Как найти координаты окружности вписанной в треугольник

Центр и радиус вписанной окружности в треугольник

Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника. Радиус окружности, вписанной в любой треугольник, равняется удвоенной площади треугольника, деленной на его периметр.

Центр и радиус вписанной окружности в треугольник через координаты его вершин

Известны координаты вершин треугольника и известный координаты точки. Нужно установить принадлежность точки треугольнику.
Существует несколько способов определения. лежит-ли точка внутри треугольника или снаружи:

1. Метод сравнения площадей — по формуле Герона находятся площади 3-х треугольников которые образует точка с каждой стороной треугольника, далее находится площадь самого треугольника и сравнивается с суммой 3ех предыдущих треугольников, если суммы равны то значит точка принадлежит треугольнику.

2. Метод относительности — выбирается ориентация движения по вершинам треугольника, например по часовой стрелке. По данной ориентации проходим все стороны треугольника, рассматривая их как прямые, и рассчитываем по какую сторону от текущей прямой лежит наша точка. Если точка для всех прямых, лежит с правой стороны, то значит точка принадлежит треугольнику, если хоть для какой-то прямой она лежит с левой стороны, то значит условие принадлежности не выполняется.

3. Метод геометрического луча — из точки пускается луч по какой-либо оси в каком-либо направлении. Вычисляется количество пересечений со сторонами, если кол-во нечётное, то значит точка лежит внутри многоугольника.

Окружность в треугольнике

В каждый треугольник можно вписать окружность, притом только одну.
Центр вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.

Пример

В приведенном ниже примере, O является центров окружности.

Метод расчета центра окружности вписанного в треугольник

Даны точки вершин треугольника A(5,7), B(6,6) и C(2,-2). Итак, нам известны координаты точек вершин треугольника x1,y1, x2,y2 и x3,y3.
Для нахождения точки центра вписанной окружности необходимо найти уравнение биссектрисы.

Шаг 1 :

Давайте рассчитаем средние точки всех сторон треугольника AB, BC и CA заданных координатами x и y

  • Средняя точка стороны = x1+x2/2, y1+y2/2
  • Средняя точка AB = 5+6/2, 7+6/2 = (11/2, 13/2)
  • Средняя точка BC = 6+2/2, 6-2/2 = (4, 2)
  • Средняя точка CA = 2+5/2, -2+7/2 = (7/2, 5/2)

Шаг 2 :

Далее, найдем углы сторон AB, BC и CA используя формулу y2-y1/x2-x1. Пожалуйста, обратите внимание, что угол обозначается буквой ‘m’.

  • Угол AB (m) = 6-7/6-5 = -1.
  • Угол BC (m) = -2-6/2-6 = 2.
  • Угол CA (m) = 7+2/5-2 = 3.

Шаг 3 :

Теперь, давайте вычислить угол биссектрисы сторон AB, BC и CA.

  • Угол биссектрисы = -1/угол линии (стороны).
  • Угол биссектрисы стороны AB = -1/-1 = 1
  • Угол биссектрисы стороны BC = -1/2
  • Угол биссектрисы стороны CA = -1/3

Шаг 4 :

После того, как мы находим угол перпендикулярных линий, мы должны найти уравнение перпендикуляра, биссектрис с углом и серединой. Уравнение перпендикуляра АВ с серединами (11/2, 13/2) и углом 1.

Уравнение центра окружности y-y1 = m(x-x1)

Упростив, мы получим уравнение -x + y = 1

Кроме того, мы должны найти уравнение перпендикуляра, биссектрис линий BE и CF.

Для BC с средней точкой (4,2) и углом -1/2 y-2 = -1/2(x-4)

Упростив, мы получим уравнение x + 2y = 8

Для CA с средней точкой (7/2,5/2) и углом -1/3 y-5/2 = -1/3(x-7/2)

Упростив, мы получим уравнение x + 3y = 11

Шаг 5 :

Найдем значения x и y решив любые 2 из указанных 3 уравнений.

В этом примере, значение x и y равны (2,3) которые являются координатами центра (o) вписанной окружности в треугольник.

Точка пересечения биссектрис

Как найти точку пересечения биссектрис треугольника по координатам его вершин?

Как найти радиус вписанной в треугольник окружности по координатам его вершин?

Точка пересечения биссектрис треугольника является центром вписанной в этот треугольник окружности.

Эта точка равноудалена от сторон треугольника. Расстояние от точки пересечения биссектрис до сторон треугольника равно радиусу вписанной окружности.

Следовательно, все три задачи сводятся к нахождению точки пересечения биссектрис треугольника.

Для этого надо сначала составить уравнения биссектрис треугольника и найти точку их пересечения.

Дан треугольник ABC с вершинами в точках A(0;-3), B(12;-12) и C(3,36;-0,48).

1) Найти точку пересечения биссектрис треугольника ABC.

2) Найти радиус вписанной в треугольник ABC окружности.

3) Составить уравнение вписанной в треугольник ABC окружности.

1) Составим уравнения прямых, содержащих стороны треугольника.

Уравнение прямой AC:

Уравнение прямой BC:

Составим уравнение биссектрисы треугольника ABC, исходящей из угла B. Она образована прямыми AB и BC:

откуда уравнения биссектрис угла B: x-y-24=0 или x+y=0. Чтобы понять, которое из двух уравнений является биссектрисой внутреннего угла треугольника, следует подставить в уравнения координаты точек A и C. Поскольку они лежат по разные стороны от биссектрисы внутреннего угла B, то подстановка их координат в уравнение биссектрисы даёт числа разных знаков.

A(0;-3) и C(3,36;-0,48) в x-y-24=0: 0-(-3)-24 0. Получили числа разных знаков, x+y=0 — биссектриса угла B треугольника ABC.

Составим уравнение биссектрисы угла C. Угол C образован прямыми AC и BC, откуда

уравнения биссектрис угла C: 7x-y-24=0 и x+7y=0.

A(0;-3), B(12;-12) в 7x-y-24=0: 7·0-(-3)-24 0. Получили числа разных знаков, значит 7x-y-24=0 — уравнение биссектрисы внутреннего угла C.

Поскольку все три биссектрисы треугольника пересекаются в одной точке, третью биссектрису находить не требуется.

Точку пересечения биссектрис углов B и C найдём из системы уравнений

O(3;-3) — точка пересечения биссектрис треугольника ABC. Эта точка является центром вписанной в треугольник окружности.

2) Радиус вписанной в треугольник ABC окружности можно найти как расстояние от точки O до прямой AB, BC или AC. Найдем, например, расстояние от O до AB:

3) Чтобы найти уравнение вписанной в треугольник ABC окружности, в уравнение окружности подставляем координаты центра O(3;-3) и r=9/5:

источники:

http://wpcalc.com/okruzhnost-v-treugolnike/

Точка пересечения биссектрис

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

.

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Фигура Рисунок Формула Обозначения
Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник
Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Равнобедренный треугольник

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольник

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

с помощью формулы Герона получаем:

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

то, в случае равнобедренного треугольника, когда

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

то, в случае равностороннего треугольника, когда

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

Доказательство . Рассмотрим рисунок 9.

Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

Уравнение вписанной окружности в треугольник по координатам

Составить уравнение окружности, вписанной в треугольник, стороны которого лежат на прямых x = 0, y = 0 и 3x + 4y — 12 = 0.

найдем координаты вершин треугольника, решив следующие системы уравнений:

Этот треугольник прямоугольный, так как прямые x = 0 и y = 0 перпендикулярны. Пусть r — радиус вписанной окружности в треугольник, S — площадь треугольника, p — полупериметр треугольника. Тогда

и .

Так как окружность касается прямых x = 0 и y = 0, то координаты центра окружности — (r; r) или (1; 1).

Итак, искомое уравнение окружности (x — 1) 2 + (y — 1) 2 = 1.

Окружность в треугольнике

В каждый треугольник можно вписать окружность, притом только одну.
Центр вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.

Пример

В приведенном ниже примере, O является центров окружности.

Метод расчета центра окружности вписанного в треугольник

Даны точки вершин треугольника A(5,7), B(6,6) и C(2,-2). Итак, нам известны координаты точек вершин треугольника x1,y1, x2,y2 и x3,y3.
Для нахождения точки центра вписанной окружности необходимо найти уравнение биссектрисы.

Шаг 1 :

Давайте рассчитаем средние точки всех сторон треугольника AB, BC и CA заданных координатами x и y

  • Средняя точка стороны = x1+x2/2, y1+y2/2
  • Средняя точка AB = 5+6/2, 7+6/2 = (11/2, 13/2)
  • Средняя точка BC = 6+2/2, 6-2/2 = (4, 2)
  • Средняя точка CA = 2+5/2, -2+7/2 = (7/2, 5/2)

Шаг 2 :

Далее, найдем углы сторон AB, BC и CA используя формулу y2-y1/x2-x1. Пожалуйста, обратите внимание, что угол обозначается буквой ‘m’.

  • Угол AB (m) = 6-7/6-5 = -1.
  • Угол BC (m) = -2-6/2-6 = 2.
  • Угол CA (m) = 7+2/5-2 = 3.

Шаг 3 :

Теперь, давайте вычислить угол биссектрисы сторон AB, BC и CA.

  • Угол биссектрисы = -1/угол линии (стороны).
  • Угол биссектрисы стороны AB = -1/-1 = 1
  • Угол биссектрисы стороны BC = -1/2
  • Угол биссектрисы стороны CA = -1/3

Шаг 4 :

После того, как мы находим угол перпендикулярных линий, мы должны найти уравнение перпендикуляра, биссектрис с углом и серединой. Уравнение перпендикуляра АВ с серединами (11/2, 13/2) и углом 1.

Уравнение центра окружности y-y1 = m(x-x1)

Упростив, мы получим уравнение -x + y = 1

Кроме того, мы должны найти уравнение перпендикуляра, биссектрис линий BE и CF.

Для BC с средней точкой (4,2) и углом -1/2 y-2 = -1/2(x-4)

Упростив, мы получим уравнение x + 2y = 8

Для CA с средней точкой (7/2,5/2) и углом -1/3 y-5/2 = -1/3(x-7/2)

Упростив, мы получим уравнение x + 3y = 11

Шаг 5 :

Найдем значения x и y решив любые 2 из указанных 3 уравнений.

В этом примере, значение x и y равны (2,3) которые являются координатами центра (o) вписанной окружности в треугольник.

источники:

http://www.pm298.ru/reshenie/ljr56.php

http://wpcalc.com/okruzhnost-v-treugolnike/

Центр вписанной в треугольник окружности является точкой пересечения биссектрис этого треугольника. Радиус окружности, вписанной в любой треугольник, равняется удвоенной площади треугольника, деленной на его периметр. 

.

Центр и радиус вписанной окружности в треугольник через координаты его вершин

Центр и радиус вписанной окружности в треугольник

Известны координаты вершин треугольника и известный координаты точки. Нужно установить принадлежность точки треугольнику.
Существует несколько способов определения. лежит-ли точка внутри треугольника или снаружи:

1. Метод сравнения площадей — по формуле Герона находятся площади 3-х треугольников которые образует точка с каждой стороной треугольника, далее находится площадь самого треугольника и сравнивается с суммой трех предыдущих треугольников, если суммы равны то значит точка принадлежит треугольнику.

2. Метод относительности — выбирается ориентация движения по вершинам треугольника, например по часовой стрелке. По данной ориентации проходим все стороны треугольника, рассматривая их как прямые, и рассчитываем по какую сторону от текущей прямой лежит наша точка. Если точка для всех прямых, лежит с правой стороны, то значит точка принадлежит треугольнику, если хоть для какой-то прямой она лежит с левой стороны, то значит условие принадлежности не выполняется.

3. Метод геометрического луча — из точки пускается луч по какой-либо оси в каком-либо направлении. Вычисляется количество пересечений со сторонами, если кол-во нечётное, то значит точка лежит внутри многоугольника.

В каждый треугольник можно вписать окружность, притом только одну.
Центр вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.

Пример

В приведенном ниже примере, O является центров окружности.

triangle-circumcenter

Метод расчета центра окружности вписанного в треугольник

Даны точки вершин треугольника A(5,7), B(6,6) и C(2,-2). Итак, нам известны координаты точек вершин треугольника x1,y1, x2,y2 и x3,y3.
Для нахождения точки центра вписанной окружности необходимо найти уравнение биссектрисы.

Шаг 1 :

Давайте рассчитаем средние точки всех сторон треугольника AB, BC и CA заданных координатами x и y

  • Средняя точка стороны = x1+x2/2, y1+y2/2
  • Средняя точка AB = 5+6/2, 7+6/2 = (11/2, 13/2)
  • Средняя точка BC = 6+2/2, 6-2/2 = (4, 2)
  • Средняя точка CA = 2+5/2, -2+7/2 = (7/2, 5/2)

Шаг 2 :

Далее, найдем углы сторон AB, BC и CA используя формулу y2-y1/x2-x1. Пожалуйста, обратите внимание, что угол обозначается буквой ‘m’.

  • Угол AB (m) = 6-7/6-5 = -1.
  • Угол BC (m) = -2-6/2-6 = 2.
  • Угол CA (m) = 7+2/5-2 = 3.

Шаг 3 :

Теперь, давайте вычислить угол биссектрисы сторон AB, BC и CA.

  • Угол биссектрисы = -1/угол линии (стороны).
  • Угол биссектрисы стороны AB = -1/-1 = 1
  • Угол биссектрисы стороны BC = -1/2
  • Угол биссектрисы стороны CA = -1/3

Шаг 4 :

После того, как мы находим угол перпендикулярных линий, мы должны найти уравнение перпендикуляра, биссектрис с углом и серединой. Уравнение перпендикуляра АВ с серединами (11/2, 13/2) и углом 1.

Уравнение центра окружности y-y1 = m(x-x1)

y-13/2 = 1(x-11/2)

Упростив, мы получим уравнение -x + y = 1

Кроме того, мы должны найти уравнение перпендикуляра, биссектрис линий BE и CF.

Для BC с средней точкой (4,2) и углом -1/2 y-2 = -1/2(x-4)

Упростив, мы получим уравнение x + 2y = 8

Для CA с средней точкой (7/2,5/2) и углом -1/3 y-5/2 = -1/3(x-7/2)

Упростив, мы получим уравнение x + 3y = 11

Шаг 5 :

Найдем значения x и y решив любые 2 из указанных 3 уравнений.

В этом примере, значение x и y равны (2,3) которые являются координатами центра (o) вписанной окружности в треугольник.



людей нашли эту статью полезной. А Вы?

Геометрия (центр вписаной окружности)

burkardt/m_src/geometry/triangle_incenter_2d.m.
Правда очень надо, а никто незнает.

Центр вписаной окружности в барицентрических координатах выражется как (a,b,c), где a,b,c — длины сторон треугольника. Приведенная программа тупо переводит барицентрические координаты в обычные.

Я не могу разобраться. тем более на английском.
Можно подробнее. куда массы помещать?

Объясните пожалуйста, каким образом выводится формула расчёта центра вписаной окружности:
Это стороны треугольника через координаты вершин.
a=sqrt(sqr(x-x1)+sqr(y-y1))
b=sqrt(sqr(x1-x2)+sqr(y1-y2))
c=sqrt(sqr(x2-x)+sqr(y2-y))
P — периметр
Центр вписаной окружности (пересечение бисектрис)
Xцентр=(b*x+c*x1+a*x2)/P
Yцентр=(b*y+c*y1+a*y2)/P
К сожалению я не очень хорошо (а веернее очень плохо) знаю английский и не смог воспользоваться подсказкой. Обьясните пожалуйсто подробнее. очкнь нужэно.

Пусть есть треугольник ABC. Он задает систему барицентрических координат. Точка с X барицентрическими координатами (p:q:r) равна центру тяжести треугольника ABC, если в вершину A положить массу p, в B — q, а в C — r. Эквивалентно, можно зафиксировать какую-нибудь точку O и определить X векторным равенством
(p+q+r)*OX = p*OA + q*OB + r*OC.
Это определение корректно, т.е. не зависит от выбора точки O. В частности, можно взять O=X, тогда получится
p*XA + q*XB + r*XC = 0.

Лемма 1. Если a=BC, b=AC, c=AB — длины сторон треугольника, то центр вписанной (пишется через две н, а биссектриса — через две с!) окружности имеет барицентрические координаты (a:b:c).

Лемма 2. Барицентрические координаты точки X внутри треугольника ABC равны (S(BCX):S(ACX):S(ABX)).
(S — площади соотв. треугольников)
Д-во леммы 2. Пусть угол BXC равен u, угол AXC равен v, угол AXB равен w. Тогда
S(BCX)=|XB|*|XC|*sin u,
S(AXC)=|XA|*|XC|*sin v,
S(ABX)=|XA|*|XB|*sin w.
Рассмотрим вектор
v=S(BCX)*XA + S(ACX)*XB + S(ABX)*XC =
= |XA|*|XB|*|XC|*(XA/|XA| sin u + XB/|XB| sin v + XC/|XC| sin w).
Нам нужно доказать, что v=0. Это можно сделать, например, посчитав его скалярные произведения с векторами XA и XB и убедившись, что они равны нулю. При этом нужно использовать, что u+v+w=2*pi. Не знаю, может есть красивое простое д-во.

Д-во леммы 1. Если X — центр вписанной окружности, то S(BCX)=ar/2, S(ACX)=br/2 и S(ABX)=cr/2, где r — радиус этой окружности. Применяем лемму 2.

Далее, пусть у нас есть система декартовых координат (x,y) и заданы координаты вершин треугольника:
A(x_1,y_1), B(x_2,y_2), C(x_3,y_3).
Тогда мы легко можем вычислить стороны a,b,c. Центр L вписанной окружности имеет барицентрические координаты (a:b:c), следовательно,
(a+b+c) OL = a*OA + b*OB + c*OC.
Здесь O — начало координат. Приравнивая x-е и y-е компоненты, получаем:
L_x = (a*x_1+b*x_2+c*x_3)/(a+b+c),
L_y = (a*y_1+b*y_2+c*x_3)/(a+b+c).

Задача о вписанной окружности

Сначала найдем радиус окружности. Площадь треугольника [math]ABC[/math] мы можем найти из векторного произведения векторов [math]overrightarrow[/math] и [math]overrightarrow[/math] . С другой стороны, [math]S_ = S_ + S_ + S_[/math] . А площадь маленьких треугольников равна половине произведения радиуса окружности на основание. Например, [math]S_ = frac * R * AC[/math] . Отсюда получаем выражение, из которого можно найти радиус окружности. [math]R = frac times overrightarrow]|>[/math]

Теперь будем искать центр окружности. Как известно, центр вписанной окружности лежит на пересечении биссектрис. Вектор, коллиниарный вектору [math]overrightarrow[/math] , можно найти следующим образом [math]overrightarrow = frac> + frac>[/math] . Обозначим вектор [math]overrightarrow = frac>|> [/math] . Теперь необходимо найти длину вектора [math]overrightarrow[/math] . [math] AO = frac>[/math] , где [math]alpha = angle[/math] . По формуле понижения степени [math] sin^frac = frac[/math] . Найти [math]cosalpha[/math] можно из скалярного произведения. [math]cosalpha = frac;overrightarrow)>||overrightarrow|>[/math] . Заметим, что [math]OH = R[/math] , и можем выразить длину [math]AO = frac times overrightarrow]|>frac|overrightarrow||overrightarrow|>||overrightarrow| — (overrightarrow;overrightarrow)>[/math] . Задача почти решена, осталось только отметить, что [math]AB = |overrightarrow|, AC = |overrightarrow|, BC = |overrightarrow — overrightarrow|[/math] , а радиус-вектор точки центра окружности совпадает с радиус-вектором [math]overrightarrow [/math] , a [math]overrightarrow = overrightarrow * AO [/math]

Окружность в треугольнике

Окружность, которая находится внутри треугольника и касается каждой его стороны в одной точке называется вписанной.
Обычно поиск координат центра окружности, вписанной в треугольник вызывает затруднения, но калькулятор позволит сделать это быстро и точно.

Работа с калькулятором

Вам нужно ввести в окно калькулятора координаты трех точек А, В и С – вершин треугольника. Координаты могут быть положительными, отрицательными и дробными (до четырех знаков после запятой).

Результат
Координаты центра окружности через запятую в формате: Х,Y. В случае, если это необходимо, ответ дается с точностью до пяти знаков после запятой.
Например, координаты точек: 0, 0; 1, 1; 4, 2. Координаты центра будут: «4,-3».

Понравилась статья? Поделить с друзьями:
  • Как найти шрифт по фотографии кириллица
  • Как найти порно в инстаграме
  • Как найти путь в алгоритме дейкстры
  • Как найти угол сод в прямоугольнике
  • Как в фар менеджере найти файл