Как найти координаты плоскости oxz

Общее уравнение плоскости

В данной статье мы рассмотрим общее уравнение плоскости в пространстве. Определим понятия полного и неполного уравнения плоскости. Для построения общего уравнения плоскости пользуйтесь калькулятором уравнение плоскости онлайн.

Пусть задана произвольная декартова прямоугольная система координат Oxyz. Общим уравнением плоскости называется линейное уравнение вида:

где A, B, C, D − некоторые постоянные, причем хотя бы один из элементов A , B и C отлично от нуля.

Мы покажем, что линейное уравнение (1) в пространстве определяет плоскость и любой плоскость в пространстве можно представить линейным уравнением (1). Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат в пространстве каждая плоскость α может быть задана линейным уравнением (1). Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат в пространстве определяет плоскость.

Доказательство. Достаточно доказать, что плоскость α определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть в пространстве задана плоскость α. Выберем оси Ox и Oy так, чтобы они располагались на плоскости α, а ось Oz направим перпендикулярно к этой плоскости. Тогда линейное уравнение z=0 будет уравнением плоскости, т.к. координаты любой точки, принадлежащей этой плоскости удовлетворяют уравнению z=0, а координаты любой точки, не лежащей на этой плоскости − нет. Первая часть теоремы доказана.

Пусть фиксирована произвольная декартова прямоугольная система координат Oxyz. Рассмотрим линейное уравнение (1), где хотя бы один из элементов A , B и C отлично от нуля. Тогда уравнение (1) имеет хотя бы одно решение x0, y0, z0. Действительно. Пусть из коэффициентов A≠0. Возьмем произвольные числа y0, z0. Тогда

Таким образом, существует точка M0(x0, y0, z0), координаты которой удовлетворяют уравнению (1):

Вычитая из уравнения (1) тождество (2), получим

которая эквивалентна уравнению (1).

Покажем, что (3) определяет некоторую плоскость, проходящую через точку M0(x0, y0, z0) и перпендикулярную вектору n={A,B,C} (n≠0, так как хотя бы один из чисел A,B,C отлично от нуля).

Если точка M0(x0, y0, z0) принадлежит плоскости α, то ее координаты удовлетворяют уравнению (3), т.к. векторы n={A,B,C} и перпендикулярны (Рис.1) и их скалярное произведение равно нулю:

Если же точка M(x, y, z) не лежит на плоскости α, то векторы n={A,B,C} и не ортогональны. Тогда их скалярное произведение не равно нулю, т.е. координаты точки M(x, y, z) не удовлетворяют условию (3). Теорема доказана.

Одновременно с доказательством теоремы 1 мы получили следующее утверждение.

Утверждение 1. В декартовой прямоугольной системе координат вектор с компонентами (A,B,C) перпендикулярен плоскости Ax+By+Cz+D=0.

Вектор n=(A,B,C) называется нормальным вектором плоскости, определяемой линейным уравнением (1).

Утверждение 2. Если два общих уравнения плоскости

и

определяют одну и ту же плоскость, то найдется такое число λ, что выпонены равенства

Доказательство. Так как уравнения (4) и (5) определяют одну и ту же плоскость, то нормальные векторы n1={A1,B1,С1} и n2={A2,B2, С2} коллинеарны. Так как векторы n1≠0, n2≠0, то существует такое число λ, что n2=n1λ. Отсюда имеем: A2=A1λ, B2=B1λ, С2=С1λ. Докажем, что D2=D1λ. Очевидно, что совпадающие плоскости имеют общую точку M0(x0, y0, z0), так что

и

Умножая уравнение (7) на λ и вычитая из него уравнение (8) получим:

Так как выполнены первые три равенства из выражений (6), то D1λD2=0. Т.е. D2=D1λ. Утверждение доказано.

Неполные уравнения плоскости

Определение 1. Общее уравнение плоскости (1) называется полным, если все коэффициенты A, B, C, D отличны от нуля. Если же хотя бы один из коэффициентов A, B, C, D равен нулю, то общее уравнение плоскости называется неполным.

Рассмотрим все возможные варианты неполных уравнений плоскости:

При D=0, имеем уравнение плоскости Ax+By+Cz=0, проходящей через начало координат (Рис.2). Действительно, точка O(0,0,0) удовлетворяет этой системы линейных уравнений.

При A=0, имеем уравнение плоскости By+Cz+D=0, которая параллельна оси Ox (Рис.3). В этом случае нормальный вектор плоскости n={0,B,C} лежит на координатной плоскости Oyz.

При B=0, имеем уравнение плоскости Ax+Cz+D=0, которая параллельна оси Oy (Рис.4).

При C=0, имеем уравнение плоскости Ax+By+D=0, которая параллельна оси Oz (Рис.5).

При A=0,B=0 имеем уравнение плоскости Cz+D=0, которая параллельна координатной плоскости Oxy (Рис.6).

При B=0,C=0 имеем уравнение плоскости Ax+D=0, которая параллельна координатной плоскости Oyz (Рис.7).

При A=0,C=0 имеем уравнение плоскости By+D=0, которая параллельна координатной плоскости Oxz (Рис.8).

При A=0,B=0,D=0 имеем уравнение плоскости Cz=0, которая совпадает с координатной плоскостью Oxy (Рис.9).

При B=0,C=0,D=0 имеем уравнение плоскости Ax=0, которая совпадает с координатной плоскостью Oyz (Рис.10).

При A=0,C=0,D=0 имеем уравнение плоскости By=0, которая совпадает с координатной плоскостью Oxz (Рис.11).

Рассмотрим примеры построения общего уравнения плоскости.

Пример 1. Построить общее уравнение плоскости, проходящей через точку M(4,−1,2) параллельной координатной плоскости Oxy.

Решение. Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя координаты точки M в (3), получим:

Так как плоскость параллельна координатной плоскости Oxy, то направляющий вектор имеет следующий вид n={A,B,C}={0,0,1}, т.е. A=0, B=0, C=1.

Подставляя коэффициенты A,B,C в (9), получим:

или

Ответ:

Пример 2. Построить общее уравнение плоскости, проходящей через начало координат и имеющий нормальный вектор n=={2,3,1}.

Решение. Начало координат имеет коэффициенты (0,0,0). Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя коэффициенты начальной точки в (3), получим:

Так как плоскость имеет нормальный вектор n={A,B,C}={2,3,1}, т.е. A=2, B=3, C=1, подставляя коэффициенты A,B,C в (10), получим:

или

Ответ:

Онлайн калькулятор для построения общего уравнения плоскости находится здесь. Там же вы найдете примеры построения общего уравнения плоскости, если известны три точки этой плоскости или если известна одна точка и нормальный вектор этой плоскости.

Общее уравнение плоскости

В данной статье мы рассмотрим общее уравнение плоскости в пространстве. Определим понятия полного и неполного уравнения плоскости. Для построения общего уравнения плоскости пользуйтесь калькулятором уравнение плоскости онлайн.

Пусть задана произвольная декартова прямоугольная система координат Oxyz. Общим уравнением плоскости называется линейное уравнение вида:

где A, B, C, D − некоторые постоянные, причем хотя бы один из элементов A , B и C отлично от нуля.

Мы покажем, что линейное уравнение (1) в пространстве определяет плоскость и любой плоскость в пространстве можно представить линейным уравнением (1). Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат в пространстве каждая плоскость α может быть задана линейным уравнением (1). Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат в пространстве определяет плоскость.

Доказательство. Достаточно доказать, что плоскость α определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть в пространстве задана плоскость α. Выберем оси Ox и Oy так, чтобы они располагались на плоскости α, а ось Oz направим перпендикулярно к этой плоскости. Тогда линейное уравнение z=0 будет уравнением плоскости, т.к. координаты любой точки, принадлежащей этой плоскости удовлетворяют уравнению z=0, а координаты любой точки, не лежащей на этой плоскости − нет. Первая часть теоремы доказана.

Пусть фиксирована произвольная декартова прямоугольная система координат Oxyz. Рассмотрим линейное уравнение (1), где хотя бы один из элементов A , B и C отлично от нуля. Тогда уравнение (1) имеет хотя бы одно решение x0, y0, z0. Действительно. Пусть из коэффициентов A≠0. Возьмем произвольные числа y0, z0. Тогда

.

Таким образом, существует точка M0(x0, y0, z0), координаты которой удовлетворяют уравнению (1):

Вычитая из уравнения (1) тождество (2), получим

A(xx0)+B(yy0)+С(zz0)=0, (3)

которая эквивалентна уравнению (1).

Покажем, что (3) определяет некоторую плоскость, проходящую через точку M0(x0, y0, z0) и перпендикулярную вектору n=<A,B,C> (n≠0, так как хотя бы один из чисел A,B,C отлично от нуля).

Если точка M0(x0, y0, z0) принадлежит плоскости α, то ее координаты удовлетворяют уравнению (3), т.к. векторы n=<A,B,C> и перпендикулярны (Рис.1) и их скалярное произведение равно нулю:

Если же точка M(x, y, z) не лежит на плоскости α, то векторы n=<A,B,C> и не ортогональны. Тогда их скалярное произведение не равно нулю, т.е. координаты точки M(x, y, z) не удовлетворяют условию (3). Теорема доказана.

Одновременно с доказательством теоремы 1 мы получили следующее утверждение.

Утверждение 1. В декартовой прямоугольной системе координат вектор с компонентами (A,B,C) перпендикулярен плоскости Ax+By+Cz+D=0.

Вектор n=(A,B,C) называется нормальным вектором плоскости , определяемой линейным уравнением (1).

Утверждение 2. Если два общих уравнения плоскости

определяют одну и ту же плоскость, то найдется такое число λ, что выпонены равенства

A2=A1λ, B2=B1λ, C2=C1λ, D2=D1λ. (6)

Умножая уравнение (7) на λ и вычитая из него уравнение (8) получим:

(A1λA2)x0+(B1λB2)y0+(C1λC2)z0+(D1λD2)=0.

Так как выполнены первые три равенства из выражений (6), то D1λD2=0. Т.е. D2=D1λ. Утверждение доказано.

Неполные уравнения плоскости

Определение 1. Общее уравнение плоскости (1) называется полным , если все коэффициенты A, B, C, D отличны от нуля. Если же хотя бы один из коэффициентов A, B, C, D равен нулю, то общее уравнение плоскости называется неполным .

Рассмотрим все возможные варианты неполных уравнений плоскости:

При D=0, имеем уравнение плоскости Ax+By+Cz=0, проходящей через начало координат (Рис.2). Действительно, точка O(0,0,0) удовлетворяет этой системы линейных уравнений.

При A=0, имеем уравнение плоскости By+Cz+D=0, которая параллельна оси Ox (Рис.3). В этом случае нормальный вектор плоскости n=<0,B,C> лежит на координатной плоскости Oyz.

При B=0, имеем уравнение плоскости Ax+Cz+D=0, которая параллельна оси Oy (Рис.4).

При C=0, имеем уравнение плоскости Ax+By+D=0, которая параллельна оси Oz (Рис.5).

При A=0,B=0 имеем уравнение плоскости Cz+D=0, которая параллельна координатной плоскости Oxy (Рис.6).

При B=0,C=0 имеем уравнение плоскости Ax+D=0, которая параллельна координатной плоскости Oyz (Рис.7).

При A=0,C=0 имеем уравнение плоскости By+D=0, которая параллельна координатной плоскости Oxz (Рис.8).

При A=0,B=0,D=0 имеем уравнение плоскости Cz=0, которая совпадает с координатной плоскостью Oxy (Рис.9).

При B=0,C=0,D=0 имеем уравнение плоскости Ax=0, которая совпадает с координатной плоскостью Oyz (Рис.10).

При A=0,C=0,D=0 имеем уравнение плоскости By=0, которая совпадает с координатной плоскостью Oxz (Рис.11).

Рассмотрим примеры построения общего уравнения плоскости.

Пример 1. Построить общее уравнение плоскости, проходящей через точку M(4,−1,2) параллельной координатной плоскости Oxy.

Решение. Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя координаты точки M в (3), получим:

A(x−4)+B(y−(−1))+C(z−2)=0 (9)

Так как плоскость параллельна координатной плоскости Oxy, то направляющий вектор имеет следующий вид n=<A,B,C>=<0,0,1>, т.е. A=0, B=0, C=1.

Подставляя коэффициенты A,B,C в (9), получим:

0(x−4)+0(y−(−1))+1(z−2)=0 (9)

Пример 2. Построить общее уравнение плоскости, проходящей через начало координат и имеющий нормальный вектор n==<2,3,1>.

Решение. Начало координат имеет коэффициенты (0,0,0). Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя коэффициенты начальной точки в (3), получим:

A(x−0)+B(y−0)+C(z−0)=0 (10)

Так как плоскость имеет нормальный вектор n=<A,B,C>=<2,3,1>, т.е. A=2, B=3, C=1, подставляя коэффициенты A,B,C в (10), получим:

2(x−0)+3(y−0)+1(z−0)=0 (9)

Онлайн калькулятор для построения общего уравнения плоскости находится здесь. Там же вы найдете примеры построения общего уравнения плоскости, если известны три точки этой плоскости или если известна одна точка и нормальный вектор этой плоскости.

Уравнения поверхности и линии в пространстве с примерами решения

Содержание:

Уравнения поверхности и линии в пространстве

Определение: Уравнение м поверхности в пространстве Oxyz называется такое уравнение между переменными х, у у z, которому удовлетворяют координаты всех точек данной поверхности и не удовлетворяют координаты точек, не лежащих на этой поверхности. То есть если

— уравнение поверхности Р (рис. 189), то при М(х, у, z)

Таким образом, уравнение (1) выполнено тогда и только тогда, когда точка М(х, у, z) принадлежит данной поверхности. Координаты произвольной точки поверхности называются текущими координатами точки. Поэтому составить уравнение поверхности — это значит найти связь между текущими координатами ее точек.

Пример (уравнения координатных плоскостей):

Каждая точка М(х, у, z), лежащая на координатной плоскости Oyz, имеет абсциссу х = 0; обратно, если для какой-нибудь точки М(х, у, z) абсцисса ее х = 0, то эта точка расположена на плоскости Oyz. Следовательно,

— уравнение координатной плоскости Oyz. Аналогично,

— соответственно уравнения координатных плоскостей Oxz и Оху.

Формула обозначает, что точка М принадлежит Р. Формула обозначает, что точка N не принадлежит Р.

В более общем случае

— уравнения трех плоскостей, перпендикулярных соответствующим координатным осям Ох, Оу, Ог и отсекающих на них отрезки, численно равные

Теорема: Уравнение цилиндрической поверхности, образующие которой параллельны координатной оси, не содержит текущей координаты, одноименной с этой координатной осью, и обратно.

Доказательство: Пусть, например, цилиндрическая поверхность Р образована перемещением прямой (образующая) вдоль заданной линии L, лежащей в плоскости Оху (направляющая) (рис. 190).

Обозначим через М(х, у, z) точку поверхности Р с текущими координатами х, у и z. Образующая MN, проходящая через точку М, пересекает направляющую, очевидно, в точке N(x, у, 0).

— уравнение направляющей L в координатной плоскости Оху. Этому уравнению удовлетворяют координаты точки N. Так как точка М поверхности Р имеет ту же самую абсциссу хиту же самую ординату у, что и точка N, а переменная г в уравнение (3) не входит, то координаты точки М также удовлетворяют уравнению (3). Таким образом, координаты любой точки М(х, у, z) поверхности Р удовлетворяют уравнению (3). Обратно, если координаты какой-нибудь точки М(х, у, z) удовлетворяют уравнению (3), то эта точка расположена на прямой MN || Оz такой, что ее след на плоскости Оху, точка N(x, у, 0), лежит на линии L, а значит, точка М принадлежит цилиндрической поверхности Р. Следовательно,

является уравнением цилиндрической поверхности в пространстве Oxyz, причем в этом уравнении отсутствует координата z.

Пример (уравнение эллиптического цилиндра):

Эллиптический цилиндр, в основании которого лежит эллипс с полуосями а и b, а осью служит ось Оz (рис. 191), на основании предыдущей теоремы имеет уравнение

В частности, при а = b получаем уравнение кругового цилиндра

Линию L в пространстве можно задать как пересечение двух данных поверхностей (рис. 192). Точка , лежащая на линии L, принадлежит как поверхности так и поверхности , и, следовательно, координаты этой точки удовлетворяют уравнениям обеих поверхностей.

Поэтому под уравнениями линии в пространстве понимается совокупность двух уравнений:

являющихся уравнениями поверхностей, определяющих данную линию.

Не нужно думать, что для нахождения уравнений линий систему (4) следует «решить». Этого, вообще говоря, нельзя сделать, так как число уравнений системы (4) меньше числа неизвестных. Точный смысл, который придается равенствам (4), следующий: линии L принадлежат те и только те точки , координаты которых удовлетворяют обоим уравнениям системы (4).

Заметим, что данную линию можно по-разному задавать как пересечение поверхностей. Поэтому линии в пространстве соответствует бесчисленное множество равносильных между собой систем уравнений.

Определение: Уравнениями линии в пространстве называется такая пара уравнений между переменными , которой удовлетворяют координаты каждой точки, лежащей на данной линии, и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Пример (уравнения координатных осей):

Ось Ох можно, рассматривать как пересечение координатных плоскостей Оху и Oxz. Поэтому

— уравнения оси Ох. Аналогично,

— уравнения осей Оу и Oz соответственно.

Пример:

Написать уравнения окружности Г радиуса R = 1, центр которой находится в точке С(0, 0, 2) и плоскость которой параллельна координатной плоскости Оху (рис. 193).

Решение:

Окружность Г можно рассматривать как пересечение кругового цилиндра радиуса 1 с осью Oz и горизонтальной плоскости, расположенной выше координатной плоскости Оху на две единицы. Поэтому уравнения данной окружности есть

В механике линию L часто рассматривают как след движущейся точки (рис. 194). Пусть х, у, z — текущие координаты точки М линии L. Так как с течением времени точка М перемещается и ее координаты меняются, то они являются функциями времени t. Следовательно, имеем

где — некоторые определенные функции. Обобщая уравнения (5), под t понимают вспомогательную переменную (параметр)> не обязательно время; поэтому уравнения (5) носят название параметрических уравнений линии в пространстве.

Исключая из уравнений (5) параметр t, мы получим два соотношения между текущими координатами х, у и z, которые представляют собой уравнения некоторых поверхностей, проходящих через данную линию.

Пример:

Написать уравнения винтовой линии радиуса а и шага (рис. 195).

Решение:

Пусть М (х, у, z) — текущая точка винтовой линии, М’ (х, у, 0) — ее проекция на плоскость Оху.

Приняв за параметр и учитывая, что аппликата г винтовой линии растет пропорционально углу поворота t, будем иметь

Для определения коэффициента пропорциональности b положим ; тогда . Следовательно,

Исключая параметр t из первого и второго, а также из первого и третьего уравнений (6), получаем

Следовательно, винтовая линия представляет собой пересечение кругового цилиндра с образующими, параллельными оси Oz, и цилиндрической поверхности с образующими, параллельными оси Оу, и имеющей своей направляющей косинусоиду, лежащую в плоскости . Из уравнений (6′) также вытекает, что проекция винтовой линии (6′) на координатную плоскость Оху есть окружность, а на координатную плоскость — косинусоида.

Текущую точку кривой L можно характеризовать ее радиусом-вектором («следящий радиус-вектор») (рис. 196)

( — орты). Тогда из (5) получаем векторное уравнение линии

— так называемая вектор-функция скалярного аргумента t.

В механике в качестве параметра t обычно берут время. В таком случае линию (7) называют траекторией точки М(х, у, z).

Множество всех точек М(х, у, г) пространства, координаты которых удовлетворяют данному уравнению (или системе уравнений), называется геометрическим образом (графиком) данного уравнения (или системы уравнений).

Пример:

Какой геометрический образ соответствует уравнению

Решение:

Из уравнения (8) получаем или . Следовательно, графиком уравнения (8) является пара плоскостей, параллельных координатной плоскости Оху и отстоящих от нее на расстояниях, равных единице (рис. 197).

Пример:

Какой геометрический образ соответствует паре уравнений

Решение:

Искомый график представляет собой пересечение плоскостей х = 2 и у = 3 и, следовательно, является прямой линией, параллельной оси Oz и имеющей след N (2, 3, 0) на координатной плоскости Оху (рис. 198).

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Общее уравнение плоскости
  • Угол между плоскостями
  • Понятие о производной вектор-функции
  • Криволинейные интегралы
  • Прямоугольная система координат на плоскости и ее применение
  • Линии второго порядка
  • Полярные координаты
  • Непрерывность функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Общее уравнение плоскости : описание, примеры, решение задач

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Общее уравнение плоскости: основные сведения

Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве. Пусть нам дана прямоугольная система координат O x y z в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x , y , и z , которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек. Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Любую плоскость, заданную в прямоугольной системе координат O x y z трехмерного пространства, можно определить уравнением A x + B y + C z + D = 0 . В свою очередь, любое уравнение A x + B y + C z + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A , B , C , D – некоторые действительные числа, и числа A , B , C не равны одновременно нулю.

Теорема состоит из двух частей. Разберем доказательство каждой из них.

  1. Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида A x + B y + C z + D = 0 . Допустим, задана некоторая плоскость и точка M 0 ( x 0 , y 0 , z 0 ) , через которую эта плоскость проходит. Нормальным вектором этой плоскости является n → = ( A , B , C ) . Приведем доказательство, что указанную плоскость в прямоугольной системе координат O x y z задает уравнение A x + B y + C z + D = 0 .

Возьмем произвольную точку заданной плоскости M ( x , y , z ) .В таком случае векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:

n → , M 0 M → = A x — x 0 + B ( y — y 0 ) + C ( z — z 0 ) = A x + B y + C z — ( A x 0 + B y 0 + C z 0 )

Примем D = — ( A x 0 + B y 0 + C z 0 ) , тогда уравнение преобразуется в следующий вид: A x + B y + C z + D = 0 . Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.

  1. Во второй части теоремы утверждается, что любое уравнение вида A x + B y + C z + D = 0 задает некоторую плоскость в прямоугольной системе координат O x y z трехмерного пространства. Докажем это.

В теореме также указано, что действительные числа А , B , C одновременно не являются равными нулю. Тогда существует некоторая точка M 0 ( x 0 , y 0 , z 0 ) , координаты которой отвечают уравнению A x + B y + C z + D = 0 , т.е. верным будет равенство A x 0 + B y 0 + C z 0 + D = 0 . Отнимем левую и правую части этого равенства от левой и правой частей уравнения A x + B y + C z + D = 0 . Получим уравнение вида

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 , и оно эквивалентно уравнению A x + B y + C z + D = 0 . Докажем, что уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает некоторую плоскость.

Уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n → = ( A , B , C ) и M 0 M → = x — x 0 , y — y 0 , z — z 0 . Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 множество точек M ( x , y , z ) задает плоскость, у которой нормальный вектор n → = ( A , B , C ) . При этом плоскость проходит через точку M ( x 0 , y 0 , z 0 ) . Иначе говоря, уравнение A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) + D = 0 задает в прямоугольной системе координат O x y z трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение A x + B y + C z + D = 0 также определяет эту плоскость. Теорема доказана полностью.

Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.

Допустим, задано некоторое общее уравнение плоскости λ · A x + λ · B y + λ · C z + λ · D = 0 , где λ – некое действительное число, не равное нулю. Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением A x + B y + C z + D = 0 , поскольку описывает то же самое множество точек трехмерного пространства. Например, уравнения x — 2 · y + 3 · z — 7 = 0 и — 2 · x + 4 · y — 2 3 · z + 14 = 0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства.

Раскроем чуть шире смысл теорем.

В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида A x + B y + C z + D = 0 ( при конкретных значениях чисел A , B , C , D ). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.

Укажем пример как иллюстрацию этих утверждений.

Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства. Заданной плоскости отвечает общее уравнение вида 4 x + 5 y – 5 z + 20 = 0 , и ему соответствуют координаты любой точки этой плоскости. В свою очередь, уравнение 4 x + 5 y – 5 z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.

Общее уравнение плоскости, проходящей через точку

Повторимся: точка M 0 ( x 0 , y 0 , z 0 ) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением A x + B y + C z + D = 0 в том случае, когда подставив координаты точки M 0 ( x 0 , y 0 , z 0 ) в уравнение A x + B y + C z + D = 0 , мы получим тождество.

Заданы точки M 0 ( 1 , — 1 , — 3 ) и N 0 ( 0 , 2 , — 8 ) и плоскость, определяемая уравнением 2 x + 3 y — z — 2 = 0 . Необходимо проверить, принадлежат ли заданные точки заданной плоскости.

Решение

Подставим координаты точки М 0 в исходной уравнение плоскости:

2 · 1 + 3 · ( — 1 ) — ( — 3 ) — 2 = 0 ⇔ 0 = 0

Мы видим, что получено верное равенство, значит точка M 0 ( 1 , — 1 , — 3 ) принадлежит заданной плоскости.

Аналогично проверим точку N 0 . Подставим ее координаты в исходное уравнение:

2 · 0 + 3 · 2 — ( — 8 ) — 2 = 0 ⇔ 12 = 0

Равенство неверно. Таким, образом, точка N 0 ( 0 , 2 , — 8 ) не принадлежит заданной плоскости.

Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n → = ( A , B , C ) — нормальный вектор для плоскости, определяемой уравнением A x + B y + C z + D = 0 . Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

В прямоугольной системе координат задана плоскость 2 x + 3 y — z + 5 = 0 . Необходимо записать координаты всех нормальных векторов заданной плоскости.

Решение

Мы знаем, что заданные общим уравнением коэффициенты при переменных x , y , z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n → исходной плоскости имеет координаты 2 , 3 , — 1 . В свою очередь, множество нормальных векторов запишем так:

λ · n → = λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Ответ: λ · 2 , λ · 3 , — λ , λ ∈ R , λ ≠ 0

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Очевидным фактом является то, что нормальный вектор n → = ( A , B , C ) является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M 0 ( x 0 , y 0 , z 0 ) , принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.

Общее уравнение плоскости с нормальным вектором n → = ( A , B , C ) будет выглядеть так: A x + B y + C z + D = 0 . По условию задачи точка M 0 ( x 0 , y 0 , z 0 ) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство: A x 0 + B y 0 + C z 0 + D = 0

Вычитая соответственно правые и левые части исходного уравнения и уравнения A x 0 + B y 0 + C z 0 + D = 0 , получим уравнение вида A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 . Оно и будет уравнением плоскости, проходящей через точку M 0 ( x 0 , y 0 , z 0 ) и имеющей нормальный вектор n → = ( A , B , C ) .

Возможно получить это уравнение другим способом.

Очевидным фактом является то, что все точки М ( x , y , z ) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n → = ( A , B , C ) и M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

Задана точка М 0 ( — 1 , 2 , — 3 ) , через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n → = ( 3 , 7 , — 5 ) . Необходимо записать уравнение заданной плоскости.

Решение

Рассмотрим два способа решения.

  1. Исходные условия позволяют получить следующие данные:

x 0 = — 1 , y 0 = 2 , z 0 = — 3 , A = 3 , B = 7 , C = — 5

Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0

3 ( x — ( — 1 ) ) + 7 ( y — 2 ) — 5 ( z — ( — 3 ) ) = 0 ⇔ 3 x + 7 y — 5 z — 26 = 0

  1. Допустим, М ( x , y , z ) – некоторая точки заданной плоскости. Определим координаты вектора M 0 M → по координатам точек начала и конца:

M 0 M → = ( x — x 0 , y — y 0 , z — z 0 ) = ( x + 1 , y — 2 , z + 3 )

Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:

n → , M 0 M → = 0 ⇔ 3 ( x + 1 ) + 7 ( y — 2 ) — 5 ( z + 3 ) = 0 ⇔ ⇔ 3 x + 7 y — 5 z — 26 = 0

Ответ: 3 x + 7 y — 5 z — 26 = 0

Неполное общее уравнение плоскости

Выше мы говорили о том, что, когда все числа А , B , C , D отличны от нуля, общее уравнение плоскости A x + B y + C z + D = 0 называют полным. В ином случае общее уравнение плоскости является неполным.

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

  1. В случае, когда D = 0 , мы получаем общее неполное уравнение плоскости: A x + B y + C z + D = 0 ⇔ A x + B y + C z = 0

Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О ( 0 , 0 , 0 ) , то придем к тождеству:

A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0

  1. Если А = 0 , В ≠ 0 , С ≠ 0 , или А ≠ 0 , В = 0 , С ≠ 0 , или А ≠ 0 , В ≠ 0 , С = 0 , то общие уравнения плоскостей имеют вид соответственно: B y + C z + D = 0 , или A x + C z + D = 0 , или A x + B y + D = 0 . Такие плоскости параллельны координатным осям О x , O y , O z соответственно. Когда D = 0 , плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей B y + C z + D = 0 , A x + C z + D = 0 и A x + B y + D = 0 задают плоскости, которые перпендикулярны плоскостям O y z , O x z , O z y соответственно.

  1. При А = 0 , В = 0 , С ≠ 0 , или А = 0 , В ≠ 0 , С = 0 , или А ≠ 0 , В = 0 , С = 0 получим общие неполные уравнения плоскостей: C z + D = 0 ⇔ z + D C = 0 ⇔ z = — D C ⇔ z = λ , λ ∈ R или B y + D = 0 ⇔ y + D B = 0 ⇔ y = — D B ⇔ y = λ , λ ∈ R или A x + D = 0 ⇔ x + D A = 0 ⇔ x = — D A ⇔ x = λ , λ ∈ R соответственно.

Эти уравнения определяют плоскости, которые параллельны координатным плоскостям O x y , O x z , O y z соответственно и проходят через точки 0 , 0 , — D C , 0 , — D B , 0 и — D A , 0 , 0 соответственно. При D = 0 уравнения самих координатных плоскостей O x y , O x z , O y z выглядят так: z = 0 , y = 0 , x = 0

Задана плоскость, параллельная координатной плоскости O y z и проходящая через точку М 0 ( 7 , — 2 , 3 ) . Необходимо составить общее уравнение заданной плоскости.

Р​​ешение

У​​​​​словием задачи определено, что заданная плоскость параллельна координатной плоскости O y z , а, следовательно, может быть задана общим неполным уравнением плоскости A x + D = 0 , A ≠ 0 ⇔ x + D A = 0 . Поскольку точка M 0 ( 7 , — 2 , 3 ) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости x + D A = 0 , иначе говоря, должно быть верным равенство 7 + D A = 0 . Преобразуем: D A = — 7 , тогда требуемое уравнение имеет вид: x — 7 = 0 .

Задачу возможно решить еще одним способом.

Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости O y z . Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости O y z : i → = ( 1 , 0 , 0 ) . Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:

A ( x — x 0 ) + B ( y — y 0 ) + C ( z — z 0 ) = 0 ⇔ ⇔ 1 · ( x — 7 ) + 0 · ( y + 2 ) + 0 · ( z — 3 ) = 0 ⇔ ⇔ x — 7 = 0

Ответ: x — 7 = 0

Задана плоскость, перпендикулярная плоскости O x y и проходящая через начало координат и точку М 0 ( — 3 , 1 , 2 ) .

Решение

Плоскость, которая перпендикулярна координатной плоскости O x y определяется общим неполным уравнением плоскости A x + B y + D = 0 ( А ≠ 0 , В ≠ 0 ) . Условием задачи дано, что плоскость проходит через начало координат, тогда D = 0 и уравнение плоскости принимает вид A x + B y = 0 ⇔ x + B A y = 0 .

Найдем значение B A . В исходных данных фигурирует точка М 0 ( — 3 , 1 , 2 ) , координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: — 3 + B A · 1 = 0 , откуда определяем B A = 3 .

Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x + 3 y = 0 .

источники:

http://www.evkova.org/uravneniya-poverhnosti-i-linii-v-prostranstve

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-ploskosti/

1. Основные понятия.

Рассмотрим
прямоугольную систему координат Oxyz
в пространстве.

Уравнением
поверхности

называется такое уравнение F(x,y,z)=0,
которому удовлетворяют координаты
каждой точки, лежащей на поверхности,
и не удовлетворяют координаты точек,
не лежащих на поверхности.

Например, сфера
– это геометрическое место точек,
равноудаленных от некоторой точки,
называемой центром сферы. Так все точки,
удовлетворяющие уравнению
лежат на сфере с центром в точке О(0.0.0)
и радиусомR
(Рис.1).

Координаты любой
точки, не лежащей на данной сфере, не
удовлетворяют этому уравнению.

Линию в
пространстве

можно рассматривать как линию пересечения
двух поверхностей. Так на рисунке 1
пересечением сферы с плоскостью Oxy
является окружность с центром в точке
О и радиусом R.

Простейшей
поверхностью является плоскость,
простейшей линией в пространстве
является прямая.

2. Плоскость в пространстве.

2.1. Уравнение
плоскости по точке и нормальному вектору.

В системе
координат Oxyz
рассмотрим плоскость
(Рис.2). Ее положение определяется заданием
вектораперпендикулярного этой плоскости, и
фиксированной точкилежащей в этой плоскости. Векторперпендикулярный плоскостиназываетсянормальным
вектором

(вектором-нормалью). Рассмотрим
произвольную точку M(x,y,z)
плоскости
.
Векторлежащий в плоскостибудет перпендикулярен вектору-нормалиИспользуя условие ортогональности
векторовполучим уравнение:где

Уравнение
(2.2.1)

называется
уравнением плоскости по точке и
нормальному вектору.

Если в уравнении
(2.1.1) раскроем скобки и перегруппируем
члены, то получим уравнение
илиAx
+ By
+ Cz
+ D
= 0, где

D
= .

2.2. Общее
уравнение плоскости.

Уравнение
Ax
+ By
+ Cz
+D
= 0 (2.2.1)

называется общим
уравнением плоскости, где
— нормальный вектор.

Рассмотрим
частные случаи этого уравнения.

1).D
= 0. Уравнение имеет вид: Ax
+ By
+ Cz
= 0. Такая плоскость проходит через
начало координат. Ее нормальный вектор

2).
С = 0 :Ax
+ By
+ D
= 0

плоскость
параллельна оси oz
(Рис.3).

3). B
= 0 : Ax
+ Cz
+ D
= 0


плоскость параллельна оси oy
(Рис.4).

4). A
= 0 : By
+ Cz
+ D
= 0


плоскость параллельна оси ox
(Рис.5).

5). C
= D
= 0 : Ax
+ By
= 0


плоскость проходит через ось oz
(Рис.6).

6).B
= D
= 0 : Ax
+ Cz
= 0


плоскость проходит через ось oy
(Рис.7).

7). A
= D
= 0 : By
+ Cz
= 0


плоскость проходит через ось ox
(Рис.8).

8).A
= B
= 0 : Cz
+ D
= 0

||oz

плоскость параллельна плоскостиOxy
(Рис.9).

9). B
= C
= 0 : Ax
+ D
= 0

||ox

плоскость

параллельна
плоскостиOyz
(Рис.10).

10).A
= C
= 0 : By
+ D
= 0

||oy

плоскость параллельна плоскостиOxz
(Рис.11).

Пример 1.
Составить уравнение плоскости, проходящей
через точку
перпендикулярно векторуНайти точки пересечения этой плоскости
с осями координат.

Решение.
По формуле (2.1.1) имеем

2x
– y
+ 3z
+ 3 = 0.

Для того, чтобы
найти пересечение этой плоскости с осью
ox,
подставим в полученное уравнение y
= 0, z
= 0. Имеем 2x
+ 3 = 0; x
= – 1,5.

Точка пересечения
искомой плоскости с осью ox
имеет координаты:

Найдем пересечение
плоскости с осью oy.
Для этого возьмем x
= 0; z
= 0. Имеем

– y
+ 3 = 0

y
= 3. Итак,

Для нахождения
точки пересечения с осью oz
возьмем x
= 0; y
= 0
3z
+ 3 = 0
z
= – 1. Итак,

Ответ:
2x
– y
+ 3z
+ 3 = 0, ,,.

Пример 2.
Исследовать
плоскости, заданные уравнениями:

a).
3x
– y
+ 2z
= 0

б). 2x
+ z
– 1 = 0

в). – y
+ 5 = 0

г). x
= 0.

Решение.
а). Данная плоскость проходит через
начало координат (D
= 0) и имеет нормальный вектор

б). В уравнении
коэффициентB
= 0. Следовательно,
Плоскость параллельна осиoy.

в). В уравнении –
y
+ 5 = 0 коэффициенты A
= 0, C
= 0. Значит

Плоскость параллельна
плоскости oxz.

г). Уравнение x
= 0 задает плоскость oyz,
так как при B
= 0, C
= 0 плоскость параллельна плоскости oyz,
а из условия D
= 0 следует, что плоскость проходит через
начало координат.

Пример 3.
Составить уравнение плоскости, проходящей
через точку A(2,3,1)
и перпендикулярной вектору
гдеB(1,0,
–1), C(–2,2,0).

Решение. Найдем
вектор

Вектор
является нормальным вектором искомой
плоскости, проходящей через точкуA(2,3,1).
По формуле (2.1.1) имеем:

– 3x
+ 2y
+ z
+ 6 – 6 – 1 = 0
3x
+ 2y
+ z
– 1 = 0

3x
– 2y
– z
+ 1 = 0.

Ответ: 3x
– 2y
– z
+ 1 = 0.

2.3. Уравнение
плоскости, проходящей через три точки.

Три точки, не
лежащие на одной прямой, определяют
единственную плоскость (см. рис. 12). Пусть
точки
не лежат на одной прямой. Чтобы составить
уравнение плоскости, нужно знать одну
точку плоскости и нормальный вектор.
Точки, лежащие на плоскости, известны:

Можно взять любую. Для нахождения
нормального вектора воспользуемся
определением векторного произведения
векторов. Пусть
Тогдаследовательно,Зная координаты точкии нормального векторанайдем уравнение плоскости, применяя
формулу (2.1.1).

Другим способом
уравнение плоскости, проходящей через
три заданные точки, можно получить,
используя условие компланарности трех
векторов. Действительно, векторы где M(x,y,z)
– произвольная точка искомой плоскости,
компланарны (см. рис.13). Следовательно,
их смешанное произведение равно 0:

.

Применив формулу
смешанного произведения в координатной
форме, получим:

(2.3.1)

Пример 1.
Составить
уравнение плоскости, проходящей через
точки

Решение.
По формуле (2.3.1) имеем

Раскрыв определитель,
получим:

Полученная плоскость
параллельна оси oy.
Ее нормальный вектор

Ответ:
x
+ z – 4 = 0.

2.4.
Угол между
двумя прямыми.

Две плоскости,
пересекаясь, образуют четыре двугранных
угла, равных попарно (см. рис. 14). Один из
двугранных углов равен углу между
нормальными векторами этих плоскостей.

Пусть даны
плоскости:

и

Их нормальные
векторы имеют координаты:

Из векторной
алгебры известно, что
или

(2.4.1)

Пример: Найти
угол между плоскостями:

Решение:
Найдем
координаты нормальных векторов:
По формуле (2.4.1) имеем:

Один из двугранных
углов, полученных при пересечении данных
плоскостей, равен
Можно найти и второй угол:

Ответ:

2.5.
Условие
параллельности двух плоскостей.

Пусть даны две
плоскости:

и

Если эти плоскости
параллельны, то их нормальные векторы

коллинеарны (см.
рис.15).

Если векторы
коллинеарны, то их соответствующие
координаты пропорциональны:

(2.5.1)

Верно и обратное
утверждение: если нормальные векторы
плоскостей коллинеарны, то плоскости
параллельны.

Пример 1.
Какие из
указанных плоскостей
параллельны:

а).
,

б).
?

Решение:
а). Выпишем координаты нормальных
векторов.

Проверим их
коллинеарность:

Отсюда следует,
что

б). Выпишем
координаты

Проверим
коллинеарность:

Векторы не коллинеарны,
плоскости
не параллельны.

Пример 2.
Составить
уравнение плоскости, проходящей через
точку

M(2,
3, –2)
параллельно
плоскости

Решение:
Искомая плоскость параллельна данной
плоскости. Поэтому нормальный вектор
плоскости
можно взять за нормальный вектор искомой
плоскости.Применяя уравнение
(2.1.1), получим:

Ответ: .

Пример 3.
Определить
при каких a
и b
плоскости параллельны:

Решение:
Выпишем координаты нормальных векторов:

Так как плоскости
параллельны, то векторы коллинеарны.По условию (2.5.1)Отсюда b
= – 2 ; a
= 3.

Ответ: a
= 3; b
= –2.

2.6. Условие
перпендикулярности двух плоскостей.

Если плоскости

перпендикулярны, то их нормальные
векторытоже перпендикулярны
(см. рис.16)..
Отсюда следует, что их скалярное
произведение равно нулю, т.е. или в координатах:

(2.6.1)

Это условие
перпендикулярности двух плоскостей.
Обратное утверждение также верно, то
есть, если выполняется условие (2.6.1), то
векторы следовательно,

Пример 1.
Какие из указанных плоскостей
перпендикулярны:

а).
,

б).

Решение: а).
Запишем координаты нормальных векторов:

Проверим их
ортогональность:

Отсюда следует,
что

б). Запишем
координаты нормальных векторов:

Найдем их скалярное
произведение:

то есть плоскости
неперпендикулярны.

Пример 2.
При каком значении m
плоскости перпендикулярны

Решение:
Запишем
координаты нормальных векторов:

Найдем их скалярное
произведение:

Так как плоскости
перпендикулярны, то
Следовательно, 4 – 2m
= 0;

m
= 2.

Ответ:
m
= 2.

2.7. Расстояние
от точки до плоскости.

Пусть дана точка
и плоскость

Расстояние от
точки
(см. рис.17) находим по формуле:

(2.7.1)

Пример: Найти
расстояние от точки M(3,
9, 1) до плоскости

Решение:
Применяем формулу (2.7.1), где A
= 1, B
= – 2, C
= 2, D
= –3,

Ответ:

Соседние файлы в предмете Математика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    03.03.20154.96 Кб8Содержание OneNote.onetoc2

  • #

Определение. Направляющими векторами плоскости называются два неколлинеарных вектора, лежащих в этой плоскости.

Уравнения плоскости в координатной форме

Общее уравнение плоскости в декартовой системе координат:

    [Ax + By + Cz + D = 0, qquad (A^2 + B^2 + C^2) 
e 0,]

при этом вектор с координатами является нормальным вектором к плоскости.

Уравнение плоскости, проходящей через три точки, не лежащие на одной прямой, можно получить, если решить систему уравнений

    Уравнение плоскости, формулы и примеры

Здесь и — координаты трёх точек плоскости. Заметим, что уравнений в системе три, а переменных — четыре. То есть решение этой системы мы получаем с точностью до коэффициента. Этот коэффициент роли не играет — после подстановки решения в уравнение плоскости на него можно сократить. Рассмотрим это на примере.

  1. Параметрические уравнения плоскости:
  2.     Уравнение плоскости, формулы и примеры
  3. Здесь — некоторая точка плоскости, и  — координаты направляющих веторов плоскости, — параметры.

Уравнения плоскости в векторном виде

  1. Нормальное векторное уравнение плоскости:
  2.     [(	extbf{r} - 	extbf{r}_0, 	extbf{n}) = 0, qquad (	extbf{n} 
e 0),]
  3. где — нормальный вектор плоскости.
  4. Это уравнение также можно записать в виде
  5.     [(	extbf{r}, 	extbf{n}) = D, qquad (	extbf{n} 
e 0).]

Если вектор — единичный (его длина равна ), то величина есть расстояние от точки до плоскости. Смысл этого уравнения в том, что проекция радиус-вектора любой точки плоскости на нормаль к ней есть постоянная величина, равная расстоянию до этой плоскости.

  • Уравнение плоскости, проходящей через три точки с радиус-векторами и можно записать в векторном виде:
  • Если радиус векторы имеют соответственно координаты то в координатной форме это уравнение запишется так:

Источник: https://umath.ru/theory/uravnenie-ploskosti/

Уравнения плоскости: общее, через три точки, нормальное

Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.

Пусть в пространстве есть три уже известные нам оси координат — Ox, Oy и Oz. Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.

Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.

Уравнение плоскости, формулы и примеры

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Уравнение плоскости, формулы и примеры

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости, имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x, y, z.

Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1).

Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть

.

Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры

Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P. Для точки N, не лежащей на заданной плоскости, , т.е. равенство (1) нарушается.

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Решение. Используем формулу (1), еще раз посмотрим на неё:

Уравнение плоскости, формулы и примеры

В этой формуле числа A, B и C координаты вектора , а числа x0, y0 и z0 — координаты точки .

Вычисления очень простые: подставляем эти числа в формулу и получаем

Уравнение плоскости, формулы и примеры

Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:

Уравнение плоскости, формулы и примеры

Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.

Итак, уравнение вида

Уравнение плоскости, формулы и примеры

называется общим уравнением плоскости.

Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением .

Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.

Как найти эти точки? Чтобы найти точку пересечения с осью Oz, нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0. Поэтому получаем z = 6. Таким образом, заданная плоскость пересекает ось Oz в точке A(0; 0; 6).

Точно так же находим точку пересечения плоскости с осью Oy. При x = z = 0 получаем y = −3, то есть точку B(0; −3; 0).

И, наконец, находим точку пересечения нашей плоскости с осью Ox. При y = z = 0 получим x = 2, то есть точку C(2; 0; 0). По трём полученным в нашем решении точкам A(0; 0; 6), B(0; −3; 0) и C(2; 0; 0) строим заданную плоскость.

Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Рассмотрим теперь частные случаи общего уравнения плоскости. Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.

1. При D = 0 уравнение определяет плоскость, проходящую через начало координат, так как координаты точки 0(0; 0; 0) удовлетворяют этому уравнению.

2. При A = 0 уравнение определяет плоскость, параллельную оси Ox, поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость параллельная оси Oy, а при C = 0 плоскость параллельна оси Oz.

3. При A = D = 0 уравнение определяет плоскость, проходящую через ось Ox, поскольку она параллельна оси Ox (A = 0) и проходит через начало координат (D = 0). Аналогично, плоскость проходит через ось Oy, а плоскость через ось Oz.

4. При A = B = 0 уравнение определяет плоскость, параллельную координатной плоскости xOy, поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость параллельна плоскости yOz, а плоскость — плоскости xOz.

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOy, так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz, а уравнение x = 0 — координатную плоскость yOz.

Пример 3. Составить уравнение плоскости P, проходящей через ось Oy и точку .

Решение. Итак, плоскость проходит через ось Oy. Поэтому в её уравнении y = 0 и это уравнение имеет вид . Для определения коэффициентов A и C воспользуемся тем, что точка принадлежит плоскости P.

  • Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (). Смотрим ещё раз на координаты точки:
  • M0(2; −4; 3).
  • Среди них x = 2, z = 3. Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:
  • 2A + 3C = 0.
  • Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем
  • A = −1,5C.
  • Подставив найденное значение A в уравнение , получим
  • или .
  • Это и есть уравнение, требуемое в условии примера.

Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение

Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением .

Посмотреть правильное решение и ответ.

Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Прямая и плоскость

Уравнение плоскости, проходящей через три точки

Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.

Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости

    (3)

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.

  1. Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:
  2. , ,
  3. и определить частный случай общего уравнения прямой, если такой имеет место.
  4. Решение. По формуле (3) имеем:
  5. Раскрываем определитель по первой строке:
  6. Получили общее уравнение плоскости
  7. или после деления на -2:
  8. .

Это уравнение, в котором A = 0, т.е. оно определяет плоскость, параллельную оси Ox.

Решения типичных задач, которые бывают на контрольных работах — в пособии «Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке».

Нормальное уравнение плоскости. Расстояние от точки до плоскости

  • Нормальным уравнением плоскости называется её уравнение, записанное в виде
  • ,
  • где — направляющие косинусы нормали плоскости, — расстояние от начала координат до плоскости.

Нормалью к плоскости называется вектор, направление которого совпадает с направлением прямой, проведённой через начало координат перпендикулярно данной плоскости.

(Есть полная аналогия с нормалью к прямой на плоскости, с той лишь разницей, что нормальное уравнение прямой существует в двух измерениях, а нормальное уравнение плоскости — в трёх).

Пусть M — какая угодно точка пространства. Для нахождения отклонения точки M от плоскости следует в левую часть нормального уравнения плоскости подставить на место x, y и z подставить координаты этой точки.

Это правило позволяет найти и расстояние от точки M до плоскости: расстояние равно модулю отклонения, т.е.

,

так как расстояние не может быть отрицательным числом.

  1. Общее уравнение плоскости
  2. приводится к нормальному виду почленным умножением на нормирующий множитель, определяемый формулой
  3. .

Знак нормирующего множителя берётся противоположным знаку свободного члена в общем уравнении плоскости.

Пример 6. Привести уравнение плоскости к нормальному виду.

  • Решение. Вычислим нормирующий множитель:
  • .
  • Знак нормирующего множителя положительный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим требуемое в условии примера нормальное уравнение плоскости:
  • .

Пример 7. Вычислить величину отклонения и расстояния от точки до прямой, если точка задана координатами (-2; -4; 3), а плоскость задана общим уравнением .

Решение. Сначала приведём уравнение плоскости к нормальному виду. Вычислим нормирующий множитель:

  1. .
  2. Знак нормирующего множителя отрицательный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим нормальное уравнение плоскости:
  3. .
  4. Вычислим отклонение точки от плоскости:
  5. Найдём теперь расстояние от точки до плоскости как модуль отклонения:

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Прямая и плоскость

Всё по теме «Прямая и плоскость»

Источник: https://function-x.ru/equations_of_plane.html

Презентация по математике на тему «Уравнение плоскости»

Инфоурок › Математика ›Презентации›Презентация по математике на тему «Уравнение плоскости»

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Уравнение плоскости, формулы и примеры

Описание презентации по отдельным слайдам:

1 слайд Описание слайда:

ЕЩЁ ПОДУМАЙте…

2 слайд Описание слайда:

Уравнение плоскости Преподаватель математики Семяшкина Ирина Васильевна ГПОУ «Ижемкий политехнический техникум»

3 слайд Описание слайда:

Цель: познакомить учащихся с понятием уравнения плоскости и её особыми случаями задания; Выработать практические навыки по изучаемой теме при решении задач.

4 слайд Описание слайда:

Проверка готовности. Греческий, латинский 3 (аксиома А1) , (ABC) Параллельно, пересекаться, совпадать Какой алфавит используют для обозначения плоскости? Сколькоточек достаточно, чтобыобозначить плоскость? Какобозначают плоскость? Как могут располагаться плоскости по отношению друг к другу?

5 слайд Описание слайда:

Общее уравнение плоскости Ax+By+Cz+D=0 где А, В, С, D – числовые коэффициенты

6 слайд Описание слайда:

Уравнения координатных плоскостей x = 0, плоскость Оyz y = 0, плоскость Оxz z = 0, плоскость Оxy

7 слайд Описание слайда:

Особые случаи уравнения: D = 0  Ax+By+Cz = 0 плоскость проходит через начало координат. А = 0  Ву + Cz +D = 0 плоскость параллельна оси Ох. В = 0  Ах + Cz +D = 0 плоскость параллельна оси Оу. C = 0  Ax+By+D = 0 плоскость параллельна оси Oz.

8 слайд Описание слайда:

Особые случаи уравнения: А = В = 0  Сz + D = 0 плоскость параллельна плоскости Оху. А = С = 0  Ву + D = 0 плоскость параллельна плоскости Охz. В = C= 0  Ах+D = 0 плоскость параллельна плоскости Оуz.

9 слайд Описание слайда:

Особые случаи уравнения: A = D = 0  By+Cz = 0 плоскость проходит через ось Ox. B = D = 0  Ax + Cz = 0 плоскость параллельна оси Оy. C = D = 0  Ах + By = 0 плоскость параллельна оси Оz.

10 слайд Описание слайда:

совпадают, если существует такое число k, что Две плоскости в пространстве: параллельны, если существует такое число k, что В остальных случаях плоскости пересекаются.

11 слайд Описание слайда:

Алгоритм составления уравнения плоскости, проходящей через точку перпендикулярно данному вектору Итак, пусть  произвольная плоскость в пространстве. Всякий перпендикулярный ей ненулевой вектор называется вектором нормали к этой плоскости.  n1 n2

12 слайд Описание слайда:

Если известна какая-нибудь точка плоскости M0 и какой-нибудь вектор нормали к ней, то через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору. Общее уравнение плоскости будет иметь вид: Алгоритм составления уравнения плоскости, проходящей через точку перпендикулярно данному вектору M0 A(x-x0)+B(y-y0)+C(z-z0)=0 n (A;B;C)

13 слайд Описание слайда:

Чтобы получить уравнение плоскости, имеющее приведённый вид, возьмём на плоскости произвольную точку M(x;y;z).

Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис), а для этого, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е. Вектор задан по условию.

Координаты вектора найдём по формуле : Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме: A(x-x0)+B(y-y0)+C(z-z0)=0

14 слайд Описание слайда:

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору . Используем формулу A(x-x0)+B(y-y0)+C(z-z0)=0 Решение: Ответ: 5x + y — 4z — 3=0

15 слайд Описание слайда:

Уравнение плоскости, проходящей через три точки После раскрытия определителя это уравнение становится уравнением общего вида. Пусть даны три различные точки, не лежащие на одной прямой. Используя выражение смешанного произведения в координатах, получим уравнение плоскости:

16 слайд Описание слайда:

Пример 2. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой: ; и . Решение: Ответ: -4y + 2z — 2=0

17 слайд Описание слайда:

При равенстве нулю свободного коэффициента D уравнения общего уравнения плоскости уравнение определяет Плоскость, параллельную координатной плоскости Oxy  Плоскость, проходящую через начало координат  Полуплоскость  Линию пересечения плоскостей ПРОВЕРИМ, ЧТО МЫ ЗАПОМНИЛИ….

18 слайд Описание слайда:

Вектор нормали это… Всякий ненулевой вектор Всякий перпендикулярный ненулевой вектор Всякий перпендикулярный плоскости ненулевой вектор Всякий перпендикулярный плоскости вектор

19 слайд Описание слайда:

Общее уравнение плоскости это… Ax+By+Cz=0 Ax+By+Cz=D Ax+By+Cz+D=0 A(x-x0)+B(y-y0)+C(z-z0)=0

20 слайд Описание слайда:

Домашнее задание рассмотреть другие способы нахождения уравнения плоскости; Решить задачу: В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 сторона основания равна 4, и диагональ боковой грани равна 5. Написать уравнение плоскостей А1В1E и плоскости основания призмы.

21 слайд Описание слайда:

Используемые ресурсы: ПЛОСКОСТИ http://kramshifer.Ub.Ua/ru/board/view/38313/ ГЛАДЬ РЕКИ http://www.Raschetrasstoyanie.Com/%D0%A2%D0%BE%D0%BB%D1%81%D1%82%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%9B%D0%B8%D1%81%D0%BA%D0%B8/%D1%84%D0%BE%D1%82%D0%BE ПЛОСКИЕ КАМНИ http://aqueouspic.Ru/smotret-komedii-romanticheskie-onlajn.Html ШАХМАТНАЯ ДОСКА http://www.1chess.Ru/index.Php?Show_aux_page=45 СМАЙЛИКИ http://www.baby.ru/blogs/post/314439509-43854232/

22 слайд Описание слайда:

Плоскость Oхy Z Y X O

23 слайд Описание слайда:

Плоскость Oхz Z Y X O

24 слайд Описание слайда:

Плоскость Oyz Z Y X O

25 слайд Описание слайда:

Плоскость параллельная плоскости Охy Z Y X O

26 слайд Описание слайда:

Плоскость параллельная плоскости Охz Z Y X O

27 слайд Описание слайда:

Плоскость параллельная плоскости Оyz Z Y X O

28 слайд Описание слайда:

Плоскость параллельная Оси ох Z Y X O

29 слайд Описание слайда:

СПАСИБО ЗА ВНИМАНИЕ

30 слайд
31 слайд

Скрыть

Важно! Узнайте, чем закончилась проверка учебного центра «Инфоурок»?

Общая информация

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Источник: https://infourok.ru/prezentaciya-po-matematike-na-temu-uravnenie-ploskosti-1753323.html

Уравнение плоскости по трем точкам

Уравнение плоскости, формулы и примеры Сайт репетитора по математике Фельдман Инны Владимировны. Профессиональные услуги репетитора по математике в Москве. Подготовка к ГИА и ЕГЭ, помощь отстающим. Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры Уравнение плоскости, формулы и примеры 2012-03-18

Главная » СТАТЬИ » 14 Задание (2016) (C2) » Уравнение плоскости по трем точкам

Во многих стереометрических задачах, связанных с нахождением расстояния от точки до плоскости или расстояния между скрещивающимися прямыми, или угла между плоскостями, требуется найти уравнение плоскости. В этой статье я расскажу, как найти уравнение плоскости, если известны координаты трех точек, через которые она проходит.

Уравнение плоскости имеет вид: Уравнение плоскости, формулы и примеры, где , , и  — числовые коэффициенты.

Уравнение плоскости, формулы и примеры

Так как точки принадлежат плоскости, то при подстановке их координат в уравнение плоскости, мы получим верные равенства.

Так как у нас три точки, мы должны получить систему из трех уравнений с четырьмя неизвестными. Примем коэффициент  равным 1. Для этого разделим уравнение плоскости на  .  Получим:

Мы можем переписать  это уравнение в виде: 

Внимание! Если плоскость проходит через начало координат, то принимаем d=0.

  • Чтобы найти коэффициенты А, В и С, подставим координаты точек , и   в уравнение плоскости .
  • Получим систему уравнений:
  • Решив ее, мы найдем значения коэффициентов А, В и С.
  • Решим задачу.

В правильной четырехугольной призме  со стороной основания 12 и высотой 21 на ребре  взята точка  так, что  равно 8. на ребре  взята точка  так, что  равно 8. Написать уравнение плоскости :

  1. Поскольку для нахождения уравнения плоскости нам понадобятся координаты точек, я сразу помещаю призму в систему координат:
  2. Запишем координаты точек:
  3. Подставим их в систему уравнений:
  4. Отсюда:
  5. Подставим найденные коэффициенты в уравнение плоскости:
  6. Чтобы избавиться от дробных коэффициентов, умножим обе части уравнения плоскости на . Получим:
  7. Ответ: уравнение плоскости   

И.В. Фельдман, репетитор по математике.

Источник: https://ege-ok.ru/2012/03/18/uravnenie-ploskosti

Общее уравнение плоскости : описание, примеры, решение задач, найти множество точек координатной

В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.

Общее уравнение плоскости: основные сведения

Перед началом разбора темы вспомним, что такое уравнение плоскости в прямоугольной системе координат в трёхмерном пространстве.

Пусть нам дана прямоугольная система координат Oxyz в трехмерном пространстве, уравнением плоскости в заданной системе координат будет такое уравнение с тремя неизвестными x, y, и z, которому отвечали бы координаты всех точек этой плоскости и не отвечали бы координаты никаких прочих точек.

Иначе говоря, подставив в уравнение плоскости координаты некоторой точки этой плоскости, получаем тождество. Если же в уравнение подставить координаты какой-то другой точки, не принадлежащей заданной плоскости, равенство станет неверным.

Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.

Теорема 1

Любую плоскость, заданную в прямоугольной системе координат Oxyz трехмерного пространства, можно определить уравнением Ax + By + Cz + D = 0. В свою очередь, любое уравнение Ax + By + Cz + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A, B, C, D – некоторые действительные числа, и числа A, B, C не равны одновременно нулю.

Доказательство 

Теорема состоит из двух частей. Разберем доказательство каждой из них.

  1. Первая часть теоремы гласит, что любую заданную плоскость возможно описать уравнением вида Ax + By + Cz + D = 0. Допустим, задана некоторая плоскость и точка M0(x0, y0, z0), через которую эта плоскость проходит. Нормальным вектором этой плоскости является n→= (A, B, C). Приведем доказательство, что указанную плоскость в прямоугольной системе координат Oxyz задает уравнение Ax + By + Cz + D = 0.

Возьмем произвольную точку заданной плоскости M(x, y, z).В таком случае векторы n→= (A, B, C) и M0M→=(x-x0, y-y0, z-z0) будут перпендикулярны друг другу, а значит их скалярное произведение равно нулю:

n→, M0M→=Ax-x0+B(y-y0)+C(z-z0)=Ax+By+Cz-(Ax0+By0+Cz0)

Примем D=-(Ax0+By0+Cz0) , тогда уравнение преобразуется в следующий вид: Ax + By + Cz + D = 0. Оно и будет задавать исходную плоскость. Первая часть теоремы доказана.

  1. Во второй части теоремы утверждается, что любое уравнение вида Ax + By + Cz + D = 0 задает некоторую плоскость в прямоугольной системе координат Oxyz трехмерного пространства. Докажем это.

В теореме также указано, что действительные числа А, B, C одновременно не являются равными нулю. Тогда существует некоторая точка M0(x0, y0, z0), координаты которой отвечают уравнению Ax + By + Cz + D = 0, т.е. верным будет равенство Ax0 + By0 + Cz0 + D = 0. Отнимем левую и правую части этого равенства от левой и правой частей уравнения Ax + By + Cz + D = 0. Получим уравнение вида

A(x-x0) + B(y-y0) + C(z-z0) + D = 0, и оно эквивалентно уравнению Ax + By + Cz + D = 0. Докажем, что уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 задает некоторую плоскость.

Уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 являет собой условие, необходимое и достаточное для перпендикулярности векторов n→=(A, B, C) и M0M→=x-x0, y-y0, z-z0.

Опираясь на утверждение, указанное перед теоремой, возможно утверждать, что при справедливом равенстве A(x-x0) + B(y-y0) + C(z-z0) + D = 0 множество точек M(x, y, z) задает плоскость, у которой нормальный вектор n→=(A, B, C). При этом плоскость проходит через точку M(x0, y0, z0).

Иначе говоря, уравнение A(x-x0) + B(y-y0) + C(z-z0) + D = 0 задает в прямоугольной системе координат Oxyz трехмерного пространства некоторую плоскость. Таким, образом, эквивалентное этому уравнению уравнение Ax + By + Cz + D = 0 также определяет эту плоскость. Теорема доказана полностью.

Уравнение плоскости, формулы и примеры

Уравнение вида Ax + By + Cz + D = 0 называют общим уравнением плоскости в прямоугольной системе координат Oxyz трехмерного пространства.

Допустим, задано некоторое общее уравнение плоскости λ·Ax+λ·By+λ·Cz+λ·D=0, где λ – некое действительное число, не равное нулю.

Это уравнение также задает в прямоугольной системе координат некоторую плоскость, совпадающую с плоскостью, определяемую уравнением Ax+By+Cz+D=0, поскольку описывает то же самое множество точек трехмерного пространства.

Например, уравнения x-2·y+3·z-7=0 и -2·x+4·y-23·z+14=0 задают одну и ту же плоскость, поскольку им обоим отвечают координаты одних и тех же точек трехмерного пространства. 

Раскроем чуть шире смысл теорем.

В пределах заданной системы координат плоскость и общее уравнение, ее определяющее, неразрывно связаны: каждой плоскости отвечает общее уравнение плоскости вида Ax+By+Cz+D=0( при конкретных значениях чисел A, B, C, D). В свою очередь, этому уравнению отвечает заданная плоскость в заданной прямоугольной системе координат.

Укажем пример как иллюстрацию этих утверждений.

Ниже приведен чертеж, на котором изображена плоскость в фиксированной прямоугольной системе координат трехмерного пространства.

Заданной плоскости отвечает общее уравнение вида 4x + 5y – 5z + 20 = 0, и ему соответствуют координаты любой точки этой плоскости.

В свою очередь, уравнение 4x + 5y – 5z + 20 = 0 описывает в заданной системе координат множество точек, которые составляют изображенную плоскость.

Уравнение плоскости, формулы и примеры

Общее уравнение плоскости, проходящей через точку

Повторимся: точка M0(x0, y0, z0) лежит на плоскости, заданной в прямоугольной системе координат трехмерного пространства уравнением Ax+By+Cz+D=0 в том случае, когда подставив координаты точки M0(x0, y0, z0) в уравнение Ax+By+Cz+D=0, мы получим тождество.

Пример 1

 Заданы точки M0(1, -1, -3) и N0(0, 2, -8) и плоскость, определяемая уравнением 2x+3y-z-2=0. Необходимо проверить, принадлежат ли заданные точки заданной плоскости.

  • Решение 
  • Подставим координаты точки М0 в исходной уравнение плоскости:
  • 2·1+3·(-1)-(-3)-2=0⇔0=0
  • Мы видим, что получено верное равенство, значит точка M0(1, -1, -3) принадлежит заданной плоскости.
  •  Аналогично проверим точку N0. Подставим ее координаты в исходное уравнение:
  • 2·0+3·2-(-8)-2=0⇔12=0

Равенство неверно. Таким, образом, точка N0(0, 2, -8) не принадлежит заданной плоскости.

Ответ: точка М0 принадлежит заданной плоскости; точка N0 – не принадлежит.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n→=(A, B, C) — нормальный вектор для плоскости, определяемой уравнением  Ax+By+Cz+D=0. Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

Пример 2

В прямоугольной системе координат задана плоскость 2x+3y-z+5=0. Необходимо записать координаты всех нормальных векторов заданной плоскости.

Решение

Мы знаем, что заданные общим уравнением коэффициенты при переменных x, y, z служат координатами нормального вектора заданной плоскости. Тогда, нормальный вектор n→ исходной плоскости имеет координаты 2, 3, -1 . В свою очередь, множество нормальных векторов запишем так:

λ·n→=λ·2, λ·3, -λ, λ∈R, λ≠0

Ответ:  λ·2, λ·3, -λ, λ∈R, λ≠0

Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.

Очевидным фактом является то, что нормальный вектор n→=(A, B, C)является нормальным вектором бесконечного множества параллельных плоскостей. Поэтому для обозначения конкретной плоскости введем дополнительное условие: зададим некоторую точку M0(x0, y0, z0), принадлежащую плоскости. Так, задавая в условии нормальный вектор и некоторую точку плоскости, мы ее зафиксировали.

Общее уравнение плоскости с нормальным вектором  n→=(A, B, C) будет выглядеть так:  Ax+By+Cz+D=0. По условию задачи точка M0(x0, y0, z0) принадлежит заданной плоскости, т.е. ее координаты отвечают уравнению плоскости, а значит верно равенство:Ax0+By0+Cz0+D=0

Вычитая соответственно правые и левые части исходного уравнения и уравнения Ax0+By0+Cz0+D=0, получим уравнение вида A(x-x0)+B(y-y0)+C(z-z0)=0. Оно и будет уравнением плоскости, проходящей через точку M0(x0, y0, z0) и имеющей нормальный вектор n→=(A, B, C).

  1. Возможно получить это уравнение другим способом.
  2. Очевидным фактом является то, что все точки М (x, y, z) трехмерного пространства задают данную плоскость тогда и только тогда, когда векторы n→=(A, B, C) и M0M→=(x-x0, y-y0, z-z0) перпендикулярны или, иначе говоря, когда скалярное произведение этих векторов равно нулю:
  3. n→, M0M→=A(x-x0)+B(y-y0)+C(z-z0)=0

Пример 3

Задана точка М0(-1, 2, -3), через которую в прямоугольной системе координат проходит плоскость, а также задан нормальный вектор этой плоскости n→=(3, 7, -5). Необходимо записать уравнение заданной плоскости.

Решение

Рассмотрим два способа решения.

  1. Исходные условия позволяют получить следующие данные:

x0=-1, y0=2, z0=-3, A=3, B=7, C=-5

Подставим их в общее уравнение плоскости, проходящей через точку, т.е. в A(x-x0)+B(y-y0)+C(z-z0)=0 

И получим:

3(x-(-1))+7(y-2)-5(z-(-3))=0⇔3x+7y-5z-26=0

  1. Допустим, М (x, y, z) – некоторая точки заданной плоскости. Определим координаты вектора M0M→ по координатам точек начала и конца:
  • M0M→=(x-x0, y-y0, z-z0)=(x+1, y-2, z+3)
  • Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:
  • n→, M0M→=0⇔3(x+1)+7(y-2)-5(z+3)=0⇔⇔3x+7y-5z-26=0
  • Ответ: 3x+7y-5z-26=0

Неполное общее уравнение плоскости

Выше мы говорили о том, что, когда все числа А, B, C, D отличны от нуля, общее уравнение плоскости Ax+By+Cz+D=0 называютполным. В ином случае общее уравнение плоскости является неполным.

Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.

  1. В случае, когда D = 0, мы получаем общее неполное уравнение плоскости: Ax+By+Cz+D=0⇔Ax+By+Cz=0

Такая плоскость в прямоугольной системе координат проходит через начало координат. В самом деле, если подставим в полученное неполное уравнение плоскости координаты точки О (0, 0, 0), то придем к тождеству:

A·0+B·0+C·0=0⇔0≡0

Уравнение плоскости, формулы и примеры

  1. Если А = 0, В ≠ 0, С ≠ 0, или А ≠ 0, В = 0, С ≠0, или А ≠ 0, В ≠ 0, С = 0, то общие уравнения плоскостей имеют вид соответственно: By+Cz+D=0, или Ax+Cz+D=0, или Ax+By+D=0. Такие плоскости параллельны координатным осям Оx, Oy, Oz соответственно. Когда D=0, плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей By+Cz+D=0, Ax+Cz+D=0 и Ax+By+D=0 задают плоскости, которые перпендикулярны плоскостям Oyz, Oxz, Ozy соответственно.

Уравнение плоскости, формулы и примеры

  1. При А=0, В=0, С≠0, или А=0, В≠0, С=0, или А≠0, В=0, С=0 получим общие неполные уравнения плоскостей: Cz+D=0 ⇔z+DC=0⇔z=-DC⇔z=λ, λ∈R или By+D=0⇔y+DB=0⇔y=-DB⇔y=λ, λ∈R или Ax+D=0⇔x+DA=0⇔x=-DA⇔x=λ, λ∈R соответственно.

Эти уравнения определяют плоскости, которые параллельны координатным плоскостям Oxy, Oxz, Oyz соответственно и проходят через точки 0, 0, -DC, 0, -DB, 0 и -DA, 0, 0 соответственно. При D=0 уравнения самих координатных плоскостей Oxy, Oxz, Oyz выглядят так: z=0, y=0, x=0

соответственно.

Уравнение плоскости, формулы и примеры

Пример 4

Задана плоскость, параллельная координатной плоскости Oyz и проходящая через точку М0(7, -2, 3). Необходимо составить общее уравнение заданной плоскости.

Р​​ешение

У​​​​​словием задачи определено, что заданная плоскость параллельна координатной плоскости Oyz, а, следовательно, может быть задана общим неполным уравнением плоскости Ax+D=0, A≠0⇔x+DA=0.

Поскольку точка M0(7, -2, 3) лежит на плоскости по условию задачи, то очевидно, что координаты этой точки должны отвечать уравнению плоскости  x+DA=0, иначе говоря, должно быть верным равенство  7+DA=0 .

Преобразуем: DA=-7, тогда требуемое уравнение  имеет вид: x-7=0.

Задачу возможно решить еще одним способом.

Вновь обратим внимание на заданную условием задачи параллельность данной плоскости координатной плоскости Oyz.

Из этого условия понятно, что возможно в качестве нормального вектора заданной плоскости использовать нормальный вектор плоскости Oyz: i→=(1, 0, 0).

Так, нам известны и точка, принадлежащая плоскости (задана условием задачи) и ее нормальный вектор. Таким образом, становится возможно записать общее уравнение заданной плоскости:                              

A(x-x0)+B(y-y0)+C(z-z0)=0⇔⇔1·(x-7)+0·(y+2)+0·(z-3)=0⇔⇔x-7=0

Ответ: x-7=0

Пример 5

Задана плоскость, перпендикулярная плоскости Oxy и проходящая через начало координат и точку М0(-3, 1, 2).

Решение 

Плоскость, которая перпендикулярна координатной плоскости Oxy определяется общим неполным уравнением плоскости Ax+By+D=0 (А≠0, В≠0). Условием задачи дано, что плоскость проходит через начало координат, тогда D=0 и уравнение плоскости принимает вид Ax+By=0⇔x+BAy=0.

Найдем значение BA. В исходных данных фигурирует точка М0(-3, 1, 2), координаты которой должны отвечать уравнению плоскости. Подставим координаты, получим верное равенство: -3+BA·1=0, откуда определяем BA=3.

Так, мы имеем все данные, чтобы записать требуемое общее уравнение плоскости: x+3y=0.

Ответ: x+3y=0.

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-ploskosti/

Решение типовых задач по теме «Плоскость». Уравнение плоскости. Часть 1

Уравнение плоскости, формулы и примеры

Решение типовых задач по теме «Плоскость». Составить уравнение плоскости
Задача №1. Даны точки и . Написать уравнение плоскости, проходящей через точку и перпендикулярно к вектору .
Решение. Уравнение связки плоскостей, проходящей через точку , будет

Уравнение плоскости, формулы и примеры

Нормальный вектор

Уравнение плоскости, формулы и примеры

Подставляем проекции 2, 6 и 5 вектора на место A, В и С в уравнение связки, будем иметь:

  • Уравнение плоскости, формулы и примеры

или
Это и есть уравнение искомой плоскости (рис.1).

Ответ:
Задача №2. Написать уравнение плоскости, проходящей через точки , и .
Решения задач №1 и №2 подробно изложены в следующем видео

Задача №3. Написать уравнение плоскости, проходящей через точки и и перпендикулярной к плоскости 2x+4y+6z-7=0. Решение. Пусть М(х,у,z) произвольная точка искомой плоскости. Тогда векторы и принадлежат этой плоскости. Векторы и компланарны с нормальным вектором данной плоскости 2х+4y+бz-7=0.
Поэтому смешанное произведение этих трех векторов равно нулю:
или

Источник: https://math-helper.ru/vyisshaya-matematika/reshenie-tipovyih-zadach-po-teme-ploskost-uravnenie-ploskosti

Как составить уравнение плоскости

Плоскость является одним из основных понятий, связывающих планиметрию и стереометрию (разделы геометрии). Эта фигура также часто встречается в задачах по аналитической геометрии. Чтобы составить уравнение плоскости, достаточно иметь координаты трех ее точек.

Для второго основного способа составления уравнения плоскости необходимо указать координаты одной точки и направление нормального вектора. Уравнение плоскости, формулы и примеры Если известны координаты трех точек, через которые проходит плоскость, то запишите уравнение плоскости в виде определителя третьего порядка. Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Тогда уравнение плоскости, проходящей через эти три точки, выглядит следующим образом:│ x-x1 y-y1 z-z1 ││x2-x1 y2-y1 z2-z1│ = 0

│x3-x1 y3-y1 z3-z1│

Пример: составить уравнение плоскости, проходящей через три точки с координатами: (-1; 4; -1), (-13; 2; -10), (6; 0; 12). Решение: подставляя координаты точек в вышеприведенную формулу, получим:│x+1 y-4 z+1 ││-12 -2 -9 │ =0│ 7 -4 13 │В принципе, это и есть уравнение искомой плоскости. Однако если разложить определитель по первой строке, то получится более простое выражение:-62*(х+1) + 93*(у-4) + 62*(z+1) = 0.

Разделив обе части уравнения на 31 и приведя подобные, получим:

-2х+3у+2z-12=0.Ответ: уравнение плоскости, проходящей через точки с координатами(-1; 4; -1), (-13; 2; -10) и (6; 0; 12)

-2х+3у+2z-12=0.

Если уравнение плоскости, проходящей через три точки, требуется составить без использования понятия «определитель» (младшие классы, тема – системы линейных уравнений), то воспользуйтесь следующим рассуждением.

Уравнение плоскости в общем виде имеет вид Ах+ВуСz+D=0, причем одной плоскости соответствует множество уравнений с пропорциональными коэффициентами. Для простоты вычислений параметр D обычно принимают равным 1, если плоскость не проходит через начало координат (для плоскости, проходящей через начало координат, D=0).

Так как координаты точек, принадлежащих плоскости, должны удовлетворять вышеприведенному уравнению, то в итоге получается система из трех линейных уравнений:-A+4B-C+1=0-13A+2B-10C+1=06A+12C+1=0,решив которую и избавившись от дробей, получим вышеприведенное уравнение

(-2х+3у+2z-12=0).

Если заданы координаты одной точки (х0, у0, z0) и координаты вектора нормали (А, В, С), то чтобы составить уравнение плоскости, просто запишите уравнение:А(х-х0)+В(у-у0)+С(z-z0)=0.

После приведения подобных это и будет уравнением плоскости.

Если требуется решить задачу составления уравнения плоскости, проходящей через три точки, в общем виде, то разложите уравнение плоскости, записанной через определитель, по первой строке:(x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.

Хотя это выражение и более громоздкое, зато в нем не используется понятие определителя и оно более удобно для составления программ.

  • составить уравнение плоскости проходящей
  • Войти на сайт
  • или

Источник: https://www.kakprosto.ru/kak-92763-kak-sostavit-uravnenie-ploskosti

9.7. Уравнение плоскости

Рассмотрим произвольную точку в пространстве и некоторый вектор Очевидно, что геометрическим местом точек таких, что вектор перпендикулярен вектору будет плоскость, проходящая через точку M перпендикулярно прямой, для которой вектор является направляющим. Нашей задачей будет установить уравнение плоскости, то есть найти соотношение, которому удовлетворяют координаты точки A.

  • Запишем условие перпендикулярности векторов с использованием скалярного произведения:
  • Запишем последнее равенство в координатах:
  • Поскольку все наши выкладки были равносильными, то это и есть уравнение плоскости, проходящей через заданную точку. Преобразуем его к виду
  • Обозначая получим
  • Это и есть так называемое общее уравнение плоскости.

Определение 9.19. 

Вектор называется нормальным вектором (или просто нормалью) для плоскости, заданной общим уравнением (1).

Нормальный вектор к плоскости перпендикулярен ей, что следует из самого вывода уравнения плоскости.

Рассмотрим плоскость 3x + 2y + z – 6 = 0. Пусть A – точка пересечения этой плоскости с осью Ox, то есть A(2; 0; 0). Точка B(0; 3; 0) – это точка пересечения данной плоскости с осью Oy, точка C(0; 0; 6) – с осью Oz (чертеж 9.7.1). Уравнение называется уравнением плоскости в отрезках на осях.

Эта плоскость пересекает оси Ox, Oy, Oz соответственно в точках A(a; 0; 0), B(0; b; 0), C(0; 0; c).

Плоскость, изображенная на чертеже 9.7.1, имеет такое уравнение в отрезках на осях:

High end escorts Paris
High end escorts Paris
cipriani-models.com

Источник: https://mathematics.ru/courses/stereometry/content/chapter9/section/paragraph7/theory.html

Содержание:

Система координат в пространстве

Декартова система координат в пространстве

Вы познакомились с декартовой системой координат на плоскости в предыдущих классах. Систему координат в пространстве введём аналогично тому, как это было сделано на плоскости. Рассмотрим три взаимно перпендикулярных оси Ох, Оу и Оz, пересекающихся в точке О, являющейся началом координат. Через каждую пару этих прямых проведём плоскости Оху, 0xz и Оуz (рис. 1). Таким образом вводится система координат в пространстве, при этом

точку О — называют началом координат, прямые Ох, Оу и Оzосями координат, Охось абсцисс, Оу ось ординат и Оzось аппликат, плоскости Оху, Оуz и Охzкоординатными плоскостями.

Система координат в пространстве - определение с примерами решения

Координатные плоскости делят пространство на 8 октант (получетвертей) (рис. 1).

Пусть в пространстве задана произвольная точка А. Через эту точку проведём плоскости, перпендикулярные плоскостям Охz, Оуz и Охz (рис. 2). Одна из этих плоскостей пересечёт ось Ох в точке Ах.

Координату Ах на оси Ох называют координатой х или абсциссой точки А.

Аналогично определяют у — координату (ординату) и z- координату (аппликату) точки А.

Координаты точки А записывают в виде А (х; у; z) или короче (х; у; z). Точки, изображённые на рисунке 3, имеют следующие координаты: А (0; 5; 0), B (4; 0; 0), М (0; 5; 4), К (2; 3; 4), Р (-2; 3; -4). Система координат в пространстве - определение с примерами решения

Пример:

Пусть в пространстве в декартовой системе координат

задана точка А (2; 3; 4). Где она расположена?

Решение:

От начала координат в положительном направлении осей Ох и Оу отложим отрезки ОАх = 2 и ОАу = 3 (рис. 4).

Через точку Ах проведём прямую, лежащую в плоскости Оху и параллельную оси Оу. А через точку Аy проведём прямую, лежащую в плоскости Оху и параллельную оси Ох. Точку пересечения этих прямых обозначим A1 . Через точку A1 проведём прямую, перпендикулярную плоскости Оху и на ней в положительном направлении Oz отложим отрезок АА1 = 4. Тогда точка А (2; 3; 4) и будет искомой точкой. Система координат в пространстве - определение с примерами решения

Пользуясь системой координат, созданной для современных программируемых станков и автоматизированных роботов, составляются программы, на основе которых обрабатываются металлы (рис. 5).

Система координат в пространстве - определение с примерами решения

Расстояние между двумя точками

Пусть заданы две точки А (х1; у1; z1) и B (х2; у2; z2).

1.Сначала рассмотрим случай, когда прямая АВ не параллельна оси Оz (рис. 6). Через точки А и В проведём прямые, параллельные оси Оz. И пусть они пересекают плоскость Оху в точках Аz и Вz .

Координаты х и у этих точек соответственно равны координатам х и у точек А, В, а координаты z равны 0.

Теперь через точку В проведём плоскость а, параллельную плоскости Оху. Она пересечёт прямую ААz в некоторой точке С.

По теореме Пифагора: АВ2 = АС2 + СВ2.

Однако Система координат в пространстве - определение с примерами решения

Поэтому Система координат в пространстве - определение с примерами решения

2.Пусть отрезок АВ параллелен оси Оz, тогда Система координат в пространстве - определение с примерами решения и, так как

х1= х2 , у1 = у2 , мы опять приходим к вышеприведённой формуле.

Следовательно, расстояние между двумя точками А и В:

Система координат в пространстве - определение с примерами решения (1)

Примечание. Формула (1) выражает длину диагонали прямоугольного параллелепипеда, измерения которого равны Система координат в пространстве - определение с примерами решения

Уравнение сферы и шара

Известно, что множество всех точек М (х; у; z), расположенных на расстоянии R от данной точки А (а; Ь; с) образуют сферу (рис. 7). Тогда по формуле (1) координаты всех точек, расположенных на сфере радиуса R с центром в точке А (а; b; с), удовлетворяют равенству Система координат в пространстве - определение с примерами решения

Отсюда, ясно, что неравенство для точек шара радиуса R с центром в

точке А (а; b; с) имеет вид: Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Пример:

Найдите периметр треугольника ABC с вершинами в

точках А (9; 3; -5), В (2; 10; -5), С (2; 3; 2).

Решение:

Р=АВ+АС+ВС периметр треугольника ABC. Воспользовавшись формулой Система координат в пространстве - определение с примерами решения расстояния между двумя точками, найдём длины сторон треугольника:

Система координат в пространстве - определение с примерами решения

Следовательно, треугольник ABC равносторонний и его периметр Система координат в пространстве - определение с примерами решения.

Ответ: Система координат в пространстве - определение с примерами решения

Координаты середины отрезка

Пусть А (x1; y1;z1) и В (х2; у2; z2) — произвольные точки, точка С (х; у; z) середина отрезка AB (рис. 8). Система координат в пространстве - определение с примерами решения

Через точки А, В и С проведём прямые, параллельные оси пересекающие плоскость Оху в точках Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения. Тогда по теореме Фалеса точка Сz — середина отрезка АzВz.

Отсюда по формулам нахождения координат середины отрезка на плоскости Система координат в пространстве - определение с примерами решения

Чтобы найти координату z, нужно вместо плоскости Оху рассмотреть плоскость 0xz или Оуz.

Тогда и для z получим формулу, подобную вышеприведённой.

Система координат в пространстве - определение с примерами решения

Аналогично, используя координаты концов A и B отрезка AB, по формулам Система координат в пространстве - определение с примерами решения

находят координаты точки Р(х1;у]; г,), делящей отрезок АВ в отношении X САР: РВ = X).

Задача 3. Докажите, что четырёхугольник МЛШЬ с вершинами М{3; 6; 4), N(0; 2; 4), К(3; 2; 8), 1(6; 6; 8) — параллелограмм (рис. 9).

Доказательство: Для решения задачи используем признак параллелограмма: Четырёхугольник, точка пересечения диагоналей которого делит их пополам, является параллелограммом.

Координаты середины отрезка МК:

Система координат в пространстве - определение с примерами решения

Координаты середины отрезка NL:

Система координат в пространстве - определение с примерами решения

Координаты середин отрезков МК и NL равны. Это говорит о том, что отрезки пeрeсeкаются и в точке пeрeсeчeния делятся пополам. Следовательно, четырёхугольник MNLK — параллелограмм.Система координат в пространстве - определение с примерами решения

В переписке с известным целителем и математиком Абу Али ибн Сино Абу Райхон Беруни задаёт следующий вопрос: «Почему Аристотель и другие (философы) называют шесть сторон?»

Рассматривая шестисторонний куб, Беруни говорит о фигурах «с другим количеством сторон» и добавляет, что «шарообразные фигуры не имеют сторон.» А Ибн Сино отвечает, что «во всех случаях нужно считать, что сторон шесть, так как у каждой фигуры, независимо от её формы, есть три измерения — длина, глубина и ширина».

Здесь Ибн Сино имеет ввиду три координаты, именуемые условно «шесть сторон».

В произведении «Канон Масъуда» Беруни приводит точное математическое определение шести сторон: «Сторон шесть, так как они ограничивают движение фигур по своим измерениям. Измерений три: длина, ширина и глубина. А их в два раза больше самих измерений.»

В предыдущих книгах автор определяет положение небесных тел с помощью двух координат относительно небесной сферы — эклиптического уравнения. Либо через те же координаты, но относительно небесного экватора или горизонта. Однако при определении взаимного расположения звёзд и небесных светил придётся учитывать и случаи затмений. Вот в таких случаях появляется необходимость в третьей сферической координате. Эта необходимость привела Беруни к отказу от теории небесных координат.

Векторы в пространстве и действия над ними

Векторы в пространстве

Понятие вектора в пространстве вводят также как на плоскости.

Вектором в пространстве называют направленный отрезок. Основные понятия, относящиеся к векторам в пространстве, аналогичны этим понятиям на плоскости: длина (модуль), направление вектора, равенство векторов.

Система координат в пространстве - определение с примерами решения

Координатами вектора с началом в точке А (х1; у1; z1) и концом в точке В (х1; у1; z1) называют числа Система координат в пространстве - определение с примерами решения, (рис. 17).

Приведем без доказательства свойства векторов, аналогичных свойствам на плоскости.

Также как на плоскости, соответствующие координаты равных векторов равны и, обратно, векторы с равными координатами равны.

Hа основании этого вектор можно обозначить как Система координат в пространстве - определение с примерами решения или Система координат в пространстве - определение с примерами решения или кратко Система координат в пространстве - определение с примерами решения (рис. 18).

Вектор можно записать и без координат Система координат в пространстве - определение с примерами решения (или Система координат в пространстве - определение с примерами решения). В этой записи

на первом месте начало вектора, а на втором — конец.

Вектор с координатами, равными нулю, называют нулевым вектором и обозначают Система координат в пространстве - определение с примерами решения или Система координат в пространстве - определение с примерами решения, направление этого вектора не определено.

Если начало вектора расположено в начале координат О, а числа а1,

а2 и а3 — координаты точки А, то есть А (а1; а2; а3), то эти же числа будут

координатами вектора Система координат в пространстве - определение с примерами решения: Система координат в пространстве - определение с примерами решения (а1; а2; а3).

Однако вектор в пространстве Система координат в пространстве - определение с примерами решения с началом в точке К(с1; с2; с3) и концом в точке Система координат в пространстве - определение с примерами решения будет иметь те же координаты: Система координат в пространстве - определение с примерами решения.

Отсюда следует, что вектор можно приложить к любой точке пространства. В геометрии мы рассматриваем такие свободные векторы. Но в физике, обычно вектор связан с некоторой точкой. Например, воздействие силы приложенная к пружине F на рисунке 19 зависит от точки её приложения.

Длинной вектора называют длину направленного отрезка

изображающего его (рис. 17). Длину вектора Система координат в пространстве - определение с примерами решения записывают

такСистема координат в пространстве - определение с примерами решения. Длина вектора Система координат в пространстве - определение с примерами решения, заданного координатами,

вычисляется по формуле Система координат в пространстве - определение с примерами решения .

Пример:

Даны точки А (2; 7;-3),В (1; 0; 3), С (-3;-4; 5) и D (-2; 3; -1). Какие из векторов Система координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения равны между собой?

Решение:

У равных векторов равны соответствующие координаты. Поэтому найдём координаты векторов:

Система координат в пространстве - определение с примерами решения

Следовательно, Система координат в пространстве - определение с примерами решения.

Докажите самостоятельно, что Система координат в пространстве - определение с примерами решения

Действия над векторами в пространстве

Действия над векторами. Сложение векторов, умножение на число и их скалярное произведение определяется также как на плоскости.

Суммой векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения (b1; b2; b3); называют вектор Система координат в пространстве - определение с примерами решения (рис. 20).

Система координат в пространстве - определение с примерами решения

Пусть кран на рисунке 20.b движется вдоль вектора Система координат в пространстве - определение с примерами решения, а груз относительно крана вдоль вектора Система координат в пространстве - определение с примерами решения. В результате груз движется вдоль вектора Система координат в пространстве - определение с примерами решения. Поэтому из рисунка 20.с, на котором изображён сюжeт басни русского писателя И.А.Крылова, ясно, что герои басни не смогут сдвинуть телегу с места.

Свойства суммы векторов

Для любых векторов Система координат в пространстве - определение с примерами решения,Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения имеют место следующие свойства:

a)Система координат в пространстве - определение с примерами решения — переместительный закон сложения векторов;

b)Система координат в пространстве - определение с примерами решения — распределительный закон сложения.

Правило треугольника сложения векторов

Для любых точек А, В и С (рис. 21): Система координат в пространстве - определение с примерами решения

Правило параллелограмма сложения векторов

Если АВСD — параллелограмм (рис. 22), то Система координат в пространстве - определение с примерами решения

Правило многоугольника сложения векторов

Если точки А, В, С, D и Е — вершины многоугольника (рис. 23), тоСистема координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Правило параллелепипеда сложения трёх векторов, не лежащих в одной плоскости. Если АВСDА1В1С1D1 параллелепипед (рис. 24), то

Система координат в пространстве - определение с примерами решения.

Вектор Система координат в пространстве - определение с примерами решенияСистема координат в пространстве - определение с примерами решения​​​​​​= (Система координат в пространстве - определение с примерами решенияa1; Система координат в пространстве - определение с примерами решенияa2; Система координат в пространстве - определение с примерами решенияa3) — называют умножением вектора

Система координат в пространстве - определение с примерами решения (a1; a2; a3) на число Система координат в пространстве - определение с примерами решения (рис. 25). Свойства операции умножения вектора на число.

Для любых векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения и чисел Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения

а)Система координат в пространстве - определение с примерами решения;

b)Система координат в пространстве - определение с примерами решения;

c)Система координат в пространстве - определение с примерами решения и направление вектора Система координат в пространстве - определение с примерами решенияСистема координат в пространстве - определение с примерами решения

совпадает с направлением вектора Система координат в пространстве - определение с примерами решения, если Система координат в пространстве - определение с примерами решения,

противоположно направлению вектора Система координат в пространстве - определение с примерами решения, если Система координат в пространстве - определение с примерами решения. Система координат в пространстве - определение с примерами решения

Коллинеарные и компланарные векторы

Пусть заданы ненулевые векторы Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения. Если векторы

Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения сонаправлены или противоположно направлены,

то их называют коллинеарными векторами (рис. 26).

Свойство 1. Если для векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения имеет место равенство Система координат в пространстве - определение с примерами решения, то они коллинеарны и наоборот.

Если Система координат в пространстве - определение с примерами решения, то векторы Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения сонаправлены Система координат в пространстве - определение с примерами решения, еслиСистема координат в пространстве - определение с примерами решения, то

противоположно направлены Система координат в пространстве - определение с примерами решения.

Свойство 2. Если векторы Система координат в пространстве - определение с примерами решения (a1; a2; a3) и Система координат в пространстве - определение с примерами решения (b1; b2; b3) коллинеарны,

то их соответствующие координаты пропорциональны:

Система координат в пространстве - определение с примерами решения и наоборот.

Пример:

Найдите вектор с началом в точке А (1; 1; 1) и концом в точке В, лежащей в плоскости Оху, коллинеарный вектору Система координат в пространстве - определение с примерами решения( 1; 2; 3).

Решение:

Пусть точка В имеет координаты В (х; у; z). Так как точка В лежит в плоскости Оху, то z=0. Тогда Система координат в пространстве - определение с примерами решения(х — 1 ;у — 1; — 1).

По условию задачи векторы Система координат в пространстве - определение с примерами решения(х — 1 ;у — 1; — 1) и Система координат в пространстве - определение с примерами решения(1, 2, 3) коллинеарны. Следовательно, их координаты пропорциональны.

Тогда получаем следующие пропорции Система координат в пространстве - определение с примерами решения.

Откуда находим Система координат в пространстве - определение с примерами решения, Система координат в пространстве - определение с примерами решения.

Итак,Система координат в пространстве - определение с примерами решения

Векторы, лежащие в одной плоскости или параллельных плоскостях, называют компланарными векторами (рис. 27). Система координат в пространстве - определение с примерами решения

Векторы Система координат в пространстве - определение с примерами решения(1; 0; 0), Система координат в пространстве - определение с примерами решения(0; 1; 0) и Система координат в пространстве - определение с примерами решения(0; 0; 1) называют ортами (рис. 28).

Любой вектор Система координат в пространстве - определение с примерами решения можно единственным образом разложить по ортам, то есть представить в виде Система координат в пространстве - определение с примерами решения(рис. 29).

Система координат в пространстве - определение с примерами решения

Точно также, если заданы три нeкомпланарных вектора Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения, то любой вектор Система координат в пространстве - определение с примерами решения можно единственным образом представить в виде:

Система координат в пространстве - определение с примерами решения.

Здесь Система координат в пространстве - определение с примерами решения некоторые действительные числа. Тогда говорят, что вектор разложен по заданным векторам.

Скалярное произведение векторов

Углом между ненулевыми векторами Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения называют угол между направленными отрезками векторов Система координат в пространстве - определение с примерами решения = Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения=Система координат в пространстве - определение с примерами решения, исходящих из точки О (рис. 30).

Угол между векторами Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения обозначают так Система координат в пространстве - определение с примерами решения.

Система координат в пространстве - определение с примерами решения

Скалярным произведением векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения называют произведение длин этих векторов на косинус угла между ними.

Если один из векторов нулевой, то скалярное произведение этих векторов равно нулю.

Скалярное произведение обозначают Система координат в пространстве - определение с примерами решения или Система координат в пространстве - определение с примерами решения. По определениюСистема координат в пространстве - определение с примерами решения (1)

Из определения следует, что если скалярное произведение векторов Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения равно нулю, то эти векторы перпендикулярны и наоборот.

В физике работа A, выполненная при движении тела на расстоянии Система координат в пространстве - определение с примерами решения, под воздействием силы Система координат в пространстве - определение с примерами решения (рис. 31), равна скалярному произведению силы Система координат в пространстве - определение с примерами решенияна расстояниеСистема координат в пространстве - определение с примерами решения: Система координат в пространстве - определение с примерами решения

Свойство. Если Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения (b1; b2; b3), то (Система координат в пространстве - определение с примерами решенияСистема координат в пространстве - определение с примерами решения) = Система координат в пространстве - определение с примерами решения

Доказательство. Приложим векторы Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения к началу

координат О (рис.32). Тогда Система координат в пространстве - определение с примерами решения= Система координат в пространстве - определение с примерами решения и Система координат в пространстве - определение с примерами решения= (b1; b2; b3).

Если векторы неколлинеарны, то получаем треугольник АВО , для которого справедлива теорема косинусов.

Система координат в пространстве - определение с примерами решения

ТогдаСистема координат в пространстве - определение с примерами решения .

Однако, Система координат в пространстве - определение с примерами решения,Система координат в пространстве - определение с примерами решения

и Система координат в пространстве - определение с примерами решения.

Следовательно,Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения.

Самостоятельно докажите, что и в случае, когда данные векторы коллинеарны Система координат в пространстве - определение с примерами решения, также выполняется

это равенство. Система координат в пространстве - определение с примерами решения

Свойства скалярного произведения векторов

1.Система координат в пространстве - определение с примерами решения — переместительное свойство.

2.Система координат в пространстве - определение с примерами решения — распределительное свойство.

3.Система координат в пространстве - определение с примерами решения — сочетательное свойство.

4.Если векторы а и b являются сонаправленными коллинеарными

векторами, то Система координат в пространстве - определение с примерами решения, так как соs 0° = 1.

5.Если же векторы противоположно направлены, то Система координат в пространстве - определение с примерами решения, так как cos l80° = -1.

6. Система координат в пространстве - определение с примерами решения.

7. Если векторСистема координат в пространстве - определение с примерами решения перпендикулярен вектору Система координат в пространстве - определение с примерами решения, то Система координат в пространстве - определение с примерами решения. Следствия: а) Длина вектора Система координат в пространстве - определение с примерами решения ; (1) b) косинус угла между векторами

Система координат в пространстве - определение с примерами решения : Система координат в пространстве - определение с примерами решения; (2)

с) условие перпендикулярности векторов Система координат в пространстве - определение с примерами решения и

Система координат в пространстве - определение с примерами решения.

Система координат в пространстве - определение с примерами решения (3)

Пример:

Система координат в пространстве - определение с примерами решения — заданные точки. Найдите косинус угла между векторами Система координат в пространстве - определение с примерами решения.

Решение:

Найдём длины векторов Система координат в пространстве - определение с примерами решения:

Система координат в пространстве - определение с примерами решения,

Система координат в пространстве - определение с примерами решения.

Система координат в пространстве - определение с примерами решения ,

Система координат в пространстве - определение с примерами решения .

Следовательно,

Система координат в пространстве - определение с примерами решения

Пример:

Найдите угол между векторами Система координат в пространстве - определение с примерами решения.

Решение:

Система координат в пространстве - определение с примерами решения Итак, Система координат в пространстве - определение с примерами решения

Пример:

Найдите Система координат в пространстве - определение с примерами решения, если Система координат в пространстве - определение с примерами решения, Система координат в пространстве - определение с примерами решения и угол между векторамиСистема координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения равен Система координат в пространстве - определение с примерами решения .

Решение:

Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Пример:

Найдите координаты и длины векторов 1)Система координат в пространстве - определение с примерами решения; 2)Система координат в пространстве - определение с примерами решения, если Система координат в пространстве - определение с примерами решения.

Решение:

Подставим в выражения искомых векторов разложения векторов Система координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения по координатам:

1)Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения. Следовательно,Система координат в пространстве - определение с примерами решения.

ТогдаСистема координат в пространстве - определение с примерами решения.

2)Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения Система координат в пространстве - определение с примерами решения.

Следовательно, Система координат в пространстве - определение с примерами решения.

Тогда Система координат в пространстве - определение с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Найдите произведениеСистема координат в пространстве - определение с примерами решения, если угол между векторами Система координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения равен 30° и Система координат в пространстве - определение с примерами решения , Система координат в пространстве - определение с примерами решения.

Решение:

Сначала найдём поизведение векторов Система координат в пространстве - определение с примерами решенияи Система координат в пространстве - определение с примерами решения :

Система координат в пространстве - определение с примерами решения.

Затем перемножим заданные выражения как многочлены

и, пользуясь распределительным свойством умножения

вектора на число, получим:

Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения.

Учитывая, что Система координат в пространстве - определение с примерами решения,

Система координат в пространстве - определение с примерами решения найдём искомое произведение

Система координат в пространстве - определение с примерами решения

Преобразование и подобие в пространстве

Геометрические преобразования в пространстве

Если каждую точку заданной в пространстве фигуры F изменить одним и тем же способом, то получим фигуру F1. Если при этом преобразовании различные точки первой фигуры переходят в различные точки второй, то говорят о преобразовании геометрической фигуры.

Если рассматривать все пространства как геометрическую фигуру, то также можно говорить о преобразовании геометрической фигуры.

Понятие геометрического преобразование в пространстве вводят также как на плоскости. Следовательно, свойства некоторых рассматриваeмых ниже видов преобразований и их доказательства также подобны соответствующим им на плоскости. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.

Движение и параллельный перенос

Преобразование фигур, при котором сохраняются расстояния между точками, называют движением. Можно привести следующие свойства движения. При движении прямая переходит в прямую, луч — в луч, отрезок — в равный ему отрезок, угол — в равный ему угол, треугольник — в равный ему треугольник, плоскость — в плоскость, тетраэдр — в равный ему тетраэдр.

В пространстве фигуры, которые можно перевести одну в другую при некотором движении называют равными фигурами.

Простейшим примером движения является параллельный перенос.

Система координат в пространстве - определение с примерами решения

Пусть в пространстве даны векторСистема координат в пространстве - определение с примерами решения и произвольная точка Х

(рис. 44). Говорят, что точка Х перешла в точку X1 параллельным

переносом на вектор Система координат в пространстве - определение с примерами решения, если выполняется условие Система координат в пространстве - определение с примерами решения. Если каждую точку фигуры F сдвинуть на вектор Система координат в пространстве - определение с примерами решения при помощи параллельного переноса (рис. 45), то получим фигуру F1. Тогда говорят, что фигура F получена параллельным переносом фигуры F1 . При параллельном переносе каждая точка фигуры F сдвигается в одном и том же направлении на одно и то же расстояние.

Каждая точка подъёмного крана, изображённого на рисунке 46, параллельно перенесена на 40 м относительно начального положения.

Ясно, что параллельный перенос является движением. Поэтому прямая переходит в прямую, луч — в луч, плоскость — в плоскость,

и т. д.

Пусть точка Система координат в пространстве - определение с примерами решения фигуры F перешла в точку Система координат в пространстве - определение с примерами решения

фигуры F1 при помощи параллельного переноса

на вектор Система координат в пространстве - определение с примерами решения.

Тогда по определению получим:

Система координат в пространстве - определение с примерами решения или

Система координат в пространстве - определение с примерами решения.

Эти равенства называют формулами параллельного переноса.

Пример:

В какую точку перейдёт точка Р (-2; 4; 6) при параллельном переносе на векторСистема координат в пространстве - определение с примерами решения = (3; 2; 5)?

Решение:

По вышеприведённым формулам параллельного переноса: Система координат в пространстве - определение с примерами решения.

Ответ: Система координат в пространстве - определение с примерами решения.

Центральная симметрия в пространстве

Если в пространстве Система координат в пространстве - определение с примерами решения, то есть точка О — середина отрезка АА1 то точки А и А1 называют симметричными относительно точки О.

Если в пространстве каждая точка фигуры F переходит в точку, симметричную относительно точки О (рис. 47), то такое преобразование называют симметрией относительно точки О. На рисунках 48, 49 изображёны фигуры симметричные относительно точки О. Симметрия относительно точки является движением.

Если при симметрии относительно точки О фигура F переходит в себя, то её называют центрально симметричной фигурой.

Система координат в пространстве - определение с примерами решения

Например, диагонали параллелепипеда (рис. 50) относительно их точки пересечения О являются центрально симметричными фигурами.

Система координат в пространстве - определение с примерами решения

Пример:

В какую точку перейдет точка A = (1; 2; 3) при симметрии относительно точки О (2; 4; 6)?

Решение:

Пусть А1 = (х; у; z) — искомая точка. По определению точка

О — середина отрезка АА1. Следовательно,

Система координат в пространстве - определение с примерами решения

Из этих уравнений получаем:

Система координат в пространстве - определение с примерами решения.

Ответ: Система координат в пространстве - определение с примерами решения

Симметрия относительно плоскости

Точки А и А1 называют симметричными относительно плоскости а,

если плоскость перпендикулярна отрезку и делит его пополам (рис. 51). Фигуры F1, и F2 на рисунке 52 симметричны относительно

плоскости а. Очевидно, что наш силуэт и его отражение симметричны относительно плоскости зеркала (рис. 53).

Симметрия относительно плоскости а является движением. Система координат в пространстве - определение с примерами решения

Поэтому при симметрии относительно плоскости а отрезок переходит в равный ему отрезок, прямая — в прямую, плоскость — в плоскость.

Если при симмeтрии относительно плоскости фигура F переходит в себя, то её называют фигурой симметричной относительно плоскости.

Например, изображённый на рисунке 54 куб, есть фигура, симметричная относительно плоскости а, проходящей через его диагонали АА1 и СС1.

Поворот и симметрия относительно оси

Система координат в пространстве - определение с примерами решения

Система координат в пространстве - определение с примерами решения

Пусть в пространстве заданы точки А и А1 и прямая l. Если перпендикуляры АК и А1К, опущенные на прямую l, равны и образуют угол Система координат в пространстве - определение с примерами решения, то говорят, что точка А перешла в точку А1 в результате поворота на угол Система координат в пространстве - определение с примерами решения относительно прямой l (рис. 55).

Если каждую точку фигуры F повернуть на угол Система координат в пространстве - определение с примерами решения относительно прямой l, то получим новую фигуру F1 . Тогда говорят, что фигура F перешла в фигуру F1 с помощью поворота на угол Система координат в пространстве - определение с примерами решения относительно прямой l. На рисунке 56 мы видим фигуры, полученные таким поворотом. Например, повернув куб, изображённый на рисунке 57, на 180° относительно прямой l, получим новый куб.

Поворот относительно прямой также является движением.

Поворот на 180° относительно прямой l называют симметрией относительно прямой l.

Центр, ось и плоскость симметрии называют элементами симметрии. Точки, симметричные точке А (х; у; z) относительно координатных плоскостей, координатных осей и начала координат, будут иметь следующие координаты:

Система координат в пространстве - определение с примерами решения

Симметрия в природе и технике

Система координат в пространстве - определение с примерами решения

В природе на каждом шагу можно встретить симметрию.

Например, множество живых существ, в частности тела человека и животных, листья растений и цветы устроены симметрично (рис. 58). Также в неживой природе есть элементы, например, снежинки, кристаллы соли. Молекулярное строение веществ тоже состоит из симметричных фигур. Это, конечно, неспроста, поскольку симметричные фигуры не только красивы, но и самые устойчивые.

Раз так, то можно считать, что красота и совершенство природы построены на основе симметрии. Взяв за основу природную красоту и совершенство, строители, инженеры и архитекторы создают строения и механизмы, здания и сооружения, технику и транспортные средства симметричными. В этой работе им очень помогает наука геометрия.

Подобие пространственных фигур

Пусть Система координат в пространстве - определение с примерами решения и преобразование переводят фигуру F1, в фигуру F2. Если

при этом преобразовании для произвольных точек X1 и Х2 фигуры F1 и соответствующих им точек Y1 и Y2 фигуры Система координат в пространстве - определение с примерами решения, то это преобразование называют преобразованием подобия (рис. 59).

Система координат в пространстве - определение с примерами решения

Как видим, понятие преобразования подобия в пространстве вводится также как на плоскости. Следовательно, рассматриваемые ниже виды подобия, их свойства и доказательства этих свойств подобны соответствующим на плоскости. Поэтому, мы не будем останавливаться на их доказательствах и рекомендуем провести их самостоятельно. Преобразование подобия в пространстве отображает прямую в прямую, луч в луч, отрезок в отрезок и угол в угол. Точно также это преобразование плоскость отображает в плоскость.

Если в пространстве одна из фигур перешла в другую с помощью преобразования подобия, то эти фигуры называют подобными.

Пусть в пространстве задана фигура F, точка О и число к Система координат в пространстве - определение с примерами решения. Преобразование, переводящее произвольную точку X фигуры F в точку Х1 удовлетворяющую условию Система координат в пространстве - определение с примерами решения, называют гомотетией относительно центра О с коэффициентом Система координат в пространстве - определение с примерами решения(рис. 61). Точку О называют центром гомотетии, а число Система координат в пространстве - определение с примерами решения коэффициентом гомотетии. Если в результате такого преобразования каждой точки фигуры F получена фигура F1 то говорят, что фигура F гомотетична фигуре F1.

Вы видите, что определение гомотетии в пространстве аналогично соответствующему определению на плоскости. Следовательно, все свойства и их доказательства аналогичны. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.

Система координат в пространстве - определение с примерами решения

Гомотетия относительно точки О с коэффициентом Система координат в пространстве - определение с примерами решения является преобразованием подобия. Гомотетия с отличным от нуля коэффициентом Система координат в пространстве - определение с примерами решения при Система координат в пространстве - определение с примерами решения= 1 отображает фигуру F в себя, а при Система координат в пространстве - определение с примерами решения=-1 в фигуру F1 симметричную фигуре F относительно точки О. В остальных случаях гомотетии не сохраняет расстояния между точками, т. е. не является движением. В результате гомотетии расстояние между точками увеличивается в одно и тоже число Система координат в пространстве - определение с примерами решения раз, т. е. меняются измерения фигуры, но сохраняется её форма. При гомотетии а) прямая отображается в параллельную ей прямую (рис. 62.а); b) плоскость — в параллельную ей плоскость (рис. 62.b), если они не проходят через центр гомотетии.

Если же прямая или плоскость проходят через центр гомотетии, то они отображаются в себя.

  • Иррациональные числа
  • Действительные числа
  • Решение уравнений высших степеней
  • Системы неравенств
  • Уравнения и неравенства
  • Уравнения и неравенства содержащие знак модуля
  • Уравнение
  • Метод математической индукции

Понравилась статья? Поделить с друзьями:
  • Как найти наиболее вероятное значение функции
  • Гас правосудие как найти решение суда
  • Как найти ячейку в excel по формату
  • Как составить план параграфа по истории 9 класс арсентьев
  • Как исправить скорость интернета мтс