Как найти координату отмеченной точки a

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Как найти координаты точки

Поддержать сайтспасибо

Каждой точке координатной плоскости соответствуют две координаты.

Координаты точки на плоскости — это пара чисел, в которой на
первом месте стоит
абсцисса, а на
втором
ордината точки.

Найти координаты точки

Рассмотрим как в системе координат (на координатной плоскости):

  • находить координаты точки;
  • найти положение точки.

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки
перпендикуляры на оси координат.

Точка пересечения с осью «x» называется абсциссой точки «А»,
а с осью y называется ординатой точки «А».

Координаты точки плоскости

Обозначают координаты точки, как указано выше (·) A (2; 3).

Пример (·) A (2; 3) и (·) B (3; 2).

Точки с разными координатами

Запомните!
!

На первом месте записывают абсциссу (координату по оси «x»), а на втором —
ординату (координату по оси «y») точки.

Особые случаи расположения точек

  1. Если точка лежит на оси «Oy»,
    то её абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси «Ox», то её ордината равна 0.
    Например,
    точка F (3, 0).
  3. Начало координат — точка O имеет координаты, равные нулю O (0,0).
    Точки на координатный осях
  4. Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.
    Точки на прямой перпендикулярной оси абсцисс
  5. Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.
    Точка на оси абсцисс
  6. Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).
    Точка на оси абсцисс
  7. Координаты любой точки, лежащей на оси ординат имеют вид (0, y).
    Точка на оси ординат

Как найти положение точки по её координатам

Найти точку в системе координат можно двумя способами.

Первый способ

Чтобы определить положение точки по её координатам,
например, точки D (−4 , 2), надо:

  1. Отметить на оси «Ox», точку с координатой
    «−4», и провести через неё прямую перпендикулярную оси «Ox».
  2. Отметить на оси «Oy»,
    точку с координатой 2, и провести через неё прямую перпендикулярную
    оси «Oy».
  3. Точка пересечения перпендикуляров (·) D — искомая точка.
    У неё абсцисса равна «−4», а ордината равна 2.

    Как найти точку в системе координат

Второй способ

Чтобы найти точку D (−4 , 2) надо:

  1. Сместиться по оси «x» влево на
    4 единицы, так как у нас
    перед 4
    стоит «».
  2. Подняться из этой точки параллельно оси y вверх на 2 единицы, так
    как у нас перед 2 стоит «+».
    Как найти точку на координатной плоскости

Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на
листе формата A4 в клеточку, можно скачать и использовать
готовую систему координат на нашем сайте.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Привет, мой друг, тебе интересно узнать все про координаты точки, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое
координаты точки , настоятельно рекомендую прочитать все из категории Арифметика.

каждой точке координатной плоскости соответствуют две координаты.


координаты точки
на плоскости — это пара чисел, в которой на первомместе стоит абсцисса,
а на втором — ордината точки.

Как найти и записать координаты точки

Рассмотрим как в системе координат (на координатной плоскости):

  • находить координаты точки;
  • найти положение точки.

Чтобы найти координаты точки на плоскости, нужно опустить из этой точки перпендикуляры на оси координат.

Точка пересечения с осью x называется абсциссой точки А, а с осью y называется ординатой точки А.

Как найти и записать координаты точки

Обозначают координаты точки, как указано выше (•) A (2; 3).

Пример (•) A (2; 3) и (•) B (3; 2).

Как найти и записать координаты точки

Как найти и записать координаты точкиКак найти и записать координаты точкиКак найти и записать координаты точкиКак найти и записать координаты точки

На первом месте записывают абсциссу (координату по оси x), а на втором — ординату (координату по оси y) точки.

Особые случаи расположения точек

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0 . Об этом говорит сайт https://intellect.icu . Например, точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например, точка F (3, 0).
  3. Начало координат — точка O имеет координаты, равные нулю O (0,0).Как найти и записать координаты точки
  4. Точки любой прямой перпендикулярной оси абсцисс, имеют одинаковые абсциссы.Как найти и записать координаты точки
  5. Точки любой прямой перпендикулярной оси ординат, имеют одинаковые ординаты.Как найти и записать координаты точки
  6. Координаты любой точки, лежащей на оси абсцисс имеют вид (x, 0).Как найти и записать координаты точки
  7. Координаты любой точки, лежащей на оси ординат имеют вид (0, y).Как найти и записать координаты точки

Как найти положение точки по ее координатам

Найти точку в системе координат можно двумя способами.

Первый способ

Чтобы определить положение точки по ее координатам, например, точки D (-4 , 2), надо:

  1. Отметить на оси Ox, точку с координатой (-4), и провести через нее прямую перпендикулярную оси 0x.
  2. Отметить на оси Oy, точку с координатой (2), и провести через нее прямую перпендикулярную оси 0y.
  3. Точка пересечения перпендикуляров (•) D — искомая точка. У нее абсцисса равна (-4), а ордината равна (2).Как найти и записать координаты точки

Второй способ

Чтобы найти точку D (-4 , 2) надо:

  1. Сместиться по оси x влево на 4 единицы, так как у нас перед 4 стоит «-».
  2. Подняться из этой точки параллельно оси y вверх на 2 единицы, так как у нас перед 2 стоит «+».Как найти и записать координаты точки

Чтобы быстрее и удобнее было находить координаты точек или строить точки по координатам на листе формата A4 в клеточку, можно скачать и использовать готовую систему координат на нашем сайте.

Как ты считаеешь, будет ли теория про координаты точки улучшена в обозримом будующем? Надеюсь, что теперь ты понял что такое координаты точки
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Арифметика

Из статьи мы узнали кратко, но емко про координаты точки

Так как отрезок (displaystyle AB) перпендикулярен оси (displaystyle rm OX{small,}) то абсцисса точки (displaystyle A) равна длине отрезка (displaystyle OB{small.})

Найдем длину отрезка (displaystyle OB{small.})

Рассмотрим прямоугольный треугольник (displaystyle AOB{small,}) катетом которого является отрезок (displaystyle OB{small.})

Гипотенуза (displaystyle OA) треугольника (displaystyle AOB) является радиусом единичной окружности.

Значит, (displaystyle OA=1{small.})

Тогда, поскольку (displaystyle OB) – катет, прилежащий к углу (displaystyle color{blue}{alpha}{small,}) то

(displaystyle OB=OAcdot frac{OB}{OA}= OAcdotcos(color{blue}{alpha})=1cdotcos(color{blue}{alpha})=cos(color{blue}{alpha}){small.})

Таким образом, получаем:

абсцисса точки (displaystyle A) (displaystyle = OB=cos(color{blue}{alpha}){small.})
 

Ответ: (displaystyle cos(color{blue}{alpha}){small.})

Автор статьи

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Прямоугольная система координат

Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.

Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)

Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Координаты точки

Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).

Произвольная точка. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ

Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).

Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

«Координаты точки и координаты вектора. Как найти координаты вектора» 👇

Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.

Пример 1

Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.

Параллелепипед. Автор24 — интернет-биржа студенческих работ

Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ

Решение.

Точка $O$ начало координат, следовательно, $O=(0,0,0)$.

Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит

$Q=(2,0,0)$, $N=(0,0,1.5)$, $R=(0,2.5,0)$

Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит

$S=(2,0,1.5)$, $L=(2,2.5,0)$, $R=(0,2.5,1.5)$

Точка $P$ имеет координаты $P=(2,2.5,1.5)$

Координаты вектора по двум точкам и формула нахождения

Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $overline{i}$, по направлению оси $Oy$ — единичный вектор $overline{j}$, а единичный вектор $overline{k}$ нужно направлять по оси $Oz$.

Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).

Теорема 1

Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.

Математически это выглядит следующим образом:

$overline{δ}=moverline{α}+noverline{β}+loverline{γ}$

Так как векторы $overline{i}$, $overline{j}$ и $overline{k}$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $overline{δ}$ в этой системе координат, по теореме 1, может принимать следующий вид

$overline{δ}=moverline{i}+noverline{j}+loverline{k}$ (1)

где $n,m,l∈R$.

Определение 1

Три вектора $overline{i}$, $overline{j}$ и $overline{k}$ будут называться координатными векторами.

Определение 2

Коэффициенты перед векторами $overline{i}$, $overline{j}$ и $overline{k}$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть

$overline{δ}=(m,n,l)$

Линейные операции над векторами

Теорема 2

Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.

Доказательство.

Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $overline{α}=(α_1,α_2,α_3)$, $overline{β}=(β_1,β_2 ,β_3)$.

Эти вектора можно записать следующим образом

$overline{α}=α_1overline{i}+ α_2overline{j}+α_3overline{k}$, $overline{β}=β_1overline{i}+ β_2overline{j}+β_3overline{k}$

$overline{α}+overline{β}=α_1overline{i}+α_2overline{j}+α_3overline{k}+β_1overline{i}+ β_2overline{j}+β_3overline{k}=(α_1+β_1 )overline{i}+(α_2+β_2 )overline{j}+(α_3+β_3)overline{k}$

Следовательно

$overline{α}+overline{β}=(α_1+β_1,α_2+β_2,α_3+β_3)$

Теорема доказана.

Замечание 1

Замечание: Аналогично, находится решение разности нескольких векторов.

Теорема 3

Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.

Доказательство.

Возьмем $overline{α}=(α_1,α_2,α_3)$, тогда $overline{α}=α_1overline{i}+α_2overline{j}+α_3overline{k}$, а

$loverline{α}=l(α_1overline{i}+ α_2overline{j}+α_3overline{k})=lα_1overline{i}+ lα_2overline{j}+lα_3overline{k}$

Значит

$koverline{α}=(lα_1,lα_2,lα_3)$

Теорема доказана.

Пример 2

Пусть $overline{α}=(3,0,4)$, $overline{β}=(2,-1,1)$. Найти $overline{α}+overline{β}$, $overline{α}-overline{β}$ и $3overline{α}$.

Решение.

$overline{α}+overline{β}=(3+2,0+(-1),4+1)=(5,-1,5)$

$overline{α}-overline{β}=(3-2,0-(-1),4-1)=(1,1,3)$

$3overline{α}=(3cdot 3,3cdot 0,3cdot 4)=(9,0,12)$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Теория: 06 Вычисление координат точки на единичной окружности

На единичной окружности отмечена точка (displaystyle A <small ,>) как показано на рисунке. Угол (displaystyle BOA ) равен (displaystyle color<alpha> <small .>) Найдите абсциссу точки (displaystyle A <small .>)

Абсцисса точки (displaystyle A) равна Перетащите сюда правильный ответ .

Так как отрезок (displaystyle AB) перпендикулярен оси (displaystyle rm OX<small,>) то абсцисса точки (displaystyle A) равна длине отрезка (displaystyle OB<small.>)

Найдем длину отрезка (displaystyle OB<small.>)

Рассмотрим прямоугольный треугольник (displaystyle AOB<small,>) катетом которого является отрезок (displaystyle OB<small.>)

Гипотенуза (displaystyle OA) треугольника (displaystyle AOB) является радиусом единичной окружности.

Значит, (displaystyle OA=1<small.>)

Тогда, поскольку (displaystyle OB) – катет, прилежащий к углу (displaystyle color<alpha><small,>) то

Таким образом, получаем:

абсцисса точки (displaystyle A) (displaystyle = OB=cos(color<alpha>)<small.>)

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Тригонометрия

    Найти координаты точки на единичной окружности, полученной поворотом точки ( Aleft( 1;0 right) ) на ( -225<>^circ ) .

    Окружность единичная с центром в точке ( left( 0;0 right) ) , значит, мы можем воспользоваться упрощёнными формулами:

    ( beginx=cos beta =cos (-225<>^circ )\y=sin beta =sin (-225<>^circ )end ) .

    Можно заметить, что ( -225<>^circ =-360<>^circ +135<>^circ ; -225<>^circ =-180<>^circ -45<>^circ ) . Изобразим рассматриваемый пример на рисунке:

    Радиус ( <_<1>>W ) образует с осью ( x ) углы, равные ( 45<>^circ ) и ( 135<>^circ ) . Зная, что табличные значения косинуса и синуса ( 45<>^circ ) равны ( displaystyle dfrac<sqrt<2>> <2>) , и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

    Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме «Формулы тригонометрии».

    Таким образом, искомая точка имеет координаты ( left( -dfrac<sqrt<2>><2>;dfrac<sqrt<2>> <2>right) ) .

    источники:

    http://ege-study.ru/ru/ege/materialy/matematika/trigonometricheskij-krug/

    http://calcsbox.com/usecase/22.html

    Понравилась статья? Поделить с друзьями:
  • Как найти центр фигуры компас
  • Что делать если подключение не защищено как исправить на телефоне
  • Как найти диаметр если известна длина хорды
  • Как найти дело по алиментам через госуслуги
  • Сбежал маисовый полоз как найти