Как найти координаты центра равнобедренного треугольника

Удивительное равновесие. Расчет центра масс

Существует множество различных конструкций и сооружений, смотря на которые, удивляешься, как они сохраняют равновесие. Самое, пожалуй, известное из них – знаменитая Пизанская башня, построенная ещё в 1360 году и сохраняющая свой непреднамеренный наклон. Почему же Пизанская башня сохраняет равновесие? Секрет прост. Вертикальная проекция центра масс башни находится на её основании. Это справедливо и для любого другого сооружения. Кроме того, если какой-либо предмет подвесить за точку, которая совпадает с центром масс, то подвешенный предмет тоже будет сохранять равновесие. Можно также собирать из различных предметов конструкции самой причудливой формы, которые будут находиться в равновесии, если правильно рассчитать местоположение центра масс. Давайте попробуем разобраться, как рассчитывать координаты центра масс различных плоских фигур.

Предположим, что Вы решили сделать новогоднюю гирлянду, состоящую из различных фигур, в том числе в форме стрелки. Сначала нужно вырезать из плотной бумаги с новогодним рисунком равнобедренный треугольник. Потом нужно сделать вырез тоже в форме равнобедренного треугольника так, чтобы центр масс получившейся фигуры оказался в точке В (см.рисунок). Найдем координаты x c и y c центра масс этой фигуры в прямоугольной системе координат yOx .

Положение центра масс плоских фигур известно: центр масс треугольника находится в точке пересечения его медиан, центр масс прямоугольника находится в точке пересечения его диагоналей, центр масс круга совпадает с его центром. Так как треугольник ACD – равнобедренный, то, исходя из его симметрии относительно прямой ОА, следует, что x c = 0.

Для расчета координаты y c воспользуемся следующей формулой:

где S ΔACD и S ΔBCD – площади треугольников ACD и BCD , а y c 1 и y c 2 – координаты их центров масс, соответственно. Тогда:

Учитывая, что центр масс должен находиться в точке B , получаем:

| OB | = ½ | OA |. То есть точка B – середина отрезка | OA |.

По предложенному методу мы предлагаем вам решить задачу:

Рассчитайте координаты центра масс круга радиуса R с вырезанным кругом радиуса r (см. рисунок). Определите, каким должен быть отношение радиусов R и r , чтобы центр масс фигуры находился в точке B . Проанализируйте результат.

Автор: Матвеев К.В., методист ГМЦ ДО г.Москвы

Центры тяжести многоугольников и многогранников

Центром тяжести (или центром масс) некоторого тела называется точка, обладающая тем свойством, что если подвесить тело за эту точку, то оно будет сохранять свое положение.

Ниже рассмотрены двумерные и трёхмерные задачи, связанные с поиском различных центров масс — в основном с точки зрения вычислительной геометрии.

В рассмотренных ниже решениях можно выделить два основных факта. Первый — что центр масс системы материальных точек равен среднему их координат, взятых с коэффициентами, пропорциональными их массам. Второй факт — что если мы знаем центры масс двух непересекающихся фигур, то центр масс их объединения будет лежать на отрезке, соединяющем эти два центра, причём он будет делить его в то же отношении, как масса второй фигуры относится к массе первой.

Двумерный случай: многоугольники

На самом деле, говоря о центре масс двумерной фигуры, можно иметь в виду одну из трёх следующих задач:

  • Центр масс системы точек — т.е. вся масса сосредоточена только в вершинах многоугольника.
  • Центр масс каркаса — т.е. масса многоугольника сосредоточена на его периметре.
  • Центр масс сплошной фигуры — т.е. масса многоугольника распределена по всей его площади.

Каждая из этих задач имеет самостоятельное решение, и будет рассмотрена ниже отдельно.

Центр масс системы точек

Это самая простая из трёх задач, и её решение — известная физическая формула центра масс системы материальных точек:

где — массы точек, — их радиус-векторы (задающие их положение относительно начала координат), и — искомый радиус-вектор центра масс.

В частности, если все точки имеют одинаковую массу, то координаты центра масс есть среднее арифметическое координат точек. Для треугольника эта точка называется центроидом и совпадает с точкой пересечения медиан:

Для доказательства этих формул достаточно вспомнить, что равновесие достигается в такой точке , в которой сумма моментов всех сил равна нулю. В данном случае это превращается в условие того, чтобы сумма радиус-векторов всех точек относительно точки , домноженных на массы соответствующих точек, равнялась нулю:

и, выражая отсюда , мы и получаем требуемую формулу.

Центр масс каркаса

Будем считать для простоты, что каркас однороден, т.е. его плотность везде одна и та же.

Но тогда каждую сторону многоугольника можно заменить одной точкой — серединой этого отрезка (т.к. центр масс однородного отрезка есть середина этого отрезка), с массой, равной длине этого отрезка.

Теперь мы получили задачу о системе материальных точек, и применяя к ней решение из предыдущего пункта, мы находим:

где — точка-середина -ой стороны многоугольника, — длина -ой стороны, — периметр, т.е. сумма длин сторон.

Для треугольника можно показать следующее утверждение: эта точка является точкой пересечения биссектрис треугольника, образованного серединами сторон исходного треугольника. (чтобы показать это, надо воспользоваться приведённой выше формулой, и затем заметить, что биссектрисы делят стороны получившегося треугольника в тех же соотношениях, что и центры масс этих сторон).

Центр масс сплошной фигуры

Мы считаем, что масса распределена по фигуре однородно, т.е. плотность в каждой точке фигуры равна одному и тому же числу.

Случай треугольника

Утверждается, что для треугольника ответом будет всё тот же центроид, т.е. точка, образованная средним арифметическим координат вершин:

Случай треугольника: доказательство

Приведём здесь элементарное доказательство, не использующее теорию интегралов.

Первым подобное, чисто геометрическое, доказательство привёл Архимед, но оно было весьма сложным, с большим числом геометрических построений. Приведённое здесь доказательство взято из статьи Apostol, Mnatsakanian «Finding Centroids the Easy Way».

Доказательство сводится к тому, чтобы показать, что центр масс треугольника лежит на одной из медиан; повторяя этот процесс ещё дважды, мы тем самым покажем, что центр масс лежит в точке пересечения медиан, которая и есть центроид.

Разобьём данный треугольник на четыре, соединив середины сторон, как показано на рисунке:

Четыре получившихся треугольника подобны треугольнику с коэффициентом .

Треугольники №1 и №2 вместе образуют параллелограмм, центр масс которого лежит в точке пересечения его диагоналей (поскольку это фигура, симметричная относительно обеих диагоналей, а, значит, её центр масс обязан лежать на каждой из двух диагоналей). Точка находится посередине общей стороны треугольников №1 и №2, а также лежит на медиане треугольника :

Пусть теперь вектор — вектор, проведённый из вершины к центру масс треугольника №1, и пусть вектор — вектор, проведённый из к точке (которая, напомним, является серединой стороны, на которой она лежит):

Наша цель — показать, что вектора и коллинеарны.

Обозначим через и точки, являющиеся центрами масс треугольников №3 и №4. Тогда, очевидно, центром масс совокупности этих двух треугольников будет точка , являющаяся серединой отрезка . Более того, вектор от точки к точке совпадает с вектором .

Искомый центр масс треугольника лежит посередине отрезка, соединяющего точки и (поскольку мы разбили треугольник на две части равных площадей: №1-№2 и №3-№4):

Таким образом, вектор от вершины к центроиду равен . С другой стороны, т.к. треугольник №1 подобен треугольнику с коэффициентом , то этот же вектор равен . Отсюда получаем уравнение:

Таким образом, мы доказали, что вектора и коллинеарны, что и означает, что искомый центроид лежит на медиане, исходящей из вершины .

Более того, попутно мы доказали, что центроид делит каждую медиану в отношении , считая от вершины.

Случай многоугольника

Перейдём теперь к общему случаю — т.е. к случаю мноугоугольника. Для него такие рассуждения уже неприменимы, поэтому сведём задачу к треугольной: а именно, разобьём многоугольник на треугольники (т.е. триангулируем его), найдём центр масс каждого треугольника, а затем найдём центр масс получившихся центров масс треугольников.

Окончательная формула получается следующей:

где — центроид -го треугольника в триангуляции заданного многоугольника, — площадь -го треугольника триангуляции, — площадь всего многоугольника.

Триангуляция выпуклого многоугольника — тривиальная задача: для этого, например, можно взять треугольники , где .

Случай многоугольника: альтернативный способ

С другой стороны, применение приведённой формулы не очень удобно для невыпуклых многоугольников, поскольку произвести их триангуляцию — сама по себе непростая задача. Но для таких многоугольников можно придумать более простой подход. А именно, проведём аналогию с тем, как можно искать площадь произвольного многоугольника: выбирается произвольная точка , а затем суммируются знаковые площади треугольников, образованных этой точкой и точками многоугольника: . Аналогичный приём можно применить и для поиска центра масс: только теперь мы будем суммировать центры масс треугольников , взятых с коэффициентами, пропорциональными их площадям, т.е. итоговая формула для центра масс такова:

где — произвольная точка, — точки многоугольника, — центроид треугольника , — знаковая площадь этого треугольника, — знаковая площадь всего многоугольника (т.е. ).

Трёхмерный случай: многогранники

Аналогично двумерному случаю, в 3D можно говорить сразу о четырёх возможных постановках задачи:

  • Центр масс системы точек — вершин многогранника.
  • Центр масс каркаса — рёбер многогранника.
  • Центр масс поверхности — т.е. масса распределена по площади поверхности многогранника.
  • Центр масс сплошного многогранника — т.е. масса распределена по всему многограннику.

Центр масс системы точек

Как и в двумерном случае, мы можем применить физическую формулу и получить тот же самый результат:

который в случае равных масс превращается в среднее арифметическое координат всех точек.

Центр масс каркаса многогранника

Аналогично двумерному случаю, мы просто заменяем каждое ребро многогранника материальной точкой, расположенной посередине этого ребра, и с массой, равной длине этого ребра. Получив задачу о материальных точках, мы легко находим её решение как взвешенную сумму координат этих точек.

Центр масс поверхности многогранника

Каждая грань поверхности многогранника — двухмерная фигура, центр масс которой мы умеем искать. Найдя эти центры масс и заменив каждую грань её центром масс, мы получим задачу с материальными точками, которую уже легко решить.

Центр масс сплошного многогранника

Случай тетраэдра

Как и в двумерном случае, решим сначала простейшую задачу — задачу для тетраэдра.

Утверждается, что центр масс тетраэдра совпадает с точкой пересечения его медиан (медианой тетраэдра называется отрезок, проведённый из его вершины в центр масс противоположной грани; таким образом, медиана тетраэдра проходит через вершину и через точку пересечения медиан треугольной грани).

Почему это так? Здесь верны рассуждения, аналогичные двумерному случаю: если мы рассечём тетраэдр на два тетраэдра с помощью плоскости, проходящей через вершину тетраэдра и какую-нибудь медиану противоположной грани, то оба получившихся тетраэдра будут иметь одинаковый объём (т.к. треугольная грань разобьётся медианой на два треугольника равной площади, а высота двух тетраэдров не изменится). Повторяя эти рассуждения несколько раз, получаем, что центр масс лежит на точке пересечения медиан тетраэдра.

Эта точка — точка пересечения медиан тетраэдра — называется его центроидом. Можно показать, что она на самом деле имеет координаты, равные среднему арифметическому координат вершин тетраэдра:

(это можно вывести из того факта, что центроид делит медианы в отношении )

Таким образом, между случаями тетраэдра и треугольника принципиальной разницы нет: точка, равная среднему арифметическому вершин, является центром масс сразу в двух постановках задачи: и когда массы находится только в вершинах, и когда массы распределены по всей площади/объёму. На самом деле, этот результат обобщается на произвольную размерность: центр масс произвольного симплекса (simplex) есть среднее арифметическое координат его вершин.

Случай произвольного многогранника

Перейдём теперь к общему случаю — случаю произвольного многогранника.

Снова, как и в двумерном случае, мы производим сведение этой задачи к уже решённой: разбиваем многогранник на тетраэдры (т.е. производим его тетраэдризацию), находим центр масс каждого из них, и получаем окончательный ответ на задачу в виде взвешенной суммы найденных центров масс.

Тема 1.5. Центр тяжести тела

§1. Центр тяжести однородного тела.

Рассмотрим твердое тело весом P и объемом V в системе координат Oxyz , где оси x и y связаны с поверхностью земли, а ось z направлена в зенит.

Если разбить тело на элементарные части объемом ∆Vi , то на каждую его часть будет действовать сила притяжения ∆Pi, направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.1), и к ней применимы все выводы предыдущей главы.

Рис.1. Параллельная система сил

Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

3) Если однородное тело имеет центр симметрии, то центр тя­жести тела находится в этой точке.

§2. Способы определения координат центра тяжести.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.2), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.2. Центр тяжести тел, имеющих ось симметрии

2. Разбиение. Тело разбивается на конечное число частей (рис.3), для каждой из которых положение центра тяжести и площадь известны.

Рис.3. Центр тяжести сплошной

сложной геометрической фигуры

— центр тяжести и площадь первой фигуры;

— центр тяжести и площадь второй фигуры;

— координата центра тяжести сплошной сложной геометрической фигуры по оси x;

— координата центра тяжести сплошной сложной геометрической фигуры по оси y;

3. Метод отрицательных площадей. Частный случай способа разбиения (рис.4). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S1 и площади вырезанной части S2 .

Рис.4. Центр тяжести сложной геометрической фигуры,

— центр тяжести и площадь первой фигуры;

— центр тяжести и площадь второй фигуры;

— координата центра тяжести сложной геометрической фигуры по оси x;

— координата центра тяжести сложной геометрической фигуры по оси y;

§3. Координаты центра тяжести некоторых простых фигур.

1. Центр тяжести тре­угольника. Центр тяжести треугольника лежит в точке пересечения его медиан (рис.5). Координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин: xc =1/3(x1+x2+x3) ; yc =1/3(y1+y2+y3).

Рис.5. Центр тяжести треугольника

2. Центр тяжести прямоугольника. Центр тяжести прямоугольника лежит в точке пересечения его диагоналей (рис.6). Координаты центра тяжести прямоугольника рассчитываются по формулам: xc =b/2 ; yc =h/2.

Рис. 6. Центр тяжести треугольника

3. Центр тяжести полукруга. Центр тяжести полукруга лежит на оси симметрии (рис.7). Координаты центра тяжести полукруга рассчитываются по формулам: xc =D/2 ; yc =4R/3π.

Рис. 7. Центр тяжести полукруга

4. Центр тяжести круга. Центр тяжести круга лежит в центре (рис.8). Координаты центра тяжести круга рассчитываются по формулам: xc =R ; yc =R.

Рис. 8. Центр тяжести круга

Вопросы для самопроверки:

— Что называется центром параллельных сил?

— Что называется центром тяжести тела?

— Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

— Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

— Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, квадрата, трапеции и половины круга?

— Как используются свойства симметрии при определении центров тяжести тел?

— В чем состоит сущность способа отрицательных площадей?

— Каким графическим построением можно найти центр тяжести треугольника?

— Запишите формулу, определяющую центр тяжести треугольника.

источники:

http://e-maxx.ru/algo/gravity_center

http://www.sites.google.com/site/tehmehprimizt/lekcii/teoreticeskaa-mehanika/statika/centr-tazesti

Моменты инерции и сопротивления простых фигур

Формулы площадей, центров тяжести, осевых и полярных моментов инерции, моментов сопротивления и других геометрических характеристик основных простых фигур: прямоугольника, квадрата, равнобедренного и прямоугольного треугольника, круга, полукруга, четверти круга, кольцевого и тонкостенного сечений.

Обозначения в формулах:
C — положение центра тяжести фигуры;
A — площадь сечения;
Ix , Iy — осевые моменты инерции сечения относительно главных осей;
Ix1 , Iy1 — осевые моменты инерции относительно вспомогательных (смещённых) осей;
Iρ — полярный момент инерции сечения;
Wx , Wy — осевые моменты сопротивления;
Wρ — полярный момент сопротивления

Прямоугольник

Прямоугольник высотой h и шириной b.
Центр тяжести прямоугольника
Центр тяжести прямоугольника в точке пересечения его диагоналей, на расстоянии половины высоты (h/2) по вертикали и половины ширины (b/2) по горизонтали.

Площадь
Площадь прямоугольника
Центральные осевые моменты инерции прямоугольника
Центральные осевые моменты инерции прямоугольника
Моменты инерции относительно смещенных осей, проходящих через нижнюю левую точку
Моменты инерции прямоугольника относительно смещенных осей
Осевые моменты сопротивления прямоугольного сечения
Осевые моменты сопротивления прямоугольника

Квадрат

Квадрат — это частный случай прямоугольника, у которого высота равна ширине, т.е. h=b=a.

Центр тяжести квадрата находится так же на пересечении диагоналей — на расстоянии половины стороны (a/2) по высоте и ширине.
Центр тяжести квадрата
Площадь
Площадь квадрата
Центральные осевые моменты инерции квадрата
Осевые моменты инерции квадрата
Моменты инерции относительно смещенных осей, проходящих через нижнюю левую точку
Моменты инерции квадрата относительно смещенных осей
Осевой момент сопротивления квадратного сечения
Осевой момент сопротивления квадрата

Треугольник равнобедренный

Равнобедренный треугольник высотой h и шириной основания b.
Центр тяжести треугольника
Центр тяжести треугольника располагается в точке пересечения его медиан на расстоянии 1/3 высоты от основания и 2/3 высоты от его вершин.

Площадь
Площадь треугольника
Центральные осевые моменты инерции треугольника
Центральные осевые моменты инерции треугольника
Момент инерции относительно смещенной оси x1, проходящей через его основание
Момент инерции треугольника относительно смещенной оси

Прямоугольный треугольник

Прямоугольный треугольник высотой h и шириной основания b.
Центр тяжести прямоугольного треугольника
Центр тяжести прямоугольного треугольника располагается аналогично, на пересечении медиан на расстоянии 1/3 высоты от основания и 2/3 высоты от вершины.

Площадь
Площадь прямоугольного треугольника
Центральные осевые моменты инерции прямоугольного треугольника
Центральные осевые моменты инерции прямоугольного треугольника
Моменты инерции относительно смещенных осей x1 и y1, проходящих через точку, соединяющую его катеты
Моменты инерции прямоугольного треугольника относительно смещенных осей

Трапеция

Равнобокая трапеция высотой H и шириной оснований: малого a и большого b.
Центр тяжести трапеции
Площадь трапеции
Площадь трапеции
Центр тяжести на линии, соединяющей середины оснований трапеции, на высоте, определяемой по формуле:
Координата центра тяжести трапеции

Круг

Круг диаметром D (d) или радиусом R (r)
Центр тяжести круга
Площадь круга через его диаметр и радиус
Площадь круга
Центральные осевые и полярный моменты инерции круга
Моменты инерции круга
Осевые и полярный моменты сопротивления
Моменты сопротивления круга

Полукруг

Половина круга диаметром D (d) или радиусом R (r)
Центр тяжести полукруга
Площадь
Площадь полукруга
Осевые моменты инерции полукруга
Осевые моменты инерции полукруга

Четверть круга

Четверть круга диаметром D (d) или радиусом R (r)
Центр тяжести четверти круга
Площадь
Площадь четверти круга
Центральные осевые моменты инерции четверти круга
Центральные осевые моменты инерции четверти круга
Моменты инерции относительно смещенных осей x1 и y1
Моменты инерции четверти круга относительно смещенных осей

Кольцо

Кольцо с внешним диаметром D и внутренним d, (радиусами: внешним R и внутренним r)
Центр тяжести кольца
Отношение внутреннего диаметра (радиуса) к внешнему обозначается буквой c.
Отношение внутреннего диаметра кольца к внешнему
Площадь
Площадь кольца
Центральные осевые и полярный моменты инерции кольца
Моменты инерции кольца
Осевые и полярный моменты сопротивления
Моменты сопротивления кольца

Тонкостенное сечение (труба)

Тонкостенный профиль (сечение трубы) средним радиусом R0 и толщиной стенки трубы t при R0>>t
Центр тяжести сечения трубы
Площадь
Площадь сечения труб
Центральные осевые и полярный моменты инерции трубного сечения
Моменты инерции сечения труб
Осевые и полярный моменты сопротивления
Осевые и полярный моменты сопротивления труб

Пример определения координат центра тяжести сложной фигуры:

Другие видео

Смотрите также:
Определение координат центра тяжести сложных фигур
Геометрические характеристики сечений

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

The first equation of your system is:

(x_c-x_o)^2 + (y_c-y_o)^2 = r^2

The second one is more convoluted. You must intersect the circumference

(x-x_c)^2+(y-y_c)^2 = r^2

with your two vectors, that have equation rispectively

y = (Q_y/Q_x)*x and y = (P_y/P_x)*x

this gives you the two points of intersection p and q in function of x_c and y_c. Now force hte distance OP and OQ to be equal (you want an isoscele triangle), and you have your second equation.
Solve hte two equation system and you have the formula for x_c and y_c.

Assuming i did the math right, the solution is:

x_c = ((a+b)^2 * r^2) / ((a+b)^2+4)
y_c = (-2*(a+b) * r^2) / ((a+b)^2+4)

where

a = p_y / p_x
b = q_y / q_x


Загрузить PDF


Загрузить PDF

Центр тяжести треугольника (центроид) – это точка центра масс. Представьте себе треугольную линейку, положенную на кончик карандаша. Линейка будет балансировать, если кончик карандаша будет находиться в ее центре тяжести. Расположение центроида, которое легко находится с помощью геометрии, необходимо знать при работе над дизайнерским или инженерным проектом.

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 1

    1

    Найдите середину одной стороны треугольника. Для этого измерьте сторону и разделите ее длину пополам. Середину отметьте точкой A.

    • Например, если сторона треугольника равна 10 см, то середина находится на расстоянии 5 см (10/2=5) от вершины треугольника.
  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 2

    2

    Найдите середину второй стороны треугольника. Для этого измерьте сторону и разделите ее длину пополам. Середину отметьте точкой В.

    • Например, если вторая сторона треугольника равна 12 см, то середина находится на расстоянии 6 см (12/2=6) от вершины треугольника.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 3

    3

    Соедините середины сторон с противолежащими вершинами. Вы получите две медианы.[1]

    • Вершина – это точка, в которой сходятся две стороны треугольника.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 4

    4

    Отметьте точку пересечения двух медиан. Эта точка является центром тяжести треугольника.[2]
    [3]

    • Центр тяжести находится на пересечении трех медиан, но так как медианы всегда пересекаются в одной точке, можно работать только с двумя медианами.

    Реклама

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 5

    1

    Проведите медиану. Медиана – это отрезок, который соединяет вершину треугольника с серединой противолежащей стороны. Можно работать с любой медианой.

  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 6

    2

    Измерьте длину медианы. Сделайте это аккуратно и точно.

    • Например, медиана равна 3,6 см.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 7

    3

    Найдите третью часть (треть) медианы. Для этого разделите длину медианы на три. Сделайте это аккуратно и точно. Округлив полученное значение, вы не найдете центроид.

    • В нашем примере медиана равна 3,6 см. Поэтому разделите 3,6 на 3:
      3,6/3=1,2. Таким образом, треть медианы равна 1,2 см.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 8

    4

    Треть медианы отметьте точкой. Эта точка является центроидом, потому что он всегда делит медиану треугольника в отношении 2:1. То есть центр тяжести находится на расстоянии, которое равно ⅓ длины медианы, от середины стороны, или на расстоянии, которое равно ⅔ длины медианы, от вершины треугольника.[4]

    • Например, если медиана равна 3,6 см, то центроид находится на расстоянии 1,2 см от середины стороны.

    Реклама

  1. Изображение с названием Calculate the Center of Gravity of a Triangle Step 9

    1

    Определите координаты трех вершин треугольника. Координаты могут быть даны; в противном случае будет дан треугольник, построенный на координатной плоскости. Координаты представляются в виде (x,y).

    • Например, дан треугольник PQR, вершины которого имеют следующие координаты: P (3,5), Q (4,1), R (1,0).
  2. Изображение с названием Calculate the Center of Gravity of a Triangle Step 10

    2

    Сложите значения координат «х». Не забудьте сложить все три значения. Вы не найдете центр тяжести, если будете работать только с двумя значениями.

    • Например, если координаты «х» равны 3, 4 и 1, сложите эти значения: 3+4+1=8.
  3. Изображение с названием Calculate the Center of Gravity of a Triangle Step 11

    3

    Сложите значения координат «у». Не забудьте сложить все три значения.

    • Например, если координаты «у» равны 5, 1 и 0, сложите эти значения: 5+1+0=6.
  4. Изображение с названием Calculate the Center of Gravity of a Triangle Step 12

    4

    Найдите средние значения сумм координат «х» и «у». Полученные значения будут соответствовать центру тяжести треугольника.[5]
    Чтобы найти среднее значение, разделите каждую сумму на 3.

  5. Изображение с названием Calculate the Center of Gravity of a Triangle Step 13

    5

    Нанесите точку центра тяжести на треугольник. Центр тяжести находится в точке, координаты которой равны средним значениям сумм координат «х» и «у».

    • В нашем примере центр тяжести – это точка с координатами (8/3,2).

    Реклама

Советы

  • Не имеет значения, с какой стороной треугольника вы работаете – центр тяжести будет находится в одной и той же точке. Если построить медианы для всех трех сторон, они пересекутся в одной точке.

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 145 291 раз.

Была ли эта статья полезной?

Как найти центр треугольника по координатам?

Как найти координаты центра тяжести треугольника?

  1. Рисуем треугольник ABC.
  2. Ставим точку M — середина BC.
  3. Ставим точку H — середина AC.
  4. Пересечение BH и AM — и есть центр тяжести треугольника ABC.
  5. Найдем его координаты (координаты точки O (xo, yo, zo) )

Где находится центр равнобедренного треугольника?

В равнобедренном треугольнике высота, проведенная к основанию, является серединным перпендикуляром. Следовательно, центр описанной около равнобедренного треугольника окружности будет лежать на серединном перпендикуляре, который является и высотой, и медианой, и биссектрисой угла при вершине.

Что такое биссектриса треугольника сколько биссектриса треугольника Начертите Покажите на чертеже?

Определение биссектрисы треугольника Биссектрисой треугольника называется отрезок, который соединяет вершину с противоположной стороной и делит соответствующий угол пополам. Каждый треугольник имеет три биссектрисы. На рисунке 1 в треугольнике ABC:MC — биссектриса угла C,KA — биссектриса угла A,BL — биссектриса угла B.

Что такое высота треугольника Сколько высот у треугольника Начертите и покажите на чертеже?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону. … Так же как медианы и биссектрисы, треугольник имеет три высоты. Высоты треугольника пересекаются в одной точке.

Чем отличается медиана от биссектрисы и высоты треугольника?

Биссектриса угла – это луч, исходящий из вершины угла и делящий его на два равных угла. … Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

Как найти высоту в прямоугольном треугольнике если известен катет?

Примеры решения задач

Задание В прямоугольном треугольнике катеты равны см и см. Найти высоту , опущенную на гипотенузу .
Решение Пусть катет см, а см (рис. 2). Тогда по теореме Пифагора гипотенуза см Площадь прямоугольного треугольника равна половине произведения катетов, т.е. Высоту найдем по формуле
Ответ см

Когда треугольник является равносторонним?

Если три стороны треугольника имеют одинаковую длину, то треугольник является равносторонним.

Какой треугольник называется равносторонним свойства углов равностороннего треугольника?

Определение равностороннего треугольника Равносторонним треугольником называется такой треугольник ABC, у которого все стороны равны: AB=BC=AC.

Как найти высоту у равностороннего треугольника?

Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

В каком отношении делятся высоты в равностороннем треугольнике?

Свойство 3 Высоты в равностороннем треугольнике в ортоцентре (точке пересечения) делятся в отношении 2:1, считая от вершины, из которой они проведены.

Чему равна медиана равностороннего треугольника?

В равностороннем треугольнике медиана равна $$20over{sqrt{3}}$$.

Как найти сторону равностороннего треугольника?

сторона равностороннего треугольника (а) равна удвоенной высоте (2h) на корень квадратный из трех.

Понравилась статья? Поделить с друзьями:
  • Смотреть видео как найти деревню компота
  • Как найти в египте пирамиду
  • Пересолила фаршированные перцы как исправить
  • Как найти изменение импульса через силу
  • Как найти нужную форму опорного слова