Как найти координаты 4-й вершины параллелограмма, зная координаты трёх других его вершин?
В декартовых координатах эту задачу можно решить, используя свойство диагоналей параллелограмма.
Из трёх известных вершин две являются концами одной диагонали. Находим координаты середины этой диагонали. Точка пересечения диагоналей является серединой каждой из них. Для второй диагонали находим второй конец по известным одному концу и середине.
Примеры.
1)
Дано: ABCD — параллелограмм,
A(-3;11), B(12;-4), C(1;-7)
Найти: D.
Решение:
1) Найдём координаты точки O — середины диагонали AC.
По формуле координат середины отрезка
То есть O(-1;2).
2) По свойству диагоналей параллелограмма, точка O также является серединой BD:
Ответ: D (-14; 8).
2)
Дано: ABCD — параллелограмм,
B(7;4), C(-5;10), D(-1;-2)
Найти: A.
Решение:
1) Ищем координаты точки O — середины отрезка BD:
Итак, O (3;1).
2) Точка O также является серединой AC:
Ответ: A (11;-8).
Please wait.
We are checking your browser. mathvox.ru
Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6ce838505a687a6d • Your IP : 85.95.179.65 • Performance & security by Cloudflare
Найти четвертую вершину параллелограмма
Как найти координаты 4-й вершины параллелограмма, зная координаты трёх других его вершин?
В декартовых координатах эту задачу можно решить, используя свойство диагоналей параллелограмма.
Из трёх известных вершин две являются концами одной диагонали. Находим координаты середины этой диагонали. Точка пересечения диагоналей является серединой каждой из них. Для второй диагонали находим второй конец по известным одному концу и середине.
Дано: ABCD — параллелограмм,
1) Найдём координаты точки O — середины диагонали AC.
2) По свойству диагоналей параллелограмма, точка O также является серединой BD:
Дано: ABCD — параллелограмм,
1) Ищем координаты точки O — середины отрезка BD:
2) Точка O также является серединой AC:
2 Comments
А как вы получили -14 в первом примере.
Можно применить основное свойство пропорции: 12+xD=2∙(-1), xD=-2-12=-14.
Площадь параллелограмма, построенного на векторах — формула и примеры решения задач
Четырехугольник и вектор на плоскости
Каждый школьник понимает, что параллелограмм является специальным видом плоских четырехугольников. Эта фигура состоит из двух пар параллельных пересекающихся отрезков. Она обладает следующими важными свойствами:
- ее противоположные стороны и углы равны друг другу;
- сумма всех четырех углов составляет 360 градусов;
- если просуммировать лишь два смежных (прилежащих к одной стороне) угла, то получится значение 180 градусов;
- любая диагональ делит фигуру на две равные части (треугольники);
- пересечение диагоналей происходит в точке, которая является геометрическим и массовым центром параллелограмма;
- любая секущая, которая проходит через геометрический центр, делит фигуру на две равные по площади части.
Специальные типы
Исходя из определения параллелограмма, как четырехугольника с параллельными и равными по длине противоположными сторонами, можно привести несколько видов фигуры, которые обладают высокой симметрией по отношению к ряду элементарных операций. Это следующие геометрические типы:
- Квадрат. Все четыре стороны его равны по длине между собой, а углы составляют 90 градусов. Он является фигурой с достаточно высокой симметрией, и его площадь вычисляется просто как квадрат длины любой его стороны.
- Прямоугольник. Еще один вид параллелограмма, все углы которого являются прямыми. Его симметрия несколько ниже, чем у квадрата, поскольку длины сторон равны лишь попарно. Площадь фигуры можно вычислить, перемножив длины смежных сторон.
- Ромб. Специальный геометрический тип параллелограмма, который характеризуется тем, что длины всех его сторон являются одинаковыми. Углы фигуры попарно равны и отличаются от 90 градусов (два тупых и два острых).
Направленные отрезки и операция умножения
Площадь параллелограмма через векторы рассчитать легко, если знать понятие направленного отрезка и уметь работать с соответствующими математическими операциями. Поскольку любая точка на плоскости может быть представлена в виде набора двух координат в декартовой прямоугольной системе, то для P и Q можно записать:
P (x1, y1); Q (x2, y2).
Где числа x1, y1, x2 и y2 являются соответствующими координатами для точек P и Q по осям абсцисс и ординат. Чтобы получить вектор PQ-, который будет направлен из P в точку Q, необходимо из координат Q попарно вычесть значения для P:
PQ- = Q — P = (x2-x1, y2-y1).
Координаты направленного отрезка на плоскости определяются так же, как и для точки, набором из двух чисел. Чтобы построить такой вектор в системе координат, необходимо его начало расположить в точке (0, 0), а конец со стрелкой будет располагаться в точке (x2-x1, y2-y1). Из этой геометрической интерпретации следует, что существует бесконечное множество направленных отрезков, которые эквивалентны между собой. Получаются они друг из друга с помощью параллельного переноса по всей плоскости координат.
Как и числа, направленные отрезки также можно складывать между собой, вычитать и умножать. Рассматривая вопрос построение параллелограмма на векторах и нахождения его площади, необходимо изучить свойства векторного произведения. Оно представляет собой вектор, перпендикулярный плоскости, в которой лежат исходные направленные отрезки. Пусть a- и b- необходимо умножить векторно. Результатом произведения будет следующий вектор c-:
c- = [a-*b-] = |a-|*|b-|*sin (alfa).
Здесь alfa — угол между a- и b-, а |a-| и |b-| — длины соответствующих направленных отрезков.
Направление c- принято определять с помощью правила правой руки. Оно гласит: если четыре пальца ладони направить от конца первого умножаемого вектора к концу второго, то оттопыренный большой палец укажет направление результирующего векторного умножения.
Координаты вектора c- можно вычислить также, если воспользоваться понятием определителя матрицы. Пусть a- имеет координаты (a1, a2), а b- = (b1, b2), тогда формула для определения c- запишется в следующем виде:
c- = (0, 0, (a1*b2-b1*a2)).
Вектор c- имеет первые две нулевые координаты, поскольку он перпендикулярен плоскости, в которой находятся a- и b-.
Формула площади из геометрии
Чтобы получить формулу площади параллелограмма на векторах, необходимо вспомнить, как рассчитывается эта величина для треугольника. Если известна одна сторона (основание a) и высота, которая на нее опущена (h), то получается простое выражение:
Где S3 — площадь треугольника. Поскольку две таких плоских фигуры, которые соединены одной из своих сторон, образуют четырехугольник-паралелограм, то для него рассмотренную величину можно вычислить по формуле:
Пусть вторая сторона параллелограмма равна b, тогда с высотой h она связана через определение тригонометрической функции синус:
sin (alfa) = h/b => h = b*sin (alfa).
Если подставить это равенство в выражение для S4, то нахождение площади фигуры сведется к расчету произведения двух его смежных сторон и синуса угла между ними:
Поскольку угол alfa изменяется от 0 до 180 градусов, то функция синус всегда имеет положительное значение. Этой формулой часто пользуются на практике. Распространение инженерных калькуляторов позволяет быстро и с высокой точностью вычислять синусы любых углов.
Построение параллелограмма
Определить площадь четырехугольника с попарно параллельными сторонами можно не только через длины его сторон. Если внимательно посмотреть на формулу для S4, то можно заметить, что она идентична по виду векторному произведению направленных отрезков.
Пусть имеется два вектора a- и b-. Угол между ними равен alfa. Если их начала совместить в одной точке на плоскости, затем, от конца a- продолжить вектор b-, а из b- начертить a-, то получится параллелограмм, побудованый на a- и b-. Очевидно, что модуль векторного произведения этих направленных отрезков будет равен площади полученной фигуры:
S4 = a*b*sin (alfa) = |[a-*b-]|.
Применяя координатное выражение этого произведения, можно записать следующую формулу для площади:
Где a- = (a1,a2) и b-=(b1,b2). Знак модуля необходим потому, что по правилу правой руки могут получаться отрицательные векторы. Площадь же является всегда величиной положительной.
Преимущество последней записанной формулы для S4 по сравнению с выражением, где необходимо знать длины и углы, заключается в том, что ее использование не требует никаких предварительных вычислений. Достаточно лишь знать координаты конца и начала образующих параллелограмм векторов.
Задача с тремя точками
Чтобы научиться пользоваться записанной простой формулой, следует решить простую задачу. Имеется три точки, координаты которых следующие:
На вершинах этих точек следует построить параллелограмм, а затем, рассчитать его площадь S4.
Задачу проще всего решать через использование векторов. Выберем произвольную точку из трех заданных. Пусть это будет A. Из нее выходит два вектора: AB- и AC-. Их координаты определяются таким образом:
AB- = (2−1, 0-(-1)) = (1, 1); AC- = (-4−1, 3- (-1)) = (-5, 4).
Чтобы определить площадь параллелограмма на этих векторах, следует применить формулу для их векторного произведения. Порядок умножения направленных отрезков не имеет значения. Получается следующий результат:
S4 = [AB-*AC-] = 1*4 — (-5)*1 = 9.
Результат получен в единицах квадратных соответствующей двумерной системы координат.
Если была выбрана в качестве исходной не точка A, а B или C, то получился бы тот же результат, что можно доказать, проделав аналогичные вычисления.
Диагонали фигуры
Некоторые задачи по геометрии параллелограммов в качестве начального условия предлагают знание одной или двух его диагоналей. По этим данным необходимо вычислить характеристики всей фигуры, включая ее площадь. Решать такие задачи также удобно с использованием понятия векторов.
Если дана диагональ, выраженная вектором f- и основание, представленное направленным отрезком a-, то формула для площади параллелограмма имеет вид:
Где beta — угол между a- и f-. Видно, что это выражение не отличается от предыдущих для S4. Доказать его справедливость несложно, если рассмотреть построенные на указанных векторах треугольники и использовать признаки их подобия.
Другой случай, когда даны обе диагонали параллелограмма f- и e-. Воспользовавшись геометрическими построениями на плоскать, можно показать справедливость следующего выражения:
Здесь teta — это угол пересечения e- и f-. Таким образом, чтобы вычислить площадь параллелограмма, диагоналями которого служат вектора, следует вычислить половину модуля их векторного произведения.
Пример решения
Все разнообразие задач на определение площади параллелограмма сводится к знанию единственной формулы векторного произведения. Пусть известны две диагонали фигуры. Они имеют координаты:
Чтобы определить величину S4, достаточно без промежуточных вычислений воспользоваться формулой векторного произведения заданных направленных отрезков:
В связи с развитием интернета, всегда можно использовать калькулятор-онлайн для расчета величины S4. Соответствующий электронный ресурс можно знайти, воспользовавшись любой поисковой системой в браузере.
Трехмерное пространство
В пространственной системе координат каждый вектор задается тремя числами, поэтому их векторное произведение c- также будет представлять набор трех цифр. Построенный в пространстве параллелограмм на двух векторах будет иметь площадь, равную длине направленного отрезка c-. Для расчета его модуля следует использовать известное выражение: сумма квадратов трех координат под корнем.
Таким образом, площадь параллелограмма проще всего вычислять, используя операцию умножения векторов. Этот метод является универсальным не только для задач на плоскости, но и для решения проблем в трехмерной системе координат.
http://nauka.club/matematika/geometriya/ploshchad-parallelogramma-postroennogo-na-vektorakh.html
Решение типового варианта контрольной работы. Аналитическая геометрия.
Задача №1.
Даны три последовательные вершины параллелограмма А(2;-3), В(5;1),С(3;-4). Не находя координаты вершины D, найти:
1) уравнение стороны AD;
2) уравнение высоты BK, опущенной из вершины В на сторону AD;
3) длину высоты BK;
4) уравнение диагонали BD;
5) тангенс угла между диагоналями параллелограмма.
Записать общие уравнения найденных прямых. Построить чертеж.
Решение.
Сначала построим чертеж. Построим в прямоугольной декартовой системе координат точки , , . Построим отрезки и .
Рис. 1
Достроим полученный рисунок до параллелограмма и нанесем на чертеж высоту BK.
Рис. 2
1) Составим уравнение прямой AD.
А) Предварительно найдем уравнение прямой BС. Уравнение прямой, проходящей через точки и , имеет вид
(3.1)
По условию , . Подставим координаты точек и в уравнение (3.1): , т. е. .
Запишем полученное уравнение в общем виде, то есть в виде . Для этого в последнем уравнении избавимся от знаменателей и проведем преобразования, перенося все слагаемые в левую часть равенства: или .
Из этого уравнения выразим : ; . Получили уравнение вида — уравнение с угловым коэффициентом.
Б) Воспользуемся тем фактом, что противоположные стороны параллелограмма параллельны. Составим искомое уравнение прямой AD как уравнение прямой, проходящей через точку параллельно прямой .
Уравнение прямой, проходящей через данную точку в данном направлении, имеет вид
(3.2)
Где направление определяется угловым коэффициентом .
Условие параллельности двух прямых и имеет вид
(3.3)
По условию задачи , прямая . Подставим координаты точки в уравнение (3.2): . Так как прямая параллельна прямой , то в силу формулы (3.3) их угловые коэффициенты совпадают. Угловой коэффициент прямой равен , следовательно, уравнение прямой имеет вид .
Запишем уравнение прямой в общем виде. Для этого раскроем скобки и все слагаемые перенесем в левую часть равенства: . Умножим обе часть равенства на (-2) и получим общее уравнение прямой : .
Запишем уравнение прямой в виде с угловым коэффициентом. Для этого выразим из общего уравнения: .
2) Составим уравнение высоты , проведенной из вершины на сторону как уравнение прямой, проходящей через точку перпендикулярно прямой .
Условие перпендикулярности двух прямых и имеет вид
(3.4)
Подставим координаты точки в уравнение (3.2): . Так как высота перпендикулярна прямой , то их угловые коэффициенты связаны соотношением (3.4). Угловой коэффициент прямой равен , следовательно, угловой коэффициент высоты равен и уравнение прямой имеет вид . Запишем уравнение высоты в общем виде: . Запишем это же уравнение в виде с угловым коэффициентом: .
3) Найдем длину высоты как расстояние от точки до прямой .
Расстояние от точки до прямой представляет собой длину перпендикуляра, опущенного из точки на прямую и определяется формулой
(3.5)
Так как перпендикулярна , то длина может быть найдена с помощью формулы (3.5). По условию , прямая определяется уравнением . В силу формулы (3.5) длина высоты равна =.
4) Найдем уравнение диагонали как уравнение прямой, проходящей через точки И , где — середина отрезка .
А) Если и , то координаты точки — середины отрезка , определяются формулами
(3.6)
По условию , . В силу формул (3.6) имеем: , . Следовательно .
Б) Так как точка пересечения диагоналей является их серединой, то точка (середина отрезка ) является точкой пересечения диагоналей и диагональ проходит через точку .
Воспользуемся уравнением (3.1). По условию , . В силу формулы (3.1) уравнение прямой (диагонали ) имеет вид: или . Запишем это уравнение в общем виде: . Запишем это же уравнение в виде с угловым коэффициентом: .
5) Найдем тангенс угла между диагоналями и .
А) Найдем уравнение диагонали как уравнение прямой, проходящей через две данные точки.
Воспользуемся уравнением (3.1). По условию , . Следовательно, . Общее уравнение диагонали имеет вид , уравнение с угловым коэффициентом – вид , угловой коэффициент прямой равен .
Б) Уравнение диагонали имеет вид , ее угловой коэффициент .
В) Тангенс угла между прямыми и определяется формулой
Следовательно, . Отсюда .
Задача №2.
Условие задачи №2 несколько различается в зависимости от номера варианта контрольной работы. Приведем решения простейших задач, входящих в это задание.
1) Составить уравнение плоскости, проходящей через точки , , .
Решение.
Уравнение плоскости, проходящей через точки , , имеет вид:
(3.7)
Тогда уравнение плоскости в силу уравнения (3.7) имеет вид или .
Запишем полученное уравнение в общем виде, т. е. в виде . Для этого раскроем определитель по первой строке . После преобразований получим: .
2) Найти нормальный вектор плоскости .
Решение.
Нормальный вектор — это вектор, перпендикулярный плоскости. Если плоскость задана общим уравнением , то нормальный вектор имеет координаты .
Рис. 3
Для плоскости нормальным является вектор =.
Отметим, что любой вектор, коллинеарный вектору = так же является нормальным вектором плоскости . Таким образом, при каждом ненулевом вектор с координатами будет являться нормальным вектором рассматриваемой плоскости.
3) Найти косинус угла между плоскостями и .
Решение.
Угол между двумя плоскостями и представляет собой угол между их нормальными векторами и определяется равенством
Для плоскости координаты нормального вектора определяются равенствами , , . Для плоскости — равенствами , , . Следовательно, =.
4) Составить уравнение плоскости , проходящей через точку параллельно плоскости : .
Решение.
Уравнение плоскости, проходящей через точку , имеет вид
(3.8)
Подставим в уравнение (3.8) координаты точки : .
Условие параллельности плоскостей и имеет вид
(3.9)
Так как плоскости и параллельны, то в качестве нормального вектора Плоскости можно взять нормальный вектор плоскости , т. е. в формуле (3.9) отношение можно принять равным единице. Следовательно, уравнение плоскости примет вид . Запишем это уравнение в общем виде: .
5) Найти расстояние от точки до плоскости : .
Решение.
Расстояние от точки до плоскости представляет собой длину перпендикуляра, опущенного из точки на плоскость, и определяется формулой
(3.10)
Для плоскости координаты нормального вектора определяются равенствами , , . Следовательно, .
6) Составить канонические уравнения прямой, проходящей через точки и .
Решение.
Уравнения прямой, проходящей через точки и имеют вид
(3.11)
Так как , , то в силу (3.11) получим уравнения или .
7) Найти направляющий вектор прямой .
Решение.
Направляющий вектор — это вектор, параллельный прямой.
Если прямая задана каноническими уравнениями , то направляющий вектор имеет координаты .
Рис. 4
Для рассматриваемой прямой направляющим вектором является вектор .
Отметим, что любой вектор, коллинеарный вектору так же является направляющим вектором прямой . Таким образом, при каждом ненулевом вектор с координатами будет являться направляющим вектором рассматриваемой прямой.
Найти косинус угла между прямыми и .
Решение.
Угол между двумя прямыми и представляет собой угол между их направляющими векторами и определяется равенством
Для прямой координаты направляющего вектора определяются равенствами , , . Для прямой — равенствами , , . Значит, .
9) Составить канонические уравнения прямой , проходящей через точку параллельно прямой : .
Решение.
Канонические уравнения прямой имеют вид . Здесь — координаты точки, через которую проходит прямая.
В канонические уравнения прямой подставим координаты точки . Получим: .
Условие параллельности прямых и имеет вид
(3.12)
Так как прямые и параллельны, то в качестве направляющего вектора прямой можно взять направляющий вектор прямой , т. е. в формуле (3.12) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид .
10) Найти угол между прямой : и плоскостью : .
Решение.
Углом между прямой и плоскостью называется угол между прямой и ее проекцией на эту плоскость. Угол между прямой и плоскостью равен , где — угол между направляющим вектором прямой и нормальным вектором плоскости.
Рис. 5
Угол между прямой и плоскостью определяется формулой
Для плоскости : координаты нормального вектора определяются равенствами , , . Для прямой : координаты направляющего вектора — равенствами , , . Синус угла между прямой и плоскостью равен =. Следовательно, .
11) Составить уравнение плоскости , проходящей через точку перпендикулярно прямой : .
Решение.
Уравнение плоскости, проходящей через данную точку, имеет вид .
Подставим в указанное уравнение координаты точки . Получим: .
Условие перпендикулярности плоскости и прямой имеет вид
(3.13)
Так как искомая плоскость перпендикулярна прямой , то в качестве нормального вектора плоскости можно взять направляющий вектор прямой , т. е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение плоскости примет вид . Запишем это уравнение в общем виде: .
12) Составить канонические уравнения прямой , проходящей через точку перпендикулярно плоскости : .
Решение.
Канонические уравнения прямой, проходящей через данную точку, имеют вид .
Подставим в эти уравнения координаты точки . Получим:
Условие перпендикулярности прямой и плоскости имеет вид .
Так как прямая перпендикулярна плоскости , то в качестве направляющего вектора прямой можно взять нормальный вектор плоскости , т. е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид: .
13) Найти координаты точки пересечения прямой : и плоскости : .
Решение.
Координаты точки пересечения прямой и плоскости представляют собой решение системы
(3.14)
Запишем параметрические уравнения прямой : и подставим выражения для в уравнение плоскости : . Отсюда ; . Подставим найденное значение в параметрические уравнения прямой : . Следовательно, .
Задача №3.
К кривым второго порядка относятся эллипс (рис.6), гипербола (рис. 7 и 8), парабола (рис. 9-12). Приведем рисунки и канонические уравнения этих кривых.
Эллипс
Рис. 6
Гипербола Гипербола .
Рис. 7 Рис. 8
Парабола Парабола
Рис. 9
Рис. 10
Парабола Парабола
Рис. 11
Рис. 12
Приведем примеры решения задачи №3.
Пример 1. Привести уравнение кривой второго порядка к каноническому виду и построить кривую.
Решение.
Для приведения уравнения кривой второго порядка к каноническому виду применяют метод выделения полного квадрата.
Сгруппируем слагаемые, содержащие текущие координаты. Коэффициенты при и вынесем за скобки: .
Выделим полный квадрат: . Отсюда . Разделим обе части равенства на 25: . Запишем полученное уравнение в каноническом виде: .
Выполним параллельный перенос осей координат по формулам . При таком преобразовании начало координат переносится в точку , уравнение эллипса принимает канонический вид .
В нашем примере , , , .
Итак, рассматриваемое уравнение определяет эллипс с центром в точке и полуосями и .
Рис. 13
Пример 2. Привести уравнение кривой второго порядка к каноническому виду и построить кривую.
Решение.
Как и в предыдущем примере, сгруппируем слагаемые, содержащие текущие координаты: .
В скобках выделим полный квадрат: ; . Отсюда .
Выполним замену переменных . После этого преобразования уравнение параболы принимает канонический вид , вершина параболы в системе координат расположена в точке .
Рис. 14
Задача №4.
Кривая задана в полярной системе координат уравнением .
Требуется:
1) найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;
2) построить полученные точки;
3) построить кривую, соединив построенные точки (от руки или с помощью лекала);
4) составить уравнение этой кривой в прямоугольной декартовой системе координат.
Решение.
Сначала построим таблицу значений и :
0 |
||||||||||||||||
2,00 |
1,92 |
1,71 |
1,38 |
1,00 |
0,62 |
0,29 |
0,08 |
0,00 |
0,08 |
0,29 |
0,62 |
1,00 |
1,38 |
1,71 |
1,92 |
Построим эти точки в полярной системе координат. Полярная система координат состоит из начала координат (полюса) и полярной оси . Координаты точки в полярной системе координат определяются расстоянием от полюса (полярным радиусом) и углом между направлением полярной оси и полярным радиусом (полярным углом). Для того, чтобы построить точку , необходимо построить луч, выходящий из точки под углом к полярной оси; отложить на этом луче отрезок длиной .
Рис. 15
Построим все точки, определенные в таблице и соединим их плавной линией
Рис. 16
Запишем уравнение рассматриваемой кривой в прямоугольной декартовой системе координат. Для этого воспользуемся формулами перехода от декартовой к полярной системе координат.
Если полюс совпадает с началом координат прямоугольной декартовой системы координат, полярная ось – с осью абсцисс, то между прямоугольными декартовыми координатами и полярными координатами существует следующая связь:
,
Откуда
Рис. 17
Итак, в уравнении исходной кривой , . Поэтому уравнение принимает вид . После преобразований получим уравнение .
Задача №5.
Построить на плоскости геометрическое место точек, определяемое неравенствами
1)
2)
Решение.
Для того, чтобы решить неравенство на плоскости, надо построить график линии . Кривая разбивает плоскость на части, в каждой из которых выражение сохраняет свой знак. Выбирая пробную точку в каждой из этих частей, найдем часть плоскости, являющуюся искомым решением неравенства.
1) Построим прямые и , заштрихуем область, в которой . Затем построим параболу и заштрихуем область, содержащую ось симметрии параболы (расположенную внутри параболы); построим прямую и заштрихуем область, лежащую выше прямой. Пересечение всех заштрихованных областей и определит множество точек, представляющих решение рассматриваемой системы.
Рис. 18
2) Построим линию, определяемую уравнением . Эта линия представляет собой ту часть окружности или , на которой . Далее построим прямую (). Решением рассматриваемого двойного неравенства является часть плоскости, расположенная между нижней половиной окружности с центром в точке радиуса прямой .
Рис. 19
< Предыдущая | Следующая > |
---|
Содержание:
Система координат на плоскости позволяет установить взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел (рис. 331). Координаты вы широко использовали для графического представления зависимостей, при решении систем уравнений, а также в геометрии, чтобы геометрическую задачу свести к задаче алгебраической.
Декартова система координат в пространстве
Чтобы ввести декартову систему координат в пространстве, выберем точку
Б) Вы знаете, что по координатам концов и отрезка на плоскости можно определить его длину:
Аналогичная формула выражает длину отрезка в пространстве через координаты его концов и
Чтобы доказать эту формулу, рассмотрим плоскости, которые проходят через точки и перпендикулярно координатным осям. Получаем, что отрезок по сути является диагональю прямоугольного параллелепипеда, рёбра которого параллельны координатным осям и имеют длины
и (рис. 334) (если же какие-либо из проведённых плоскостей совпадут, то параллелепипед превратится в прямоугольник или отрезок).
Ранее вы доказывали, что координаты середины отрезка равны средним арифметическим соответствующих координат его концов. Это утверждение остаётся истинным и в случае пространства (см. пример 2 в § 6): если и точка — середина отрезка то
Пример:
На оси ординат найдём точку, равноудалённую от точек и
Решение:
Пусть — искомая точка. Тогда и, поскольку то
или Отсюда
Ответ:
Пример:
Найдём условие, задающее геометрическое место точек, равноудалённых от начала координат и от точки
Решение:
Согласно геометрическим соображениям искомое множество состоит из всех тех точек, размещённых на серединных перпендикулярах к отрезку Такие точки заполняют плоскость, проходящую через середину отрезка перпендикулярно ему. Найдём условие, которому удовлетворяют координаты произвольной точки этой плоскости. Условие означает, что
Ответ: Искомое геометрическое место точек есть плоскость, которая задаётся уравнением
Пример:
Найдём условие, которому удовлетворяют координаты точек плоскости проходящей через точку перпендикулярно прямой где
Решение:
Пусть — произвольная точка плоскости Тогда из прямоугольного треугольника по теореме Пифагора имеем:
Поскольку
то
или
Ответ:
Вектор. Действия над векторами
А) С векторами вы встречались в курсе физики девятого класса, когда знакомились с векторными величинами. Физическая величина является векторной, если она характеризуется не только числовым значением, но и направлением. Такие величины, как сила, скорость и другие, обозначают направленными отрезками. Длина направленного отрезка (стрелки) характеризует числовое значение векторной величины (её модуль).
Особенностью понятия вектор является то, что все основные определения и свойства, связанные с этим понятием, формулируются почти одинаково как в планиметрии, так и в стереометрии.
Вектор в геометрии представляется направленным отрезком (рис. 336), начало которого считается началом вектора, а конец — концом вектора.
Расстояние между началом направленного отрезка и его концом считается длиной вектора.
Направленные отрезки и представляют один вектор, если они одинаково направлены и имеют одинаковую длину (рис. 337). В таком случае говорят, что векторы и равны, и пишут Векторы и равны тогда и только тогда, когда совпадают середины отрезков и (рис. 338).
Это напоминает ситуацию с дробями: определённое число может представляться разными дробями, например, дроби представляют одно и то же число. Дроби и равны тогда и только тогда, когда
Если вектор изображается направленным отрезком то говорят, что этот вектор отложен от точки Вектор можно, и при этом однозначно, отложить от любой точки.
Вектор, представленный направленным отрезком называют нулевым: Векторы, представленные направленными отрезками и называют противоположными и пишут
Если ненулевые векторы и отложены от одной точки: то угол называется углом между векторами и .
Ненулевые векторы и называют коллинеарными, если прямые и параллельны или совпадают. Нулевой вектор считают кол-линеарным с любым вектором.
Векторы можно складывать и умножать на число. Чтобы сложить векторы и можно один из них заменить таким равным ему вектором, чтобы конец первого направленного отрезка совпадал с началом второго:
и тогда сумма векторов представляется направленным отрезком (рис. 339).
Сложение векторов имеет переместительное свойство, т. е. сочетательное свойство, т. е. кроме того, уравнение всегда имеет единственное решение, которое называют разностью векторов и (рис. 340).
Произведением вектора на число является такой вектор что, во-первых, векторы и одинаково направлены при и противоположно направлены при и, во-вторых, длины векторов и связаны равенством (рис. 341). Векторы и являются коллинеарными. При этом верно равенство Если то произведением является нулевой вектор.
С действием умножения вектора на число связываются два распределительных свойства— и
Б) Если векторы и коллинеарны, то один из них можно выразить через другой: либо либо при определённых числах и
Для любых двух векторов существует плоскость, которой они параллельны. Векторы, параллельные одной плоскости, называют компланарными. Если векторы и неколлинеарны, то любой вектор компланарный с ними, можно однозначно выразить через векторы и : (рис. 342).
Истинно и обратное утверждение: если векторы и связаны равенством то они компланарны.
Действительно, если векторы и представить направленными отрезками с общим началом (рис. 343), то поэтому точки и находятся в плоскости
Теорема 1. Если векторы и некомпланарны, то для любого вектора существует такая единственная упорядоченная тройка действительных чисел что
Доказательство: Сначала докажем существование нужных чисел. Представим векторы и направленными отрезками с общим началом Через точку проведём прямую параллельно и пусть — точка пересечения прямой с плоскостью (рис. 344). Тогда Поскольку вектор ненулевой и векторы и коллинеарны, то существует такое число что А поскольку векторы и компланарны, а векторы и неколлинеарны, то существуют такие числа и что
Поэтому
Теперь докажем единственность представления. Допустим, что существуют две разные упорядоченные тройки чисел и при которых и Тогда и
Поскольку тройки чисел и различны, то числа на соответствующих местах не могут все совпадать. Пусть, например, В этом случае из последнего равенства можно выразить вектор Последнее равенство означает, что векторы и компланарны. Полученное противоречие с условием означает, что сделанное допущение о существовании двух разных троек чисел неверно.
Следствие 1. Из четырёх любых векторов пространства один может быть выражен через три других.
Действительно, если среди данных четырёх векторов пространства есть три некомпланарных, то четвёртый вектор можно через эти три выразить. Далее, если среди данных четырёх векторов пространства любые три компланарны, то может найтись среди них два неколлинеарных, или любых два вектора коллинеарны. В первом случае через эти два неколлинеарных вектора можно выразить третий и к полученному выражению прибавить четвёртый, умноженный на ноль. Во втором случае один из векторов можно выразить через другой и потом прибавить к этому выражению два оставшихся вектора, умноженных на ноль.
Таким образом, теперь вы знаете, что из двух коллинеарных векторов один может быть выражен через другой, из трёх компланарных векторов один может быть выражен через два других, а из четырёх любых векторов один может быть выражен через три других.
Пример №1
На кронштейне, состоящем из подкоса и растяжки подвешен груз. Кронштейн прикреплён к вертикальной стене растяжка занимает горизонтальное положение (рис. 345). Найдём силы, действующие на подкос и растяжку, если угол между ними равен a масса груза равна
Решение:
Сила тяжести выражается вектором направленным вниз по вертикали. Выразим его суммой векторов, которые коллинеарны векторам и Для этого построим параллелограмм с диагональю стороны которого расположены на прямых и (рис. 346).
Поскольку углы и являются внутренними накрест лежащими при параллельных прямых и и секущей то в прямоугольном треугольнике угол равен и катет равен Поэтому
и
Ответ. Под воздействием груза подкос сжимается с силой а растяжка растягивается с силой
Пример №2
В правильной четырёхугольной пирамиде точки и — середины рёбер и соответственно. Плоскость, проходящая через точки и параллельно прямой пересекает прямую в точке (рис. 347). Найдём отношение
Решение:
Поскольку то векторы и полностью определяют пирамиду. Поскольку векторы и коллинеарны, то вектор можно выразить через при определённом числе Вектор можно выразить через векторы и используя то, что точка находится в плоскости, проходящей через точки и параллельно прямой Вектор компланарен с векторами и поэтому при определённых множителях и Выразим векторы и через векторы и
Имеем:
Поэтому
Учтём теперь то, что через некомпланарные векторы и каждый вектор пространства, в том числе и вектор выражается единственным образом. Поэтому должны одновременно выполняться условия: Отсюда получаем, что А поскольку то
В) Пусть в пространстве выбрана декартова система координат С каждой точкой пространства можно связать вектор Это соответствие между точками пространства и векторами является взаимно однозначным: различным точкам соответствуют различные векторы с началом и концами в этих точках, и различным векторам соответствуют различные точки пространства.
Будем говорить, что вектор имеет координаты в декартовой системе координат если и точка имеет координаты Это будем записывать:
Теорема 2. Если то
Доказательство: Пусть задана декартова система координат и Пусть также и Нужно доказать, что и
Поскольку то середины отрезков и совпадают.
Середина отрезка имеет координаты а середина отрезка — координаты Получаем:
Отсюда:
и
Теорема 3. Если то
Доказательство: Пусть задана декартова система координат и (рис. 348). Поскольку
то По теореме 2 получаем:
и
Поэтому
и
Значит, вектор имеет координаты
Докажем второе утверждение теоремы 3. Пусть сначала и Сравним одноимённые, например первые, координаты векторов и Для этого через точки и проведём плоскости, параллельные плоскости (рис. 349), которые пересекают ось в точках и Из подобия треугольников и следует, что Аналогично получается, что и
Если же то аналогичные рассуждения проводятся для рисунка 350. Векторы называют единичными координатными векторами.
Следствие 2. Если то
Пример №3
Дан параллелепипед Точки и — середины отрезков и соответственно (рис. 351). Выразим:
а) векторы и через векторы и
б) векторы и через векторы и
Решение:
а) Имеем:
б) Будем рассматривать полученные равенства —
как систему условий, из которой нужно найти и Из первого условия выразим
и исключим из двух других:
Теперь из последнего равенства выразим и исключим из предыдущего:
Далее можно последовательно выразить и через векторы
и
Пример №4
Через диагональ грани треугольной призмы проведена плоскость так, что она пересекает диагонали и граней в точках и соответственно (рис. 352). Найдём отношение учитывая, что
Решение:
Векторы и некомпланарны, поэтому через них можно выразить векторы и
Учтём, что и коллинеарны. Значит, существует такое число что
Аналогично, существует такое число что Кроме того,
и
Значит,
Из условия следует, что векторы и коллинеарны. Поэтому при определённом
Поскольку и учитывая однозначность разложения вектора по трём некомпланарным векторам, получаем, что Отсюда находим
Ответ:
Скалярное произведение векторов
А) Скалярным произведением векторов и называется число , равное произведению длин этих векторов на косинус угла между ними:
Скалярное произведение векторов имеет переместительное свойство распределительное свойство кроме того, множитель можно выносить за знак скалярного произведения С помощью скалярного произведения можно находить длины векторов и косинусы углов между ними:
У нулевого вектора направление не определено, поэтому удобно считать, что нулевой вектор перпендикулярен любому другому вектору.
С учётом этого получается следующее полезное утверждение: два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.
Теорема 1. Скалярное произведение векторов и выражается через их координаты в декартовой системе
равенством
Доказательство: Поскольку то
Находим далее:
Аналогично,
Поэтому
Пример №5
Найдём длину вектора
Имеем: Поэтому
Пример №6
Найдём угол между векторами и
Имеем:
Поэтому:
Пример №7
Найдём длину вектора равного учитывая, что векторы и перпендикулярны вектору а между собой образуют угол 60° и
Имеем:
Поскольку
Поэтому
Б) Вы знаете, что плоскость в пространстве можно задать тремя точками, не лежащими на одной прямой. Поскольку существует единственная плоскость, проходящая через данную точку перпендикулярно данной прямой, то плоскость можно задавать указанием одной из её точек и вектора, ей перпендикулярного.
Теорема 2. Если плоскость проходит через точку перпендикулярно ненулевому вектору то координаты любой точки этой плоскости удовлетворяют уравнению
Доказательство: Если — произвольная точка плоскости,
проходящей через точку перпендикулярно вектору
то векторы и перпендикулярны, а потому их скалярное произведение равно нулю:
Истинно и обратное утверждение.
Теорема 3. Уравнению в котором коэффициенты не равны нулю одновременно, удовлетворяет любая точка некоторой плоскости. Этой плоскости перпендикулярен вектор
Доказательство: Если есть уравнение и числа не равны нулю одновременно, то можно найти упорядоченную тройку чисел удовлетворяющую этому уравнению. Например, если то можно, взяв и найти значение переменной так, чтобы тройка чисел удовлетворяла уравнению
Поскольку то условия и равносильны. Получили, что исходное уравнение равносильно уравнению которому удовлетворяют координаты любой точки расположенной на прямой, проходящей через точку перпендикулярно вектору т. е. любой точки плоскости, проходящей через точку перпендикулярно вектору
Пример №8
Найдём уравнение плоскости, проходящей через точки А(2; 1; 3), В(4; 1, 2) и С(5; 2; 1).
Решение:
Найдём координаты векторов и Поскольку координаты (2; 0; -1) и (3; 1; -2) этих векторов не пропорциональны, то сами векторы не коллинеарны, и, значит, точки и не лежат на одной прямой, они задают единственную плоскость.
Чтобы записать уравнение плоскости используя теорему 2, найдём вектор перпендикулярный этой плоскости. Поскольку и то и Из этих условий получаем: Таким образом, в качестве искомого вектора можно взять вектор с координатами (1; 1; 2).
Теперь можно записать уравнение плоскости, которая проходит через точку перпендикулярно найденному вектору
или
В) Теорема 4. Если плоскость имеет уравнение то расстояние до неё от точки равно
Доказательство: Пусть из точки на данную плоскость опущен перпендикуляр основание которого — точка — имеет координаты
Тогда вектор коллинеарен с
вектором Поскольку угол между этими векторами равен 0°
или 180°, то откуда
Находим
поскольку координаты точки удовлетворяют уравнению плоскости. Далее: А поскольку искомое расстояние равно длине вектора то требуемое утверждение обосновано.
Пример №9
Найдём расстояние от точки до плоскости, заданной уравнением
Решение:
Используя теорему 4, получаем:
Ответ: 5.
Применение векторов и координат
А) В ряде задач условие содержит сведения о параллельности некоторых прямых или об их точках пересечения, об отношениях длин параллельных отрезков. Для решения таких задач может быть полезным применение векторов, как это было при решении примера 3 из параграфа 12. При решении таких задач достаточно использовать действия сложения векторов и умножения вектора на число. Рассмотрим ещё один пример.
Пример №10
Пусть и — параллелограммы в пространстве, — середины отрезков соответственно. Докажем, что середины отрезков и совпадают.
Решение. Выберем в пространстве точку Тогда положение каждой точки полностью характеризуется соответствующим вектором. Из условия
следует, что и Точки определяются
векторами
Чтобы доказать, что середины отрезков и совпадают, докажем, что
Находим:
А поскольку
и
то выражения в двух последних скобках принимают одинаковые значения. Требуемое утверждение доказано.
Б) При решении других задач целесообразно пользоваться скалярным умножением векторов. Такими являются задачи, в которых нужно использовать или определять некоторые расстояния или углы.
Пример №11
Найдём угол между скрещивающимися диагоналями соседних боковых граней правильной шестиугольной призмы, у которой боковые грани — квадраты.
Решение:
Пусть нужно найти угол между прямыми и (рис. 370). Искомый угол может совпадать с углом между векторами, параллельными данным прямым, или дополнять его до 180°. Поэтому косинус искомого угла совпадает с модулем косинуса угла между векторами и
Выразим векторы и через некомпланарные векторы и Примем длину ребра призмы за а и найдём скалярное произведение векторов:
А поскольку
то
Ответ:
Скалярное произведение векторов можно использовать и для нахождения угла между плоскостями. Как и при определении угла между прямыми, так и при определении угла между плоскостями можно использовать векторы и только перпендикулярные рассматриваемым плоскостям:
Пример №12
У правильной шестиугольной призмы все рёбра имеют длину 1 (рис. 371). Найдём угол между плоскостями и
Решение:
Для получения ответа нужно определить векторы и перпендикулярные плоскостям и соответственно. Они должны удовлетворять условиям и
Используем прямоугольную декартову систему координат, начало которой находится в центре основания и точки и имеют координаты и соответственно. Тогда точки и будут иметь координаты и соответственно. Найдём координаты векторов и по координатам их концевых точек:
Поскольку то координаты вектора
удовлетворяют условиям и Этим условиям удовлетворяют числа Поэтому в качестве вектора, перпендикулярного плоскости можно взять вектор
Для нахождения вектора действовать будем аналогично. Координаты вектора перпендикулярного плоскости удовлетворяют условиям и удовлетворяют числа Поэтому
Используем равенство Поскольку угол между векторами и или совпадает с углом между плоскостями и
или дополняет его до 180°, то
Находим:
Ответ:
Для нахождения угла между прямой и плоскостью также можно использовать векторы, из которых один параллелен прямой, а другой перпендикулярен плоскости. Угол между этими векторами связан с углом между прямой и плоскостью равенством (рис. 372).
Пример №13
На рёбрах и куба отмечены точки и так, что (рис. 373). Найдём угол между прямой и плоскостью
Решение:
Примем точку за начало системы координат, координатные оси направим по рёбрам куба, взяв рёбра за единичные отрезки. Тогда определятся координаты нужных точек:
и
По теореме 3 из параграфа 13 уравнение плоскости имеет вид а поскольку координаты точек и удовлетворяют уравнению то это уравнение и есть уравнение плоскости а вектор этой плоскости перпендикулярен.
Прямой параллелен вектор Находим:
и
Ответ:
В) В предыдущем параграфе обсуждалось использование координат для вычисления расстояния от точки до прямой. Рассмотрим решение ещё двух задач на нахождение расстояний: от точки до прямой и расстояния между скрещивающимися прямыми.
Пример №14
В правильной шестиугольной пирамиде все рёбра основания имеют длину 3, они вдвое короче боковых рёбер. На рёбрах и отмечены точки и так, что Найдём расстояние от точки до прямой
Решение:
Пусть — центр основания Поскольку и то из прямоугольного треугольника находим:
Используем прямоугольную декартову систему координат, начало которой находится в центре основания оси абсцисс и аппликат проходят через точки и соответственно и точка имеет неотрицательные координаты (рис. 374). Точки и имеют координаты и . Тогда точки и будут иметь координаты
и соответственно. Найдем координаты векторов и по координатам их концевых точек:
Искомое расстояние есть длина перпендикуляра, опущенного из точки на прямую и равна высоте треугольника проведённой из точки Для её нахождения можно использовать формулу Поскольку
и
то
Теперь находим:
Ответ:
Пример №15
Измерения и прямоугольного параллелепипеда равны соответственно 5, 4 и 4. Точки и на рёбрах и выбраны так, что (рис. 375). Найдём расстояние между прямыми и
Решение:
Расстояние между скрещивающимися прямыми и можно найти как расстояние от какой-либо точки прямой до плоскости проходящей через прямую параллельно
Примем точку за начало системы координат, координатные оси направим по рёбрам параллелепипеда так, чтобы точки и имели координаты соответственно. Тогда Чтобы записать уравнение плоскости найдём координаты вектора перпендикулярного как вектору так и вектору Поскольку то координаты вектора должны удовлетворять равенствам и например
Теперь запишем уравнение плоскости используя координаты точки Для нахождения расстояния используем теорему 4 из параграфа 13:
Ответ:
Векторы в пространстве
Это интересно!
Основоположниками аналитической геометрии являются знаменитые ученые Декарт и Ферма. Однако Декарт свои исследования опубликовал первым. А исследования Ферма увидели свет намного позже, после его смерти. Интересно, что подойдя к проблеме с разных сторон, они пришли к одинаковым выводам. Декарт искал уравнение исследуемой кривой, а Ферма для заданного уравнения искал соответствующую кривую.
Применение правил алгебры к геометрии привело к возникновению аналитической геометрии. В последствии аналитическая геометрия была усовершенствована основателем математического анализа Исааком Ньютоном, который писал » … я смог пойти дальше Декарта, только потому, что стоял на плечах гигантов»
Прямоугольная система координат в пространстве
Пусть мяч ударился о пол и отскочил вертикально вверх. Координаты мяча в точке на полу можно определить относительно длины и ширины комнаты двумя значениями. Однако когда мяч отскочил от пола, то его положение уже невозможно определить двумя координатами. Если положение мяча на полу определяется как то после поднятия на высоту 2,5 м его положение в пространстве задается уже гремя координатами
Прямоугольная система координат в пространстве. В пространстве возьмем произвольную точку и проведем через нее три попарно перпендикулярные прямые линии. Примем точку за начало координат и, выбрав на этих прямых положительное направление и единичный отрезок, назовем эти прямые координатными осями Начало координат делит каждую ось на две полуоси (положительную и отрицательную). Пересекаясь попарно, три координатные оси образуют координатные плоскости. Плоскость берется но горизонтали, положительное направление оси проводится по направлению вверх. Трехмерная система координат, образованная по данному правилу, называется еще системой правой руки. Если согнуть пальцы правой руки от положительного направления оси вдоль положительного направления оси то большой палец будет направлен вдоль положительного направления оси
Координатные плоскости обозначаются как и
Каждая координатная плоскость делит пространство на два полупространства и, таким образом, три координатные плоскости вместе делят пространство на восемь частей, каждая из которых называется октантом:
Пусть точка произвольная точка в пространстве. Параллельно плоскостям и через точку проведем плоскости, которые пересекают соответствующие координатные оси в точках и Получим три плоскости:
Координаты точки в пространстве
1) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
2) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
3) Плоскость, проходящая через точку и параллельная плоскости пересекает ось в точке
Значит, каждой точке пространства соответствует упорядоченная тройка и наоборот:
Упорядоченная тройка в прямоугольной системе координат называется координатами точки и декартовыми координатами. Расстояние от точки до плоскостей и соответствует абсолютным значениям координат Числа соответственно называются абсциссой, ординатой и аппликатой точки и это записывается так:
1) Начало координат:
2) Точка, расположенная на оси
Точка, расположенная на оси
Точка, расположенная на оси
3) Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка, расположенная на плоскости
Точка в пространстве расположена в I октанте, точка расположена на отрицательной полуоси точка расположена на плоскости точка расположена в III октанте.
Знаки координат точки
Знак координаты точки зависит от того, в каком октанте расположена точка. В следующей таблице показаны знаки координат точек в различных октантах.
В первом октанте все знаки координат положительны, в седьмом октанте все знаки отрицательны.
Пример №16
В прямоугольной системе координат в пространстве постройте точки:
Решение: а) для построения точки от начала координат но оси в положительном направлении на расстоянии 2-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 4-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 3-х единичных отрезков отметим точку
b) для построения точки от начала координат по оси в отрицательном направлении на расстоянии 2-х единичных отрезков отметим точку от точки вдоль отрицательного направления оси и параллельно этой оси, на расстоянии 2-х единичных отрезков отметим точку От точки вдоль положительного направления оси и параллельно этой оси, на расстоянии 3-х единичных отрезков отметим точку
Пример №17
От точки к осям координат проведены перпендикуляры. Запишите координаты оснований перпендикуляров, соответствующих точкам и
Решение: для точки основания перпендикуляра, проведенного из точки на ось координаты и равны нулю. Значит, координаты точки — Аналогично, координаты остальных точек — и
Пример №18
От точки к плоскостям и проведены перпендикуляры. Запишите координаты точек и которые являются основаниями перпендикуляров.
Решение: координата точки основания перпендикуляра, опущенного от точки на плоскость равна нулю. Значит, точка имеет координаты Аналогично находят координаты других точек: и
Расстояние между двумя точками в пространстве
Расстояние между точками и вычисляется но формуле
Доказательство. Пусть диагональ параллелепипеда с ребрами и которые параллельны координатным осям Из прямоугольного треугольника прямой) имеем: Из прямоугольного треугольника прямой) имеем:
Учитывая, что
получаем,
Расстояние от начала координат
В прямоугольной системе координат в пространстве расстояние от точки начала координат до любой точки вычисляется по формуле:
Пример №19
Точки, расположенные на одной прямой, называются коллинеарными точками.
Докажите, что точки и являются коллинеарными точками, используя формулу нахождения расстояния между двумя точками.
Решение:
Так как то точки и расположены на одной прямой, т. е. они коллинеарны.
Пример №20
Найдите координаты точки, расположенной на оси абсцисс и равноудаленной от точек и
Решение: если точка расположена на оси абсцисс, значит ее координаты- Так как точка равноудалена от точек и то или По формуле расстояния между двумя точками имеем:
Значит, точка расположена на оси абсцисс и равноудалена от точек и
Координаты точки, делящей отрезок в некотором отношении
Координаты точки делящей отрезок с концами в точках
и в отношении находятся как:
Доказательство: пусть точка делит отрезок в заданном отношении. Через точки и к плоскости проведем перпендикуляры и и через точки перпендикуляры и к оси По рисунку видно, что и
На основе теоремы о пропорциональных отрезках имеем:
Аналогично, используя перпендикуляры к осям и можно определить координаты и
Координаты середины отрезка
Координаты середины отрезка, соединяющих точки и находятся следующим образом:
Координаты центра тяжести треугольника
Координаты центра тяжести треугольника (точка пересечения медиан) с вершинами в точках и находятся следующим образом:
(проверьте сами)
Пример №21
Даны точки и Найдите
координаты точки которая делит отрезок как
Решение: пусть точка имеет координаты Эта точка делит отрезок в отношении По формуле нахождения координаты
точки, делящей отрезок в заданном отношении, получаем:
Пример №22
Даны координаты двух вершин треугольника и Найдите координаты третьей вершины, если центр тяжести треугольника совпадает с началом координат.
Решение: так как центр тяжести находится в начале координат, то:
Отсюда,
Значит, третьей вершиной треугольника является точка
Векторы в пространстве
Векторной величиной или вектором называется величина, которая определяется не только значением, но и направлением. Изображается вектор направленным отрезком. Длина отрезка, образующего вектор, называется длиной вектора или его модулем.
Вектор можно изобразить в одномерной, двухмерной и трехмерной системе координат.
Вектор, у которого начальная и конечная точки совпадают, называется нулевым вектором. Направление нулевого вектора не определено. Местоположение любой точки (объекта) в пространстве изображается вектором, начало которого совпадает с началом координат, а конец — с данной точкой. Например, на рисунке изображен вектор, показывающий положение мяча в пространстве, который брошен на высоту 3 м на игровой площадке, длина которой равна 4 м, а ширина 2 м.
В пространстве вектор, который определяет место (положение, позицию) точки и соединяет начальную и заданную точку, называется позиционным вектором или радиус — вектором. Каждой точке пространства соответствует единственный позиционный вектор. Положение точки в пространственной системе координат определяет вектор — вектор, заданный компонентами.
Два вектора называются равными если они имеют равные модули и одинаково направлены. Равные векторы, при помощи параллельного переноса, можно расположить друг на друге. Например, на рисунке векторы и равны. Для позиционного вектора можно провести бесконечно много равных по модулю и направлению векторов. В пространстве вектор с началом в точке и концом в точке записывается компонентами как Соответствующие компоненты равных векторов равны и наоборот. Векторы, которые равны по модулю, но имеют противоположные направления, называются противоположными векторами.
В пространстве, как и на плоскости, можно геометрически построить сумму и разность векторов, и произведение вектора на число.
Найти компоненты и длину вектора, а также выполнить действия над векторами в пространственной Декартовой системе координат можно но правилам, аналогичным для прямоугольной системы координат на плоскости.
Длина вектора
Модуль вектора можно найти, используя формулу нахождения расстояния между двумя точками.
Теорема. Если начало вектора расположено в точке а конец в точке то длина вектора вычисляется по формуле:
Следствие. Длина радиус-вектора равна (находится по формуле нахождения расстояния от начала координат до точки).
Сложение и вычитание векторов
Сложение и вычитание векторов: суммой (разностью) векторов и является вектор, компоненты которого равны сумме (разности) соответствующих компонент векторов, т. е. сумма (разность) векторов и равна вектору:
Пример №23
Найдите сумму и разность векторов и
Решение:
Умножение вектора на число
Умножение вектора на число: произведение вектора на действительное число к определяется как вектор Для произведения вектора на действительное число справедливы следующие правила:
Пример №24
Для вектора и запишите компонентами вектор
Решение:
Коллинеарные векторы
Если направленные отрезки, которыми изображены векторы, параллельны или лежат на одной прямой, то вектора называются коллинеарными. Если векторы и коллинеарны, тогда существует единственное число которое удовлетворяет условию При векторы сонаправленные, при они направлены в противоположные стороны. Соответствующие координаты коллинеарных векторов пропорциональны:
При это условие запишется как:
Пример №25
Определите, являются ли расположенные в пространстве векторы и коллинеарными.
Решение: так как вектор и коллинеарны и сонаправлены.
Пример №26
Постройте радиус-вектор, равный вектору
Решение: в _соответствии с правилом треугольника Точкам и соответствуют радиус-векторы и
По правилу сложения векторов на плоскости Отсюда,
Пример №27
В трехмерной системе координат задан вектор с началом в точке и концом в точке а) Найдите длину вектора б) Запишите компонентами радиус-вектор, равный вектору
Решение: а)
b) Обозначим вектор, равный вектору через Тогда точке
соответствует радиус-вектор точке соответствует
радиус-вектор
Так как то
Пример №28
Установите справедливость равенства для точек и
Решение:
Из равенства соответствующих компонентов следует
Векторы, расположенные на одной плоскости или на параллельных плоскостях, называются компланарными векторами. Например, векторы, расположенные на противолежащих гранях куба, компланарны, а векторы, направленные по трем ребрам выходящим из одной вершины, некомпланарны.
Единичный вектор — вектор, длина которого равна единице.
Для любого, отличного от нуля вектора вектор вида является единичным вектором. 1 1
Пример №29
Для вектора а) найдите единичный сонаправленный вектор b) запишите компонентами вектор сонанравленный вектору длина которого равна 10 единицам.
Решение: обозначим единичный вектор через
Проверим, действительно ли длина этого вектора равна единице:
b) чтобы определить вектор, сонаправленный с вектором длиной 10 единиц, надо компоненты единичного вектора, найденного в пункте а, увеличить в 10 раз.
В прямоугольной системе координат в пространстве векторы, направленные вдоль положительных направлений координатных осей и определенные как и при
называются орт векторами. Понятно, что векторы
— некомпланарны.
Любой позиционный вектор и на плоскости, и в пространстве, можно выразить через орт вектора. На плоскости точке соответствует позиционный вектор в пространстве точке соответствует вектор Данное выражение называется записью вектора компонентами. Здесь числа координаты точки
Теорема. Любой вектор можно разложить но орт векторам единственным образом, при этом справедливо равенство
Пример №30
Вектор началом которого на плоскости является точка а концом точка выразите через орт вектора.
Решение: зная, что получим
Пример №31
Запишите разложение вектора в пространстве по орт векторам.
Решение: по теореме разложения вектора по орт векторам имеем:
Пример №32
а) Запишите в виде позиционный вектор, соответствующий точке
b) Запишите вектор компонентами в виде
Решение: а) начало позиционного вектора совпадает с началом координат Таким образом вектор имеет вид
Пример №33
Найдите сумму и разность векторов.
Решение:
Скалярное произведение двух векторов
Тележка переместилась на расстояние по прямой под действием силы направленной под углом наклона Вычислите совершаемую работу: если значение силы равно то На горизонтальном пути работа вертикальной компоненты силы равна нулю. Тогда работа, совершаемая горизонтальной компонентой силы на расстоянии будет:
Работа, совершаемая при перемещении груза на расстояние равна произведению длины вектора перемещения и значения компонента вектора силы направленной вдоль перемещения.
Работа является скалярной величиной, однако ее значение зависит от угла между силой, действующей на тело, и вектором перемещения.
Скалярное произведение двух векторов
Углом между любыми двумя ненулевыми векторами и называется угол между равными им векторами с общим началом. Ясно, что
Скалярное произведение двух ненулевых векторов и равно произведению модулей этих векторов и косинуса угла между ними.
Скалярное произведение записывается как:
Значит,
Свойство скалярного произведения
• Для любого вектора справедливо равенство то есть скалярный квадрат вектора равен квадрату его длины.
Переместительное свойство скалярного произведения.
Для любых векторов и справедливо равенство
Свойство группировки скалярного произведения. Для любых векторов и и действительного числа справедливо равенство
Распределительное свойство скалярного произведения:
1) Для любых векторов, и действительного числа справедливо следующее равенство 2) Для любых векторов справедливо равенство
В частном случае, для скалярного произведения орт векторов получим:
Пример №34
По данным на рисунке найдите скалярное произведение векторов и
Решение:
Пример №35
Упростите выражение используя свойство скалярного произведения векторов.
Решение:
Скалярное произведение двух векторов на координатной плоскости можно найти при помощи координат.
Пусть даны векторы и По определению скалярного произведения имеем
Из получаем
По теореме косинусов получаем
а это значит, что
Таким образом, скалярное произведение двух векторов и равно сумме произведений соответствующих компонент.
Аналогичным образом, скалярное произведение двух векторов и в трехмерной, Декартовой системе координат находится как: .
Пример №36
Зная, что найдите скалярное произведение
Решение:
Угол между двумя векторами
Угол между двумя ненулевыми векторами находится из соотношения , здесь
Пример №37
Найдите косинус угла между векторами и
Решение:
Вывод: два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю:
Пример №38
При каком значении вектора и взаимно перпендикулярны?
Решение: при имеем
Общее уравнение прямой
В системе координат на плоскости уравнение прямой имеет вид Это уравнение называется общим уравнением прямой. Вектор, перпендикулярный прямой, называется нормальным вектором к данной прямой или нормалью. Покажем, что общее уравнение прямой с нормалью имеет вид Пусть заданная точка на прямой, а точка произвольная точка на прямой, отличная от точки а вектор — нормаль к прямой.
Так как векторы и перпендикулярны, то
Если ввести обозначение то получим уравнение в виде Здесь
Частные случаи:
• уравнение прямой, параллельной оси абсцисс
• уравнение прямой, параллельной оси ординат
• уравнение прямой, проходящей через начало координат
Пример №39
Запишите уравнение прямой проходящей через точку нормаль к которой равна
Решение: на координатной плоскости построим вектор и изобразим графическое решение задания, проведя через точку прямую перпендикулярную нормали. Теперь запишем требуемое уравнение.
Способ 1.
Пусть точка является точкой, расположенной на прямой и отличной от точки Тогда вектор коллинеарен прямой и Так как вектора и перпендикулярны, то Тогда получим:
Таким образом,
Способ 2.
Зная нормаль уравнение можно записать следующим образом: Так как точка должна находится на прямой, то и уравнение будет
Пример №40
Найдите угол между прямыми, заданными уравнениями и
Решение: угол между прямыми можно найти как угол между их нормалями.
Для угла между нормальных векторов и имеем:
Отсюда
Пример №41
Найдите расстояние от точки до прямой
Решение: пусть точка является основанием перпендикуляра, проведенного к прямой от точки
Так как векторы и коллинеарны, го существует такое число что или Из равенства соответствующих компонент получим Координаты и точки должны удовлетворять уравнению
Отсюда Тогда
Уравнение плоскости
Исследование. Какому множеству точек соответствует одно и тоже уравнение, например в одномерной, двухмерной и трехмерной системах координат?
1. В одномерной системе координат, т.е. на числовой оси, уравнению соответствует одна точка.
2. В двухмерной системе координат уравнению или удовлетворяют все точки с координатами Множеством таких точек является прямая, параллельная оси
3. В трехмерной системе координат уравнению или удовлетворяет множество точек Множеством таких точек является плоскость, параллельная плоскости Аналогично, уравнениям и соответствуют плоскости, параллельные плоскостям и
4. В трехмерной системе координат представьте множество точек, удовлетворяющих уравнениям и
5. Сопоставьте координаты точек, данных на плоскости, с уравнениями и Представьте плоскости.
Уравнение прямой в двухмерной системе координат имеет вид
Например, уравнение определяет прямую, проходящую через точки и
В трехмерной системе координат мы можем написать это уравнение в виде: Так как коэффициент равен нулю, то аппликата может получать любые значения. Т. е. в трехмерной системе координат для любого координаты точек и удовлетворяет уравнению Если отметить все такие точки в трехмерной системе координат, то получим плоскость, параллельную оси В общем, уравнение плоскости в трехмерной системе координат имеет вид
Плоскость может быть определена различными способами.
- тремя неколлинеарными точками
- прямой и точкой, не принадлежащей этой прямой
- двумя пересекающимися прямыми
- двумя параллельными прямыми
- точкой и перпендикуляром в этой точке в заданном направлении
Используя последний способ, которым можно задать плоскость, покажем, что уравнение плоскости имеет вид Вектор, перпендикулярный к плоскости называется ее нормалью. Пусть, дана плоскость точка расположенная на этой плоскости и нормаль к этой плоскости. Выберем на этой плоскости какую-либо другую точку и соединим точки и Прямая, перпендикулярная плоскости, перпендикулярна каждой прямой, лежащей в данной плоскости. Значит
А это значит, что Учитывая, что и имеем:
Обозначим тогда уравнение плоскости будет иметь вид:
Внимание! Три коэффициента при переменных в уравнении плоскости являются компонентами нормали и
Пример №42
Плоскость с нормалью проходит через точку Запишите уравнение этой плоскости.
Решение: задание можно выполнить двумя способами.
1-ый способ. Возьмем произвольную точку на плоскости и запишем компонентами вектор с началом в точке и концом в точке Вектор будет иметь вид Так как нормальный вектор имеет вид то или справедливо следующее:
Отсюда
Умножим обе части уравнения на Тогда уравнение данной плоскости будет иметь вид
2-ой способ. Известно, что уравнение плоскости имеет вид а нормаль к плоскости имеет вид Значит, коэффициенты известны. Из вектора нормали имеем: Записав координаты точки принадлежащей плоскости, в уравнение найдем переменную
и уравнение плоскости будет иметь вид: или
Пример №43
Дано уравнение плоскости
a) Определите, принадлежат ли точки плоскости.
b) Определите координаты точки пересечения плоскости с осями
c) Запишите координаты какой-либо другой точки, принадлежащей данной плоскости.
Решение:
а) Проверка:
Принадлежит плоскости
Принадлежит плоскости
Не принадлежит плоскости
b) Координаты точек пересечения с осями
в точке пересечения с осью координаты и равны нулю
в точке пересечения с осью координаты и равны нулю
в точке пересечения с осью координаты и равны нулю
c) Для определения координаты другой точки на заданной плоскости задайте любые значения двум переменным и найдите третью координату.
Например, при значение находят гак: Значит, точка принадлежит данной плоскости.
- Заказать решение задач по высшей математике
Пример №44
Найдите расстояние от точки до плоскости
Решение: пусть точка является основанием перпендикуляра, проведенного от точки Так как векторы и коллинеарны, то существует такое число что или Из равенства соответствующих компонент получим Координаты точки удовлетворяют уравнению:
Отсюда Тогда
Это говорит о том, что расстояние от заданной точки до плоскости равно 3 единицам.
Взаимное расположение плоскостей
Плоскости и перпендикулярны тогда и только тогда, когда перпендикулярны их нормали:
Плоскости и параллельны тогда и только тогда, когда параллельны их нормали:
Пример №45
Определение параллельности или перпендикулярности плоскостей но уравнению.
a) плоскость задана уравнением а плоскость задана уравнением Обоснуйте, что данные плоскости перпендикулярны.
b) плоскость задана уравнением а плоскость задана уравнением Обоснуйте, что данные плоскости параллельны.
Решение: для того чтобы плоскости и были перпендикулярны, скалярное произведение нормалей и плоскостей и должно равняться нулю.
Значит, плоскости и перпендикулярны:
Нормали плоскостей и равны: Если для данных плоскостей постоянная имеет различное значение, то это значит, что плоскости не лежат друг на друге, т. е. они параллельны.
Уравнение сферы
Определение. Сферой называется множество всех точек, расположенных на расстоянии от заданной точки Точка называется центром сферы, радиусом сферы.
Если точка — произвольная точка сферы, то по формуле расстояния между двумя точками имеем:
Это уравнение сферы с центром в точке и радиусом
Если центр сферы находится в начале координат, то уравнение сферы радиуса имеет вид:
Как видно из рисунка, пересечение этой сферы с координатной плоскостью является ее большой окружностью.
Пример №46
Запишите уравнение сферы, радиус которой равен г а центр расположен в точке
Решение:
Пример №47
Представьте фигуру, которая получается при пересечении сферы с плоскостью
Решение: радиус сферы Учитывая в уравнении сферы, что получим: Пересечение плоскости z = 12 и данной сферы является окружность с центром в точке (0; 0; 12) и радиусом г = 5.
Плоскость, имеющая со сферой только одну общую точку, называется плоскостью, касательной к сфере.
Например, плоскость касается сферы в точке
Плоскость, касательная к сфере, в точке касания перпендикулярна радиусу сферы.
Преобразования на плоскости и в пространстве
Ремесленники и художники создают узоры, заполняя некоторую площадь без пробела рисунком при помощи преобразований (параллельный перенос, поворот, отображение) или увеличения или уменьшения этого рисунка (гомотетия).
Это знать интересно. Великий голландский художник Эшер, объединив такие разделы математики как симметрия, комбинаторика, стереометрия и топология, создал динамические рисунки, заполняя плоскости цветовыми оттенками. Не имея специального математического образования, Эшер создавал свои произведения, опираясь на интуицию и визуальные представления. Ряду работ, построенных на параллельном переносе, он дал название «Правильное движение плоскости».
https://en.wikipedia.org/wiki/M._C._Escher
Если каждой точке фигуры в пространстве, по определенному правилу, ставится в соответствие единственная точка то это называется преобразованием фигуры в пространстве. Преобразование, сохраняющее расстояние между точками, называется движением. Движение преобразовывает плоскость в плоскость, прямую в прямую, отрезок в отрезок, а угол — в конгруэнтный ему угол. Значит, движение преобразовывает фигуру в конгруэнтную себе фигуру. Известно, что в двухмерной системе координат за преобразование каждой точки в точку т. е. за параллельный перенос отвечает вектор Аналогичным образом, в пространстве при параллельном переносе координаты каждой точки изменяются так:
Параллельный перенос является движением. Каждому параллельному переносу соответствует один вектор. Справедливо и обратное.
Пример №48
В какую точку переходит точка при параллельном переносе на вектор
Решение: по определению при данном преобразовании, координаты точки преобразуются в координаты точки следующим образом: Т. е. при этом параллельном переносе точка преобразуется в точку
Симметрия. В пространстве симметрии относительно точки и прямой дается такое же определение как и на плоскости. В пространстве также рассматривается симметрия относительно плоскости.
Для точки пространства
Пример №49
Найдите точку, симметричную точке относительно плоскости
Решение: точка симметричная точке относительно плоскости расположена на прямой, перпендикулярной как плоскости так и плоскости Поэтому абсциссы и ординаты точек равны: Координаты точки можно найти из отношения Таким образом, это точка
Поворот. Поворотом фигуры в пространстве вокруг прямой на угол называется такое преобразование, при котором каждая плоскость, перпендикулярная прямой поворачивается в одном направлении на угол вокруг точек пересечения прямой с плоскостью. Прямая называется осью симметрии, угол называется углом поворота.
Ниже на рисунках представлены примеры различных изображений поворота куба вокруг оси в направлении по часовой стрелке на угол 90°, 180°, 270°.
Гомотетия
Аналогичным образом в пространстве вводится понятие преобразования подобия. Если при преобразовании фигуры расстояние между двумя точками и изменяется в раз, то такое преобразование называется преобразованием подобия. Здесь число к называется коэффициентом подобия.
Если для любой точки фигуры при преобразовании ее в точку выполняется равенство то это преобразование называется гомотетией с центром в точке и с коэффициентом Гомотетия — это преобразование подобия. В частном случае, при получаем центральную симметрию относительно при — тождественное преобразование.
Пример №50
Пусть дана сфера с центром в точке и радиусом 2. Запишите уравнение сферы, полученной гомотетией с центром в начале координат и коэффициентом
Решение: позиционный вектор, соответствующий точке равен Пусть позиционный вектор, соответствующий точке будет Тогда, по определению, или Тогда Т. е. центром данной сферы будет точка Зная, что радиус сферы равен получим уравнение сферы
Предел
Это интересно!
Предел (лимит) от латинского слова «limes», что означает цель.
Понятие предела независимо друг от друга было введено английским математиком Исааком Ньютоном (1642-1727) и немецким математиком Готфридом Лейбницом (1646-1716). Однако ни Ни Ныотон, ни Лейбниц не смогли полностью объяснить вводимые ими понятия. Точное определение предела было дано французским математиком Коши. А работы немецкого ученого » Вейерштрасса наконец завершили создание этой серьезной теории.
Координаты и векторы в пространстве
В этом параграфе вы ознакомитесь с прямоугольной системой координат в пространстве, научитесь находить координаты точек в пространстве, длину отрезка и координаты его середины. Вы обобщите и расширите свои знания о векторах.
Декартовы координаты точки в пространстве
В предыдущих классах вы ознакомились с прямоугольной (декартовой) системой координат на плоскости — это две перпендикулярные координатные прямые с общим началом отсчета (рис. 38.1).
Систему координат можно ввести и в пространстве. Прямоугольной (декартовой) системой координат в пространстве называют три попарно перпендикулярные координатные прямые с общим началом отсчета (рис. 38.2). Точку, в которой пересекаются три координатные прямые, обозначают буквой О. Ее называют началом координат. Координатные прямые обозначают буквами их соответственно называют осью абсцисс, осью ординат и осью аппликат.
Плоскости, проходящие через пары координатных прямых и называют координатными плоскостями, их соответственно обозначают (рис. 38.3).
Пространство, в котором задана система координат, называют координатным пространством. Если оси координат обозначены буквами то координатное пространство обозначают Из курса планиметрии вы знаете, что каждой точке М координатной плоскости ставится в соответствие упорядоченная пара чисел , которые называют координатами точки М. Записыва ют:
Аналогично каждой точке М координатного пространства ставится в соответствие упорядоченная тройка чисел , определяемая следующим образом. Проведем через точку М три плоскости перпендикулярно осям соответственно. Точки пересечения этих плоскостей с координатными осями обозначим (рис. 38.4). Координату точки на оси называют абсциссой точки М и обозначают буквой Координату точки на оси у называют ординатой точки М и обозначают буквой . Координату точки , на оси называют аппликатой точки М и обозначают буквой .
Полученную упорядоченную тройку чисел называют координатами точки М в пространстве. Записывают: . Если точка М имеет координаты , то числа равны расстояниям от точки М до координатных плоскостей . Используя этот факт, можно доказать, что, например точки с координатами и лежат на прямой, перпендикулярной плоскости и равноудалены от этой плоскости (рис. 38.5). В этом случае говорят, что точки М и N симметричны относительно плоскости
Если точка принадлежит координатной плоскости или координатной оси, то некоторые ее координаты равны нулю. Например, точка принадлежит координатной плоскости , а точка — оси аппликат. Справедливы следующие утверждения.
Теорема 38.1. Расстояние между двумя точками и можно найти по формуле
Теорема 38.2. Каждая координата середины отрезка равна полусумме соответствующих координат его концов, то есть серединой отрезка с концами в точках является точка
Доказательства теорем 38.1 и 38.2 аналогичны тому, как были доказаны соответствующие теоремы в курсе планиметрии. Например, серединой отрезка с концами в точках и является начало координат — точка .
В таком случае говорят, что точки А и В симметричны относительно начала координат.
Векторы в пространстве
В курсе планиметрии вы изучали векторы на плоскости. Теперь вы начинаете изучать векторы в пространстве. Многие понятия и свойства, связанные с векторами на плоскости, можно почти дословно отнести к векторам в пространстве. Доказательства такого рода утверждений о векторах в пространстве аналогичны доказательствам соответствующих утверждений о векторах на плоскости.
Рассмотрим отрезок АВ. Если мы договоримся точку А считать началом отрезка, а точку В — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки А до точки В. Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.
Вектор с началом в точке А и концом в точке В обозначают так: (читают: «вектор АВ»). Для обозначения векторов также используют строчные буквы латинского алфавита со стрелкой сверху. На рисунке 39.1 изображены векторы
В отличие от отрезка, концы которого — различные точки, у вектора начало и конец могут совпадать.
Договорились называть вектор, начало и конец которого — одна и та же точка, нулевым вектором или нуль-вектором и обозначать . Модулем вектора называют длину отрезка АВ. Обозначают: . Модуль вектора обозначают так: . Считают, что модуль нулевого вектора равен нулю. Записывают:
Определение. Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
На рисунке 39.2 изображена четырехугольная призма . Векторы и являются коллинеарными.
Записывают:
Ненулевые коллинеарные векторы бывают сонаправленными и противоположно направленными. Например, на рисунке 39.2 векторы , сонаправлены. Записывают: . Векторы противоположно направлены. Записывают: .
Определение. Два ненулевых вектора называют равны ми, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. На рисунке 39.2
Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 39.3, изображен вектор . На рисунке 39.3, изображены векторы, равные вектору . Каждый из них также принято называть вектором .
На рисунке 39.3, изображены вектор и точка А. Построим вектор , равный вектору . В таком случае говорят, что вектор отложен от точки А (рис. 39.3, ).
Рассмотрим в координатном пространстве вектор . От начала координат отложим вектор , равный вектору (рис. 39.4). Координатами вектора называют координаты точки А . Запись означает, что вектор имеет координаты
Равные векторы имеют равные соответствующие координаты, и наоборот, если соответствующие координаты векторов равны, то равны и сами векторы.
Теорем а 39.1. Если точки и — соответственно начало и конец вектора , то числа и равны соответственно первой, второй и третьей координатам вектора . Из формулы расстояния между двумя точками следует, что если вектор имеет координаты , то
Сложение и вычитание векторов
Пусть в пространстве даны векторы . Отложим от произвольной точки А пространства вектор , равный вектору .
Далее от точки В отложим вектор , равный вектору . Век тор называют суммой векторов (рис. 40.1) и записывают: Описанный алгоритм сложения двух векторов называют правилом треугольника.
Можно показать, что сумма не зависит от выбора точки А. Заметим, что для любых трех точек А, В и С выполняется равенство Оно выражает правило треугольника.
Свойства сложения векторов аналогичны свойствам сложения чисел. Для любых векторов выполняются равенства:
Сумму трех и большего количества векторов находят так: вначале складывают первый и второй векторы, потом к полученной сумме прибавляют третий вектор и т. д. Например, Для тетраэдра DABC, изображенного на рисунке 40.2, можно записать:
Для сложения двух неколлинеарных векторов удобно пользоваться правилом параллелограмма.
Отложим от произвольной точки А вектор , равный вектору , и вектор , равный вектору (рис. 40.3). Построим параллелограмм ABCD. Тогда искомая сумма равна вектору .
Рассмотрим векторы , не лежащие в одной плоскости (рис. 40.4). Найдем сумму этих векторов.
Построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были его ребрами (рис. 40.5). Отрезок OD является диагональю этого параллелепипеда. Докажем, что Так как четырехугольник — параллелограмм, то . Имеем: . Поскольку четырехугольник — параллелограмм, то
Описанный способ сложения трех векторов, отложенных от одной точки и не лежащих в одной плоскости, называют правилом параллелепипеда.
Определение. Разностью векторов называют такой вектор , сумма которого с вектором равна вектору .
Записывают: .
Покажем, как построить вектор, равный разности векторов и . От произвольной точки О отложим векторы , соответственно равные векторам (рис. 40.6). Тогда По определению разности двух векторов , то есть , следовательно, вектор равен разности векторов .
Отметим, что для любых трех точек О, А и В выполняется равенство Оно выражает правило нахождения разности двух векторов, отложенных от одной точки.
Теорема 40.1. Если координаты векторов равны соответственно , то координаты вектора равны , а координаты вектора равны .
Умножение вектора на число
Определение. Произведением ненулевого вектора и чис ла , отличного от нуля, называют такой вектор , что:
1)
2) если если
Записывают: Если или , то считают, что На рисунке 41.1 изображен параллелепипед . Имеем: , Из определения следует, что
.
Теорема 41.1. Для любых векторов выполняется равенство
Эта теорема позволяет свести вычитание векторов к сложению: чтобы из вектора вычесть вектор , можно к вектору прибавить вектор. Произведение обозначают и называют вектором, противоположным вектору . Например, записывают:
Из определения умножения вектора на число следует, что если, то векторы коллинеарны. Следовательно, из равенства получаем, что точки О, А и В лежат на одной прямой.
Теорема 41.2. Если векторы коллинеарны и то существует такое число , что
Теорема 41.3. Если координаты вектора равны , то координаты вектора равны .
Умножение вектора на число обладает следующими свойствами.
Для любых чисел и для любых векторов выполняются равенства:
Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, их разность и произведение вектора на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,
Скалярное произведение векторов
Пусть — два ненулевых и несонаправленных вектора. От произвольной точки О отложим векторы равные соответственно векторам (рис. 42.1). Величину угла АОВ будем называть углом между векторами
Угол между векторами обозначают так: . Очевидно, что если , то = 180° (рис. 42.2).
Если , то считают, что . Если хотя бы один из векторов или нулевой, то также считают, что .
Векторы называют перпендикулярными, если угол между ними равен 90°. Записывают:
На рисунке 42.3 изображена треугольная призма, основанием которой является правильный треугольник, а боковое ребро перпендикулярно плоскости основания.
Имеем:
Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними.
Скалярное произведение векторов обозначают так: Имеем:
Если хотя бы один из векторов нулевой, то очевидно, что Скалярное произведение называют скалярным квадратом вектора и обозначают .
Скалярный квадрат вектора равен квадрату его модуля, то есть .
Теорема 42.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Например, для векторов, изображенных на рисунке 42.3, имеем:
Теорема 42.2. Скалярное произведение векторов и можно вычислить по формуле
Теорема 42.3. Косинус угла между ненулевыми векторами можно вычислить по формуле
Некоторые свойства скалярного произведения векторов аналогичны соответствующим свойствам произведения чисел. Например, для любых векторов и любого числа справедливы равенства:
Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, по правилам преобразования алгебраических выражений. Например,
Пример №51
Основанием призмы является равнобедренный треугольник АВС (АВ =АС). Боковое ребро образует равные углы с ребрами АВ и АС (рис. 42.4). Докажите, что .
Решение:
Пусть . С учетом условия можно записать: . Найдем скалярное произведение векторов . Имеем:
Запишем:
Поскольку , то рассматриваемое скалярное произведение равно 0. Следовательно,
Напомню:
Расстояние между точками
Расстояние между двумя точками можно найти по формуле
Координаты середины отрезка
Каждая координата середины отрезка равна полусумме соответствующих координат его концов.
Взаимное расположение двух векторов
Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.
Равенство векторов
Два ненулевых вектора называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.
Координаты вектора
Если точки — соответственно начало и конец вектора , то числа равны соответственно первой, второй и третьей координатам вектора
Модуль вектора
Если вектор имеет координаты
Действия над векторами
Для любых трех точек А , В и С выполняется равенство
Разностью векторов называют такой вектор , сумма которого с вектором равна вектору .
Для любых трех точек О, А и В выполняется равенство . Произведением ненулевого вектора и числа , отличного от нуля, называют такой вектор , что: 1) 2) если если
Если векторы коллинеарны и , то существует такое число , что Произведение обозначают и называют вектором, противоположным вектору .
Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Если координаты векторов равны соответственно то:
- Множества
- Рациональные уравнения
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
- Параллельность в пространстве
- Перпендикулярность в пространстве
Раздел
3. Векторная алгебра в координатной
плоскости
3.1
Основные векторы
Три
взаимно перпендикулярные оси ОХ,
OY
и OZ
образуют прямоугольную систему координат
(раздел 2). Отложив на этих осях в
положительном направлении отрезки ОА,
ОВ
и ОС,
равные единице масштаба, получим три
вектора:
,
и
.
Они называются основными
векторами (ортами)
и обозначаются соответственно
,
и
.
3.2
Координаты вектора на плоскости
Если
,
– орты координатных осей прямоугольной
системы координат Оху,
то любой вектор
единственным образом можно представить
в виде их суммы (линейной комбинации) с
коэффициентами aх
и aу:
.
Коэффициенты ах,
ау
линейной комбинации называют координатами
вектора
в базисе
,
.
Координаты ах,
ау
вектора
– это его проекции на соответствующие
координатные оси. Вектор
с координатами ах,
ay
записывают в виде
.
Длина вектора
определяется по формуле
.
Вектор
образует с координатными осями Ох
и Оу
углы α и β соответственно. Направление
вектора
определяется с помощью направляющих
косинусов: cosα,
cosβ
для которых справедливы равенства
,
.
Пусть
даны два вектора
и
.
Тогда:
-
векторы
и
равны тогда и только тогда, когда равны
их соответствующие координаты, т. е.
. -
векторы
и
коллинеарны тогда и только тогда, когда
их соответствующие координаты
пропорциональны, т. е.:
. -
При
сложении векторов их одноименные
координаты складываются, при вычитании
– вычитаются, при умножении вектора
на число – умножаются на это число:
;
.
Вектор
,
соединяющий начало координат с
произвольной точкой
называется радиус-вектором точки М.
Координаты точки – это координаты ее
радиус-вектора
или
.
Если вектор
задан точками
и
,
то его координаты ах,
аy
вычисляются по формулам
,
:
.
Если
векторы
и
заданы своими координатами
и
то их скалярное произведение находится
по формуле:
.
3.3
Координаты вектора в пространстве
Если
,
и
– орты координатных осей прямоугольной
системы координат Oху,
то любой вектор
единственным образом можно представить
в виде их суммы (линейной комбинации) с
коэффициентами aх
и aу:
.
Коэффициенты ах,
ау,
аz
линейной комбинации называют координатами
вектора
в базисе
,
и
.
Координаты ах,
ау,
аz
вектора
– это его проекции на соответствующие
координатные оси. Вектор
с координатами ах,
ау,
аz
записывают в виде
.
Длина вектора
определяется по формуле:
(1.1).
Вектор
образует с координатными осями Ох,
Оу
и Oz
углы α, β и γ соответственно. Направление
вектора
определяется с помощью направляющих
косинусов: cosα,
cosβ
и cosγ
для которых справедливы равенства:
,
,
(1.2).
Пусть
даны два вектора
,
.
Тогда:
-
векторы
и
равны тогда и только тогда, когда равны
их соответствующие координаты, т. е.
-
векторы
и
коллинеарны тогда и только тогда, когда
их соответствующие координаты
пропорциональны, т. е.
(1.3)
При
сложении векторов их одноименные
координаты складываются, при вычитании
– вычитаются, при умножении вектора на
число – умножаются на это число:
Вектор
,
соединяющий начало координат с
произвольной точкой
называется радиус-вектором
точки М.
Координаты точки – это координаты ее
радиус-вектора
или
.
Если
вектор
задан точками
и
,
то его координаты ах,
аy,
az
вычисляются по формулам:
,
,
:
(1.4).
Пример
1:
Даны три последовательные вершины
параллелограмма:
,
,
.
Найти его четвертую вершину D.
Решение:
Обозначим
координаты вершины D
через х,
y,
z,
т. е.
.
Так как ABCD
– параллелограмм, то имеем:
.
Находим координаты векторов
и
:
,т.е.
;
.
Из равенства векторов
и
следует, что
,
,
.
Отсюда находим:
x,
,
.
Итак,
.
Пример
2: Найти
координаты вектора
,
если известно, что он направлен в
противоположную сторону к вектору
,
и его модуль равен 5.
Решение:
Можно
записать, что
.
Так как вектор
направлен в противоположную сторону к
вектору
,
то
.
Найдем орт
.
Из равенства
находим
.
Но
.
Значит,
.
Следовательно,
и
,
т.е.
.
Пример
3: Вектор
составляет с осями Ох
и Оу
углы α
= 60° и β
= 120°. Найти его координаты, если
.
Решение:
Пусть
х,
у,
z
– координаты вектора
,
то есть
.
Координаты вектора
найдем из соотношений
,
,
.
Предварительно найдем
.
Так как, то
,
то есть
.
Отсюда находим, что
или
.
Условию задачи удовлетворяют два вектора
и
:
с направляющими косинусами
,
,
и
с направляющими косинусами
,
,
.
Имеем:
,
,
,
,
,
.
Отсюда находим:
,
,
и
,
,
.
То есть
и
.
Пример
4: При
каких значениях α
и β
векторы
и
коллинеарны?
Решение:
Так
как
,
то
(см. условие (1.3)). Отсюда находим, что
,
.
Пример
5: Разложить
вектор
по векторам
и
.
Решение:
Требуется
представить вектор
в виде
,
где
и
– числа. Найдем их, используя определение
равенства векторов. Имеем:
,
,
и равенство
,
то есть
.
Отсюда следует, что
,
то есть
,
,
следовательно,
.
3.4
Векторное произведение векторов
Если
векторы
и
заданы своими координатами
,
,
то
,
или
(3.2).
Для
вычисления площади параллелограмма,
построенного на векторах
и
применяется формула
(3.3).
Векторное
произведение может быть выражено
формулой
(3.4), где
– орт направления
.
Пример
6: Найти
площадь треугольника с вершинами
,
,
.
Решение:
Площадь
S
треугольника АВС
равна половине площади параллелограмма,
построенного на векторах
и
,
то есть
.
Имеем:
,
.
Тогда по формуле (3.2)
,
то есть
.
Следовательно,
.
3.5
Смешанное произведение векторов
Смешанным
произведением
трех векторов
,
и
называется число, равное скалярному
произведению вектора
на вектор
.
Обозначение:
.
Таким
образом:
.
Геометрически
смешанное произведение интерпретируется
как число, равное объему параллелепипеда,
построенного на векторах
,
и
как на ребрах. Смешанное произведение
векторов
,
и
положительно, если данные векторы
образуют правую тройку, и отрицательно
– если левую.
Свойства
смешанного произведения:
-
,
т. е. смешанное произведение не меняется
при циклической перестановке векторов; -
,
т. е. смешанное произведение не меняется
при перестановке знаков векторного и
скалярного умножения; -
т.е.
смешанное произведение меняет знак на
противоположный при перемене мест
любых двух векторов-сомножителей; -
,
если
,
и
компланарны (в частности, если любые
два из перемножаемых вектора коллинеарны).
Если
векторы
,
и
заданы своими координатами
,
,
то
(4.1).
Если
,
то
,
– правая тройка;
– левая.
Объем
V1
параллелепипеда, построенного на
векторах
,
и
,
и объем V2,
построенной на них треугольной пирамиды,
находятся по формулам
, (4.2)
. (4.3)
Пример
7: Доказать,
что четыре точки
,
,
,
лежат в одной плоскости.
Решение:
Достаточно
показать, что три вектора
,
,
,
имеющие начало в одной из данных точек,
лежат в одной плоскости (то есть
компланарны). Находим координаты векторов
,
,
:
;
;
.
Проверяем
условие компланарности векторов
(свойство 4 смешанного произведения
векторов):
.
Следовательно,
векторы
,
и
компланарны, а значит, точки
,
,
,
лежат в одной плоскости.
Вопросы
для контроля
-
Дайте
понятие основных векторов (ортов). -
Линейная
комбинация вектора на плоскости и в
пространстве. Координаты вектора на
плоскости и в пространстве. -
Формулы
для нахождения длины вектора, заданного
своими координатами на плоскости и в
пространстве. -
Условия
равенства и коллинеарности векторов
на плоскости и в пространстве. -
Операции
над векторами, заданными своими
координатами на плоскости и в пространстве
(сложение, вычитание, умножение на
число, скалярное произведение). -
Направление
вектора на плоскости и в пространстве. -
Радиус-вектор
точки на плоскости и в пространстве. -
Координаты
вектора, заданного координатами его
концов на плоскости и в пространстве. -
Векторное
произведение векторов, заданных своими
координатами. Свойства векторного
произведения. -
Смешанное
произведение векторов. Свойства
смешанного произведения. -
Формула
для нахождения смешанного произведения
векторов, заданных своими координатами.
Применение смешанного произведения
векторов для нахождения объема
параллелепипеда и треугольной пирамиды. -
Условие
компланарности векторов.