Как найти координаты точек через уравнение прямой

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x — x 1 = y — y 1
x 2 — x 1 y 2 — y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >- координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 1 2 — 1 = y — 7 3 — 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x — x 1 = y — y 1 = z — z 1
x 2 — x 1 y 2 — y 1 z 2 — z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0 = y — y 0 = z — z 0
l m n

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.

Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ: 7 x — 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ: y — 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ: x — 2 · y + 11 = 0 .

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ: — 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ: y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Ответ: x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0

Ответ: y — 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ: 1 3 x + 2 y — 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ: 2 x — 3 y — 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0

Практика. Решение задач. Часть 1. Уравнения прямой

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Мы изучили новые инструменты – координаты и действия с векторами в координатах, операцию скалярного умножения векторов. Этот урок мы посвятим решению задач и потренируемся применять эти новые инструменты на практике.

источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-prjamoj/

http://interneturok.ru/lesson/geometry/9-klass/effektivnye-kursy/praktika-reshenie-zadach-chast-1-uravneniya-pryamoy

Уравнение линии
на плоскости.

Как известно, любая
точка на плоскости определяется двумя
координатами в какой- либо системе
координат. Системы координат могут быть
различными в зависимости от выбора
базиса и начала координат.

Определение.


Уравнением линии

называется соотношение y
= f(x)
между координатами точек, составляющих
эту линию.

Отметим,
что уравнение линии может быть выражено
параметрическим способом, то есть каждая
координата каждой точки выражается
через некоторый независимый параметр
t
.

Характерный
пример – траектория движущейся точки.
В этом случае роль параметра играет
время.

Уравнение прямой
на плоскости.

Определение.


Любая прямая на плоскости может быть
задана уравнением первого порядка

Ах
+ Ву + С = 0,

причем
постоянные А, В не равны нулю одновременно,
т.е. А 2
+ В 2

0. Это уравнение первого порядка называют
общим
уравнением прямой.

В
зависимости от значений постоянных А,В
и С возможны следующие частные случаи:

    C
    = 0, А 
    0, В 
    0 – прямая проходит через начало
    координат

    А
    = 0, В 
    0, С 
    0 { By
    + C
    = 0}- прямая параллельна оси Ох

    В
    = 0, А 
    0, С 
    0 { Ax
    + C
    = 0} – прямая параллельна оси Оу

    В
    = С = 0, А 
    0 – прямая совпадает с осью Оу

    А
    = С = 0, В 
    0 – прямая совпадает с осью Ох

Уравнение прямой
может быть представлено в различном
виде в зависимости от каких – либо
заданных начальных условий.

Уравнение прямой
по точке и вектору нормали.

Определение.


В декартовой прямоугольной системе
координат вектор с компонентами (А, В)
перпендикулярен прямой, заданной
уравнением Ах + Ву + С = 0.

Пример.

Найти уравнение прямой, проходящей
через точку А(1, 2) перпендикулярно вектору
(3,
-1).

Составим
при А = 3 и В = -1 уравнение прямой: 3х – у
+ С = 0. Для нахождения коэффициента С
подставим в полученное выражение
координаты заданной точки А.

Получаем:
3 – 2 + C
= 0, следовательно С = -1.

Итого:
искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой,
проходящей через две точки.

Пусть
в пространстве заданы две точки M 1 (x 1 ,
y 1 ,
z 1)
и M 2 (x 2,
y 2 ,
z 2),
тогда уравнение прямой, проходящей
через эти точки:

Если
какой- либо из знаменателей равен нулю,
следует приравнять нулю соответствующий
числитель.

На
плоскости записанное выше уравнение
прямой упрощается:

если
х 1 
х 2
и х = х 1 ,
еслих 1
= х 2 .

Дробь

=k
называется угловым
коэффициентом

прямой.

Пример.

Найти уравнение прямой, проходящей
через точки А(1, 2) и В(3, 4).

Применяя
записанную выше формулу, получаем:

Уравнение прямой
по точке и угловому коэффициенту.

Если
общее уравнение прямой Ах + Ву + С = 0
привести к виду:

и
обозначить

,
то полученное уравнение называетсяуравнением
прямой с угловым коэффициентом
k
.

Уравнение прямой
по точке и направляющему вектору.

По аналогии с пунктом,
рассматривающим уравнение прямой через
вектор нормали можно ввести задание
прямой через точку и направляющий вектор
прямой.

Определение.


Каждый ненулевой вектор
( 1 ,
 2),
компоненты которого удовлетворяют
условию А 1
+ В 2
= 0 называется направляющим вектором
прямой

Ах
+ Ву + С = 0.

Пример.

Найти уравнение прямой с направляющим
вектором
(1,
-1) и проходящей через точку А(1, 2).

Уравнение
искомой прямой будем искать в виде: Ax
+ By
+ C
= 0. В соответствии с определением,
коэффициенты должны удовлетворять
условиям:

1A
+ (-1)B
= 0, т.е. А = В.

Тогда
уравнение прямой имеет вид: Ax
+ Ay
+ C
= 0, или x
+ y
+ C/A
= 0.

при
х = 1, у = 2 получаем С/A
= -3, т.е. искомое уравнение:

Уравнение прямой
в отрезках.

Если
в общем уравнении прямой Ах + Ву + С = 0 С
0, то, разделив на –С, получим:

или

,
где

Геометрический
смысл коэффициентов в том, что коэффициент
а

является координатой точки пересечения
прямой с осью Ох, а b

– координатой точки пересечения прямой
с осью Оу.

Пример.

Задано общее уравнение прямой х – у + 1
= 0. Найти уравнение этой прямой в отрезках.

С
= 1,

,
а = -1,b
= 1.

Нормальное
уравнение прямой.

Если
обе части уравнения Ах + Ву + С = 0 разделить
на число

,
которое называетсянормирующем
множителем
,
то получим

xcos
+ ysin
— p
= 0 –

нормальное уравнение
прямой.

Знак

нормирующего множителя надо выбирать
так, чтобы С
< 0.

р
– длина перпендикуляра, опущенного из
начала координат на прямую, а 
— угол, образованный этим перпендикуляром
с положительным направлением оси Ох.

Пример.

Дано общее уравнение прямой 12х – 5у –
65 = 0. Требуется написать различные типы
уравнений этой прямой.

уравнение
этой прямой в отрезках:

уравнение
этой прямой с угловым коэффициентом:
(делим на 5)

нормальное
уравнение прямой:

;
cos
= 12/13; sin
= -5/13; p
= 5.

Cледует
отметить, что не каждую прямую можно
представить уравнением в отрезках,
например, прямые, параллельные осям или
проходящие через начало координат.

Пример.

Прямая отсекает на координатных осях
равные положительные отрезки. Составить
уравнение прямой, если площадь
треугольника, образованного этими
отрезками равна 8 см 2 .

Уравнение
прямой имеет вид:

,
a
= b
= 1; ab/2
= 8; a
= 4; -4.

a
= -4 не подходит по условию задачи.

Итого:


или х + у – 4 = 0.

Пример.

Составить уравнение прямой, проходящей
через точку А(-2, -3) и начало координат.

Уравнение
прямой имеет вид:

,
где х 1
= у 1
= 0; x 2
= -2; y 2
= -3.

Угол
между прямыми на плоскости.

Определение.


Если заданы две прямые y
= k 1 x
+ b 1 ,
y
= k 2 x
+ b 2 ,
то острый угол между этими прямыми будет
определяться как

.

Две
прямые параллельны, если k 1
= k 2 .

Две
прямые перпендикулярны, если k 1
= -1/k 2 .

Теорема.


Прямые Ах +
Ву + С = 0 и А
1
х
+ В
1
у
+ С
1

= 0 параллельны, когда пропорциональны
коэффициенты А
1

=

А,
В
1

=

В.
Если еще и С
1

=

С,
то прямые совпадают.

Координаты точки
пересечения двух прямых находятся как
решение системы уравнений этих прямых.

Уравнение прямой,
проходящей через данную точку

перпендикулярно
данной прямой.

Определение.


Прямая, проходящая через точку М 1 (х 1 ,
у 1)
и перпендикулярная к прямой у = kx
+ b
представляется уравнением:

Расстояние от
точки до прямой.

Теорема.


Если задана
точка М(х
0
,
у
0
),
то расстояние до прямой Ах + Ву + С =0
определяется как

.

Доказательство.


Пусть точка М 1 (х 1 ,
у 1)
– основание перпендикуляра, опущенного
из точки М на заданную прямую. Тогда
расстояние между точками М и М 1:

Координаты
x 1
и у 1
могут быть найдены как решение системы
уравнений:

Второе
уравнение системы – это уравнение
прямой, проходящей через заданную точку
М 0
перпендикулярно заданной прямой.

Если
преобразовать первое уравнение системы
к виду:

A(x
– x 0)
+ B(y – y 0)
+ Ax 0
+ By 0
+ C = 0,

то,
решая, получим:

Подставляя
эти выражения в уравнение (1), находим:

.

Теорема
доказана.

Пример.

Определить угол между прямыми: y
= -3x
+ 7; y
= 2x
+ 1.

k 1
= -3; k 2
= 2 tg
=

;

= /4.

Пример.

Показать, что прямые 3х – 5у + 7 = 0 и 10х +
6у – 3 = 0 перпендикулярны.

Находим:
k 1
= 3/5, k 2
= -5/3, k 1 k 2
= -1, следовательно, прямые перпендикулярны.

Пример.

Даны вершины треугольника А(0; 1), B(6;
5), C(12;
-1). Найти уравнение высоты, проведенной
из вершины С.

Находим
уравнение стороны АВ:

;
4x
= 6y
– 6;

2x
– 3y
+ 3 = 0;

Искомое
уравнение высоты имеет вид: Ax
+ By
+ C
= 0 или y
= kx
+ b.

k
=
.
Тогда y
=

.
Т.к. высота проходит через точку С, то
ее координаты удовлетворяют данному
уравнению:

откуда
b
= 17. Итого:

.

Ответ:
3x
+ 2y
– 34 = 0.

Аналитическая
геометрия в пространстве.

Уравнение линии
в пространстве.

Уравнение прямой в пространстве по
точке и

направляющему
вектору.

Возьмем
произвольную прямую и вектор
(m,
n,
p),
параллельный данной прямой. Вектор
называетсянаправляющим
вектором

прямой.

На
прямой возьмем две произвольные точки
М 0 (x 0 ,
y 0 ,
z 0)
и M(x,
y,
z).

z

M 1

Обозначим
радиус- векторы этих точек как
и
,
очевидно, что


=

.

Т.к.
векторы
и
коллинеарны, то верно соотношение

=
t,
где t
– некоторый параметр.

Итого,
можно записать:
=

+
t.

Т.к.
этому уравнению удовлетворяют координаты
любой точки прямой, то полученное
уравнение – параметрическое
уравнение прямой
.

Это
векторное уравнение может быть
представлено в координатной форме:

Преобразовав
эту систему и приравняв значения
параметра t,
получаем канонические уравнения прямой
в пространстве:

.

Определение.


Направляющими
косинусами
прямой
называются направляющие косинусы
вектора
,
которые могут быть вычислены по формулам:

;


.

Отсюда
получим: m: n: p
= cos
: cos
: cos.

Числа
m,
n,
p
называются угловыми
коэффициентами

прямой. Т.к.

ненулевой вектор, тоm,
n
и p
не могут равняться нулю одновременно,
но одно или два из этих чисел могут
равняться нулю. В этом случае в уравнении
прямой следует приравнять нулю
соответствующие числители.

Уравнение прямой в пространстве,
проходящей

через
две точки.

Если
на прямой в пространстве отметить две
произвольные точки M 1 (x 1 ,
y 1 ,
z 1)
и M 2 (x 2 ,
y 2 ,
z 2),
то координаты этих точек должны
удовлетворять полученному выше уравнению
прямой:

.

Кроме
того, для точки М 1
можно записать:

.

Решая
совместно эти уравнения, получим:

.

Это уравнение прямой,
проходящей через две точки в пространстве.

Общие уравнения
прямой в пространстве.

Уравнение
прямой может быть рассмотрено как
уравнение линии пересечения двух
плоскостей.

Как
было рассмотрено выше, плоскость в
векторной форме может быть задана
уравнением:

+
D
= 0, где


нормаль плоскости;

радиус- вектор произвольной точки
плоскости.

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель!

Сегодня мы начнем изучать алгоритмы, связанные с геометрией. Дело в том, что олимпиадных задач по информатике, связанных с вычислительной геометрией, достаточно много и решение таких задач часто вызывают затруднения.

За несколько уроков мы рассмотрим ряд элементарных подзадач, на которые опирается решение большинства задач вычислительной геометрии.

На этом уроке мы составим программу для нахождения уравнения прямой
, проходящей через заданные две точки
. Для решения геометрических задач нам понадобятся некоторые знания из вычислительной геометрии. Часть урока мы посвятим знакомству с ними.

Сведения из вычислительной геометрии

Вычислительная геометрия – это раздел информатики, изучающий алгоритмы решения геометрических задач.

Исходными данными для таких задач могут быть множество точек на плоскости, набор отрезков, многоугольник (заданный например, списком своих вершин в порядке движения по часовой стрелке) и т.п.

Результатом может быть либо ответ на какой то вопрос (типа принадлежит ли точка отрезку, пересекаются ли два отрезка, …), либо какой-то геометрический объект (например, наименьший выпуклый многоугольник, соединяющий заданные точки, площадь многоугольника, и т.п.).

Мы будем рассматривать задачи вычислительной геометрии только на плоскости и только в декартовой системе координат.

Векторы и координаты

Чтобы применять методы вычислительной геометрии, необходимо геометрические образы перевести на язык чисел. Будем считать, что на плоскости задана декартова система координат, в которой направление поворота против часовой стрелки называется положительным.

Теперь геометрические объекты получают аналитическое выражение. Так, чтобы задать точку, достаточно указать её координаты: пару чисел (x; y). Отрезок можно задать, указав координаты его концов, прямую можно задать, указав координаты пары ее точек.

Но основным инструментом при решении задач у нас будут векторы. Напомню поэтому некоторые сведения о них.

Отрезок АВ
, у которого точку А
считают началом (точкой приложения), а точку В
– концом, называют вектором АВ
и обозначают либо , либо жирной строчной буквой, например а

.

Для обозначения длины вектора (то есть длины соответствующего отрезка) будем пользоваться символом модуля (например, ).

Произвольный вектор будет иметь координаты, равные разности соответствующих координат его конца и начала:

,

здесь точки A
и B

имеют координаты соответственно.

Для вычислений мы будем использовать понятие ориентированного угла
, то есть угла, учитывающего взаимное расположение векторов.

Ориентированный угол между векторами a

и b

положительный, если поворот от вектора a

к вектору b

совершается в положительном направлении (против часовой стрелки) и отрицательный – в другом случае. См рис.1а, рис.1б. Говорят также, что пара векторов a

и b

положительно (отрицательно) ориентирована.

Таким образом, величина ориентированного угла зависит от порядка перечисления векторов и может принимать значения в интервале .

Многие задачи вычислительной геометрии используют понятие векторного (косого или псевдоскалярного) произведений векторов.

Векторным произведением векторов a и b будем называть произведение длин этих векторов на синус угла между ними:

.

Векторное произведение векторов в координатах:

Выражение справа – определитель второго порядка:

В отличии от определения, которое дается в аналитической геометрии, это скаляр.

Знак векторного произведения определяет положение векторов друг относительно друга:

a

и b

положительно ориентирована.

Если величина , то пара векторов a

и b

отрицательно ориентирована.

Векторное произведение ненулевых векторов равно нулю тогда и только тогда, когда они коллинеарны (). Это значит, что они лежат на одной прямой или на параллельных прямых.

Рассмотрим несколько простейших задач, необходимых при решении более сложных.

Определим уравнение прямой по координатам двух точек.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки: с координатами (x1;y1) и с координатами (x2; y2). Соответственно вектор с началом в точке и концом в точке имеет координаты (x2-x1, y2-y1). Если P(x, y) – произвольная точка на нашей прямой, то координаты вектора равны (x-x1, y – y1).

С помощью векторного произведения условие коллинеарности векторов и можно записать так:

Т.е. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0

(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

Последнее уравнение перепишем следующим образом:

ax + by + c = 0, (1)

c = x1(y1-y2) + y1(x2-x1)

Итак, прямую можно задать уравнением вида (1).

Задача 1. Заданы координаты двух точек. Найти её представление в виде ax + by + c = 0.

На этом уроке мы познакомились с некоторыми сведениями из вычислительной геометрии. Решили задачу по нахождению уравнения линии по координатам двух точек.

На следующем уроке составим программу для нахождения точки пересечения двух линий, заданных своими уравнениями.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая
линия
— алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение
. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В
не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой.
В зависимости от значений постоянных А, В
и С
возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0
— прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0}
— прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0}
— прямая параллельна оси Оу

. В = С = 0, А ≠0
— прямая совпадает с осью Оу

. А = С = 0, В ≠0
— прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких — либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение
. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример
. Найти уравнение прямой, проходящей через точку А(1, 2)
перпендикулярно вектору (3, -1).

Решение
. Составим при А = 3 и В = -1 уравнение прямой: 3х — у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 — 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х — у — 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1)
и M2 (x 2, y 2 , z 2),
тогда уравнение прямой
,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2
и х = х 1
, если х 1 = х 2
.

Дробь = k
называется угловым коэффициентом
прямой
.

Пример
. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение
. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0
привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение
. Каждый ненулевой вектор (α 1 , α 2)
, компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0
называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример
. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение
. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0.
В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0,
или x + y + C / A = 0.

при х = 1, у = 2
получаем С/ A = -3
, т.е. искомое уравнение:

х + у — 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох,
а b
— координатой точки пересечения прямой с осью Оу.

Пример
. Задано общее уравнение прямой х — у + 1 = 0.
Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0
разделить на число , которое называется

нормирующем множителем
, то получим

xcosφ + ysinφ — p = 0 —
нормальное уравнение прямой
.

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р
— длина перпендикуляра, опущенного из начала координат на прямую,

а φ
— угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример
. Дано общее уравнение прямой 12х — 5у — 65 = 0
. Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках
:

Уравнение этой прямой с угловым коэффициентом
: (делим на 5)

Уравнение прямой
:

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение
. Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2
, то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2
. Две прямые перпендикулярны,

если k 1 = -1/ k 2
.

Теорема
.

Прямые Ах + Ву + С = 0
и А 1 х + В 1 у + С 1 = 0
параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ
. Если еще и С 1 = λС
, то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение
. Прямая, проходящая через точку М 1 (х 1 , у 1)
и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема
. Если задана точка М(х 0 , у 0),
то расстояние до прямой Ах + Ву + С = 0
определяется как:

Доказательство
. Пусть точка М 1 (х 1 , у 1)
— основание перпендикуляра, опущенного из точки М
на заданную

прямую. Тогда расстояние между точками М
и М 1
:

(1)

Координаты x 1
и у 1
могут быть найдены как решение системы уравнений:

Второе уравнение системы — это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x — x 0) + B(y — y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Каноническими уравнениями прямой в пространстве называются уравнения, определяющие прямую, проходящую через заданную точку коллинеарно направляющему вектору.

Пусть дана точка и направляющий вектор . Произвольная точка лежит на прямой l

только в том случае, если векторы и коллинеарны, т. е. для них выполняется условие:

.

Приведённые выше уравнения и есть канонические уравнения прямой.

Числа m

, n

и p

являются проекциями направляющего вектора на координатные оси. Так как вектор ненулевой, то все числа m

, n

и p

не могут одновременно равняться нулю. Но одно или два из них могут оказаться равными нулю. В аналитической геометрии допускается, например, такая запись:

,

которая означает, что проекции вектора на оси Oy

и Oz

равны нулю. Поэтому и вектор , и прямая, заданная каноническими уравнениями, перпендикулярны осям Oy

и Oz

, т. е. плоскости yOz

.

Пример 1.
Составить уравнения прямой в пространстве,
перпендикулярной плоскости и проходящей через точку пересечения этой плоскости с осью Oz

.

Решение. Найдём точку пересечения данной плоскости с осью Oz

. Так как любая точка, лежащая на оси Oz

, имеет координаты , то, полагая в заданном уравнении плоскости x = y =
0
, получим 4z
— 8 = 0
или z
= 2
. Следовательно, точка пересечения данной плоскости с осью Oz

имеет координаты (0; 0; 2)
. Поскольку искомая прямая перпендикулярна плоскости, она параллельна вектору её нормали . Поэтому направляющим вектором прямой может служить вектор нормали заданной плоскости.

Теперь запишем искомые уравнения прямой, проходящей через точку A
= (0; 0; 2)
в направлении вектора :

Уравнения прямой, проходящей через две данные точки

Прямая может быть задана двумя лежащими на ней точками и В этом случае направляющим вектором прямой может служить вектор . Тогда канонические уравнения прямой примут вид

.

Приведённые выше уравнения и определяют прямую, проходящую через две заданные точки.

Пример 2.
Составить уравнение прямой в пространстве, проходящей через точки и .

Решение. Запишем искомые уравнения прямой в виде, приведённом выше в теоретической справке:

.

Так как , то искомая прямая перпендикулярна оси Oy

.

Прямая как линия пересечения плоскостей

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и , т. е. как множество точек, удовлетворяющих системе двух линейных уравнений

Уравнения системы называются также общими уравнениями прямой в пространстве.

Пример 3.
Составить канонические уравнения прямой в пространстве, заданной общими уравнениями

Решение. Чтобы написать канонические уравнения прямой или, что то же самое, уравнения прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например yOz

и xOz

.

Точка пересечения прямой с плоскостью yOz

имеет абсциссу x
= 0
. Поэтому, полагая в данной системе уравнений x
= 0
, получим систему с двумя переменными:

Её решение y
= 2
, z
= 6
вместе с x
= 0
определяет точку A
(0; 2; 6)
искомой прямой. Полагая затем в заданной системе уравнений y
= 0
, получим систему

Её решение x
= -2
, z
= 0
вместе с y
= 0
определяет точку B
(-2; 0; 0)
пересечения прямой с плоскостью xOz

.

Теперь запишем уравнения прямой, проходящей через точки A
(0; 2; 6)
и B
(-2; 0; 0)
:

,

или после деления знаменателей на -2:

,

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Yandex.RTB R-A-339285-1

Пусть на плоскости задана прямоугольная система координат O x y .

Теорема 1

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А, В, С.

Доказательство

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 (x 0 , y 0) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A (x — x 0) + B (y — y 0) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A (x — x 0) + B (y — y 0) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = (A , B) и M 0 M → = (x — x 0 , y — y 0) . Таким образом, множество точек M (x , y) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = (A , B) . Можем предположить, что это не так, но тогда бы векторы n → = (A , B) и M 0 M → = (x — x 0 , y — y 0) не являлись бы перпендикулярными, и равенство A (x — x 0) + B (y — y 0) = 0 не было бы верным.

Следовательно, уравнение A (x — x 0) + B (y — y 0) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 (x 0 , y 0) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = (A , B) .

Пусть также существует некоторая точка M (x , y) – плавающая точка прямой. В таком случае, векторы n → = (A , B) и M 0 M → = (x — x 0 , y — y 0) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A (x — x 0) + B (y — y 0) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C: C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Определение 1

Уравнение, имеющее вид
A x + B y + C = 0 – это общее уравнение прямой
на плоскости в прямоугольной системе координат
O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор
n → = (2 , 3) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Определение 2

Полное общее уравнение прямой
– такое общее уравнение прямой A x + B y + C = 0 , в котором числа А, В, С отличны от нуля. В ином случае уравнение является неполным
.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение
    — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек (x , y) , координаты которых равны одному и тому же числу
    — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел (0 , 0) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Пример 1

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

A · 2 7 + C = 0

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ:
7 x — 2 = 0

Пример 2

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку (0 , 3) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки (0 , 3) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С: С = — 3 . Используем известные значения В и С, получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ:
y — 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 (x 0 , y 0) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A (x — x 0) + B (y — y 0) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 (x 0 , y 0) и имеет нормальный вектор n → = (A , B) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Пример 3

Даны точка М 0 (- 3 , 4) , через которую проходит прямая, и нормальный вектор этой прямой
n → = (1 , — 2) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A (x — x 0) + B (y — y 0) = 0 ⇔ 1 · (x — (- 3)) — 2 · y (y — 4) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 (- 3 , 4) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ:
x — 2 · y + 11 = 0 .

Пример 4

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0: 2 3 · (- 3) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ:
— 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Пример 5

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0
.

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Пример 6

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ:
x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Пример 7

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ:
y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y:

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Пример 8

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Ответ:
x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · (x — x 1) = a x (y — y 1) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Пример 9

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · (x + 1) = 2 (y — 4) ⇔ y — 4 = 0

Ответ:
y — 4 = 0

Пример 10

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ:
1 3 x + 2 y — 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A (x — x 0) + B (y — y 0) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Пример 11

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 (4 , 1) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = (2 , — 3) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A (x — x 0) + B (y — y 0) = 0 ⇔ 2 (x — 4) — 3 (y — 1) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ:
2 x — 3 y — 5 = 0 .

Пример 12

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = (3 , 5) . Прямая проходит через начало координат, т.е. через точку О (0 , 0) . Составим общее уравнение заданной прямой:

A (x — x 0) + B (y — y 0) = 0 ⇔ 3 (x — 0) + 5 (y — 0) = 0 ⇔ 3 x + 5 y = 0

Ответ
: 3 x + 5 y = 0 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия задается на плоскости уравнением первой степени (линейное уравнение).

Уравнения прямых, параллельных осям координат

Возьмем прямую линию, параллельную оси Оу и проходящую на расстоянии а от нее (рис. 10).

Прямая линия

Все точки этой прямой одинаково удалены от оси ординат на расстояние, равное а. Следовательно, для каждой точки прямой АМ абсцисса одна и та же, а именно:

х = а, (1)

ордината же различна. Таким образом, уравнение (1) вполне определяет прямую, параллельную оси Оу, а потому оно является ее уравнением. Возьмем прямую, параллельную оси Ох, на расстоянии.

Прямая линия

равном b от нее (рис. 11). Все точки этой прямой одинаково удалены от оси Ох на расстояние, равное b , т. е. любая точка прямой ВМ имеет постоянную ординату, а именно:

Прямая линия

абсциссу же различную. Как видно, уравнение (2) вполне определяет прямую, параллельную оси Ох, а потому оно является ее уравнением.

По уравнениям (1) и (2) можно построить соответствующие им прямые. Пусть, например, дана прямая х = — 4. Отложив на оси Ох отрезок ОА = — 4 (рис. 12) и проведя через точку А прямую, параллельную оси Оу, получим искомую прямую.

Прямая линия

Уравнения осей координат

Возьмем уравнение прямой, параллельной оси Оу:

х = а

и станем в нем уменьшать абсолютную величину а, тогда прямая, определяемая этим уравнением, будет приближаться к оси Оу, оставаясь все время ей параллельной, и при а = 0 сольется с ней. Уравнение х = 0 является уравнением оси Оу.

Если же в уравнении у = b прямой, параллельной оси Ох, будем уменьшать абсолютную величину b то эта прямая станет приближаться к оси Ох, оставаясь ей параллельной, и при b = 0 с ней совпадет. Таким образом, уравнение у = 0 будет уравнением оси Ох.

Уравнение прямой, проходящей через начало координат

Проведем прямую через начало координат под угломПрямая линия

к оси Ох (рис. 13). Принято положительный угол а отсчитывать от положительного направления оси абсцисс в сторону, противоположную движению часовой стрелки (рис. 13), а отрицательный — по часовой стрелке.

Прямая линия

Возьмем на проведенной прямой произвольную точку М (х; у). Опустив перпендикуляр МР на ось Ох, получим прямоугольный треугольник ОМР, из которого найдем:

Прямая линия

Но

Прямая линия

Прямая линия

Координаты любой точки прямой ОМ удовлетворяют полученному уравнению; можно показать, что координаты любой точки, не лежащей на прямой ОМ, не удовлетворяют ему; поэтому оно является уравнением прямой ОМ. Итак,

Прямая линия

есть уравнение прямой, проходящей через начало координат. В нем х и утекущие координаты, а Прямая линияугловой коэффициент.

Определение:

Угловым коэффициентом прямой называется тангенс угла наклона этой прямой к положительному направлению оси Ох.

Величина Прямая линия может быть как положительной, так и отрицательной. Если угол а острый, то тангенс его имеет положительное значение; если же угол а тупой, —то отрицательное. Поэтому величина Прямая линия в уравнении прямой будет положительной, если а — острый угол, и отрицательной, если тупой.

Заметим, что при а = 90° углового коэффициента не существует, так как 90° не имеет числового значения.

Зная угловой коэффициент прямой у = Прямая линиях, можно определить ее положение.

Пусть требуется построить прямую у= 2х.

Для этого найдем угол а из условия

откуда:

Прямая линия

Построив при точке О найденный угол, мы и получим искомую прямую (рис. 14).

Прямая линия

Построение этой прямой можно провести и проще.

Известно, что положение прямой определяется двумя точками, поэтому для решения задачи нужно знать их координаты. В нашем же случае достаточно определить координаты одной точки, так как вторая (начало координат) нам известна. Для этого дадим х произвольное значение, например х = 2, тогда из уравнения прямой найдем:

Прямая линия

Значения х = 2 и у = 4 и будут координатами точки, лежащей на данной прямой. Построив эту точку, проведем через нее и начало координат прямую линию (рис. 14).

Уравнение прямой с угловым коэффициентом и начальной ординатой

Пусть дана прямая ОС, проходящая через начало координат под углом а к положительному направлению оси Ох (рис. 15)

Прямая линия

Ее уравнение имеет вид

Прямая линия

где Прямая линия .

Проведем прямую Прямая линия отсекающую на оси Оу отрезок ОВ = b. Прямая АВ составляет с положительным направлением оси Ох тот же угол а. Пусть М(х; у)— произвольная точка прямой АВ. Из рис. 15 найдем:

Но

Прямая линия

Подставив значение РМ1 в равенство (1), получим уравнение прямой АВ в виде:

Прямая линия

где Прямая линияугловой коэффициент, а b называется начальной ординатой.

Заметим что прямая Прямая линия получается смещением всех точек прямой Прямая линия (рис. 15) на отрезок b вверх (при положительном b) и вниз при отрицательном b .

Прямая линия

Уравнение Прямая линия определяющее прямую проходящую через начало координат, является частным случаем уравнения (2) при b = 0.

Зная угловой коэффициент Прямая линия и начальную ординату b можно определить положение прямой. Пусть, например, требуется построить прямую Прямая линия

Из данного уравнения имеем:

откуда

Прямая линия

Проведем через начало координат прямую МN под углом в 45 градусов к положительному направлению оси Ох (рис. 16). На прямуюПрямая линия

Как видно из уравнения ее пересекает ось Оу на расстоянии ОС, равном 4 единицам масштаба от начала координат.

Поэтому прямая АВ, проведенная через точку С параллельно прямой МN, и будет искомой.

Однако проще построить указанную прямую по двум ее точкам. Удобнее для этого брать точки пересечения прямой с осями координат. Одна из них — точка С пересечения прямой с осью Оу— дается самим уравнением, а именно С(0; 4). Для нахождения точки D пересечения этой прямой с осью Ох положим в данном уравнении y = 0, получим х = — 4; значит, прямая пересекает ось Ох в точке D (-4; 0). Строим точки С и D и проводим через них искомую прямую.

Прямая линия

Пример:

Найти уравнения прямых АВ, СD и ЕF, изображенных на рис. 17.

Решение:

Чтобы написать уравнения данных прямых, нужно определить величины Прямая линия и b, а затем подставить их значения в уравнение Прямая линия

Для прямой АВ

Прямая линия

Прямая линия

Следовательно, уравнения данных прямых будут:

Прямая линия

Общее уравнение прямой

В предыдущей лекции были выведены следующие виды уравнения прямой: уравнение прямой, параллельной оси Оу:

Прямая линия

уравнение прямой, параллельной оси Ох:

Прямая линия

уравнение оси Оу:

Прямая линия

уравнение оси Ох:

Прямая линия

уравнение прямой, проходящей через начало координат:

Прямая линия

уравнение прямой с угловым коэффициентом и начальной ординатой:

Прямая линия

Уравнения (1) — (6) исчерпывают все возможные положения прямой, поэтому можно сказать, что

всякая прямая линия определяется уравнением первой степени относительно текущих координат.

Покажем теперь, что указанные виды уравнения прямой можно получить из уравнения

Прямая линия

при некоторых частных значениях коэффициентов А, В и С.

I. Если В = 0, то уравнение (7) обратится в следующее:

Прямая линия

откуда

Прямая линия

Положив

Прямая линия

получим

Прямая линия

Уравнение Прямая линия есть уравнение прямой, параллельной оси Оу.

II. Если А = 0, то

Прямая линия

отсюда

Прямая линия

Положив

Прямая линия

получим

Прямая линия

Уравнение Прямая линия определяет прямую, параллельную оси Ох.

III. Если В = 0 и С = 0, то

Прямая линия

отсюда

Прямая линия

IV. Если А = 0 и С = 0, то

Прямая линия

отсюда

Прямая линия

V. Если С = 0, то

Прямая линия

отсюда

Прямая линия

Положим

Прямая линия

тогда

Прямая линия

Уравнение Прямая линия определяет прямую, проходящую через начало координат.

VI. Если ни один из коэффициентов уравнения (7) не равен нулю, то и в этом случае его можно преобразовать в знакомую нам форму уравнения прямой. Найдем из уравнения (7) значение у:

Прямая линия

Положив

Прямая линия

и

Прямая линия

можем написать

Прямая линия

Следовательно, уравнение

Прямая линия

включает в себя все рассмотренные нами ранее уравнения прямой; поэтому оно называется общим уравнением прямой. Итак, всякое уравнение первой степени

Прямая линия

при любых значениях коэффициентов А, В и С, исключая одновременное равенство А и В нулю, определяет прямую линию.

Пример:

Построить прямую Прямая линия

Решение:

Проще всего построить прямую по двум ее точкам пересечения с осями координат. Положив в данном уравнении у = 0, получим х =- 5; координаты (-5; 0) и будут определять положение точки пересечения прямой с осью Ох. Для нахождения точки пересечения прямой с осью Оу положим в том же уравнении х = 0 тогда найдем у = 2; координаты искомой точки будут (0; 2).

Построив эти точки, проводим через них прямую 2х— 5у —10 = 0 (рис. 18).

Пример:

Найти угловой коэффициент и начальную ординату прямой 4х+ 6у — 3 = 0.

Решение:

Преобразуем это уравнение к виду Прямая линия

для этого находим:

6у = — 4х + 3,

отсюда

Прямая линия

Сравнив полученное уравнение с уравнением Прямая линия найдем:

Прямая линия

Угловой коэффициент можно найти и из равенства (8). Для этого, как видно, нужно коэффициент при х общего уравнения прямой разделить на коэффициент при у и частное

Прямая линия

взять с противоположным знаком. Таким образом, в данном примере

Прямая линия

Уравнение прямой в отрезках

Как мы уже знаем, положение прямой определяется или двумя точками или одной точкой и углом наклона прямой к оси Ох. Если прямая не параллельна ни одной из координатных осей и не проходит

Прямая линия

через начало координат, то ее положение может быть определено и другими данными, например отрезками, которые она отсекает на осях. Выведем уравнение прямой для этого случая.

Пусть дана прямая, отсекающая на координатных осях отрезки ОА = а и ОВ = b (рис. 19).

Возьмем на этой прямой произвольную точку M (х; у) и проведем

МР Прямая линия Ох. Из подобия треугольников РМА и ОВА имеем:

Прямая линия

или

Прямая линия

Разделив а — х почленно на а, будем иметь:

Прямая линия

откуда

Прямая линия

Можно показать, что координаты любой точки нашей прямой будут удовлетворять этому равенству, а потому его нужно рассматривать как уравнение прямой АВ.

В уравнение (1) входят отрезки а и b , отсекаемые прямой на осях; поэтому оно называется уравнением прямой в отрезках.

Величины а и b могут быть как положительными, так и отрицательными в зависимости от того, в какую сторону от начала координат откладываются отрезки а и b .

Пусть, например, дана прямая АВ (рис. 20). Здесь а = — 2, b = — 3; следовательно, уравнение прямой АВ запишется в таком виде:

Прямая линия

По уравнению вида (1) Очень просто строится прямая. Для этого нужно только отложить на осях отрезки а и b взятые из уравнения, и через их концы провести прямую.

Заметим, что уравнение в отрезках легко получается из общего уравнения прямой: Ах + Ву + С= 0, если все коэффициенты общего уравнения отличны от нуля (иначе уравнение в отрезках не имеет смысла).

Уравнение пучка прямых

Пусть прямая АВ проходит через точку М(х1; у1) и образует угол а с положительным направлением оси Ох (рис. 21). Составим для прямой АВ уравнение вида

Прямая линия

Для этого нужно найти величины Прямая линия и b определяющие прямую АВ, а затем подставить в уравнение (1) их значения. Так как угол а дан, то величина Прямая линияопределится из равенства

Прямая линия

Для нахождения b воспользуемся тем, что точка М лежит на прямой (1) и, следовательно, ее координаты удовлетворяют уравнению этой прямой.

Подставив в уравнение (1) вместо х и у их значения х1 и у1, а величину Прямая линия полагая известной, получим

Прямая линия

откуда

Прямая линия

Уравнение (1) можем теперь записать в виде

Прямая линия

или

Прямая линия

Таково искомое уравнение прямой АВ; в нем Прямая линия имеет одно, вполне определенное значение.

Допустим, что через ту же точку M(х1; у1) проходит несколько прямых; тогда угол а наклона этих прямых к оси Ох, и также множитель Прямая линия в уравнении (2) будут иметь различные значения.

В таком случае уравнение (2) будет определять уже не одну прямую, проходящую через данную точку M, а множество прямых, пересекающихся в эточке.

Совокупность всех прямых, проходящих через одну точку М, называется пучком прямых с центром в точке М. Таким образом, уравнение (2) с переменным Прямая линияможно рассматривать как уравнение пучка прямых, проходящих через данную точку, исключая прямую, параллельную оси ординат (так как tg 90° не имеет числового значения) (рис. 21).

Чтобы выделить из этого пучка прямую, образующую заданный угол с осью Ох, нужно в уравнении (2) вместо Прямая линия подставить его числовое значение. Пусть, например, пучок прямых проходит через точку М(2;—5), тогда его уравнение будет:

Прямая линия

Выделим из этого пучка одну прямую, которая наклонена к положительному направлению оси Ох под углом а = 45°;

тогда

Прямая линия

и уравнение (3) обратится в следующее:

Прямая линия

или

Прямая линия

Уравнение прямой, проходящей через две данные точки

Пусть даны две точки A(х1; у1) и В(х2; у2); требуется найти уравнение прямой, проходящей через эти точки.

Если взять одну точку, например А, то через нее можно провести пучок прямых, уравнение которого будет:

Прямая линия

где каждому значению Прямая линия отвечает одна прямая.

Выделим из этого пучка прямую, которая проходит и через вторую точку В (рис. 22). Чтобы найти ее уравнение, необходимо определить угловой коэффициент. Для этого примем во внимание, что точка В лежит на искомой прямой, и потому ее координаты должны обращать уравнение (1)

Прямая линия

в тождество при Прямая линия равном угловому коэффициенту этой прямой. Подставив в уравнение (1) вместо текущих координат х и у координаты точки В, получим:

Прямая линия

отсюда находим угловой коэффициент искомой прямой:

Прямая линия

Уравнение (1) можно переписать так:

Прямая линия

Преобразуем это уравнение, разделив обе части его на у2 — у1 получим:

Прямая линия

гле х и у — текущие координаты. Равенство (2) является уравнением прямой, проходящей через две данные точки. Это, как и уравнение в отрезках, частный случай общего уравнения прямой.

Если х1 = х2 или у1 = у2, то формула (2) теряет смысл, так как делить на нуль нельзя. В этих случаях точки А и В лежат либо на прямой, параллельной оси Оу, либо на прямой, параллельной оси Ох. В первом случае уравнение прямой запишется в виде

х = х1

а во втором — в виде

у = у1

Пример:

Написать уравнение прямой, проходящей через две точки: А(—4; 6) и В(2; —3).

Решение:

Имеем:

х1 = —- 4, х2 = 2

и

у1 = 6, у2 = — 3.

Подставим эти значения в уравнение (2); получим:

Прямая линия

или

Прямая линия

Умножив обе части последнего уравнения на —18, будем иметь:

2у— 12 = — 3х— 12,

откуда

Зх + 2у = 0.

Пример:

Через две точки А( 3; 2) и В (5; 2) проходит прямая. Написать ее уравнение.

Решение:

Так как ординаты данных точек равны, то заключаем, что искомая прямая параллельна оси Ох, а потому ее уравнение будет

у = 2.

Угол между двумя прямыми

Пусть даны уравнения двух прямых:

y=klx+blt

Прямая линия

где Прямая линия имеют вполне определенные значения. Выведем формулу для определения угла между этими прямыми.

Обозначим углы, образуемые данными прямыми с положительным направлением оси Ох, через а1 и а2, а угол между этими прямыми через Прямая линия (рис. 23).

Угол а2, как внешний угол треугольника ABC, будет равен сумме внутренних, с ним не смежных, т. е.

Прямая линия

откуда

Прямая линия

Если углы равны между собой, то и тангенсы их равны друг другу, поэтому

Прямая линия

Применяя формулу для тангенса разности двух углов, получим:

Прямая линия

Но

Прямая линия

Поэтому

Прямая линия

Определив tg Прямая линия по формуле (1), можно найти и самый угол Прямая линия.

Прямая линия

Пример:

Определить угол между прямыми:

2х — 3у + 6 =0

и

х + 5у — 2=0.

Решение:

Из данных уравнений найдем угловые коэффициенты этих прямых :

Прямая линия

Согласно формуле (1) имеем:

Прямая линия

откуда

Прямая линия

Полученный угол между прямыми тупой. Но если принять

Прямая линия

то вычисляя Прямая линия по той же формуле (1), получим:

Прямая линия

откуда Прямая линия = 45°. Получился угол острый, смежный с ранее

Прямая линия

найденным тупым углом (рис. 24). Первое и второе значение угла будет ответом на вопрос задачи.

Условие параллельности прямых

Если прямые параллельны между собой, то они образуют одинаковые углы а1 и а2 с положительным направлением оси Ох (рис. 25).

Прямая линия

Из равенства углов а1 и а2 следует

Прямая линия

или

Прямая линия

Обратно, если Прямая линия т.е. Прямая линиято а1 = а2, а это значит, что данные прямые параллельны.

Итак, если прямые параллельны между собой, то их угловые коэффициенты равны (и наоборот).

Пример:

Написать уравнение прямой, проходящей через точку А (—2; 6) и параллельной прямой 5х—3у — 7 = 0.

Решение:

Через точку А проходит пучок прямых, среди которых находится искомая прямая. Следовательно, прежде всего пишем уравнение пучка прямых , проходящих через точку А:

Прямая линия

Затем находим из данного в задаче уравнения прямой ее угловой коэффициент; применяя равенство (8) , получим:

Прямая линия

Согласно условию параллельности угловой коэффициент искомой прямой тоже равен Прямая линия

Подставим найденное значение Прямая линия в уравнение

пучка:

Прямая линия

Выполнив необходимые преобразования, получим искомое уравнение прямой:

Прямая линия

Условие перпендикулярности прямых

Пусть две прямые взаимно перпендикулярны и образуют с положительным направлением оси Ох углы а1 и а2 (рис. 26). В этом случае

Прямая линия

отсюда

Прямая линия

Но

Прямая линия

Следовательно,

Прямая линия

или

Прямая линия

Обратно, если

Прямая линия

то

Прямая линия

Отсюда

Прямая линия

т. е. данные прямые взаимно перпендикулярны.

Таким образом, если прямые взаимно перпендикулярны, то их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку (и наоборот).

Прямая линия

Так, например, если у одной прямой угловой коэффициент

равен Прямая линия то у перпендикулярной ей прямой он равен Прямая линия .

Пример:

Написать уравнение прямой, проходящей через точку А(—3; 5) и перпендикулярной прямой 4х — Зу—10 = 0.

Решение:

Через точку А проходит пучок прямых, среди которых находится и искомая прямая. Поэтому напишем сначала уравнение этого пучка

Прямая линия

Чтобы выделить из него нашу прямую, нужно найти ее угловой коэффициент Прямая линия связанный с угловым коэффициентом

данной прямой равенством (1). Но Прямая линия следовательно,

Прямая линия

Подставив в уравнение (2) вместо Прямая линия найденное его значение Прямая линия

получим:

Прямая линия

Это и есть искомое уравнение прямой. Преобразовав его, найдем:

Прямая линия

или

Прямая линия

Пересечение прямых

Пусть даны две прямые, определяемые уравнениями:

Прямая линия

Требуется найти точку их пересечения.

Так как точка пересечения данных прямых есть их общая точка, то ее координаты должны удовлетворять как первому, так и второму уравнению, т. е. эти координаты должны быть общими корнями данных уравнений.

Чтобы найти эти корни, нужно, как известно из алгебры, решить совместно данные уравнения, рассматривая их как систему уравнений.

Пример:

Найти точку пересечения прямых

Прямая линия

Решение:

Решим данные уравнения как систему. Умножив второе уравнение на 3 и сложив результат с первым уравнением, получим:

Прямая линия

откуда

Прямая линия

Зная х, находим у, например, из второго уравнения:

Прямая линия

Пример:

Найти точку пересечения прямых

Прямая линия

Решение:

Умножив все члены первого уравнения на —2 и сложив полученное уравнение со вторым, найдем:

Прямая линия

что невозможно. Значит, данная система уравнений решений не имеет, а потому прямые, определяемые этими уравнениями, не имеют общих точек, т. е. данные прямые параллельны.

К этому же заключению можно прийти, сравнивая угловые коэффициенты данных прямых.

Дополнение к прямой линии

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Прямая линия

Смотрите также:

Предмет высшая математика

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Как найти точку на прямой

В современной математике точкой называются элементы весьма различной природы, из которых состоят различные пространства. Например, в n-мерном евклидовом пространстве точкой называется упорядоченная совокупность из n чисел.

Как найти точку на прямой

Вам понадобится

  • Знания по математике.

Инструкция

Прямая — одно из основных понятий в математике. Аналитически прямая на плоскости задается уравнением первого порядка вида Ax+By=C. Принадлежность точки к заданной прямой легко определить, подставив координаты точки в уравнение прямой. Если уравнение обращается в верное равенство, значит точка принадлежит прямой. Например, рассмотрим точку с координатами A(4, 5) и прямую заданную уравнением 4х+3у=1. Подставим в уравнение прямой координаты точки А и получим следующее: 4*4+3*5 = 1 или 31 = 1. Получили равенство, которое является не верным, а значит, эта точка не принадлежит прямой.

Для поиска точки на прямой достаточно взять одну из координат, и подставить в уравнение, а затем выразить из полученного уравнение вторую. Таким образом найдется точка с заданной одной из координат. Так как прямая проходит через всю плоскость, то и точек, которые ей принадлежат бесконечно много, а значит, для любой одной координаты всегда найдется другая, такая что полученная точка будет принадлежать заданной прямой. Возьмем для примера прямую с уравнением 3x-2y=2. И возьмем координату равную x=0. Тогда подставим значение x в уравнение прямой и получим следующее: 3*0-2у=2 или у=-1. Таким образом мы нашли точку лежащую на прямой и ее координаты равны (0, -1). Аналогичным образом можно найти точку, принадлежащую прямой, когда известна координата y.

В трехмерном пространстве у точки 3 координаты, а прямая задается системой из двух линейных уравнений вида Ax+By+Cz=D. Аналогичным образом, как и в двумерном случае, если вы знаете хоть одну координату точки, решив систему, найдете две остальные и эта точка будет принадлежать исходной прямой.

Видео по теме

Обратите внимание

После того как найдены все координаты точки, необходимо проверить их правильность. Подставьте найденные координаты в уравнение прямой, и если получится верное равенство, все решено корректно.

Полезный совет

Способ поиска точки по известной координате справедлив для любой размерности пространства, разница лишь в том, сколько необходимо уравнений решить, для поиска остальных координат.

Источники:

  • найти точки прямой

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Уравнение прямой, проходящей через две точки

Составим
уравнение прямой, проходящей через две
данные точки

и
.

В
качестве направляющего вектора прямой
можно взять вектор
.
Подставим координаты точки

и координаты направляющего вектора в
каноническое уравнение прямой, получим:

Уравнение прямой в отрезках

Пусть
прямая пересекает ось Ох
в точке

, а
ось Оу
в точке
.

Подставим
координаты этих точек в уравнение
прямой, проходящей через две точки,
После преобразований получим:

Это
уравнение называется уравнением
прямой в отрезках
,
так как числа
a
и b
указывают, какие отрезки отсекает прямая
на осях координат.

Уравнение прямой с угловым коэффициентом

Опр:
Угловым коэффициентом прямой называется
тангенс угла между прямой и положительным
направлением оси ОХ. Обозначается
угловой коэффициент: k=tg



,
где

угол между прямой и положительным
направлением оси ОХ.

b-
отрезок, который прямая отсекает на оси
ОУ

уравнение
уравнением
прямой с угловым коэффициентом.

Если
прямая проходит через начало координат,
то b
= 0 и,
следовательно, уравнение этой прямой
будет иметь вид у
= кх.

Если
прямая параллельна оси Ох,
то
=
0, следовательно, k=
tg=
0 и уравнение примет вид у
= b.

Если
прямая параллельна оси Оу,
то уравнение
имеет вид: х
= а

где
а
абсцисса точки пересечения прямой с
осью Ох.

Прямая, проходящая через точку, в данном направлении

Пусть
прямая проходит через точку

и ее направление характеризуется
конкретным угловым коэффициентом к.
Уравнение
этой прямой можно записать в виде:

Уравнение

с различными значениями к
называют
также уравнениями
пучка прямых

с центром в
точке

этом пучке
нельзя определить лишь прямую, параллельную
ори Оу.

Угол между прямыми

При пересечении
двух прямых образуются четыре угла:,
тангенс и косинус которых отличаются
знаком. Приведены формулы для вычисления
острого угла между прямыми.

Если две прямые
заданы своими общими уравнениеми:


,
нормаль к прямой

:


,
нормаль к прямой

:

Угол
между прямыми есть угол между нормалями
к прямым

Условие
перпендикулярности:

Условие
параллельности:

Если
две прямые заданы уравнениями с угловыми
коэффициентами
:

,

то
вычисляется тангенс угла между прямыми:


Точка пересечения прямых

Пусть две прямые
заданы своими общими уравнениями:


,

Чтобы
найти общую точку, необходимо решить
систему двух уравнений с двумя
переменными.,
если система несовместна, то прямые
параллельны.

Расстояние от точки до прямой

Пусть
заданы координаты точки

и уравнение прямой

: Ах+Ву+С=0

Расстояние
от точки до прямой есть длина перпендикуляра,
опущенного из точки на прямую:

Соседние файлы в предмете Высшая математика

  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти стихотворение для мамы
  • Информатика как найти премию
  • Орден славы как найти владельца по номеру
  • Как правильно найти проблему по текстам егэ
  • Как составьте уравнение параболы по графику