Как найти координаты серединного перпендикуляра


Загрузить PDF


Загрузить PDF

Серединный перпендикуляр — это прямая, перпендикулярная отрезку и делящая его пополам. Чтобы найти серединный перпендикуляр отрезка по его двум точкам, нужно найти точку, являющуюся серединой отрезка, и угловой коэффициент перпендикуляра и подставить найденные значения в линейное уравнение.

  1. Изображение с названием Find the Perpendicular Bisector of Two Points Step 1

    1

    Найдите середину отрезка, ограниченного двумя данными точками. Для этого подставьте координаты точек в формулу: [(x1 + x2)/2,( y1 + y2)/2]. Эта формула вычислит среднее значение координат х и у двух данных точек. Например, даны следующие координаты двух точек: (x1,y1)=(2,5) и (x2,y2)=(8,3). [1]

    • [(2+8)/2, (5 +3)/2] =
    • (10/2, 8/2) =
    • (5, 4)
    • Координаты середины отрезка, ограниченного точками с координатами (2,5) и (8,3), есть (5,4).
  2. Изображение с названием Find the Perpendicular Bisector of Two Points Step 2

    2

    Найдите наклон прямой (угловой коэффициент). Чтобы найти угловой коэффициент по двум точкам, подставьте их координаты в формулу: (y2 — y1) / (x2 — x1). Угловой коэффициент равен тангенсу угла между положительным направлением оси абсцисс и данной прямой. Вот как найти угловой коэффициент прямой, которая проходит через точки (2,5) и (8,3): [2]

    • (3-5)/(8-2) =
    • -2/6 =
    • -1/3
      • Угловой коэффициент прямой равен -1/3. Для получения этого результата мы сократили дробь 2/6.
  3. Изображение с названием Find the Perpendicular Bisector of Two Points Step 3

    3

    Найдите угловой коэффициент перпендикуляра. Для этого найдите обратную величину углового коэффициента прямой и измените знак. Для получения обратной величины разделите единицу на данную величину.[3]

    • Обратная отрицательная величина -1/3 есть 3, потому что 1/(1/3)=3, а знак был изменен с отрицательного на положительный.

    Реклама

  1. Изображение с названием Find the Perpendicular Bisector of Two Points Step 4

    1

    Линейное уравнение записывается в виде: y = mx + b, где х и у — координаты, m – угловой коэффициент, b – смещение прямой по оси Y.[4]

  2. Изображение с названием Find the Perpendicular Bisector of Two Points Step 5

    2

    Подставьте в уравнение найденный угловой коэффициент перпендикуляра. Подставьте 3 вместо m:

    • 3 —> y = mx + b =
    • y = 3x + b
  3. Изображение с названием Find the Perpendicular Bisector of Two Points Step 6

    3

    Подставьте координаты середины отрезка. Это точка с координатами (5,4). Поскольку перпендикуляр проходит через эту точку, подставьте ее координаты в линейное уравнение. Просто подставьте (5,4) вместо х и у.

    • (5, 4) —> y = 3x + b =
    • 4 = 3(5) + b =
    • 4 = 15 + b
  4. Изображение с названием Find the Perpendicular Bisector of Two Points Step 7

    4

    Найдите смещение по оси Y. Для этого обособьте «b» на одной стороне уравнения.

    • 4 = 15 + b =
    • -11 = b
    • b = -11
  5. Изображение с названием Find the Perpendicular Bisector of Two Points Step 8

    5

    Напишите уравнение, описывающее серединный перпендикуляр. Для этого подставьте значения углового коэффициента (3) и смещения по оси Y (-11) в линейное уравнение. Вы не должны подставлять никаких значений вместо х и у, так как это уравнение позволит вам найти координаты любой точки, лежащей на перпендикуляре.

    • y = mx + b
    • y = 3x — 11
    • Уравнение, описывающее серединный перпендикуляр, проходящий через отрезок, ограниченный точками с координатами (2,5) и (8,3), записывается как у=3x-11.

    Реклама

Об этой статье

Эту страницу просматривали 32 613 раз.

Была ли эта статья полезной?

Светило науки — 12 ответов — 0 раз оказано помощи

Ответ:

Объяснение:

Уравнение серединного перпендикуляра отрезка AB можно найти, используя следующую формулу:

y — y0 = -1/m(x — x0)

где (x0, y0) — координаты середины отрезка AB, m — угловой коэффициент прямой AB.

Для того, чтобы найти координаты середины отрезка AB, можно воспользоваться формулами:

x0 = (x1 + x2)/2

y0 = (y1 + y2)/2

где (x1, y1) и (x2, y2) — координаты точек A и B соответственно.

Чтобы найти угловой коэффициент прямой AB, можно воспользоваться формулой:

m = (y2 — y1)/(x2 — x1)

Таким образом, уравнение серединного перпендикуляра отрезка AB будет иметь вид:

y — y0 = -1/m(x — x0)

где (x0, y0) — координаты середины отрезка AB, m — угловой коэффициент прямой AB, которые можно вычислить, зная координаты точек A и B.

Содержание:

Декартовы координаты на плоскости:

Изучая материал этой лекции, вы расширите свои знания о координатной плоскости.

Вы научитесь находить длину отрезка и координаты его середины, зная координаты его концов.

Сформируете представление об уравнении фигуры, выведете уравнения прямой и окружности.

Ознакомитесь с методом координат, позволяющим решать геометрические задачи средствами алгебры.

Расстояние между двумя точками с заданными координатами. Координаты середины отрезка

В 6 классе вы ознакомились с координатной плоскостью, то есть с плоскостью, на которой изображены две перпендикулярные координатные прямые (ось абсцисс и ось ординат) с общим началом отсчета (рис. 8.1). Вы умеете отмечать на ней точки по их координатам и наоборот, находить координаты точки, отмеченной на координатной плоскости.

Декартовы координаты на плоскости - определение и примеры с решением

Договорились координатную плоскость с осью Декартовы координаты на плоскости - определение и примеры с решением

Координаты точки на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют декартовыми координатами в честь французского математика Рене Декарта (см. рассказ на с. 103).

Декартовы координаты на плоскости - определение и примеры с решением

Вы знаете, как находить расстояние в между двумя точками, заданными своими координатами на координатной прямой. Для точек Декартовы координаты на плоскости - определение и примеры с решением (рис. 8.2) имеем:

Декартовы координаты на плоскости - определение и примеры с решением

Научимся находить расстояние между точками Декартовы координаты на плоскости - определение и примеры с решениемзаданными на плоскости Декартовы координаты на плоскости - определение и примеры с решением

Рассмотрим случай, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением не перпендикулярен ни одной из координатных осей (рис. 8.3).

Через точки Декартовы координаты на плоскости - определение и примеры с решением проведем прямые, перпендикулярные координатным осям. Получим прямоугольный треугольник Декартовы координаты на плоскости - определение и примеры с решением в котором Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением

Тогда формулу расстояния между точками Декартовы координаты на плоскости - определение и примеры с решением можно записать так:

Декартовы координаты на плоскости - определение и примеры с решением

Докажите самостоятельно, что эта формула остается верной и для случая, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением перпендикулярен одной из осей координат.

Пусть Декартовы координаты на плоскости - определение и примеры с решением — точки плоскости Декартовы координаты на плоскости - определение и примеры с решением Найдем координаты Декартовы координаты на плоскости - определение и примеры с решением точки Декартовы координаты на плоскости - определение и примеры с решением — середины отрезка Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Рассмотрим случай, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением не перпендикулярен ни одной из координатных осей (рис. 8.4). Будем считать, что Декартовы координаты на плоскости - определение и примеры с решением (случай, когда Декартовы координаты на плоскости - определение и примеры с решениемрассматривается аналогично). Через точки Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением проведем прямые, перпендикулярные оси абсцисс, которые пересекут эту ось соответственно в точках Декартовы координаты на плоскости - определение и примеры с решением По теореме Фалеса Декартовы координаты на плоскости - определение и примеры с решением тогда Декартовы координаты на плоскости - определение и примеры с решением Поскольку Декартовы координаты на плоскости - определение и примеры с решениемто можем записать: Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением Аналогично можно показать что Декартовы координаты на плоскости - определение и примеры с решением

Формулы для нахождения координат середины отрезка остаются верными и для случая, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением перпендикулярен одной из осей координат. Докажите это самостоятельно.

Пример №1

Докажите, что треугольник с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является равнобедренным прямоугольным.

Решение:

Используя формулу расстояния между двумя точками, найдем стороны данного треугольника:

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, Декартовы координаты на плоскости - определение и примеры с решением то есть треугольник Декартовы координаты на плоскости - определение и примеры с решением равнобедренный.

Поскольку Декартовы координаты на плоскости - определение и примеры с решением то треугольник Декартовы координаты на плоскости - определение и примеры с решением прямоугольный. Декартовы координаты на плоскости - определение и примеры с решением

Пример №2

Точка Декартовы координаты на плоскости - определение и примеры с решением — середина отрезка Декартовы координаты на плоскости - определение и примеры с решением Найдите координаты точки Декартовы координаты на плоскости - определение и примеры с решением

Решение:

Обозначим Декартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решением

Поскольку Декартовы координаты на плоскости - определение и примеры с решением то получаем: Декартовы координаты на плоскости - определение и примеры с решением

Аналогично Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Пример №3

Докажите, что четырехугольник Декартовы координаты на плоскости - определение и примеры с решением с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является прямоугольником.

Решение:

Пусть точка Декартовы координаты на плоскости - определение и примеры с решением — середина диагонали Декартовы координаты на плоскости - определение и примеры с решением Тогда

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

Пусть точка Декартовы координаты на плоскости - определение и примеры с решением — середина диагонали Декартовы координаты на плоскости - определение и примеры с решением Тогда

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

Таким образом, точки Декартовы координаты на плоскости - определение и примеры с решением совпадают, то есть диагонали четырехугольника Декартовы координаты на плоскости - определение и примеры с решением имеют общую середину. Отсюда следует, что четырехугольник Декартовы координаты на плоскости - определение и примеры с решением — параллелограмм.

Найдем диагонали параллелограмма:

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, диагонали параллелограмма Декартовы координаты на плоскости - определение и примеры с решением равны. Отсюда следует, что этот параллелограмм является прямоугольником. Декартовы координаты на плоскости - определение и примеры с решением

Уравнение фигуры. Уравнение окружности

Из курса алгебры 7 класса вы знаете, какую фигуру называют графиком уравнения. В этом пункте вы ознакомитесь с понятием уравнения фигуры.

Координаты Декартовы координаты на плоскости - определение и примеры с решением каждой точки параболы, изображенной на рисунке 9.1, являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением И наоборот, каждое решение уравнения с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, лежащей на этой параболе. В этом случае говорят, что уравнение параболы, изображенной на рисунке 9.1, имеет вид Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Определение. Уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением заданной на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют уравнение с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением обладающее следующими свойствами:

  1. если точка принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением данного уравнения;
  2. любое решение Декартовы координаты на плоскости - определение и примеры с решением данного уравнения является координатами точки, принадлежащей фигуре Декартовы координаты на плоскости - определение и примеры с решением

Например, уравнение прямой, изображенной на рисунке 9.2, имеет вид Декартовы координаты на плоскости - определение и примеры с решением а уравнение гиперболы, изображенной на рисунке 9.3, имеет вид Декартовы координаты на плоскости - определение и примеры с решением Принято говорить, что, например, уравнения Декартовы координаты на плоскости - определение и примеры с решением задают прямую и гиперболу соответственно.

Декартовы координаты на плоскости - определение и примеры с решением

Если данное уравнение является уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением то эту фигуру можно рассматривать как геометрическое место точек (ГМТ), координаты которых удовлетворяют данному уравнению.

Пользуясь этими соображениями, выведем уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка данной окружности (рис. 9.4). Тогда Декартовы координаты на плоскости - определение и примеры с решением Используя формулу расстояния между точками, получим:

Декартовы координаты на плоскости - определение и примеры с решением

Отсюда

Декартовы координаты на плоскости - определение и примеры с решением

Мы показали, что координаты Декартовы координаты на плоскости - определение и примеры с решением произвольной точки Декартовы координаты на плоскости - определение и примеры с решением данной окружности являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением Теперь покажем, что любое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, принадлежащей данной окружности.

Пусть пара чисел Декартовы координаты на плоскости - определение и примеры с решением — произвольное решение уравнения Декартовы координаты на плоскости - определение и примеры с решением

Тогда Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением

Это равенство показывает, что точка Декартовы координаты на плоскости - определение и примеры с решением удалена от центра окружности Декартовы координаты на плоскости - определение и примеры с решением на расстояние, равное радиусу окружности, а следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит данной окружности.

Итак, мы доказали следующую теорему.

Теорема 9.1. Уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением имеет вид

Декартовы координаты на плоскости - определение и примеры с решением

Верно и такое утверждение: любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением является уравнением окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке с координатами Декартовы координаты на плоскости - определение и примеры с решением

Если центром окружности является начало координат (рис. 9.5), то Декартовы координаты на плоскости - определение и примеры с решением В этом случае уравнение окружности имеет вид Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Пример №4

Составьте уравнение окружности, диаметром которой является отрезок Декартовы координаты на плоскости - определение и примеры с решением если Декартовы координаты на плоскости - определение и примеры с решением

Решение:

Поскольку центр окружности является серединой диаметра, то можем найти координаты Декартовы координаты на плоскости - определение и примеры с решением центра Декартовы координаты на плоскости - определение и примеры с решением окружности:

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

Радиус окружности Декартовы координаты на плоскости - определение и примеры с решением равен отрезку Декартовы координаты на плоскости - определение и примеры с решением Тогда

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, искомое уравнение имеет вид

Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Пример №5

Докажите, что уравнение Декартовы координаты на плоскости - определение и примеры с решением задает окружность. Найдите координаты центра и радиус этой окружности.

Решение:

Представим данное уравнение в виде Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, данное уравнение является уравнением окружности с центром в точке Декартовы координаты на плоскости - определение и примеры с решением и радиусом Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Пример №6

Докажите, что треугольник с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является прямоугольным, и составьте уравнение окружности, описанной около треугольника Декартовы координаты на плоскости - определение и примеры с решением

Решение:

Найдем квадраты сторон данного треугольника:

Декартовы координаты на плоскости - определение и примеры с решением

Поскольку Декартовы координаты на плоскости - определение и примеры с решением то данный треугольник является прямоугольным с прямым углом при вершине Декартовы координаты на плоскости - определение и примеры с решением Центром описанной окружности является середина гипотенузы Декартовы координаты на плоскости - определение и примеры с решением — точка Декартовы координаты на плоскости - определение и примеры с решением радиус окружности Декартовы координаты на плоскости - определение и примеры с решениемСледовательно, искомое уравнение имеет вид

Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Уравнение прямой

В предыдущем пункте, рассматривая окружность как ГМТ, равноудаленных от данной точки, мы вывели ее уравнение. Для того чтобы вывести уравнение прямой, рассмотрим ее как ГМТ, равноудаленных от двух данных точек.

Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — данная прямая. Выберем две точки Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением так, чтобы прямая Декартовы координаты на плоскости - определение и примеры с решением была серединным перпендикуляром отрезка Декартовы координаты на плоскости - определение и примеры с решением (рис. 10.1).

Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка прямой Декартовы координаты на плоскости - определение и примеры с решением Тогда по свойству серединного перпендикуляра отрезка выполняется равенство Декартовы координаты на плоскости - определение и примеры с решением то есть

Декартовы координаты на плоскости - определение и примеры с решением

Мы показали, что координаты Декартовы координаты на плоскости - определение и примеры с решением произвольной точки Декартовы координаты на плоскости - определение и примеры с решением прямой Декартовы координаты на плоскости - определение и примеры с решением являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением

Теперь покажем, что любое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, принадлежащей данной прямой Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольное решение уравнения Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Это равенство означает, что точка Декартовы координаты на плоскости - определение и примеры с решением равноудалена от точек Декартовы координаты на плоскости - определение и примеры с решением следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит серединному перпендикуляру отрезка Декартовы координаты на плоскости - определение и примеры с решением то есть прямой Декартовы координаты на плоскости - определение и примеры с решением

Итак, мы доказали, что уравнение Декартовы координаты на плоскости - определение и примеры с решением является уравнением данной прямой Декартовы координаты на плоскости - определение и примеры с решением

Однако из курса алгебры 7 класса вы знаете, что уравнение прямой выглядит гораздо проще, а именно: Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно. Покажем, что уравнение Декартовы координаты на плоскости - определение и примеры с решением можно преобразовать к такому виду. Возведем обе части уравнения Декартовы координаты на плоскости - определение и примеры с решением в квадрат. Имеем:

Декартовы координаты на плоскости - определение и примеры с решением

Раскроем скобки и приведем подобные слагаемые. Получим:

Декартовы координаты на плоскости - определение и примеры с решением

Обозначив Декартовы координаты на плоскости - определение и примеры с решением получим уравнение Декартовы координаты на плоскости - определение и примеры с решением

Поскольку точки Декартовы координаты на плоскости - определение и примеры с решением различны, то хотя бы одна из разностей Декартовы координаты на плоскости - определение и примеры с решением не равна нулю. Следовательно, числа Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно.

Итак, мы доказали следующую теорему.

Теорема 10.1. Уравнение прямой имеет вид?

Декартовы координаты на плоскости - определение и примеры с решением

где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно.

Верно и такое утверждение: любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно, является уравнением прямой.

Если Декартовы координаты на плоскости - определение и примеры с решением то графиком уравнения Декартовы координаты на плоскости - определение и примеры с решением является вся плоскость Декартовы координаты на плоскости - определение и примеры с решениемЕсли Декартовы координаты на плоскости - определение и примеры с решением то уравнение не имеет решений.

Из курса алгебры 7 класса вы знаете, что уравнение вида Декартовы координаты на плоскости - определение и примеры с решением называют линейным уравнением с двумя переменными. Уравнение прямой является частным видом линейного уравнения. Схема, изображенная на рисунке 10.2, иллюстрирует сказанное.

Декартовы координаты на плоскости - определение и примеры с решением

на уроках алгебры в 7 классе мы приняли без доказательства тот факт, что графиком линейной функции Декартовы координаты на плоскости - определение и примеры с решением является прямая. Сейчас мы можем это доказать.

Перепишем уравнение Декартовы координаты на плоскости - определение и примеры с решением Мы получили уравнение вида Декартовы координаты на плоскости - определение и примеры с решением для случая, когда Декартовы координаты на плоскости - определение и примеры с решением Поскольку в этом уравнении Декартовы координаты на плоскости - определение и примеры с решением то мы получили уравнение прямой.

А любую ли прямую на плоскости можно задать уравнением вида Декартовы координаты на плоскости - определение и примеры с решениемОтвет на этот вопрос отрицательный.

Дело в том, что прямая, перпендикулярная оси абсцисс, не может являться графиком функции, а следовательно, не может быть задана уравнением вида Декартовы координаты на плоскости - определение и примеры с решением

Вместе с тем, если в уравнении прямой Декартовы координаты на плоскости - определение и примеры с решением принять Декартовы координаты на плоскости - определение и примеры с решением то его можно переписать так: Декартовы координаты на плоскости - определение и примеры с решением Мы получили частный вид уравнения прямой, все точки которой имеют одинаковые абсциссы. Следовательно, эта прямая перпендикулярна оси абсцисс. Ее называют вертикальной.

Если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением можно записать так:

Декартовы координаты на плоскости - определение и примеры с решением Обозначив Декартовы координаты на плоскости - определение и примеры с решением получим уравнение Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением задает вертикальную прямую; если Декартовы координаты на плоскости - определение и примеры с решением то это уравнение задает невертикальную прямую.

Уравнение невертикальной прямой удобно записывать в виде Декартовы координаты на плоскости - определение и примеры с решением

Данная таблица подытоживает материал, рассмотренный в этом пункте.

Декартовы координаты на плоскости - определение и примеры с решением

Пример №7

Составьте уравнение прямой, проходящей через точки:

Декартовы координаты на плоскости - определение и примеры с решением

Решение:

1) Поскольку данные точки имеют равные абсциссы, то прямая Декартовы координаты на плоскости - определение и примеры с решением является вертикальной. Ее уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением

2) Поскольку данные точки имеют разные абсциссы, то прямая Декартовы координаты на плоскости - определение и примеры с решением не является вертикальной. Тогда можно воспользоваться уравнением прямой в виде Декартовы координаты на плоскости - определение и примеры с решением

Подставив координаты точек Декартовы координаты на плоскости - определение и примеры с решением в уравнение Декартовы координаты на плоскости - определение и примеры с решением получаем систему уравнений:

Декартовы координаты на плоскости - определение и примеры с решением

Решив эту систему уравнений, находим, что Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Пример №8

Найдите периметр и площадь треугольника, ограниченного прямой Декартовы координаты на плоскости - определение и примеры с решением и осями координат.

Решение:

Найдем точки пересечения данной прямой с осями координат.

С осью абсцисс: при Декартовы координаты на плоскости - определение и примеры с решением получаем Декартовы координаты на плоскости - определение и примеры с решением

С осью ординат: при Декартовы координаты на плоскости - определение и примеры с решением получаем Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, данная прямая и оси координат ограничивают прямоугольный треугольник Декартовы координаты на плоскости - определение и примеры с решением (рис. 10.3) с вершинами Декартовы координаты на плоскости - определение и примеры с решением Найдем стороны треугольника: Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением Тогда искомые периметр и площадь соответственно равны Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Угловой коэффициент прямой

Рассмотрим уравнение Декартовы координаты на плоскости - определение и примеры с решением Оно задает невертикальную прямую, проходящую через начало координат.

Покажем, что прямые Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением параллельны.

Точки Декартовы координаты на плоскости - определение и примеры с решением принадлежат прямой Декартовы координаты на плоскости - определение и примеры с решением а точки Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением принадлежат прямой Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.1). Легко убедиться (сделайте это самостоятельно), что середины диагоналей Декартовы координаты на плоскости - определение и примеры с решением четырехугольника Декартовы координаты на плоскости - определение и примеры с решением совпадают. Следовательно, четырехугольник Декартовы координаты на плоскости - определение и примеры с решением — параллелограмм. Отсюда Декартовы координаты на плоскости - определение и примеры с решением

Теперь мы можем сделать такой вывод: если Декартовы координаты на плоскости - определение и примеры с решением то прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны (1).

Пусть прямая Декартовы координаты на плоскости - определение и примеры с решением пересекает единичную полуокружность в точке Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.2). Угол Декартовы координаты на плоскости - определение и примеры с решением называют углом между данной прямой и положительным направлением оси абсцисс.

Если прямая Декартовы координаты на плоскости - определение и примеры с решением совпадает с осью абсцисс, то угол между этой прямой и положительным направлением оси абсцисс считают равным Декартовы координаты на плоскости - определение и примеры с решением

Декартовы координаты на плоскости - определение и примеры с решением Если прямая Декартовы координаты на плоскости - определение и примеры с решением образует с положительным направлением оси абсцисс угол Декартовы координаты на плоскости - определение и примеры с решением то считают, что и прямая Декартовы координаты на плоскости - определение и примеры с решением параллельная прямой Декартовы координаты на плоскости - определение и примеры с решением также образует угол Декартовы координаты на плоскости - определение и примеры с решением с положительным направлением оси абсцисс (рис. 11.3).

Рассмотрим прямую Декартовы координаты на плоскости - определение и примеры с решением уравнение которой имеет вид Декартовы координаты на плоскости - определение и примеры с решением(рис. 11.2). Если Декартовы координаты на плоскости - определение и примеры с решением Поскольку точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит прямой Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением Таким образом, для прямой Декартовы координаты на плоскости - определение и примеры с решением получаем, что

Декартовы координаты на плоскости - определение и примеры с решением

где Декартовы координаты на плоскости - определение и примеры с решением — угол, который образует эта прямая с положительным направлением оси абсцисс. Поэтому коэффициент Декартовы координаты на плоскости - определение и примеры с решением называют угловым коэффициентом этой прямой.

Если невертикальные прямые параллельны, то они образуют равные углы с положительным направлением оси абсцисс. Тогда тангенсы этих углов равны, следовательно, равны и их угловые коэффициенты. Таким образом,

если прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны, то Декартовы координаты на плоскости - определение и примеры с решением (2).

Выводы (1) и (2) объединим в одну теорему.

Теорема 11.1. Прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны тогда и только тогда, когда Декартовы координаты на плоскости - определение и примеры с решением

Пример №9

Составьте уравнение прямой, которая проходит через точку Декартовы координаты на плоскости - определение и примеры с решением и параллельна прямой Декартовы координаты на плоскости - определение и примеры с решением

Решение:

Пусть уравнение искомой прямой Декартовы координаты на плоскости - определение и примеры с решением Поскольку эта прямая и прямая Декартовы координаты на плоскости - определение и примеры с решением параллельны, то их угловые коэффициенты равны, то есть Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, искомое уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением Учитывая, что данная прямая проходит через точку Декартовы координаты на плоскости - определение и примеры с решением получаем: Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением

Искомое уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением

Ответ: Декартовы координаты на плоскости - определение и примеры с решением

Метод координат

Мы часто говорим: прямая Декартовы координаты на плоскости - определение и примеры с решением парабола Декартовы координаты на плоскости - определение и примеры с решением окружность Декартовы координаты на плоскости - определение и примеры с решением тем самым отождествляя фигуру с ее уравнением. Такой подход позволяет сводить задачу о поиске свойств фигуры к задаче об исследовании ее уравнения. В этом и состоит суть метода координат.

Проиллюстрируем сказанное на таком примере.

Из наглядных соображений очевидно, что прямая и окружность имеют не более двух общих точек. Однако это утверждение не является аксиомой, поэтому его надо доказывать.

Эта задача сводится к исследованию количества решений системы уравнений

Декартовы координаты на плоскости - определение и примеры с решением

где числа Декартовы координаты на плоскости - определение и примеры с решением одновременно не равны нулю и Декартовы координаты на плоскости - определение и примеры с решением

Решая эту систему методом подстановки, мы получим квадратное уравнение, которое может иметь два решения, одно решение или вообще не иметь решений. Следовательно, для данной системы существует три возможных случая:

  1. система имеет два решения — прямая и окружность пересекаются в двух точках;
  2. система имеет одно решение — прямая касается окружности;
  3. система не имеет решений — прямая и окружность не имеют общих точек.

С каждым из этих случаев вы встречались, решая задачи 10.17-10.19.

Метод координат особенно эффективен в тех случаях, когда требуется найти фигуру, все точки которой обладают некоторым свойством, то есть найти геометрическое место точек.

Отметим на плоскости две точки Декартовы координаты на плоскости - определение и примеры с решением Вы хорошо знаете, какой фигурой является геометрическое место точек Декартовы координаты на плоскости - определение и примеры с решением таких, что Декартовы координаты на плоскости - определение и примеры с решением

Это серединный перпендикуляр отрезка Декартовы координаты на плоскости - определение и примеры с решением Интересно выяснить, какую фигуру образуют все точки Декартовы координаты на плоскости - определение и примеры с решением для которых Декартовы координаты на плоскости - определение и примеры с решением Решим эту задачу для Декартовы координаты на плоскости - определение и примеры с решением

Плоскость, на которой отмечены точки Декартовы координаты на плоскости - определение и примеры с решением «превратим» в координатную. Сделаем это так: в качестве начала координат выберем точку Декартовы координаты на плоскости - определение и примеры с решением в качестве единичного отрезка — отрезок Декартовы координаты на плоскости - определение и примеры с решением ось абсцисс проведем так, чтобы точка Декартовы координаты на плоскости - определение и примеры с решением имела координаты Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.6).

Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка искомой фигуры Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Отсюда

Декартовы координаты на плоскости - определение и примеры с решением

Следовательно, если точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением

Пусть Декартовы координаты на плоскости - определение и примеры с решением — некоторое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением Тогда легко показать, что Декартовы координаты на плоскости - определение и примеры с решением А это означает, что точка Декартовы координаты на плоскости - определение и примеры с решением такова, что Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением

Таким образом, уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением является уравнение Декартовы координаты на плоскости - определение и примеры с решением то есть фигура Декартовы координаты на плоскости - определение и примеры с решением — это окружность с центром в точке Декартовы координаты на плоскости - определение и примеры с решением и радиусом Декартовы координаты на плоскости - определение и примеры с решением

Мы решили задачу для частного случая, когда Декартовы координаты на плоскости - определение и примеры с решением Можно показать, что искомой фигурой для любого положительного Декартовы координаты на плоскости - определение и примеры с решением будет окружность. Эту окружность называют окружностью АполлонияДекартовы координаты на плоскости - определение и примеры с решением

Как строили мост между геометрией и алгеброй

Идея координат зародилась очень давно. Ведь еще в старину люди изучали Землю, наблюдали звезды, а по результатам своих исследований составляли карты, схемы.

Во II в. до н. э. древнегреческий ученый Гиппарх впервые использовал идею координат для определения места расположения объектов на поверхности Земли.

Только в XIV в. французский ученый Николя Орем (ок. 1323-1382) впервые применил в математике идею Гиппарха: он разбил плоскость на клетки (как разбита страница вашей тетради) и стал задавать положение точек широтой и долготой.

Однако огромные возможности применения этой идеи были раскрыты лишь в XVII в. в работах выдающихся французских математиков Пьера Ферма и Рене Декарта. В своих трудах эти ученые показали, как благодаря системе координат можно переходить от точек к числам, от линий к уравнениям, от геометрии к алгебре.

Несмотря на то что П. Ферма опубликовал свою роботу на год раньше Р. Декарта, систему координат, которой мы сегодня пользуемся, называют декартовой. Р. Декарт в своей работе «Рассуждение о методе» предложил новую удобную буквенную символику, которой с незначительными изменениями мы пользуемся и сегодня. Вслед за Декартом мы обозначаем переменные последними буквами латинского алфавита Декартовы координаты на плоскости - определение и примеры с решением а коэффициенты — первыми: Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением Привычные нам обозначения степеней Декартовы координаты на плоскости - определение и примеры с решением и т. д. также ввел Р. Декарт.

Декартовы координаты на плоскости - определение и примеры с решением

Справочный материал

Расстояние между двумя точками

Расстояние между точками Декартовы координаты на плоскости - определение и примеры с решением можно найти по формуле Декартовы координаты на плоскости - определение и примеры с решением

Координаты середины отрезка

Координаты Декартовы координаты на плоскости - определение и примеры с решением середины отрезка с концами Декартовы координаты на плоскости - определение и примеры с решением можно найти по формулам:

Декартовы координаты на плоскости - определение и примеры с решением

Уравнение фигуры

Уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением заданной на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют уравнение с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением обладающее следующими свойствами:

1) если точка принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением данного уравнения;

2) любое решение Декартовы координаты на плоскости - определение и примеры с решением данного уравнения является координатами точки, принадлежащей фигуре Декартовы координаты на плоскости - определение и примеры с решением

Уравнение окружности

Уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением имеет вид Декартовы координаты на плоскости - определение и примеры с решением

Любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением является уравнением окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке с координатами Декартовы координаты на плоскости - определение и примеры с решением

Уравнение прямой

Уравнение прямой имеет вид Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно. Любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно, является уравнением прямой.

Если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением задает вертикальную прямую; если Декартовы координаты на плоскости - определение и примеры с решением то это уравнение задает невертикальную прямую.

Угловой коэффициент прямой

Коэффициент Декартовы координаты на плоскости - определение и примеры с решением в уравнении прямой Декартовы координаты на плоскости - определение и примеры с решением называют угловым коэффициентом прямой, и он равен тангенсу угла, который образует эта прямая с положительным направлением оси абсцисс.

Необходимое и достаточное условие параллельности невертикальных прямых

Прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны тогда и только тогда, когда Декартовы координаты на плоскости - определение и примеры с решением

  • Декартовы координаты в пространстве
  • Геометрические преобразования в геометрии
  • Планиметрия — формулы, определение и вычисление
  • Стереометрия — формулы, определение и вычисление
  • Перпендикулярность прямой и плоскости
  • Взаимное расположение прямых в пространстве, прямой и плоскости
  • Перпендикулярность прямых и плоскостей в пространстве
  • Ортогональное проецирование

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Серединный перпендикуляр к отрезку

Определение 1. Серединным перпендикуляром к отрезку называется прямая, которая проходит через середину отрезка и перпендикулярная к нему.

На рисунке 1 прямая ( small l ) серединный перпендикуляр к отрезку ( small AB .)

Теорема о серединном перпендикуляре к отрезку

Теорема 1. 1) Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. 2) Обратно: Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

Доказательство. 1) Пусть точка ( small O ) середина отрезка ( small AB ) и пусть прямая ( small q ) серединный перпендикуляр к отрезку ( small AB ) (Рис.2). Рассмотрим любую точку ( small M ) на прямой ( small q ). Докажем, что ( small AM=BM. ) Если точка ( small M ) совпадает с точкой ( small O ), то равенство ( small AM=BM ) верно поскольку ( small AO=BO ) (( small O )-середина отрезка). Пусть ( small M ) и ( small O ) различные точки. Тогда прямоугольные треугольники ( small MOA ) и ( small MOB ) равны по двум катетам (( small AO=OB ), ( small OM )− общий). Следовательно ( small AM=BM. )

2) Пусть точка ( small P ) равноудалена от от концов отрезка ( small AB ) (Рис.3). Тогда выполено равенство ( small AP=BP ). Докажем, что ( small P ) лежит на серединном перпендикуляре ( q ). Если точка ( small P ) принадлежит прямой ( small AB ), то поскольку она равноудалена от концов отрезка ( small AB, ) она совпадает с точкой ( small O ), т.е. лежит на прямой ( q.) Если же ( small P ) не лежит на прямой ( small AB ), то треугольник ( small ABP ) равнобедренный, поскольку ( small AP=BP .) Отрезок ( small PO ) медиана этого равнобедренного треугольника и, значит, является также высотой этого треугольника. Тогда ( small PO⊥AB .) Прямые ( small PO ) и ( q ) проходят через точку ( small O ) и перпендикулярны к ( small AB .) Следовательно эти прямые совпадают, т.е. точка ( small P ) принадлежит прямой ( q. )

Серединный перпендикуляр

Что такое серединный перпендикуляр к отрезку? Что можно сказать о пересечении серединных перпендикуляров к сторонам треугольника? К сторонам многоугольника?

Серединный перпендикуляр к отрезку — это прямая, перпендикулярная данному отрезку и проходящая через его середину.

m — серединный перпендикуляр к отрезку AB, если

точка C — середина отрезка AB,

Чтобы построить серединный перпендикуляр к данному отрезку с помощью угольника, нужно:

1) найти середину отрезка;

2) провести через эту точку прямую, перпендикулярную данному отрезку (для этого угольник прикладываем прямым углом к середине отрезка так, чтобы она сторона угольника проходила через отрезок, а через другую сторону проводим прямую):

Свойства серединного перпендикуляра.

1) Геометрическое место точек, равноудаленных от двух данных точек, есть серединный перпендикуляр к отрезку, соединяющему эти точки.

Например, прямая m — геометрическое место точек, равноудаленных от точек A и B (рисунок 1).

2) Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Эта точка является центром описанной около треугольника окружности.

3) Если около многоугольника можно описать окружность, то центр этой описанной окружности является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

источники:

http://matworld.ru/geometry/seredinnyj-perpendikulyar.php

Серединный перпендикуляр

Выведение уравнения прямой

Для выведения уравнения прямой проведем эту прямую как серединный перпендикуляр к некоторому отрезку с данными координатами конечных точек отрезка.

Все точки серединного перпендикуляра находятся на равных расстояниях от концов отрезка.

Рис. 1. Серединный перпендикуляр к отрезку

Пусть  – это произвольная точка на прямой  (см. Рис. 1), которая является серединным перпендикуляром к отрезку  (точка  имеет координаты , точка  имеет координаты ). Тогда , отсюда следует, что , то есть справедливо равенство:

 — это равенство и есть уравнением прямой.

Возведем в квадрат выражения в скобках и приведем подобные слагаемые:

 

 

 

Введем новые обозначения:

 

 

 

Следовательно, уравнение прямой будет иметь следующий вид:

 

Уравнение вертикальной прямой

 

  уравнение вертикальной прямой

На рис. 2 изображены вертикальные прямые, уравнение которых выглядят следующим образом:

а) . Это означает, что все точки на этой прямой имеют координату .

б) . Это означает, что все точки на этой прямой имеют координату .

в) . Это означает, что все точки на этой прямой имеют координату , то есть это уравнение оси .

Рис. 2. Вертикальные прямые

Уравнение горизонтальной прямой

 

  уравнение горизонтальной прямой

На рис. 3 изображены горизонтальные прямые, уравнения которых выглядят следующим образом:

а) . Это означает, что все точки на этой прямой имеют координату .

б) . Это означает, что все точки на этой прямой имеют координату .

в) . Это означает, что все точки на этой прямой имеют координату , то есть это уравнение оси .

Рис. 3. Горизонтальные прямые

Уравнение наклонной прямой к оси  ()

 

 

 

Введем новые обозначения:

 

 

Таким образом, уравнение наклонной к оси  прямой выглядит следующим образом:

, где

 – угловой коэффициент (если , то функция возрастает, если  – убывает);

 – ордината точки пересечения прямой с осью .

Примеры

1. Дано уравнение прямой: .

В этом случае ; . Следовательно, данная функция возрастает, прямая пересекает ось в точке с координатами  (см. Рис. 4). 

Рис. 4. Прямая

2. Дано уравнение прямой: .

В этом случае ; . Следовательно, данная функция убывает, прямая пересекает ось  в точке с координатами  (см. Рис. 5). 

Рис. 5. Прямая

Условия параллельности и перпендикулярности наклонных прямых

Даны две прямые:

 

 

1. Данные прямые будут параллельными, если выполняются следующие условия:

 

То есть эти прямые должны быть наклонены под одним углом к оси , но проходить через разные точки на оси .

2. Данные прямые будут перпендикулярными, если выполняется следующее условие:

 

Уравнение прямой, проходящей через заданную точку

Дана точка  с координатами . Уравнение наклонной прямой: , следовательно, условие того, что точка  лежит на прямой, – это .

 

 – уравнение любой наклонной прямой, проходящей через точку .

Задавая коэффициент , можно выбрать конкретную прямую, проходящую через точку.

Задача 1

Дано: прямая ; точка .

Найти: а) уравнение прямой, которая проходит через точку  и параллельна заданной прямой; б) уравнение прямой, которая проходит через точку  и перпендикулярна заданной прямой.

Решение

Все наклонные прямые, которые проходят через точку , имеют уравнение:

 

1. Угловые коэффициенты параллельных прямых равны. Поэтому уравнение прямой, проходящей через точку  и параллельной заданной прямой, имеет угловой коэффициент . Следовательно, уравнение такой прямой имеет следующий вид:

 

 

 

2. Произведение угловых коэффициентов перпендикулярных прямых равно . Следовательно, угловой коэффициент прямой, перпендикулярной, равен:

 

 

Подставляем данный коэффициент в уравнение прямых, проходящих через точку :

 

 

Ответ: а) ; б)  .

Задача 2

Дано: точка ; точка .

Найти: уравнение прямой  и точки ее пересечения с осями координат.

Решение

Уравнение прямой имеет вид:

 

Необходимо определить числа , , . Подставим координаты точек  и  в уравнение прямой, получим систему из двух уравнений:

 

Решим эту систему, выразив  и  через :

 

 

 

 

Подставим это значение в равенство:

 

 

Найденные значения  и  подставляем в общее выражение прямой:

 

При  разделим это выражение на  и умножим на :

 

Мы получили уравнение прямой, которая проходит через две данные точки ( и ). Запишем это уравнение в таком виде:

 

Это уравнение наклонной прямой, которая имеет угловой коэффициент  и пересекает ось  в точке с координатой  (на рисунке 6 точка ).

Определим координаты точки пересечения прямой с осью , для этого приравняем к нулю :

 

 

 

Следовательно, координаты точки пересечения прямой с осью  –  (на рисунке 6 точка ).

Рис. 6. Иллюстрация к задаче

Ответ: ; ; .

Задача 3

Дано: точка ; точка .

Найти: уравнение серединного перпендикуляра к отрезку .

Рис. 7. Иллюстрация к задаче

Решение

Пусть  (см. Рис. 7) – это произвольная точка на серединном перпендикуляре к отрезку . Тогда , отсюда следует, что , то есть справедливо равенство:

 

Подставим в данное равенство соответствующие координаты:

 

 

 

Разделим обе части уравнения на 4 и получим искомое уравнение серединного перпендикуляра:

 

Ответ: .


Уравнение прямой в отрезках

Пусть  – уравнение наклонной прямой, которая пересекает оси  и  в точках  и . Тогда уравнение этой прямой можно представить в виде:

 

Такое уравнение называется уравнением прямой в отрезках. В данном случае отрезок , а отрезок .

Выведем данное уравнение.

Дано: точка ; точка ; ,  (прямая не пересекает начало координат) (см. Рис. 8).

Требуется: вывести уравнение прямой .

Решение

Рис. 8. Иллюстрация к доказательству

Прямая  – это наклонная прямая, следовательно, ее уравнение записывается в виде .

Необходимо найти коэффициент  и свободный член . Для этого подставляем координаты точек  и , лежащих на прямой, в уравнение наклонной прямой:

  

 

 

Подставляем полученные значения в уравнение наклонной прямой:

 

Обе части уравнения умножаем на :

 

 

Обе части уравнения делим на произведение :

 

 

Мы получили уравнение прямой в отрезках:  

Пример

Дано: точка ; точка .

Найти: уравнение прямой .

Решение

Уравнение прямой в отрезках выглядит следующим образом:

 

В данном случае: ; . Подставляем эти значения в уравнение:

 

Ответ: .


Задача типа С5 из ЕГЭ по математике

Найдите значение параметра , при котором система неравенств имеет единственное решение.

 

Решение

1. Рассмотрим первое неравенство.

Неравенство  задает круг с центром в точке  и радиуса  (см. Рис. 9).

Координаты точки  зависят от параметра: .

Радиус  также зависит от параметра: .

Обе части этого неравенства неотрицательны, следовательно, его можно возвести в квадрат:

 

Рис. 9. Иллюстрация к задаче

2. Рассмотрим второе неравенство.

Неравенство  задает полуплоскость под прямой , так как:

 

 

 

Эта полуплоскость фиксированна, не зависит от параметра .

3. Необходимо расположить круг так, чтобы он находился над прямой и касался ее. Общая точка прямой и окружности находится из системы:

 

Подставим значение  в первое уравнение:

 

Сделаем замену:

 

 

Тогда:

 

 

 

Нам требуется единственность решения данного уравнения, следовательно, его дискриминант должен быть равен нулю.

 

 

Так как , то:

 

 

 

 

 

Выполним проверку этих значений параметра .

а) Если , то координаты центра окружности равны . Подставим координату  в уравнение прямой и сравним получившееся значение  со второй координатой центра окружности:

 

 

Следовательно, точка  лежит над прямой , и значение  нам подходит.

б) Можно выполнить проверку другим способом.

Если , то координаты центра окружности равны .

Подставим значения  и в неравенство :

 

 – неверно, следовательно, точка  также не лежит в полуплоскости, задаваемой неравенством .

Таким образом, искомые значения параметра равны: , .

Ответ: , .


Уравнение прямой, проходящей через две точки. Первый способ вывода

Ранее мы вывели общее уравнение прямой, проходящей через две точки:

 

Выведем уравнение наклонной прямой, проходящей через две точки.

Дано: точки  и  на наклонной прямой  (см. Рис. 10).

Требуется: вывести уравнение наклонной прямой .

Рис. 10. Наклонная прямая, проходящая через две точки

Решение

Выберем произвольную точку , находящуюся на прямой . Вектор  коллинеарен вектору  (см. Рис. 10), следовательно:

 

В координатном виде это выглядит следующим образом:

 

Векторное равенство дает систему из двух уравнений:

 

 

Это и есть уравнение наклонной прямой, проходящей через две точки, при .

Ответ: .

Если , то это вертикальная прямая.

Если , то это горизонтальная прямая.

Пример

Даны две точки , . Написать уравнение наклонной прямой, проходящей через эти точки.

Решение

Уравнение наклонной прямой, проходящей через две точки, в общем виде выглядит следующем образом:

 

Подставляем значение координат данных в условии точек в уравнение:

 

 

 

 

В итоге мы получили уравнение прямой в отрезках.


Уравнение прямой, проходящей через две точки. Второй способ вывода

Дано: точки  и  на наклонной прямой  (см. Рис. 11).

Требуется: вывести уравнение наклонной прямой .

Рис. 11. Наклонная прямая, проходящая через две точки

Решение

Подставляем координаты первой точки в уравнение наклонной прямой:

 

Получаем систему уравнений:

 

Вычтем из первого уравнения второе:

 

Необходимо найти , для этого подставляем координаты двух точек в уравнение наклонной прямой:

 

Вычтем из первого уравнения второе:

 

 

Следовательно:

 

 

Ответ: , где  и .

Список литературы

1. Атанасян Л.С. и др. Геометрия 7–9 классы. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2010.

2. Фарков А.В. Тесты по геометрии: 9 класс. К учебнику Л.С. Атанасяна и др. – М.: Экзамен, 2010.

3. Погорелов А.В. Геометрия, уч. для 7–11 кл. общеобр. учрежд. – М.: Просвещение, 1995.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт mathprofi.ru (Источник)

2. Интернет-сайт mathelp.spb.ru (Источник)

3. Интернет-сайт YouTube (Источник)

Домашнее задание

1. Задачи 972, 977, 982 – Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. Геометрия, 7-9 (Источник)

2. Докажите, что прямые, заданные уравнениями  и , параллельны.

3. Составить уравнение прямой, проходящей через точки , .

Понравилась статья? Поделить с друзьями:
  • Как найти инвестора для открытия бара
  • Как найти номер мед страховки
  • Как найти проценты от даты до даты
  • Как найти объем котельной
  • Как найти файлы thumb