Как найти координаты концов средней линии

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Средние линии

Средние линии треугольника

Определение . Средней линией треугольника называют отрезок, соединяющий середины двух сторон треугольника (рис. 1).

На рисунке 1 средней линией является отрезок DE .

Утверждение 1 . Средняя линия треугольника параллельна не пересекающейся с ней стороне треугольника и равна половине этой стороны.

Доказательство . Рассмотрим произвольный треугольник ABC и обозначим буквой D середину стороны AB (рис. 2). Проведем через точку D до пересечения с прямой BC прямую, параллельную прямой AC . Обозначим буквой E точку пересечения прямых DE и BC .

Поскольку AD = DB , а прямые AC и DE параллельны, то выполнены все условия теоремы Фалеса, и можно заключить, что выполнено равенство: CE = EB . Отсюда вытекает, что точка E является серединой стороны CB , а отрезок DE является средней линией треугольника.

Первую часть утверждения 1 мы доказали.

Для того, чтобы доказать вторую часть утверждения 1, заметим, что в любом треугольнике можно провести три средних линии – отрезки DE , EF и FD (рис.3).

Но поскольку AF = FC , то отсюда вытекает равенство

что и требуется доказать.

Доказательство утверждения 1 закончено.

  • Три средних линии делят треугольник на 4 равных треугольника ADF , DBE , ECF , DEF (рис. 4).
  • Каждый из четырёх треугольников ADF , DBE , ECF , DEF подобен треугольнику ABC с коэффициентом подобия 0,5 .

Средняя линия трапеции

Напомним, что трапецией трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями , а непараллельные стороны – боковыми сторонами трапеции.

Отрезки, соединяющие противоположные вершины трапеции, называют диагоналями трапеции.

Определение . Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции (рис. 5).

На рисунке 5 средней линией трапеции является отрезок EF .

Утверждение 2 . Средняя линия трапеции параллельна основаниям трапеции и равна половине суммы этих оснований.

Доказательство . Проведем через вершину B и середину боковой стороны F трапеции прямую линию (рис. 6). Обозначим точку пересечения прямых BF и AD буквой G . Рассмотрим треугольники BCF и FDG . У этих треугольников стороны CF и FD равны, поскольку точка F – середина стороны CD . Углы BCF и FDG равны, поскольку они являются внутренними накрест лежащими углами, образованными при пересечении параллельных прямых BC и AD с секущей CD . Углы BFC и DFG равны, поскольку они являются вертикальными. Тем самым выполнены все условия признака равенства треугольников «По стороне и прилежащим к ней углам», и можно заключить, что треугольники BCF и FDG равны. Из равенства треугольников BCF и FDG следует равенство отрезков BF и FG , откуда вытекает, что отрезок EF является средней линией треугольника ABG . Поэтому

что и требовалось доказать.

Задача 1 . Доказать, что средняя линия трапеции делит пополам любой отрезок с концами на основаниях трапеции.

Решение . Пусть ABCD – трапеция, EF – её средняя линия, LM – указанный отрезок (рис.7). Поскольку AE = EB , то, в силу теоремы Фалеса, выполнено равенство: LN = NM , что и требовалось доказать.

Задача 2 . Доказать, что отрезок, который диагонали трапеции высекают на средней линии трапеции, равен половине разности оснований трапеции.

Решение . Пусть ABCD – трапеция, EF – её средняя линия, KL – указанный отрезок (рис.8). В соответствии с задачей 1 можем заключить, что точка K – середина отрезка AC , а точка L – середина отрезка BD . Поэтому отрезок EK – средняя линия треугольника BAC , а отрезок EL – средняя линия треугольника ABD . В силу утверждения 1 выполнены равенства:

что и требовалось доказать.

Утверждение 3 . Прямая, проходящая через середины оснований трапеции, проходит через точку пересечения боковых сторон трапеции.

Доказательство . Пусть K и L – середины оснований BC и AD трапеции ABCD соответственно (рис.9). Обозначим буквой M точку пересечения боковых сторон AB и CD . Проведем через точки M и K прямую и обозначим точку пересечения этой прямой с основанием AD символом N . Докажем, что точки N и L совпадают. Для этого заметим, что треугольник BMK подобен треугольнику AMN . Следовательно, выполнено равенство:

Из этих соотношений получаем:

откуда вытекает, что точки N и L совпадают. Доказательство завершено.

Почти те же рассуждения позволяют доказать следующий факт, который мы предоставляем читателю в качестве упражнения.

Утверждение 4 . Прямая, проходящая через точку пересечения диагоналей и середину одного из оснований трапеции, проходит через середину другого основания трапеции.

Следствие . Точка пересечения диагоналей, середины оснований и точка пересечения боковых сторон трапеции лежат на одной прямой.

Средние линии четырехугольника. Теорема Вариньона

Определение . Средней линией четырехугольника называют отрезок, соединяющий середины непересекающихся сторон четырёхугольника.

Поскольку у каждого четырехугольника имеются две пары непересекающихся сторон, то у каждого четырехугольника имеются две средних линии (рис.10).

На рисунке 10 средние линии – это отрезки EF и GH .

Замечание 1 . Приведенное определение средней линии относится не только к плоским четырехугольникам, но и к «пространственным четырехугольникам» (рис.11). «Пространственным четырехугольником» мы называем замкнутую ломаную линию из 4 звеньев без самопересечений, не лежащую в одной плоскости.

На рисунке 11 изображен «пространственный четырёхугольник» ABCD , средними линиями которого являются отрезки EF и GH .

Замечание 2 . Несмотря на то, что трапеция является четырехугольником, принято средней линией трапеции называть только отрезок, соединяющий середины её боковых сторон.

Замечание 3 . В данном разделе справочника не рассматриваются невыпуклые четырёхугольники и четырёхугольники с самопересечениями.

Теорема Вариньона . Середины сторон произвольного плоского или «пространственного» четырёхугольника являются вершинами параллелограмма параллелограмма .

Доказательство . Рассмотрим плоский четырёхугольник ABCD , изображенный на рисунке 12. Точки E, G, F, H – середины сторон, отрезок AC – диагональ четырёхугольника.

Поскольку отрезок EG – средняя линия треугольника ABC , то отрезок EG параллелен диагонали AC и равен её половине. Поскольку отрезок FH – средняя линия треугольника CDA , то отрезок FH параллелен диагонали AC и равен её половине. Таким образом, в четырёхугольнике EGFH противоположные стороны EG и FH равны и параллельны. В силу признака параллелограмма признака параллелограмма признака параллелограмма отсюда вытекает, что четырёхугольник EGFH – параллелограмм, что и требовалось доказать.

Замечание 4 . В случае «пространственного четырёхугольника» ABCD доказательство остаётся тем же (рис. 13).

Утверждение 5 . Средние линии произвольного четырёхугольника пересекаются и в точке пересечения делятся пополам (рис. 14).

Утверждение 6 . Рассмотрим произвольный плоский или «пространственный» четырёхугольник ABCD , у которого отрезок EF является одной из средних линий (рис. 15). Тогда будет выполнено векторное равенство:

что и требовалось доказать.

Следствие . Средняя линия четырёхугольника меньше или равна половине суммы не пересекающих её сторон четырёхугольника, причём равенство достигается лишь в том случае, когда указанные стороны четырёхугольника параллельны.

Другими словами, средняя линия четырёхугольника равна половине суммы не пересекающих её сторон четырёхугольника лишь в том случае, когда этот четырехугольник является трапецией трапецией , а не пересекающие среднюю линию стороны четырёхугольника – основания трапеции.

Средние линии тетраэдра

Тетраэдром называют произвольную треугольную пирамиду (рис.17).

У каждого тетраэдра имеется 4 вершины, 4 грани и 6 рёбер, причем все рёбра делятся на 3 пары непересекающихся рёбер . На рисунке 17 каждая пара непересекающихся рёбер выделена отдельным цветом. Каждые два непересекающихся ребра тетраэдра лежат на скрещивающихся прямых скрещивающихся прямых .

Определение . Средней линией (бимедианой) тетраэдра называют отрезок, соединяющий середины двух непересекающихся рёбер тетраэдра.

У каждого тетраэдра имеется 3 средних линии. Изображённый на рисунке 18 отрезок EF является одной из средних линий тетраэдра.

Утверждение 7 . Все средние линии тетраэдра пересекаются в одной точке и делятся этой точкой пополам.

Доказательство . Выберем какую-нибудь среднюю линию тетраэдра, например, EF и докажем, что любая другая средняя линия тетраэдра проходит через середину отрезка EF . Для этого рассмотрим, например, среднюю линию GH , соединяющую середины рёбер AC и BD , и соединим отрезками точки E, H, F, G (рис.19).

Заметим, что отрезок EH является средней линией треугольника ADB , поэтому

Определение . Точку пересечения средних линий тетраэдра называют центроидом тетраэдра .

Утверждение 8 . Рассмотрим в пространстве декартову систему координат с началом в точке O и произвольный тетраэдр ABCD . Если обозначить буквой M центроид этого тетраэдра (рис. 20), то будет выполнено векторное равенство:

источники:

http://mathhelpplanet.com/static.php?p=onlain-reshit-treugolnik

http://www.resolventa.ru/spr/planimetry/mline.htm

Как составить уравнение средней линии треугольника по координатам его вершин? Как записать уравнение средней линии трапеции?

Для решения этих задач используем свойства средней линии треугольника и средней линии трапеции.

1 способ

Найти координаты середин двух сторон и составить уравнение прямой, проходящей через две найденные точки.

Пример.

1) Написать уравнение прямой, содержащей среднюю линию треугольника с вершинами в точках A(-2;-4), B(1;6), C(7;0), пересекающей стороны AB и BC в точках M и N.

Решение:

М — середина отрезка AB, N — середина BC.

По формулам координат середины отрезка

    [x_M = frac{{x_A + x_B }}{2} = frac{{ - 2 + 1}}{2} = - frac{1}{2};]

    [y_M = frac{{y_A + y_B }}{2} = frac{{ - 4 + 6}}{2} = 1;]

    [x_N = frac{{x_B + x_C }}{2} = frac{{1 + 7}}{2} = 4;]

    [y_N = frac{{y_B + y_C }}{2} = frac{{6 + 0}}{2} = 3.]

Таким образом,

    [M( - frac{1}{2};1),N(4;3).]

Составим уравнение прямой MN, например, в виде y=kx+b:

    [left{ begin{array}{l} 1 = k cdot ( - frac{1}{2}) + b; \ 3 = k cdot 4 + b; \ end{array} right.]

Отсюда

    [k = frac{4}{9},b = frac{{11}}{9},]

    [y = frac{4}{9}x + frac{{11}}{9},9y = 4x + 11,4x - 9y + 11 = 0.]

2 способ

Найти координату одной из точек средней линии и составить уравнение прямой, параллельной стороне треугольника.

Решение:

    [M( - frac{1}{2};1)]

— середина отрезка AB. Составим уравнение прямой AC:

    [left{ begin{array}{l} - 4 = k cdot ( - 2) + b; \ 0 = k cdot 7 + b; \ end{array} right.]

    [k = frac{4}{9},b = - frac{{28}}{9}, Rightarrow y = frac{4}{9}x - frac{{28}}{9}.]

Составим уравнение прямой MN как уравнение прямой, проходящей через точку M и параллельной прямой AC.

Угловой коэффициент прямой MN равен угловому коэффициенту прямой AC:

    [k_{MN} = k_{AC} = frac{4}{9},]

то есть уравнение прямой MN ищем в виде

    [y = frac{4}{9}x + b.]

Поскольку точка M принадлежит прямой, её координаты удовлетворяют этому уравнению. Отсюда находим значение b:

    [1 = frac{4}{9} cdot ( - frac{1}{2}) + b, Rightarrow b = 1 + frac{2}{9} = frac{{11}}{9}.]

Таким образом, уравнение прямой MN

    [y = frac{4}{9}x + frac{{11}}{9}]

или

    [4x - 9y + 11 = 0.]

Аналогичные рассуждения применимы и при составлении уравнения средней линии трапеции.

Написать уравнение прямой, содержащей среднюю линию трапеции с вершинами в точках A(-2;1), B(1;5), C(4;-1), D(0;-3).

Решение:

1 способ

Сначала следует определить основания данной трапеции.

Составим уравнения сторон AD и BC. Если эти прямые параллельны, то AD и BC — основания трапеции. Если эти прямые не параллельны, то основания трапеции — AB и CD.

A(-2;1), D(0;-3), отсюда

    [left{ begin{array}{l} 1 = k cdot ( - 2) + b; \ - 3 = k cdot 0 + b; \ end{array} right. Rightarrow k = - 2,b = - 3.]

Значит, уравнение прямой AD:  y= -2k-3.
B(1;5), C(4;-1),

    [left{ begin{array}{l} 5 = k cdot 1 + b; \ - 1 = k cdot 4 + b; \ end{array} right. Rightarrow k = - 2,b = 7.]

Уравнение прямой BC: y= -2k+7.

Поскольку угловые коэффициенты прямых равны:

    [k_{AD} = k_{BC} = - 2,]

то AD ∥BC, то есть AD и BC являются основаниями трапеции ABCD. Значит AB и CD — боковые стороны. Найдём координаты точек M и N — середины  AB и CD соответственно.

    [x_M = frac{{x_A + x_B }}{2} = frac{{ - 2 + 1}}{2} = - frac{1}{2},]

    [y_M = frac{{y_A + y_B }}{2} = frac{{1 + 5}}{2} = 3,]

    [x_N = frac{{x_C + x_D }}{2} = frac{{4 + 0}}{2} = 2,]

    [y_N = frac{{y_C + y_D }}{2} = frac{{ - 1 + ( - 3)}}{2} = - 2.]

Составим уравнение прямой MN, M(-1/2;3), N(2;-2):

    [left{ begin{array}{l} 3 = k cdot ( - frac{1}{2}) + b; \ - 2 = k cdot 2 + b; \ end{array} right. Rightarrow k = - 2,b = 2,]

то есть y=-2k+2.

2 способ

Уравнение AD — y= -2k-3, середина AB — M(-1/2;3). Составляем уравнение прямой MN, параллельной прямой AD.

    [k_{MN} = k_{AD} = - 2.]

Значит уравнение MN ищем в виде y= -2x+b.

Так как прямая проходит через точку M, её координаты удовлетворяют уравнению прямой:

    [3 = - 2 cdot ( - frac{1}{2}) + b, Rightarrow b = 2.]

Следовательно, уравнение средней линии трапеции ABCD имеет вид y=-2x+2 или 2x+y-2=0.

Содержание материала

  1. Средняя линия треугольника + Задачи по теме
  2. ПРИМЕРЫ РЕШЕНИЯ КЛЮЧЕВЫХ ЗАДАЧ
  3. Видео
  4. Понятие средней линии прямоугольного треугольника
  5. Средняя линия
  6. Важные свойства
  7. Решение задачи
  8. Формула для расчета
  9. Примеры решения задач

Средняя линия треугольника + Задачи по теме

Средняя линия треугольника — отрезок, соединяющий

Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

Свойства средней линии треугольника: 1. Средняя линия параллельна третьей стороне и равна ее половине. 2. Средняя линия трeугольника отсекает от него треугольник, подобный данному (с коэффициентом подобия 1/2 ). 3. Три средние линии треугольника делят его на 4 равных треугольника, подобных данному, с коэффициентом подобия 1/2.

Свойство средней линии треугольника является следствием теоремы Фалеса.

ПРИМЕРЫ РЕШЕНИЯ КЛЮЧЕВЫХ ЗАДАЧ

Задача № 1. Дано: ΔABC; AB = 8 см; BC = 10 см; AC = 12 см; M — середина AB; N — середина BC; L — середина AC.  Найти: MN, NL, ML.

Задача № 2.

Задача № 3.   ΔABC; K — середина AB; O &#821

Задача № 3. ΔABC; K — середина AB; O — середина BC; P — середина AC; PABC = 52 см.   Найти: PКOР

Задача № 4.

Задача № 4.

Это конспект по теме «Средняя линия треугольника + Задачи по теме». Выберите дальнейшие действия:

  • Перейти к следующему конспекту: 
  • Вернуться к Списку конспектов по геометрии

Видео

Понятие средней линии прямоугольного треугольника

Математики говорят: в любом треугольнике можно провести три средних линии. В прямоугольном треугольнике этот отрезок будет равен половине основания — это и есть формула средней линии прямоугольного треугольника.

Прямой угол помогает нам применить другие признаки

Прямой угол помогает нам применить другие признаки равенства и подобия. Для углов в прямоугольном треугольнике можно использовать геометрические тождества без дополнительных построений, а любую из сторон можно найти по теореме Пифагора.

В прямоугольном треугольнике две средние линии перпендикулярны катетам, а третья равна медиане, проведенной к гипотенузе. Средние линии острого и разностороннего треугольника не обладают подобными свойствами.

Важное свойство

Средняя линия прямоугольного треугольника делит его на четыре прямоугольных треугольника.

Средняя линия

Чтобы понять, как найти середину треугольника, можно воспользоваться обычной линейкой. Для этого необходимо выбрать произвольные две стороны фигуры. Затем отметить на каждой из них точки, отстоящие на одинаковом расстоянии от соответствующих вершин, которые ограничивают данную сторону. Полученные две точки следует соединить, чтобы начертить средний отрезок. Его название является интуитивно понятным каждому, поскольку он соединяет середины двух сторон.

Важные свойства

Существует три основных свойства, которыми обладает рассматриваемый отрезок. Пусть имеется треугольник произвольного типа ABC, в котором точки P и Q лежат на серединах сторон AB и AC соответственно. При таком обозначении отрезок PQ будет средней линией треугольника ABC. Справедливы следующие геометрические свойства:

  1. Полученный треугольник APQ является подобным исходной фигуре ABC. Доказать это утверждение несложно, если обратить внимание на два факта: во-первых, угол A у обеих фигур является общим, во-вторых, отношение AB/AP равно величине AC/AQ и составляет 2 согласно выполненным геометрическим построениям. Таким образом, выполняется один из признаков подобия.
  2. Длина средней линии PQ оказывается в два раза меньше, чем сторона BC. Кроме того, оба отрезка параллельны друг другу. Утверждение о равенстве PQ = ½*BC следует из факта подобия треугольников APQ и ABC, коэффициент которых составляет 2. Это равенство также можно доказать, если воспользоваться координатным методом.
  3. Треугольник APQ имеет в 4 раза меньшую площадь, чем исходная фигура ABC.

Утверждение № 3 из списка справедливо для произвольного треугольника. Для его доказательства следует воспользоваться формулой Герона. Согласно ей, площадь рассматриваемой фигуры может быть вычислена следующим образом:

S = (p*(p-a)*(p-b)*(p-c))^0,5.

Здесь p = (a+b+c)/2 — полупериметр фигуры. Буквами a, b и c обозначены длины ее сторон. Пусть таким же образом обозначаются стороны для треугольника ABC. Тогда для фигуры APQ они будут иметь длины a/2, b/2 и c/2. Полупериметр для APQ составит величину p1 = (a+b+c)/4 = ½*p. Теперь необходимо подставить все известные величины в формулу Герона, получается площадь S1:

S1 = (p1*(p1-a/2)*(p1-b/2)*(p1-c/2))^0,5 = (½*p*(½*p-a/2)*(½*p-b/2)*(½*p-c/2))^0,5 = ¼*S.

Иными словами, площадь треугольника APQ составляет четвертую часть от этой величины для ABC.

Решение задачи

В треугольнике ABC проведен средний отрезок PQ, граничные точки которой P и Q находятся на сторонах AB и AC соответственно. Необходимо с использованием метода координат доказать, что эта линия имеет в два раза меньшую длину, чем сторона BC.

Прежде чем находить решение этой задачи, следует обозначить координаты вершин исходной фигуры. Они будут следующие:

  • A (x1, y1);
  • B (x2, y2);
  • C (x3, y3).

Поскольку точка P делит ровно пополам сторону AB, то для нахождения ее координат необходимо провести следующие вычисления:

P = ((x1+x2)/2, (y1+y2)/2).

Аналогичным образом рассчитываются координаты точки Q:

Q = ((x1+x3)/2, (y1+y3)/2).

Вспоминая формулу для длины вектора, координаты конца и начала которого известны, для средней линии PQ можно произвести следующие вычисления:

PQ = (((x1+x3)/2 — (x1+x2)/2)^2 + ((y1+y3)/2 — (y1+y2)/2)^2)^0,5 = ½*((x3-x2)^2 + (y3-y2)^2)^0,5.

В свою очередь, длина стороны BC равна:

BC = ((x3-x2)^2 + (y3-y2)^2)^0,5.

Из сопоставления этих двух равенств следует искомая формула, которую требовалось доказать:

PQ = ½*BC.

Поскольку в процессе доказательства были использованы произвольные координаты для вершин треугольника, полученный вывод является общим и универсальным для любого типа рассматриваемых фигур.

Формула для расчета

Теорема

Средняя линия треугольника параллельна основанию и равна её половине.

(A_1C_1=frac12AC)

Доказательство

Дано:

(triangle ABC)

(A_1C_1)— средняя линия

Доказать:

(A_1C_1parallel AC)

(A_1C_1=frac12AC)

Рассмотрим (triangle BA_1C_1) и (triangle BAC):

(left{begin{array}{l}angle B;-;общий\frac{BA_1}{BA}=frac{BC_1}{BC}=frac12end{array}right.)

Из этого следует, что треугольники подобны по двум пропорциональным сторонам и углу между ними.

Следовательно, (angle BA_1C_1=angle BAC) , как соответственные элементы подобных треугольников. Следовательно (A_1C_1parallel AC) по признаку параллельности.

Кроме того, из подобия следует, что (frac{A_1C_1}{AC}=frac12)

Следовательно, (A_1C_1=frac12AC)

Утверждение доказано.

Примечание

Данная формула одинаково работает для любого треугольника: равнобедренного, равностороннего (правильного).

Примеры решения задач

ПРИМЕР 1

Задание В треугольнике провели среднюю линию , параллельную. Найти площадь треугольника , если известно, что см, а высота , опущенная на сторону , равна 5 см. Решение В треугольнике (см. рис. 1) средняя линия равна половине стороны , поэтому

Найдем площадь треугольника :

Так как средняя линия отсекает треугольник , площадь которого равна одной четвёртой площади исходного треугольника , то площадь треугольника равна:

Ответ см.

ПРИМЕР 2

Задание В треугольнике провели средние линии см, см и см. Найти периметр треугольника . Решение Так как средняя линия равна половине стороны, которой она параллельна, то можем найти длины всех сторон треугольника :

см см см

Теперь можно найти периметр треугольника как сумму длин всех его сторон:

см Ответ см.

Теги

Определение.

Середина отрезка — это точка, которая лежит на отрезке и находится на равном расстоянии от конечных точек.

Середина отрезка

В геометрических задачах часто можно столкнуться с необходимостью найти середину отрезка заданного координатами точек его концов, например в задачах поиска медианы, средней линии, …

Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.

Формулы вычисления расстояния между двумя точками:

  • Формула вычисления координат середины отрезка с концами A(xaya) и B(xbyb) на плоскости:
    xc xa + xb        yc ya + yb
    2 2

  • Формула вычисления координат середины отрезка с концами A(xayaza) и B(xbybzb) в пространстве:
    xc xa + xb      yc ya + yb      zc za + zb
    2 2 2

Примеры задач на вычисление середины отрезка

Примеры вычисления координат середины отрезка на плоскости

Пример 1.

Найти координаты точки С, середины отрезка AB заданного точками A(-1, 3) и B(6, 5).

Решение.

xc xa + xb  =  -1 + 6  =  5  = 2.5
2 2 2
yc ya + yb  =  3 + 5  =  8  = 4
2 2 2

Ответ: С(2.5, 4).

Пример 2.

Найти координаты точки В, если известны координаты точки C(1; 5), середины отрезка AB и точки A(-1, 3).

Решение.

xc =

xa + xb2

=> xb = 2xc — xa = 2·1-(-1)=2+1=3

yc =

ya + yb2

=> yb = 2yc — ya = 2·5-3=10-3=7

Ответ: B(3, 7).

Примеры вычисления координат середины отрезка в пространстве

Пример 3.

Найти координаты точки С середины отрезка AB заданного точками A(-1, 3, 1) и B(6, 5, -3).

Решение.

xc xa + xb  =  -1 + 6  =  5  = 2.5
2 2 2
yc ya + yb  =  3 + 5  =  8  = 4
2 2 2
zc za + zb  =  1 + (-3)  =  -2  = -1
2 2 2

Ответ: С(2.5, 4, -1).

Пример 4.

Найти координаты точки В если известны координаты точки C(1, 5, 2), середины отрезка AB и точки A(-1, 3, 10).

Решение.

xc =

xa + xb2

=> xb = 2xc — xa = 2·1-(-1)=2+1=3

yc =

ya + yb2

=> yb = 2yc — ya = 2·5-3=10-3=7

zc =

za + zb2

=> zb = 2zc — za = 2·2-10=4-10=-6

Ответ: B(3, 7, -6).

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

На этой странице можно рассчитать координаты середины отрезка как на плоскости, так и в пространстве. Введите координаты точек и получите ответ, а также подробное решение с помощью наших онлайн-калькуляторов.

Задача нахождения координат середины отрезка довольно часто возникает при решении задач, связанных с нахождением средней линии, медианы а также других вычислениях. На нашем сайте также можно рассчитать длину отрезка, заданного координатами.

Середина отрезка — точка, расположенная на отрезке на равном расстоянии от его конечных точек.

Формула для нахождения координат середины отрезка на плоскости

{x_c=dfrac{x_a + x_b}{2}; ; y_c=dfrac{y_a + y_b}{2}}

xa и ya — координаты первой точки A,

xb и yb — координаты второй точки B,

xc и yc — координаты середины отрезка (точка C).

Формула для нахождения координат середины отрезка в пространстве

{x_c=dfrac{x_a + x_b}{2}; ; y_c=dfrac{y_a + y_b}{2}; ; z_c=dfrac{z_a + z_b}{2}}

xa, ya и za — координаты первой точки A,

xb, yb и zb— координаты второй точки B,

xc, yc и zc — координаты середины отрезка (точка C).

Примеры задач на вычисление середины отрезка

Задача 1

Найдите координаты середины отрезка АВ,если А(-2,3) и В(6,-3).

Решение

Подставим координаты концов отрезка в формулы.

x_c=dfrac{x_a + x_b}{2} = dfrac{-2 + 6}{2} = dfrac{4}{2} = 2

y_c=dfrac{y_a + y_b}{2} = dfrac{3 + (-3)}{2} = dfrac{0}{2} = 0

Мы получили координаты середины отрезка — C(2, 0).

Ответ: C(2, 0)

Калькулятор середины отрезка поможет проверить результат.

Задача 2

Дано: A(1, -1, 2), B(3, 1, -2). Найдите координаты середины отрезка AB.

Решение

Воспользуемся формулами координат середины отрезка в пространстве, подставив в них значение координат концов отрезка.

x_c=dfrac{x_a + x_b}{2} = dfrac{1 + 3}{2} = dfrac{4}{2} = 2

y_c=dfrac{y_a + y_b}{2} = dfrac{-1 + 1}{2} = dfrac{0}{2} = 0

z_c=dfrac{z_a + z_b}{2} = dfrac{2 + (-2)}{2} = dfrac{0}{2} = 0

Мы получили координаты середины отрезка — C(2, 0, 0).

Ответ: C(2, 0, 0)

Проверка

Понравилась статья? Поделить с друзьями:
  • Как найти датчик приближения на андроид
  • Как составить программу занятий для ребенка
  • Как найти число опор
  • Как найти тепловой эффект в химии формула
  • Как найти работу студенту в россии