Как найти координаты прямой геометрия 9 класс

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.

Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ: 7 x — 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ: y — 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ: x — 2 · y + 11 = 0 .

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ: — 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ: y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Ответ: x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0

Ответ: y — 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ: 1 3 x + 2 y — 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ: 2 x — 3 y — 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x — x 1 = y — y 1
x 2 — x 1 y 2 — y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >- координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 1 2 — 1 = y — 7 3 — 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x — x 1 = y — y 1 = z — z 1
x 2 — x 1 y 2 — y 1 z 2 — z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0 = y — y 0 = z — z 0
l m n

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

источники:

http://www.calc.ru/Uravneniye-Pryamoy.html

http://ru.onlinemschool.com/math/library/analytic_geometry/line/

Используем два уже известных факта и выведем уравнение окружности:

1) все точки окружности находятся на данном расстоянии (радиус) от данной точки (центр);

2) мы имеем формулу для расчёта расстояния между двумя точками, если знаем координаты точек

AB=xA−xB2+yA−yB2

, а если так, то квадрат расстояния

AB2=xA−xB2+yA−yB2

.

Rl_vdj.png

Допустим, что центр окружности находится в точке

CxC;yC

, а радиус окружности равен (R).

Любая точка

Px;y

на этой окружности находится на расстоянии (R) от центра (C), значит, справедливо равенство

Это и есть уравнение окружности с центром (C) и радиусом (R). Координаты всех точек, которые находятся на окружности, удовлетворяют уравнению.

Если центр окружности находится в начале координат

0;0

, то уравнение имеет вид

Для выведения уравнения прямой проведём эту прямую как серединный перпендикуляр некоторому отрезку с данными координатами конечных точек отрезка.

Известно, что все точки серединного перпендикуляра находятся на равных расстояниях от концов отрезка.

Taisnes_vdj.png

Координаты концов отрезка

AxA;yA

и

BxB;yB

. Любая точка

Px;y

находится на равных расстояниях от конечных точек

PA=PB

, конечно, равны и квадраты расстояний

PA2=PB2

, значит, справедливо равенство

x−xA2+y−yA2=x−xB2+y−yB2

, которое и есть уравнение прямой.

После возведения выражений в скобках и приведения подобных слагаемых

x2−2⋅x⋅xA+xA2+y2−2⋅y⋅yA+yA2=

=x2−2⋅x⋅xB+xB2+y2−2⋅y⋅yB+yB2;

2⋅x⋅xB−2⋅x⋅xA+2⋅y⋅yB−2⋅y⋅yA+xA2−xB2+yA2−yB2=0;

2xB−2xA⋅x+2yB−2yA⋅y+xA2−xB2+yA2−yB2=0;

уравнение будет в таком виде:

ax+by+c=0;a=2xB−xA;b=2yB−yA;

c=xA2−xB2+yA2−yB2.

Рассмотрим особые прямые.

Taisnes_vert_horz_vdj.png

1. Прямая проходит через некоторую точку на оси (Ox) с координатами

AxA;0

.

Для любой точки на этой прямой

x=xA

, это и есть уравнение прямой.

Так как ось (Oy) проходит через начало координат, то уравнение оси (Oy) есть

x=0

.

2. Прямая проходит через некоторую точку на оси (Oy) с координатами

B0;yB

.

Для любой точки на этой прямой

y=yB

, это и есть уравнение прямой.

Так как ось (Ox) проходит через начало координат, то уравнение оси (Ox) есть

y=0

..

Получить уравнение прямой по двум точкам бывает необходимо, когда мы решаем задачи, связанные с анализом различных фигур на плоскости. В этом случае бывает полезно знать уравнение прямой, проходящей через две точки. Например, составляя такое уравнение мы уже знаем – как проходит прямая, с какие углом наклона к осям координат и можем рассчитать расположение прямой по отношению к другим прямым или к фигурам.

Составляем уравнение прямой по двум точкам

Итак, пусть нам даны две точки A(x_1, y_1) и B(x_2, y_2). Наша прямая проходит через две эти точки, давайте получим уравнение этой прямой. Уравнение пучка прямых, проходящих через точку с координатами A(x_1, y_1) имеет вид:

    [y-y_1=k(x-x_1) eqno  (1)]

То есть если прямая проходит через две точки A и B она – одна из этого пучка прямых, проходящих через точку A и эта прямая имеет определенный коэффициент k. Значит, координаты точки B должны удовлетворять уравнению (1), то есть

    [y_2-y_1=k(x_2-x_1) eqno  (2)]

.

Находим из (2) k:

    [k=frac{y_2-y_1}{x_2-x_1}]

и подставим в уравнение (1):

    [y-y_1=frac{y_2-y_1}{x_2-x_1} (x-x_1) eqno  (3)]

.

Преобразовывая уравнение (3) получим:

    [frac{y-y_1}{y_2-y_1}=frac{x-x_1}{x_2-x_1}]

Это и есть уравнение прямой, проходящей через две точки A(x_1, y_1) и B(x_2, y_2).

Примечание: если точки A и B лежат на прямой, которая параллельна оси Ox (y_2-y_1=0) или оси Oy x_2-x_1=0, то уравнение прямой будет иметь вид y=y_1 или x=x_1 соответственно.

Зная координаты любых двух точек прямой, мы всегда сможем определить угловой коэффициент прямой:

    [k=frac{y_2-y_1}{x_2-x_1}]

Геометрический вывод уравнения прямой

Действительно, давайте нарисуем прямую в системе координат xOy и отметим на прямой две точки A и B, координаты которых известны A(x_1, y_1) и B(x_2, y_2) и отметим на этой прямой произвольную точку M(x,y).

К выводу уравнения прямой через две дочки

Из подобия треугольников AMD и ABC находим:

    [frac{DM}{CB}=frac{AD}{AC}]

Из рисунка видно, что:

    [DM=y-y_1]

    [CB=y_2-y_1]

    [AD=x-x_1]

    [AC=x_2-x_1]

,

Таким образом, получаем уравнение прямой по двум точкам:

    [frac{y-y_1}{y_2-y_1}=frac{x-x_1}{x_2-x_1}]

Задача

Составим уравнение прямой, проходящей через две точки A(1,2) и B(3,7).

Решение: Имеем x_1=1, x_2=3, y_1=2, y_2=7. Подставим эти значения в уравнение прямой, проходящей через две заданные точки:

    [frac{y-2}{7-2}=frac{x-1}{3-1}]

    [frac{y-2}{5}=frac{x-1}{2}]

Умножим левую и правую части уравнения на 5, получим:

y-2=frac{5x-5}{2}

y=2+2,5x-2,5

y=2,5x-0,5 – получившееся уравнение прямой.

Давайте сделаем проверку – если мы все решили правильно, то при подстановке координат точек A и B мы получим верное равенство. Итак, подставим сначала координаты точки A:

y_1=2,5x_1-0,5

2=2,5 cdot 1-0,5

2=2

Теперь координаты точки B:

y_2=2,5x_2-0,5

7=2,5 cdot 3-0,5

7=7

Значит, уравнение прямой мы нашли верно.

Ответ: y=2,5x-0,5

Условие прохождения прямой через три заданные точки

Если нам в задаче нужно убедиться, что три точки с заданными координатами лежат на одной прямой, можно рассуждать так:

  1. Если две точки с заданными координатами образуют прямую, то их координаты удовлетворяют уравнению прямой, проходящей через две точки.
  2. Если третья точка также лежит на этой прямой, то и ее координаты будут удовлетворять этому уравнению.

Таким образом, если нам даны три точки A(x_1, y_1), B(x_2, y_2) и C(x_3, y_3), лежащие на одной прямой, то их координаты будут удовлетворять условию:

    [frac{y_3-y_1}{y_2-y_1}=frac{x_3-x_1}{x_2-x_1}]

Теперь вы легко сможете составить уравнение прямой по двум точкам, а также найти угловой коэффициент прямой и проверить – принадлежит ли третья точка этой прямой.

Комментарии преподавателя

 Уравнение прямой

Пря­мой, к при­ме­ру, яв­ля­ет­ся се­ре­дин­ный пер­пен­ди­ку­ляр к от­рез­ку. Для за­да­ния пря­мой сле­ду­ет за­фик­си­ро­вать концы от­рез­ка и на­пи­сать урав­не­ние се­ре­дин­но­го пер­пен­ди­ку­ля­ра, ис­поль­зуя тот факт, что се­ре­дин­ный пер­пен­ди­ку­ляр яв­ля­ет­ся гео­мет­ри­че­ским ме­стом точек, рав­но­уда­лен­ных от кон­цов от­рез­ка.

Вы­ве­дем урав­не­ние пря­мой – се­ре­дин­но­го пер­пен­ди­ку­ля­ра р к от­рез­ку АВ

Рис. 1. Урав­не­ние пря­мой

Пусть точка М(х;у) – про­из­воль­ная точка се­ре­дин­но­го пер­пен­ди­ку­ля­ра, тогда она рав­но­уда­ле­на от точек А и В (рис. 2).

Рис. 2. Ил­лю­стра­ция к при­ме­ру

 это урав­не­ние се­ре­дин­но­го пер­пен­ди­ку­ля­ра.

Если точка , то ее ко­ор­ди­на­ты удо­вле­тво­ря­ют по­лу­чен­но­му урав­не­нию.

Упро­стим урав­не­ние – рас­кро­ем скоб­ки и при­ве­дем по­доб­ные сла­га­е­мые:

Обо­зна­чим:

 хотя бы одно из чисел a и b не равно 0, так как точки А и В раз­ные.

Тогда урав­не­ние пря­мой при­мет вид:

фик­си­ро­ван­ные числа. Такое урав­не­ние на­зы­ва­ет­ся общим урав­не­ни­ем пря­мой.

 Частные случаи уравнения прямой

а) Вер­ти­каль­ная пря­мая (рис. 3).

Рис. 3. Вер­ти­каль­ная пря­мая

Если через точку  про­ве­сти вер­ти­каль­ную пря­мую, то есть пря­мую, пер­пен­ди­ку­ляр­ную оси х, то ее урав­не­ние будет . Ана­ло­гич­но,  и т. д. (рис. 4).

Рис. 4. Ил­лю­стра­ция к при­ме­ру

Об­ра­тим вни­ма­ние на по­след­нюю пря­мую . Вся пря­мая про­ек­ти­ру­ет­ся на ось х в точку 3. На этой пря­мой много точек, но абс­цис­са каж­дой из них равна 3.

Урав­не­ние вер­ти­каль­ной пря­мой:  или  .

Урав­не­ние оси Oy.

б)             Го­ри­зон­таль­ная пря­мая (рис. 5).

Рис. 5. Го­ри­зон­таль­ная пря­мая

Если го­ри­зон­таль­ная пря­мая про­хо­дит через точку , то ее урав­не­ние , любая точка этой пря­мой имеет ор­ди­на­ту .

Урав­не­ние го­ри­зон­таль­ной пря­мой  или .

Урав­не­ние оси .

 Решение задач

За­да­ча 1.

На­пи­ши­те урав­не­ние пря­мой, про­хо­дя­щей через две дан­ные точки  и . Най­ди­те точки пе­ре­се­че­ния этой пря­мой с осями ко­ор­ди­нат.

Ре­ше­ние (рис. 6):

Рис. 6. Ил­лю­стра­ция к за­да­че

1. Урав­не­ние ис­ко­мой пря­мой будем ис­кать в виде: 

Пря­мая про­хо­дит через точки А и В, зна­чит, ко­ор­ди­на­ты этих точек удо­вле­тво­ря­ют урав­не­нию пря­мой. Под­ста­вим ко­ор­ди­на­ты точек в урав­не­ние и по­лу­чим си­сте­му:

Это си­сте­ма из двух урав­не­ний с тремя неиз­вест­ны­ми, при ре­ше­нии ее будем счи­тать, что с из­вест­но.

Под­ста­вим в урав­не­ние:

 по­это­му на с можно со­кра­тить: 

2. На­хо­дим точки пе­ре­се­че­ния с осями (рис. 7, 8).

точка 

Рис. 7. Ил­лю­стра­ция к за­да­че

точка 

Рис. 8. Ил­лю­стра­ция к за­да­че

Ответ: 

За­да­ча 2.

а) На­пи­ши­те урав­не­ние пря­мой CD, про­хо­дя­щей через две дан­ные точки C(2; 5) и D(5; 2) .

б) Най­ди­те пло­щадь тре­уголь­ни­ка, об­ра­зо­ван­но­го пря­мой CD и осями ко­ор­ди­нат.

Ре­ше­ние (рис. 9):

Рис. 9. Ил­лю­стра­ция к за­да­че

а)  ис­ко­мое урав­не­ние пря­мой. Ко­ор­ди­на­ты точек C и D под­ста­вим в урав­не­ние и по­лу­чим си­сте­му:

б)             На­хо­дим точки пе­ре­се­че­ния с осями ко­ор­ди­нат и пло­щадь тре­уголь­ни­ка (рис. 10):

Рис. 10. Ил­лю­стра­ция к за­да­че

Ответ: 

 Уравнение наклонной прямой

общее урав­не­ние пря­мой.

Рас­смот­рим слу­чай 

Обо­зна­чим

и по­лу­чим урав­не­ние на­клон­ной пря­мой:

В этом урав­не­нии m – ор­ди­на­та точки пе­ре­се­че­ния пря­мой с осью yk – уг­ло­вой ко­эф­фи­ци­ент.

 Решение задач

Для при­ме­ра решим вто­рым спо­со­бом преды­ду­щую за­да­чу. На­пи­ши­те урав­не­ние пря­мой CD, про­хо­дя­щей через две дан­ные точки  C(2; 5) и D(5; 2) .

Будем ис­кать урав­не­ние пря­мой в виде , ко­ор­ди­на­ты точек C и D удо­вле­тво­ря­ют урав­не­нию:

За­да­ча 3.

а) На­пи­ши­те урав­не­ние пря­мой MN, где M(0; 1), N(-4; 5).

б) В тре­уголь­ни­ке, об­ра­зо­ван­ном пря­мой MN и осями ко­ор­ди­нат, найти длину ме­ди­а­ны OD, про­ве­ден­ной из вер­ши­ны О(0;0).

Ре­ше­ние (рис. 11):

Рис. 11. Ил­лю­стра­ция к за­да­че

а) Урав­не­ние пря­мой будем ис­кать в виде  Под­ста­вим в урав­не­ние ко­ор­ди­на­ты точек M и N:

б) Опре­де­лим ко­ор­ди­на­ты точек пе­ре­се­че­ния пря­мой с осями ко­ор­ди­нат: точка M нам из­вест­на; ко­ор­ди­на­ты точки А опре­де­лим как ко­ор­ди­на­ты точки пе­ре­се­че­ния с осью Ох из си­сте­мы (рис. 12):

Рис. 12. Ил­лю­стра­ция к за­да­че

Те­перь най­дем ко­ор­ди­на­ты точки D как се­ре­ди­ны от­рез­ка AM:

и вы­чис­лим длину от­рез­ка  OD:

Ответ: 

Решим эту же за­да­чу вто­рым спо­со­бом. Со­ста­вим урав­не­ние пря­мой, про­хо­дя­щей через точки M(0; 1) и N(-4; 5), ис­поль­зуя урав­не­ние на­клон­ной пря­мой в виде . Под­ста­вим ко­ор­ди­на­ты точек в урав­не­ние и по­лу­чим си­сте­му:

За­да­ча 4.

На­пи­ши­те урав­не­ние се­ре­дин­но­го пер­пен­ди­ку­ля­ра к от­рез­ку АВ, где А(-7; 5), В(3; -1) (рис. 13).

Рис. 13. Ил­лю­стра­ция к за­да­че

Ре­ше­ние:

В на­ча­ле этого урока мы вы­ве­ли урав­не­ние пря­мой как урав­не­ние се­ре­дин­но­го пер­пен­ди­ку­ля­ра к от­рез­ку, ис­поль­зуя то, что любая точка се­ре­дин­но­го пер­пен­ди­ку­ля­ра рав­но­уда­ле­на от его кон­цов. Если , то .

Рис. 14. Ил­лю­стра­ция к за­да­че

Рас­кро­ем скоб­ки и при­ве­дем по­доб­ные члены:

Ответ: 

 Заключение

Итак, мы вы­ве­ли урав­не­ние пря­мой и ис­поль­зо­ва­ли его для ре­ше­ния про­стей­ших задач. На сле­ду­ю­щем уроке мы про­дол­жим ре­шать за­да­чи по теме «Урав­не­ние пря­мой».

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/9-klass/metod-koordinat/uravnenie-pryamoy

http://www.youtube.com/watch?v=aWrWel3jDAA

http://www.mathprofi.ru/uravnenie_pryamoi_na_ploskosti.html

http://www.cleverstudents.ru/line_and_plane/forms_of_equation_of_line_on_plane.html

http://www.mathelp.spb.ru/book1/line_on_plane.htm

Прежде чем
приступить к изучению нового материала, давайте повторим формулу для нахождения
координат середины отрезка

, , формулу для
определения расстояния между двумя точками , вспомним, что
называется уравнением линии l, запишем уравнение
окружности с радиусом r и центром в точке C (x0;y0).
Вспомним уравнение окружности радиуса r и центром в
начале координат .

Сегодня на уроке мы
выведем уравнение произвольной прямой l.

В координатной
плоскости прямая может располагаться либо вертикально (параллельно оси Oy), горизонтально (параллельно оси Ox)
либо быть наклонной к обеим осям.

Первым давайте
рассмотрим случай, когда прямая параллельна оси Oy.

Возьмем на оси Ox, например, точку с координатой 3 и проведем через эту
точку прямую, параллельную оси Oy. Абсцисса любой точки
этой прямой равна 3. То есть координаты любой точки этой прямой удовлетворяют
уравнению x=3, а координаты любой точки, которая не
лежит на данной прямой не удовлетворяют данному уравнению. Значит, уравнение x=3 является уравнением прямой параллельной оси Oy и проходящей через точку с координатами (3;0).

Можно сказать, что
произвольная прямая параллельная оси Oy задается уравнением . Уравнение  является уравнением оси
.

Задача. Записать
уравнения прямых, показанных на рисунке:

Решение.

Для того, чтобы
записать уравнение каждой прямой, запишем общее уравнение прямых параллельных
оси Oy.

 

 

 

 

Рассмотрим теперь
случай когда прямая параллельна оси Ox.

Возьмем на оси Oy, например, точку 5 и проведем через нее прямую
параллельную оси Ox. Любая точка этой прямой
удовлетворяет уравнению y=5, любая точка, которая не
лежит на этой прямой не удовлетворяет этому уравнению, значит, эту прямую
задает уравнение y=5.

Можно сказать, что
произвольная прямая параллельная оси Ox задается уравнением .Ось Ox
задается уравнением .

Задача. Записать
уравнения прямых, показанных на рисунке:

Решение.

Запишем общее
уравнение прямых параллельных оси Ox.

.

 

 

 

Теперь рассмотрим
случай, когда прямая наклонная к обеим осям.

Отметим на
координатной плоскости точки с координатами (x1;
y1) и (x2;
y2) так, чтобы указанная прямая l была серединным перпендикуляром к отрезку AB.

Теперь возьмем
произвольную точку M (x;y). Если точка M лежит на прямой  l, то, очевидно, что длины отрезков AM
и BM будут равны. Найдем эти отрезки и приравняем их.

Получим уравнение:

Если точка M не лежит на прямой, то, очевидно, что отрезки AM и BM не будут равны и координаты
точки M не будут удовлетворять этому уравнению.

Значит, в
прямоугольной системе координат уравнение прямой l
имеет вид:

.

Раскроем скобки и выполним
элементарные преобразования.Введем замену. ;

Получим уравнение .

Так как в самом
начале мы говорили, что точки A и B – различные точки, то хотя бы одна из разностей ,  не равна нулю, то есть
хотя бы один из коэффициентов a и b
не равен нулю. То есть можно сказать, что уравнение прямой в прямоугольной
системе координат является уравнением первой степени и имеет вид: .

Задача. Написать
уравнение прямой, проходящей через точки  и .

Решение.

Ответ:

Предположим, что в этом уравнении коэффициент
.

Тогда получим
уравнение .

Число k называется угловым коэффициентом прямой.

Отметим, что две
параллельные прямые, не параллельные оси Oy имеют
одинаковые угловые коэффициенты и если две прямые имеют одинаковые угловые
коэффициенты, то эти прямые параллельны.

Задача. Записать
угловой коэффициент прямой, проходящей через точки  и .

Решение.

d

 

 

 

 

 

Ответ:

Задача. Среди
предложенных уравнений прямых выберите те, которые задают прямые, параллельные
прямой

а)       б)      в)      г) .

Решение. Мы
говорили, что две параллельные прямые имеют одинаковые угловые коэффициенты,
поэтому искомыми уравнениями будут только уравнения

а)

б)

в)

г)  

Ответ: б)   г) .   

Задача. Укажите
пары параллельных прямых

а)  и       б)  и     

в)  и  .   

Решение.

а)

   

б)

   

в)

       

Ответ: б)  и .   

Задача. Даны
координаты вершин трапеции

. Написать
уравнения прямых, содержащих диагонали .

Решение.

Запишем общее уравнение прямой .

Аналогично найдем,
что уравнение прямой, которая содержит диагональ BD
имеет вид y=1.

Ответ: .

Давайте подведем
итоги урока.

Уравнение прямой
имеет вид: . Еще один вид уравнения
прямой –  
угловой коэффициент прямой.

Уравнение прямой,
параллельной оси Ox имеет вид . Уравнение прямой,
параллельной оси Oy имеет вид .

Две параллельные
прямые, не параллельные оси о игрек имеют одинаковые угловые коэффициенты и
если две прямые имеют одинаковые угловые коэффициенты, то эти прямые
параллельны.

Понравилась статья? Поделить с друзьями:
  • Как найти место для просмотра печати геншин
  • Как человек нашел русалку
  • Обливион как найти карту
  • Как найти убыток от реализации
  • Как найти жену юмор