}(v_f+v_i)t \ newline{} \ text{This can then be rearranged to solve for } v_f: \ newline{} \ v_f = frac{2Delta x}{t} — v_i

Make sure to use the correct units in these calculations.

A Rolling Cylinder

For a cylinder rolling down an inclined plane or a hill, you can calculate the final velocity using the formula for conservation of energy. This formula dictates that, if the cylinder starts from rest, the energy it has at its initial position should equal its energy after rolling down a certain distance.

At its initial position, the cylinder has no kinetic energy because it’s not moving. Instead, all of its energy is potential energy, meaning its energy can be written as:

E = mgh

with a mass ‌m‌, gravitational constant ‌g‌ = 9.8 m/s2 and height ‌h‌. After the cylinder has rolled down a distance to a height of ‌h‌ = 0, its energy is only the sum of its translational kinetic energy and rotational kinetic energy. This gives you:

E = frac{1}{2}mv^2 + frac{1}{2}Iomega^2

for velocity ‌v‌, rotational inertia ‌I‌ and angular velocity «omega» ‌ω‌.

The rotational inertia ‌I‌ for a cylinder is ‌I‌ = ‌mr2 / 2 and the angular velocity ‌ω‌ = v/r. By the law of conservation of energy, you can set the cylinder’s initial potential energy equal to the sum of the two kinetic energies. Solving for ‌v‌, we can find:

mgh = frac{1}{2}mv^2 + frac{1}{2}(frac{mr^2}{2})(frac{v^2}{r^2}) \ newline{} \ text{the mass and radius cancel leaving:} \ newline{} \ gh = frac{1}{2}v^2 + frac{1}{4}v^2 = frac{3}{4}v^2 \ newline{} \ text{solving for $v$, we get:} \ newline{} \ v = sqrt{frac{4}{3}gh}

This formula for the final velocity doesn’t depend on the weight or mass of the cylinder. If you knew the weight of the cylinder formula in kg (technically, the mass) for different cylindrical objects, you could compare different masses and find their final velocities are the same, because mass cancels out of the expression above.

Other Influences on Velocity

Anything that affects the acceleration of a moving object will affect the state of velocity (or constant acceleration). If a force is applied in the opposite direction of the velocity, then the acceleration is negative relative to the velocity, so the final velocity will be lower than the initial velocity.

A more complex scenario might be found with an object in free fall. If an object is falling under the force of gravity it will also experience the force of air resistance in the opposite direction. Eventually, in a complex relationship of velocities and forces, the object will actually reach a constant velocity known as the terminal velocity for a falling object.


Формулы высоты, расстояния, времени и скорости тела брошенного горизонтально

h — высота на которую опустилось тело за время t

S — расстояние по горизонтали, пройденное телом за время t

V — скорость тела, направленная по касательной к траектории движения, через время t

Vo — начальная скорость тела, которая является составляющей скорости V и направленна по горизонтали (не меняется со временем)

Vg — составляющая скорости V, направленная по вертикали вниз, возникает под воздействием силы тяжести и в начале броска равна нулю

t — время падения тела на высоту h

g ≈ 9,8 м/с2 — ускорение свободного падения

Используя теорему Пифагора, по формуле, находим численное значение скорости V, а по правилу сложения векторов, можем определить направление , которое всегда будет по касательной к траектории движения :

Формула скорости тела в момент времени

Формула скорости тела в момент времени t (V):

Формула скорости тела в момент времени

Формула скорости тела в момент времени

Формула начальной скорости тела (Vo):

Формула начальной скорости тела

Формула начальной скорости тела

Формула расстояния по горизонтали, которое пролетело тело при падении (S):

Формула расстояния по горизонтали, которое пролетело тело при падении

Формула расстояния по горизонтали, которое пролетело тело при падении

Формула расстояния по горизонтали, которое пролетело тело при падении

Формула высоты, на которую опустилось тело при падении (h):

Формула высоты, на которую опустилось тело при падении

Формула времени падения тела (t):

Формула времени падения тела

Формула времени падения тела


Рисунок тела брошенного под углом к горизонту, максимальные значения

hmax — максимальная высота

Smax — максимальная дальность полета, если бросок и падение на одном уровне

Sh — расстояние пройденное по горизонтали до момента максимального подъема

tmax — время всего полета

th — время за которое тело поднялось на максимальную высоту

Vo — начальная скорость тела

α — угол под которым брошено тело

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула для расчета максимальной высоты достигнутое телом, если даны, начальная скорость Vo и угол α под которым брошено тело. :

Формула для расчета максимальной высоты

Формула для вычисления максимальной высоты, если известны, максимальное расстояние S max или расстояние по горизонтали при максимальной высоте Sh и угол α под которым брошено тело. :

Формула 1 для расчета максимальной высоты

По этой формуле, можно определить максимальную высоту, если известно время th за которое тело поднялось на эту высоту. :

Формула 2 для расчета максимальной высоты

Формула для расчета максимальной дальности полета, если даны, начальная скорость броска Vo и угол α под которым брошено тело. :

Формула для расчета максимальной дальности полета

или известны максимальная высота hmax и угол α под которым брошено тело. :

Формула 1 для расчета максимальной дальности полета

Формула для нахождения расстояния по горизонтали при максимальной высоте, если даны, начальная скорость броска Vo и угол α под которым брошено тело. :

Формула для расчета расстояния при максимальной высоте

или известны максимальная высота hmax и угол α под которым брошено тело. :

Формула 1 для расчета расстояния при максимальной высоте

* т. к. траектория движения симметрична относительно линии максимальной высоты, то расстояние Sh ровно в два раза, меньше максимальной дальности броска Smax

Формула для определения времени затраченного на весь полет, если даны, начальная скорость Vo и угол α под которым брошено тело или если известна только максимальная высота hmax :

Формула для расчета затраченного времени на подъем на максимальную высоту

* т. к. траектория движения симметрична относительно линии максимальной высоты, то время максимального подъема th ровно в два раза, меньше максимального времени tmax

Формула для определения времени за которое тело поднялось на максимальную высоту, если даны, начальная скорость Vo и угол α под которым брошено тело или если известна только максимальная высота hmax :

Формула 1 для расчета затраченного времени на подъем на максимальную высоту


1. Определить, на какой высоте находится тело, в любой точке траектории движения

Рисунок тела брошенного под углом к горизонту, высота

h — высота тела в момент времени t

hну — высота ниже уровня броска (принимает отрицательное значение)

S — дальность полета по горизонтали

t — время полета

Vo — начальная скорость тела

α — угол под которым брошено тело

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула для определения значения высоты тела в момент времени t

Формула для расчета максимальной высоты

Формула для определения значения высоты тела через расстояние S по горизонтали

Формула для расчета максимальной дальности полета

hну — высота ниже уровня броска, принимает отрицательное значение

2. Найти максимальную высоту, на которую поднялось тело

Рисунок тела брошенного под углом к горизонту, максимальные значения

hmax — максимальная высота

Smax — максимальная дальность полета, если бросок и падение на одном уровне

Sh — расстояние пройденное по горизонтали до момента максимального подъема

tmax — время всего полета

th — время за которое тело поднялось на максимальную высоту

Vo — начальная скорость тела

α — угол под которым брошено тело

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула для расчета максимальной высоты достигнутое телом, если даны, начальная скорость Vo и угол α под которым брошено тело. :

Формула для расчета максимальной высоты

Формула для вычисления максимальной высоты, если известны, максимальное расстояние S max или расстояние по горизонтали при максимальной высоте Sh и угол α под которым брошено тело. :

Формула 1 для расчета максимальной высоты

По этой формуле, можно определить максимальную высоту, если известно время th за которое тело поднялось на эту высоту. :

Формула 2 для расчета максимальной высоты


1. Формулы максимальной высоты и времени за которое тело поднялось на максимальную высоту

Формулы высоты, скорости, времени тела брошенного вверх

h max
— максимальная высота достигнутая телом за время t

Vк — конечная скорость тела на пике, равная нулю

Vн — начальная скорость тела

t — время подъема тела на максимальную высоту h

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула максимальной высоты (h max):

Формула времени за которое тело достигло максимальную высоту (t):

2. Формулы скорости, высоты и времени тела брошенного вертикально вверх под воздействием силы тяжести

Формулы  при свободном падении

h — расстояние пройденное телом за время t

Vн — начальная скорость тела

V — скорость тела в момент времени t

t — время подъема за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула скорости тела в момент времени t (V):

Формула начальной скорости тела (Vн):

Формулы высоты тела в момент времени t (h):

Формулы времени, за которое тело достигло высоту h (t):


1. Формулы скорости, высоты, времени

Формулы скорости, высоты, времени

h — раcстояние пройденное телом за время t

Vo — начальная скорость тела

Vk — конечная скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула конечной скорости тела (V):

Формула начальной скорости тела (Vo):

Формула расстояния, которое пролетело тело при падении (h):

Формула времени падения тела (t):

2. Формулы координаты тела, если направление оси OY совпадает с направлением скорости V

Формулы координаты тела при свободном падении

h — раcстояние пройденное телом за время t

Vo — начальная скорость тела

Vk — конечная скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 — ускорение свободного падения

Yo , Yк — начальная и конечная координаты тела на оси OY

Формулы конечной координаты тела (Yк ):

3. Формулы координаты тела, если направление оси OY не совпадает с направлением скорости V

Формулы координаты тела при свободном падении

h — раcстояние пройденное телом за время t

Vo — начальная скорость тела

Vk — конечная скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 — ускорение свободного падения

Yo , Yк — начальная и конечная координаты тела на оси OY

Формулы конечной координаты тела (Yк):




1. Формулы скорости, высоты, времени в условиях свободного падения при начальной скорости равной нулю

Рисунок, свободное падение тела вертикально вниз, начальная скорость равна нулю

h — раcстояние пройденное телом за время t

V — скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние или опустилось на высоту h

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула скорости тела в определенный момент времени или на определенной высоте (V):

Формула скорости свободно падающего тела, брошенного вертикально вниз без начальной скорости

Формула высоты, на которую опустилось тело или расстояния, которое пролетело тело при падении (h):

Формула высоты тела, брошенного вертикально вниз без начальной скорости

Формула времени свободного падения тела вертикально вниз (t):

Формула времени свободного падения тела вертикально вниз

2. Формулы координаты тела, если направление оси OY совпадает с направлением скорости падующего тела V

Рисунок, координата тела в условиях свободного падения, начальная скорость равна нулю

h — раcстояние пройденное телом за время t

V — скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 — ускорение свободного падения

Yo , Yк — начальная и конечная координаты тела на оси OY

Формулы конечной координаты тела (Yк):

3. Формулы координаты тела, если направление оси OY не совпадает с направлением скорости V

Формулы координаты тела при свободном падении

h — раcстояние пройденное телом за время t

V — скорость тела в момент времени t

t — время падения за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 — ускорение свободного падения

Yo , Yк — начальная и конечная координаты тела на оси OY

Формулы конечной координаты тела (Yк):





1. Найти время полета тела на определенной высоте


Рисунок тела брошенного под углом к горизонту, высота

hв — высота на восходящем участке траектории

hн — высота на нисходящем участке траектории

tвремя в момент которого тело находится на высоте hв или hн

Vo — начальная скорость тела

α — угол под которым брошено тело

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула для определения значения времени, за которое тело поднялось на определенную высоту, на восходящем участке траектории

Формула для расчета времени при подъеме

Формула для определения значения времени, за которое тело поднялось на определенную высоту, на нисходящем участке траектории

Формула для расчета времени при падении


Для справкиТаким образом, одному значению высоты будет соответствовать два значения времени, одно при подъеме, второе при падении.



2. Найти время полета тела пролетевшее определенное расстояние


Рисунок тела брошенного под углом к горизонту, дальность

S — расстояние пройденное по горизонтали

tвремя за которое тело прошло расстояние S

Vo — начальная скорость тела

Vx — проекция начальной скорости на ось OX

Vy — проекция начальной скорости на ось OY

α — угол под которым брошено тело

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула для определения значения времени, за которое пройдено определенное расстояние

Формула для расчета времени за пройденное расстояние


3. Значение времени при максимальных значениях высоты и дальности


Рисунок тела брошенного под углом к горизонту, максимальные значения

Smax — максимальная дальность по горизонтали

hmax — максимальная высота

tmaxвремя всего полета

thвремя за которое тело поднялось на максимальную высоту

Vo — начальная скорость тела

Vx — проекция начальной скорости на ось OX

Vy — проекция начальной скорости на ось OY

α — угол под которым брошено тело

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула для определения значения времени, затраченное на весь полет, если известна начальная скорость или ее проекции

Формула для расчета максимального времени через скорость и угол

Формула для определения значения времени, на максимальной высоте

Формула для расчета максимального времени через максимальную высоту


Для справкиТ. к. траектория движения тела симметрична относительно линии максимальной высоты, следовательно — время всего полета, в два раза больше времени затраченного при подъеме на максимальную высоту

время всего полета, в два раза больше времени на максимальной высоте



Загрузить PDF


Загрузить PDF

Скорость — это векторная величина, которая характеризует быстроту перемещения и направление движения предмета (тела). В математике скорость определяется как изменение положения тела в зависимости от изменения времени.[1]
Скорость можно найти во множестве физических и математических задач. Выбор правильной формулы зависит от данных значений, поэтому внимательно читайте условие задачи.

Формулы

  1. Изображение с названием Calculate Velocity Step 1

    1

  2. Изображение с названием Calculate Velocity Step 2

    2

    Запишите формулу, содержащую положение и время. Скорость можно вычислить по изменению положения тела и времени. Такую формулу можно применить к любой задаче. Обратите внимание, что если скорость тела меняется, вы найдете среднюю скорость за все время движения, а не конкретную скорость в определенный момент времени.

  3. Изображение с названием Calculate Velocity Step 3

    3

    Вычислите расстояние между начальным и конечным положениями. То есть между точками начала и окончания движения; они, наряду с направлением движения, указывают на «перемещение» или «изменение положения».[3]
    При этом траектория движения тела между этими точками значения не имеет.

    • Пример 1: автомобиль, едущий на восток, начинает движение в положении x = 5 м. Через 8 с машина находится в положении х = 41 м. Каково перемещение автомобиля?

      • Автомобиль переместился на 41-5 = 36 м на восток.
    • Пример 2: трамплин подбрасывает пловца на 1 метр вверх, и пловец летит до воды 5 м. Каково перемещение пловца?

      • Пловец оказался на 4 м ниже начальной точки, поэтому его перемещение равно -4 м (0 + 1 — 5 = -4). Несмотря на то, что пройденное пловцом расстояние составило 6 м (1 м вверх и 5 м вниз), конечная точка находится на 4 м ниже начальной точки.
  4. Изображение с названием Calculate Velocity Step 4

    4

    Вычислите изменение времени. Время, которое потребовалось для достижения конечной точки, будет, скорее всего, дано в задаче; если нет, просто вычтите начальное время из конечного.

    • Пример 1 (продолжение): в задаче сказано, что машине потребовалось 8 с, чтобы переместиться из начальной точки в конечную, поэтому изменение времени равно 8 с.
    • Пример 2 (продолжение): если пловец прыгнул в момент времени t = 7 с и коснулся воды в момент времени t = 8 с, изменение времени: 8 — 7 = 1 с.
  5. Изображение с названием Calculate Velocity Step 5

    5

    Разделите перемещение на изменение времени. Сделайте это, чтобы найти скорость движущегося тела. Теперь укажите направление движения, и вы получите среднюю скорость.

  6. Изображение с названием Calculate Velocity Step 6

    6

    Решите задачу, когда направление движения меняется. Не во всех задачах тело движется вдоль одной линии. Если тело совершило поворот, нарисуйте схему движения и решите геометрическую задачу, чтобы найти расстояние.

    • Пример 3: человек бежит 3 м на восток, затем поворачивает на 90° и бежит 4 м на север. Каково перемещение человека?

      • Нарисуйте схему и соедините начальную и конечную точки прямой линией. Это гипотенуза треугольника, которую можно найти с помощью теоремы Пифагора или других формул. В нашем примере перемещение составит 5 м на северо-восток.
      • Возможно, учитель математики попросит вас найти точное направление движения (в виде угла над горизонтальной прямой). В этом случае воспользуйтесь геометрическими законами или векторами.[4]

    Реклама

  1. Изображение с названием Calculate Velocity Step 7

    1

    Запомните формулу для вычисления скорости ускоряющегося тела. Ускорение — это быстрота изменения скорости. Если ускорение постоянное, скорость меняется с одинаковой быстротой.[5]
    Формула включает произведение ускорения и времени, а также начальную скорость:

  2. Изображение с названием Calculate Velocity Step 8

    2

    Умножьте ускорение на изменение времени. Так вы вычислите, насколько скорость увеличилась (или уменьшилась) за это время.

    • Пример: лодка, плывущая на север со скоростью 2 м/с, ускоряется на 10 м/с2. Насколько увеличится скорость лодки в течение 5 с?

      • a = 10 м/с 2
      • t = 5 с
      • (a * t) = 10 * 5 = 50 м/с.
  3. Изображение с названием Calculate Velocity Step 9

    3

    Прибавьте начальную скорость. Вы нашли общее изменение скорости. Прибавьте это значение к начальной скорости тела, чтобы вычислить конечную скорость.

    • Пример (продолжение): какова скорость лодки через 5 с?

  4. Изображение с названием Calculate Velocity Step 10

    4

    Укажите направление движения. Помните, что скорость является векторной величиной, то есть имеет направление. Поэтому в ответе укажите направление.

    • В нашем примере лодка начала движение на север и не изменила направление, поэтому ее конечная скорость равна 52 м/с на север.
  5. Изображение с названием Calculate Velocity Step 11

    5

    Используйте данную формулу, чтобы вычислить другие величины, которые входят в нее. Если известны ускорение и скорость в определенный момент времени, с помощью формулы можно найти скорость в другой момент времени. Например, вычислим начальную скорость:

    • Поезд ускоряется на 7 м/с2 в течение 4 секунд и достигает скорости 35 м/с. Какова начальная скорость поезда?

    Реклама

  1. Изображение с названием Calculate Velocity Step 12

    1

    Запомните формулу для вычисления круговой скорости. Круговая скорость — это скорость, которую должно иметь тело, чтобы постоянно вращаться вокруг другого тела, обладающего гравитацией, например, планеты.[6]

    • Круговая скорость равна отношению длины круглого пути к периоду времени, в течение которого тело движется.
    • Формула для вычисления круговой скорости:
      • v = (2πr) / T
    • Обратите внимание, что 2πr — это длина окружности.
    • r — радиус.
    • T — период времени.
  2. Изображение с названием Calculate Velocity Step 13

    2

    Умножьте радиус окружности на 2π. Сначала необходимо вычислить длину окружности. Для этого умножьте радиус на 2π. В качестве значения π можно использовать 3, 14.

    • Пример: найдите круговую скорость тела, движущегося по круговой траектории с радиусом 8 м в течение 45 с.
      • r = 8 м
      • T = 45 с
      • Длина окружности = 2πr ≈ (2)(3,14)(8) = 50,24 м
  3. Изображение с названием Calculate Velocity Step 14

    3

    Разделите полученное значение на время. Сделайте это, чтобы вычислить круговую скорость тела.

    • Пример: v = (2πr) / T = 50,24 / 45 = 1,12 м/с
      • Круговая скорость тела равна 1,12 м/с.

    Реклама

Советы

  • Метры в секунду (м/с) — это единица измерения скорости.[7]
    . Перед решением задачи убедитесь, что все единицы измерения соответствуют друг другу, например, значения даны в метрах (м), секундах (с), метрах в секунду (м/с) и метрах в квадратных секундах (м/с2).
  • Средняя скорость характеризует среднюю скорость, которую имеет тело на протяжении всего пути. Мгновенная скорость — это скорость тела в определенный момент времени.

Реклама

Об этой статье

Эту страницу просматривали 17 804 раза.

Была ли эта статья полезной?

Понравилась статья? Поделить с друзьями:
  • Молодежь как вы нашли работу
  • Как правильно составить план своего проекта
  • Как составить уравнения знать точка
  • Дети аутисты как найти подход к
  • Как найти высоту если известна длина треугольника