Как найти координаты аналитическим способом

Координаты точки объекта можно вычислить
по формулам (35) – (39), если известны
элементы ориентирования снимков и
измерены координаты точек стереопары.
В этом случае решается прямая засечка.

Иногда возникает необходимость решения
обратной засечки по нескольким опорным
точкам, изобразившихся на снимке,
определяются координаты точки
фотографирования и другие элементы
ориентирования.

Исходными данными являются: 1) тип
измерительного прибора, 2) количество
контрольных точек левого снимка, 3)
количество контрольных точек правого
снимка, 4) количество контрольных точек
общих для обрабатываемой пары снимков,
5) точность вычислений элементов
ориентирования левого и правого снимков
в итерационном процессе, 6) максимальное
количество итераций при вычислениях
элементов ориентирования снимков, 7)
приближенные исходные данные левого и
правого снимков

.

Пусть известны координаты X,Y,Zточки А
в системеSXYZи элементы
ориентирования снимка Р. Найдем координатыx иzизображенияаточки А в системеSxyz‘.

Если координаты XS,
YS,
ZSцентра проекции не равны нулю, то

(51)

Измеряют
координаты изображений опорных и
определяемых точек на снимках и вычисляют
эти координаты, используя приближенные
значения неизвестных. Затем для каждой
точки сети составляют два уравнения

(52)

где а, b,
…,
lиа’, b’, …, l
— частные производные функций (50) по
переменнымXS,YS,…,ZS,
δXS,
δYS,…,
δZS
поправки к приближенным значениям
элементов ориентирования снимков и
координат определяемой точки.

Уравнение
(52) решают по методу наименьших квадратов
путем последовательных приближений.

Уравнение
(52) запишем в матричном виде:

AX + L = V,
(54)

где А — матрица
коэффициентов уравнений поправок

Х — вектор
неизвестных

L
— вектор свободных членов

Составляют
систему нормальных уравнений пятого
порядка

ВХ + С = 0,
(55)

здесь
В = A’PA
C = A’PL,

где A’
— транспонированная матрица

Р — матрица
весов

Уравнение (52) решают под
условием

=min(56)

где рир‘ –
веса измеренных величинxи z.

Осн.:1[61-64],

Контрольные вопросы:

  1. Приближенные
    исходные данные левого и правого
    снимков.

  2. Уравнение поправок
    для каждой точки.

  3. Уравнение поправок
    в матричном виде

  4. Система нормальных
    уравнений пятого порядка.

  5. Условие решения
    уравнений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание

  1. Как найти координаты точек пересечения графика функции: примеры решения
  2. Первый способ
  3. Второй способ
  4. Третий способ
  5. Готовые работы на аналогичную тему
  6. Координаты точки пересечения графиков функций
  7. Как найти?
  8. Случай двух линейных функций
  9. Случай двух нелинейных функций
  10. Как найти точки пересечения графиков функций
  11. Точки пересечения графика функции с осями координат
  12. Точки пересечения графиков функций
  13. Как найти координаты, примеры решения
  14. Приравнивание функций друг к другу и нахождение корней
  15. Путем составления системы уравнений
  16. Нахождение через графическое построений функций

Как найти координаты точек пересечения графика функции: примеры решения

Вы будете перенаправлены на Автор24

В практике и в учебниках наиболее распространены нижеперечисленные способы нахождения точки пересечения различных графиков функций.

Первый способ

Первый и самый простой – это воспользоваться тем, что в этой точке координаты будут равны и приравнять графики, а из того что получится можно найти $x$. Затем найденный $x$ подставить в любое из двух уравнений и найти координату игрек.

Найдём точку пересечения двух прямых $y=5x + 3$ и $y=x-2$, приравняв функции:

Теперь подставим полученный нами икс в любой график, например, выберем тот, что попроще — $y=x-2$:

$y=-frac<1> <2>– 2 = — 2frac12$.

Точка пересечения будет $(-frac<1><2>;- 2frac12)$.

Второй способ

Второй способ заключается в том, что составляется система из имеющихся уравнений, путём преобразований одну из координат делают явной, то есть, выражают через другую. После это выражение в приведённой форме подставляется в другое.

Узнайте, в каких точках пересекаются графики параболы $y=2x^2-2x-1$ и пересекающей её прямой $y=x+1$.

Решение:

Второе уравнение проще первого, поэтому подставим его вместо $y$:

Вычислим, чему равен x, для этого найдём корни, превращающие равенство в верное, и запишем полученные ответы:

Подставим наши результаты по оси абсцисс по очереди во второе уравнение системы:

$y_1= 2 + 1 = 3; y_2=1 — frac<1> <2>= frac<1><2>$.

Точки пересечения будут $(2;3)$ и $(-frac<1><2>; frac<1><2>)$.

Третий способ

Готовые работы на аналогичную тему

Перейдём к третьему способу — графическому, но имейте в виду, что результат, который он даёт, не является достаточно точным.

Для применения метода оба графика функций строятся в одном масштабе на одном чертеже, и затем выполняется визуальный поиск точки пересечения.

Данный способ хорош лишь в том случае, когда достаточно приблизительного результата, а также если нет каких-либо данных о закономерностях рассматриваемых зависимостей.

Найдите точку пересечения графиков на общем рисунке.

Рисунок 1. Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ

Решение:

Тут всё просто: ищем точки пересечения пунктиров, опущенных с графиков с осями абсцисс и ординат и записываем по порядку. Здесь точка пересечения равна $(2;3)$.

Источник

Координаты точки пересечения графиков функций

Как найти?

  1. Чтобы найти координаты точки пересечения графиков функций нужно приравнять обе функции друг к другу, перенести в левую часть все члена, содержащие $ x $, а в правую остальные и найти корни, полученного уравнения.
  2. Второй способ заключается в том, что нужно составить систему уравнений и решить её путём подстановки одной функции в другую
  3. Третий способ подразумевает графическое построение функций и визуальное определение точки пересечения.

Случай двух линейных функций

Рассмотрим две линейные функции $ f(x) = k_1 x+m_1 $ и $ g(x) = k_2 x + m_2 $. Эти функции называются прямыми. Построить их достаточно легко, нужно взять любые два значения $ x_1 $ и $ x_2 $ и найти $ f(x_1) $ и $ (x_2) $. Затем повторить тоже самое и с функцией $ g(x) $. Далее визуально найти координату точки пересечения графиков функций.

Следует знать, что линейные функции имеют только одну точку пересечения и только тогда, когда $ k_1 neq k_2 $. Иначе, в случае $ k_1=k_2 $ функции параллельны друг другу, так как $ k $ — это коэффициент угла наклона. Если $ k_1 neq k_2 $, но $ m_1=m_2 $, тогда точкой пересечения будет $ M(0;m) $. Это правило желательно запомнить для ускоренного решения задач.

Как это сделать? Так как представлены две линейные функции, то первым делом смотрим на коэффициент угла наклона обеих функций $ k_1 = 2 $ и $ k_2 = 1 $. Замечаем, что $ k_1 neq k_2 $, поэтому существует одна точка пересечения. Найдём её с помощью уравнения $ f(x)=g(x) $:

Переносим слагаемые с $ x $ в левую часть, а остальные в правую:

Получили $ x=8 $ абциссу точки пересечения графиков, а теперь найдём ординату. Для этого подставим $ x = 8 $ в любое из уравнений хоть в $ f(x) $, либо в $ g(x) $:

$$ f(8) = 2cdot 8 — 5 = 16 — 5 = 11 $$

Итак, $ M (8;11) $ — является точкой пересечения графиков двух линейных функций.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Пусть даны $ f(x) = 2x-5 $ и $ g(x)=x+3 $. Найти координаты точки пересечения графиков функций.
Решение
Ответ
$$ M (8;11) $$
Пример 2
Дано $ f(x)=2x-1 $ и $ g(x) = 2x-4 $. Найти точки пересечения графиков функций.
Решение
Как найти? Опять же обращаем внимание на то, что угловые коэффициенты равны $ k_1 = k_2 = 2 $. Это означает, что линейные функции параллельны между собой, поэтому у них нет точек пересечения!
Ответы
Графики функций параллельны, нет точек пересечения.

Случай двух нелинейных функций

Как быть с двумя нелинейными функциями? Алгоритм простой: приравниваем уравнения друг к другу и находим корни:

Разносим по разным сторонам уравнения члены с $ x $ и без него:

Найдена абцисса искомой точки, но её недостаточно. Ещё нехватает ординаты $ y $. Подставляем $ x = 0 $ в любое из двух уравнений условия задачи. Например:

$$ f(0)=0^2-2cdot 0 + 1 = 1 $$

$ M (0;1) $ — точка пересечения графиков функций

Источник

Как найти точки пересечения графиков функций

Здравствуйте!
Как найти точки пересечения графиков функций у=2х-1 и у=5-х?
Спасибо!

Задание.
Найти точки пересечения графиков функций у=2х-1 и у=5-х.

Решение.
Точки пересечения графиков функций можно найти двумя способами.
1-й способ.
Построить оба графика на одной координатной плоскости и определить координаты их точки пересечения. Для таких простых функций, как заданы в условии, графики строятся также просто. К тому же можно воспользоваться специальными программами для построения графиков или онлайн-сервисами.

Как видно из полученного графика, обе функции пересекаются в точке с координатами (2; 3).
Проверим с помощью второго способа, правильно ли мы определили ее координаты.

2-й способ.
Можно точки пересечения находить без построения графиков – аналитически. Для этого приравнивают правые части обоих уравнений и решают получившееся уравнение.
Итак, запишем уравнение из правых частей заданных функций:
2х – 1 = 5 – х.
Перенесем все слагаемые с переменной в левую часть, а свободные члены – в правую:
2х + х = 5 + 1
3х = 6
х = 2.
Из получившегося уравнения нашли первую координату х точки пересечения графиков. Найдем вторую координату у этой точки. Для этого в любое из уравнений подставим полученное значение х:
у = 2х – 1
у = 2 * 2 – 1
у = 4 – 1
у = 3.
Итак, точка пересечения графиков функций у = 2х – 1 и у = 5 – х имеет координаты (2; 3).

Источник

Точки пересечения графика функции с осями координат

Точки пересечения графиков функций

В алгебре и начале анализа можно встретить множество задач на поиск точек пересечения графиков функций с помощью их построения или другими методами. Благодаря определенному алгоритму действий, найти ответ достаточно просто. В большинстве случаев решение заключается в определении корней различного вида уравнений.

График функции (y = f(x)) является множеством точек ((x; y)) , координаты которых связаны соотношением (y = f(x).)

Равенство (y = f(x)) называют уравнением данного графика. Таким образом, график функции представляет собой множество точек (x; y), где x — является аргументом, а y — определяется как значение функции, соответствующее данному аргументу.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В том случае, когда графики пересекаются в какой-то точке, можно сделать вывод о существовании общего решения системы уравнений. Определить координаты точки можно с помощью графического или аналитического метода. В первом случае требуется построить график уравнения с переменной. Аналитический метод поиска координат точек, в которых графики функций пересекаются, подразумевает решение уравнения, а найденные корни и являются искомыми точками.

Как найти координаты, примеры решения

Существует несколько способов решения подобных задач:

  1. Поиск точек пересечения графиков функций заключается в приравнивании обеих функций друг к другу. При этом все члены с х переносят в левую сторону, а оставшиеся – в правую. Затем остается найти корни уравнения, которое получилось после преобразований.
  2. Второй метод состоит в записи системы уравнения для ее последующего решения с помощью подстановки одной функции в другую.
  3. Третий способ подразумевает построение графиков функций, чтобы определить точки их пересечения визуально.

В качестве примера можно рассмотреть две линейные функции:

Данные функции являются прямыми. Их можно графически изобразить, если принять какие-либо два значения (x_1) и (x_2) и найти (f(x_1)) и ((x_2)) . Далее действия необходимо повторить с функцией (g(x)) . Затем достаточно легко определить визуально координаты точки пересечения рассматриваемых функций.

Важно отметить, что для линейных функций характерна лишь одна точка пересечения только в том случае, когда (k_1 neq k_2) . В противном случае (k_1=k_2) , а функции будут параллельными друг другу, в связи с тем, что k является коэффициентом угла наклона. При ( k_1 neq k_2) и (m_1=m_2) точка пересечения будет соответствовать (M(0;m)) . Данная закономерность упрощает решение многих подобных задач.

Имеются функции: (f(x) = 2x-5)

Требуется определить координаты точки, в которой пересекаются графики рассматриваемых функций.

В первую очередь стоит отметить, что функции являются линейными. Важно обратить внимание на коэффициент угла наклона рассматриваемых функций:

По этой причине имеется лишь одна точка пересечения графиков функций. Определить ее можно путем решения уравнения:

Необходимо перенести члены с x в левую часть, а остальные — в правую:

В результате удалось найти x=8, что соответствует абсциссе точки пересечения графиков. Требуется определить ординату y с помощью подстановки x = 8 в любое из уравнений – в (f(x)) , либо в (g(x)) :

(f(8) = 2cdot 8 — 5 = 16 — 5 = 11)

Таким образом, M (8;11) – представляет собой точку, в которой пересекаются графики пары линейных функций.

Записаны две функции: (f(x)=2x-1)

Необходимо определить точки, в которых графики рассматриваемых функций пересекаются.

Таким образом, линейные функции параллельны между собой, что объясняет отсутствие точек пересечения их графиков.

Ответ: графики функций параллельны, точки пересечения отсутствуют.

Требуется определить координаты точки, в которой пересекаются графики следующих функций: (f(x)=x^2-2x+1)

В данном случае функции являются нелинейными. Поэтому алгоритм решения задачи будет несколько отличаться от предыдущих примеров. В первую очередь следует приравнять уравнения:

Далее необходимо разнести в разные стороны уравнения члены с x и без него:

Таким образом, будет определена абсцисса искомой точки. Затем необходимо найти ординату у. Для этого нужно подставить (x = 0) в какое-либо из двух начальных уравнений. К примеру:

(f(0)=0^2-2cdot 0 + 1 = 1)

M (0;1) является точкой, в которой пересекаются графики функций.

Приравнивание функций друг к другу и нахождение корней

Выяснить, имеют ли точки пересечения графики функций, можно путем сравнения соответствующих тождеств и решения уравнения. Однако при этом допускается получение различных равенств с неизвестными. Тогда целесообразно воспользоваться специальными методиками.

Когда уравнение относится к первой степени или является линейным, решение получить достаточно просто. Метод заключается в переносе переменных величин в одну часть уравнения, а известных – в другую. Алгоритм действий:

  • раскрытие скобок, приведение подобных коэффициентов;
  • перенос членов с неизвестными в одну сторону, а с известными – в другую;
  • математические преобразования;
  • определение корня.

Квадратные уравнения решают с помощью одного из способов:

  • разложение на множители;
  • выделение полного квадрата;
  • поиск дискриминанта;
  • теорема Виета.

В первом случае представляется возможным понизить степень при неизвестной величине. Второй метод заключается в выделении квадрата по одной из формул сокращенного умножения. Каждая из этих методик реализуема при наличии знаний соответствующих тождеств, в том числе правил разложения на множители.

Третий способ состоит в поиске корней через дискриминант (Д), который является дополнительным параметром, позволяющим сразу решить задачу. Дискриминант определяется с помощью формулы:

В том случае, когда Д>0, переменная может иметь пару значений, которые превращают равенство в справедливое тождество. Если Д=0, то корень является единственным. Когда Д Примечание

Распространенной ошибкой является пренебрежение проверкой результатов решения. Некорректные действия могут привести к образованию ложных корней.

Существует несколько методик решения тождеств кубического и биквадратного типов:

  • понижение степени, то есть разложение на множители;
  • замена переменной.

Первый вариант решения подразумевает выполнение преобразований для последующего применения одной из формул сокращенного умножения. Такой способ применяют нечасто. Второй способ состоит в том, что при решении необходимо ввести переменную с более низкой степенью, которая упрощает выражение. Порядок действий при этом следующий:

  • выполнение математических преобразований;
  • выражение переменной через другую;
  • решение квадратного или линейного уравнения;
  • подстановка промежуточных корней, которые получилось найти на третьем шаге, во второй;
  • вычисление искомых корней;
  • проверка;
  • исключение ложных решений;
  • запись ответа.

Путем составления системы уравнений

Данный метод определения точек пересечения графиков функций предполагает запись системы уравнения. К примеру:

Решение системы уравнений представляет собой пару чисел (х, у), являющуюся одновременно решением для первого и второго уравнения системы. Решить систему уравнений – значит, отыскать все ее решения, либо установить их отсутствие.

Порядок действий при решении системы уравнений можно рассмотреть на примере:

Решение будет иметь следующий вид:

Данные уравнения являются линейными, поэтому график каждого из них представляет собой прямую. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и является решением системы уравнений.

Решение системы представляет сбой единственную пару чисел:

Если подставить данные числа в любое из уравнений, то получится справедливое равенство. Таким образом, имеется единственное решение линейной системы. Можно записать отчет: (-1;0).

В процессе решения линейной системы можно столкнуться с разными ситуациями:

  • система обладает единственным решением, прямые пересекаются;
  • решения системы отсутствуют. прямые параллельны;
  • система обладает бесчисленным множеством решений, прямые совпадают.

При рассмотрении частного случая системы p(x; y) и q(x; y) являются линейными выражениями от x и y.

В задачах нередко требуется решить нелинейную систему уравнений. К примеру, необходимо решить следующую систему:

Решение имеет следующий вид:

График первого уравнения будет иметь вид прямой, а второго – являться окружностью. Можно построить первый график по точкам:

Центр окружности в точке О(0; 0), радиус равен 1.

Графики пересекаются в точке А(0; 1) и в точке В(-1; 0).

Можно решить систему графическим способом:

В первую очередь необходимо построить график первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 2. График второго уравнения является параболой, которая смещена относительно начала координат на 2 вверх, то есть ее вершина – точка (0; 2).

Графики обладают одной общей точкой А(0; 2). Данная точка является решением системы. Если подставить два числа в уравнение, можно проверить корректность ответа и записать его. Ответ: (0; 2).

В качестве еще одного примера можно решить следующую систему:

Первым шагом является построение графика первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 1.

Далее необходимо построить график функции:

График будет являться ломанной:

Далее следует сместить ее на 1 вниз по оси oy. В результате получится график функции:

При помещении обоих графиков в одну систему координат получится следующая ситуация:

Таким образом, получились три точки пересечения: А(1; 0), т. В(-1; 0), т. С(0; -1)

Нахождение через графическое построений функций

Любой определенный график задают с помощью соответствующей функции. Найти точки, в которых пересекаются графики, можно путем решения уравнения, имеющего вид:

Решение данного уравнения будет являться искомой точкой.

Построить график можно с помощью бумаги и ручки. В процессе необходимо обратить внимание на то, что количество точек пересечения пары графиков определяется видом функции. Линейные функции обладают лишь одной точкой пересечения, линейная и квадратная – двумя, квадратные – двумя, либо четырьмя.

В общем случае двух линейных функций можно предположить, что:

Для поиска точки пересечения графиков необходимо решить уравнение:

(y1=y2 или k1x+b1=k2x+b2)

После преобразований получится, что:

Далее нужно выразить x:

При известной координате точки по оси абсцисс следует определить координату по оси ординат. Таким образом, можно найти координаты точки пересечения графиков:

График функции y = f (х) представляет собой множество точек плоскости, координаты (х, у) которых соответствуют выражению y = f(x). График функции наглядно иллюстрирует поведение и свойства функции. Для построения графика определяют несколько значений довода х и для них рассчитывают соответствующие значения функции y=f(x). Для больше точного и наглядного построения графика следует обнаружить его точки пересечения с осями координат.

С целью определить точку пересечения графика функции с осью y, нужно определить значение функции при х=0, то есть обнаружить f(0). В качестве примера можно рассмотреть график линейной функции, изображенной на рисунке:

В данном случае при х=0 ((y=a*0+b)) функция равна b. Таким образом, график пересекает ось ординат (ось Y) в точке (0,b). Когда пересекается ось абсцисс (ось Х) функция равна 0, то есть (y=f(x)=0) . Для того чтобы определить х, следует решить уравнение (f(x)=0) . В случае линейной функции получаем уравнение (ax+b=0) , откуда и находим (x=-b/a) . В результате можно сделать вывод, что ось Х пересекается в точке ((-b/a,0).)

При наличии квадратичной зависимости y от х, уравнение (f(x)=0) обладает двумя корнями. Таким образом, ось абсцисс пересекается два раза. В случае периодической зависимости y от х, например, (y=sin(x)) , график функции обладает бесконечным количеством точек пересечения с осью Х. Проверить корректность расчета координат точек, в которых пересекаются графики функций, можно с помощью подстановки найденных значений х в выражение f(x). Значение выражения при любом из вычисленных х должно быть равно 0.

Источник

Adblock
detector

Пример 3
Найти координаты точки пересечения графиков функций: $ f(x)=x^2-2x+1 $ и $ g(x)=x^2+1 $
Решение

На чтение 6 мин Просмотров 1.8к. Опубликовано 03.12.2020

При наличии прямоугольных координат X и Y вершин n -угольника его площадь можно вычислить по формулам аналитической геометрии; выведем одну из таких формул.

Пусть в треугольнике ABC координаты вершин равны X1 , Y1 (A), X2, Y2 (B) и X3, Y3 (C) – рис.6.2.

Рис.6.2

Рис.6.2

Из вершин треугольника опустим перпендикуляры на оси координат и обозначим их длину, как показано на рис.6.2.

Аналитический способ

Площадь треугольника P будет равна сумме площадей двух трапеций I(aABc) и II(bBCc) за вычетом площади трапеции III(aACc)

P=PI+PII-PIII.                                          (6.9)

Выразим площадь каждой трапеции через ее основания и высоту:

PI=0.5(X1+X2)*(Y1-Y2);
PI=0.5(X2+X3)*(Y3-Y2);                      (6.10)
PI=0.5(X3+X1)*(Y1-Y3);

Чтобы избавиться от множителя 0.5, будем вычислять удвоенную площадь треугольника. Выполним умножение, приведем подобные члены, вынесем общие множители за скобки и получим:

2*P=X1*(Y2-Y3)+X2*(Y3-Y1)+X3*(Y1-Y2)

или в общем виде:

(6.11) (6.11)

В этой формуле индекс “i” показывает номер вершины треугольника; индекс “i” означает, что нужно брать следующую или предыдущую вершину (при обходе фигуры по часовой стрелке).

Если при группировке членов выносить за скобки Y1, то получится формула:

(6.12) (6.12)

Вычисления по обоим формулам дают одинаковый результат, поэтому на практике можно пользоваться любой из них.

Хотя формулы (6.11) и (6.12) выведены для треугольника, нетрудно показать, что они пригодны для вычисления площади любого n – угольника.

Оценка точности площади. В большинстве случаев участки на местности имеют форму неправильного n – угольника, причем количество вершин многоугольника n может быть от 30 до 20 и более. Площадь таких участков вычисляют аналитическим способом по прямоугольным координатам вершин, которые, в свою очередь, определяют в результате обработки геодезических измерений. При этом для каждой вершины многоугольника получают координаты и ошибку ее положения относительно исходных пунктов, задающих систему координат на местности.

Выведем формулу для оценки площади многоугольника по известным внутренним углам, длинам его сторон и ошибкам положения mti его вершин.

На рис.6.3 изображен фрагмент многоугольника с вершинами i-1, i, i+1, i+2 и сторонами li-1,li,li+1.

Проведем на вершинах i и i+1 окружности радиусами mti и mt(i+1) и построим биссектрисы углов βi и βi+1. Затем восстановим перпендикуляры к стороне li и найдем проекции отрезков mti и mt(i+1) на эти перпендикуляры:

(6.13) (6.13)

(6.14)(6.14)

Рис.6.3

Рис.6.3

Построим трапецию, основаниями которой являются отрезки mi и mi+1, а высотой – сторона li и найдем площадь этой трапеции ΔPi. Как известно, площадь трапеции равна произведению полусуммы оснований на высоту, а поскольку основаниями трапеции являются проекции ср.кв. ошибок, то вместо полусуммы нужно взять квадратичную полусумму оснований; таким образом,

(6.15)(6.15)

где

c = Sin( β/2 ) .

Площадь трапеции, построенной на одной стороне многоугольника, является частью ошибки площади всего многоугольника; выполнив квадратичное суммирование площадей ΔPi по всем сторонам, получим:

Аналитический способ или

(6.16) (6.16)

Из формулы (6.16) можно получить формулу средней квадратической ошибки площади правильного многоугольника с одинаковой ошибкой положения mt всех его вершин:

mP=an * mt * L,                    (6.17)

где: L – периметр многоугольника,
an – коэффициент, зависящий от n – количества вершин;
Аналитический способ
его значения:

n    3    4     5    6    7     8    9    10
an    0.204     0.250    0.256     0.250     0.243    0.231     0.222     0.212
n    11    12     15    20    24     30    60    120
an    0.205     0.197    0.179     0.156     0.143    0.128     0.091     0.065

Формула (6.17) является базовой и при оценке площади неправильных n-угольников, для которых ошибка площади mp оказывается лишь на несколько процентов больше, чем для правильного n – угольника. Так, если площадь неправильного n – угольника при том же периметре в два раза меньше площади правильного n-угольника, то ошибка его площади увеличивается лишь на 20 %.

При неодинаковых ошибках положения вершин многоугольника в формуле (6.17) достаточно вместо mt поставить mt(ср).

Аналитический способ

Примером применения формулы (6.17) является оценка площади участков, координаты вершин которых получены с топографических планов. Например, для плана масштаба 1:2000 ошибку положения точек можно принять равной mt = 0.50 мм * M = 1 м (при условии, что основа плана достаточно жесткая и ее деформацией можно пренебречь). При площади участка 0.12 га и количестве вершин n=4 (5 или 6) средняя квадратическая ошибка его площади при правильной форме (периметр L = 140 м) будет равна 35 кв.м, а при неправильной форме (периметр L>140 м) она может достигать 40 кв.м.

Другим примером применения формулы (6.17) может служить оценка площади многоугольника, координаты вершин которого получены из полярной засечки, выполненной с одного пункта-станции.

При использовании точных приборов (электронных тахеометров или систем GPS) доля ошибок измерений в ошибке положения точек значительно меньше доли ошибки их фиксации mф на местности. Приняв mti= mф, можно использовать формулу (6.17) для любых способов получения координат вершин многоугольника.

Площадь правильного n-угольника можно выразить через его периметр:

(6.18) (6.18)

И из формулы (6.17) получить формулу относительной ошибки площади:

(6.19) (6.19)

где

(6.20) (6.20)

Например:

для треугольника (n=3) mp/P = 4.24* mt/L,
для четырехугольника (n=4) mp/P = 4.00* mt/L,
для пятиугольника (n=5) mp/P = 3.72 mt/L,
для шестиугольника (n=6) mp/P = 3.46 mt/L.

Таким образом, для приближенной оценки площади 3-4-5-6- угольника в аналитическом способе можно применять формулу:

mp/P=4* mt/L;           (6.21)

ошибка этой формулы может достигать 15% – 20% для участков, форма которых заметно отличается от формы правильного n -угольника.

Понравилась статья? Поделить с друзьями:
  • Как исправить прикус остеопат
  • Как найти сколько градусов в круге
  • Как найти на небе вифлеемскую звезду
  • Отсутствует error как исправить
  • Как на ютубе найти человека по имени