Как найти координаты точки касания параболы

Касательная к параболе

Воскресенье, 3 ноября, 2019

Касательная к параболе

Иногда в заданиях ЕГЭ и даже ОГЭ по математике, особенно в заданиях с параметром, возникают ситуации, когда нужно установить, при каком условии некоторая прямая касается параболы. Составить уравнение касательной к функции можно с помощью производной, и старшеклассникам обычно рассказывают в школе, как это делать. Но в случае с параболой можно обойтись без этих премудростей. Достаточно уметь решать квадратные уравнения, а этому учат уже в основой школе. В данной статье профессиональный репетитор по математике рассказывает о том, как получить уравнение касательной к параболе в некоторой точке без использования производной.

Уравнение касательной к параболе

Давайте изобразим координатную плоскость и нарисуем в ней параболу, которая проходит через начало координат. Так бывает, конечно, не всегда. Но эту проблему можно легко устранить. Достаточно просто перенести начало координат в вершину параболы, и мы получим нужную нам ситуацию. Поэтому целесообразно рассматривать именно случай, когда парабола проходит через начало координат. В этом случае уравнение такой параболы имеет вид y = ax^2:

Парабола, проходящая через начало координат

Мы для определённости взяли положительный коэффициент a, поэтому ветви данной параболы направлены вверх. Но на самом деле все дальнейшие рассуждения будут справедливы и для отрицательных a.

Отметим некоторую точку A, которая принадлежит нашей параболе. Пусть она имеет координаты (x_0;y_0). Проведём касательную к параболе в этой точке. Касательная – это прямая. А в общем виде уравнение прямой записывается как y = kx+b. То есть ситуация получается следующая:

Касательная к параболе в точке

Ну и давайте зададимся целью найти неизвестные коэффициенты k и b через известные значения x_0 и a. Так у нас и получится касательная к параболе, а точнее её уравнение в точке x_0. Но давайте сразу договоримся, что делать мы это будем без помощи производной, чтобы этот материал был понятен не только старшеклассникам.

Итак, что же у нас есть? У нас есть парабола y = ax^2, причём ane 0. Иначе это была бы не парабола, а просто прямая линия, которая совпадает с осью OX. Также у нас есть касательная y = kx+b. Но важно то, что эта касательная и парабола имеют общую точку с координатами (x_0;y_0).

А это значит, что координаты этой точки должны удовлетворять и уравнению параболы, и уравнению касательной. Значит, если мы подставим координаты этой точки в уравнение параболы и в уравнение касательной, то мы должны при этом получить верные равенства. Итак, имеет место следующая система уравнений:

    [ begin{cases} y_0=ax_0^2 \ y_0 = kx_0 + b end{cases} ]

Именно её нам и нужно решить. Но как это сделать? Ну, во-первых, обратим сразу внимание, что у этих уравнений одинаковые левые части. А значит, равны и правые. То есть получается вот такое уравнение:

    [ ax_0^2-kx_0-b = 0 ]

Это квадратное уравнение, которое может иметь от нуля до двух решений, в зависимости от дискриминанта. Вот здесь и возникает самая главная идея! Поскольку прямая касается параболы (ведь это касательная к параболе), то у них есть только одна общая точка. А это означает, что данное уравнение должно иметь единственное решение. Ну а единственное решение оно имеет только в том случае, если дискриминант равен нулю. Осталось его посчитать:

(1)   begin{equation*} k^2+4ab = 0 end{equation*}

Ну а сам корень уравнения при нулевом дискриминанте равен:

(2)   begin{equation*} x_0 = dfrac{k}{2a}Rightarrow k = 2ax_0 end{equation*}

Ну а дальше подставляем выражение (2) в уравнение (1) и получаем следующее уравнение:

    [ 4a^2x_0^2+4ab = 0 ]

    [ ax_0^2+b=0 ]

(3)   begin{equation*} b = -ax_0^2 end{equation*}

Ну и получилось, что мы смогли выразить коэффициент k и коэффициент b через a и x_0 (уравнения (2) и (3), соответственно), как и было нужно. Подставляя их в уравнение прямой, получаем искомое уравнение касательной к параболе:

y = 2ax_0x-ax_0^2

Уравнение касательной к параболе в общем виде

В общем виде парабола задаётся формулой: y = ax^2+bx+c. Как уже отмечалось выше, такую параболу можно всегда свести к параболе y = ax^2 путём простого переноса начала системы координат в вершину исходной параболы. Но зададимся вопросом, как будет выглядеть уравнение касательной к такой параболе, если мы не будем осуществлять такой перенос.

Касательная к параболе — это прямая, поэтому в общем виде уравнение этой прямой записывается по аналогии с предыдущим пунктом: y = kx+d. Только здесь мы используем букву d, поскольку буква b уже занята:

Касательная к параболе общего вида, которая не проходит через начало координат

И вновь мы ссылаемся на тот факт, что данная касательная и парабола будут иметь общую точку (x_0;y_0). Значит, координаты этой точки должны удовлетворять следующей системе уравнений:

    [ begin{cases} y_0 = ax_0^2+bx_0+c \ y_0 = kx_0+d end{cases} ]

У записанных уравнений равны левые части, значит, равны и правые. То есть имеет место следующее квадратное уравнение:

    [  ax_0^2+bx_0+c =  kx_0+d ]

    [  ax_0^2+(b-k)x_0+c-d = 0 ]

Ну и поскольку у касательной с параболой есть только одна общая точка, то последнее уравнение должно иметь единственное решение. Такое возможно только в том случае, если его дискриминант равен нулю. То есть имеет место равенство:

(4)   begin{equation*} D =  (b-k)^2-4a(c-d) = 0  end{equation*}

При этом сам корень уравнения должен быть равен:

(5)   begin{equation*}  x_0 = dfrac{k-b}{2a} Rightarrow k = 2ax_0+b end{equation*}

Подставляем выражение (5) в выражение (4) и получаем:

    [ (b- 2ax_0-b)^2-4a(c-d) = 0 ]

    [ 4a^2x_0^2 - 4a(c-d) = 0 ]

    [ ax_0^2 - c + d = 0 ]

(6)   begin{equation*} d = c-ax_0^2 end{equation*}

Итак, мы получили искомые коэффициенты. Значит, уравнение касательной к параболе в общем виде будет выглядеть так:

y =  (2ax_0+b)x+c-ax_0^2

При этом легко убедиться, что в частном случае при b=c=0 (то есть когда парабола проходит через начало координат) мы получаем то же самое уравнение, которое уже было нами получено в предыдущем пункте.

Материал подготовил репетитор по математике и физике в Москве, Сергей Валерьевич

Как найти точку касания параболы и прямой

Здравствуйте! Продолжаем рассматривать задачи входящие в состав экзамена по математике. Задания, которые мы рассмотрим ниже, по-большому счёту, никаких глубоких знаний теории не требуют. Для их решения необходимо понимание геометрического смысла производной , умение решать квадратное уравнение и немного логики.

Суть заданий следующая: дана парабола вида у = ах 2 +bх+c и касательная к этой параболе у=kх b. Один из коэффициентов (a, b или c) неизвестен и его необходимо найти.

Как решать такие задачи? Что необходимо вспомнить?

1. Если даны уравнения двух функций, то точка (точки) пересечения их графиков находится путём решения системы этих уравнений. Пара (х;у) являющаяся решением системы есть точка пересечения графиков (или пары, если точек пересечения больше).

2. Если к графику функции проведена касательная, то производная этой функции в точке касания равна угловому коэффициенту этой касательной (см. ссылку выше).

Рассмотрим задачи (показаны два способа решения):

Прямая у=х+7 является касательной к графику функции ах 2 –15х+15. Найдите a.

Прямая и график данной функции имеют одну общую точку, это значит, что данные уравнения можно внести для решения в одну систему, но этих уравнений будет недостаточно для решения (кроме неизвестных х и у имеется ещё параметр а).

Известно, что производная функции в данной точке равна угловому коэффициенту касательной у = kх + b (где k это угловой коэффициент), то есть f′(xo) = k. Это третье уравнение, запишем систему:

Подставим из второго уравнения в первое:

Найдём а, подставим х = 1 в ах 2 – 15х + 15 = х + 7 или в 2ах – 15 = 1

По смыслу задачи параметр a ≠ 0, график заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнение ах 2 – 15х + 15 = х + 7 имело единственно решение:

Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю:

Прямая у=3х+1 является касательной к графику функции ах 2 +2х+3. Найдите a.

Прямая у=5х–8 является касательной к графику функции 6х 2 + bх + 16

Найдите b, учитывая, что абсцисса точки касания больше 0.

Прямая и парабола пересекаются в одной точке, поэтому оба уравнения можно внести в систему, но она не решаема, так как имеем три неизвестных:

Известно, что производная функции в данной точке равна угловому коэффициенту касательной у = kх + b (где k это угловой коэффициент), то есть f′(x o ) = k. Это третье уравнение, запишем систему:

Кратко можно сказать так:

Условия касания графика функции f (x) = k и прямой у = kх + b задаётся системой требований:

По условию, абсцисса точки касания положительна, значит х = 2.

График заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнение

имело единственно решение. Преобразуем:

Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю:

Теперь определим, при каком значении b абсцисса точки касания будет больше нуля. Можно подставить поочерёдно полученные значения в систему:

Далее решить её и сдать вывод. Верным решением будет то значение b, при котором получим положительную абсциссу.

Но мы сразу подставим их (поочерёдно) в 28х 2 + (b – 5) + 24 = 0.

Таким образом, b = – 19 (при этом значении абсцисса точки касания положительна).

Прямая у = –5х+8 является касательной к графику функции 28х 2 + bх + 15.

Найдите b, учитывая, что абсцисса точки касания больше 0.

Прямая у=–6х–2 является касательной к графику ф-ии 18х 2 +6х+с. Найдите c.

Условия касания графика функции у = f (x) и прямой у = kx + b задаётся системой требований:

График заданной функции — парабола. Прямая с параболой имеет единственную общую точку, так как сказано, что эта прямая является касательной. Поэтому необходимо и достаточно, чтобы уравнение

имело единственное решение, преобразуем:

Квадратное уравнение будет иметь единственное решение тогда, когда дискриминант будет равен нулю, значит:

Прямая у=3х+4 является касательной к графику функции 3х 2 –3х+с. Найдите c.

Как видим, понимание способа нахождения точки пересечения графиков функций, заключающееся в решении системы, пригодилось при решении указанных задач (на ЕГЭ могут быть и другие). Но какие бы они не были, если чётко уясните геометрический смысл производной, проблем с подобными у вас не будет.

В данной рубрике продолжим рассматривать задачи, не пропустите!

Имеется круглая мишень радиуса R. На ней отмечены две окружности, радиусы которых равны 1/3 и 2/3 от радиуса мишени. Какова вероятность того, что кинутый в мишень дротик попадёт в закрашенную часть мишени? Результат округлите до тысячных.

*Учесть, что дротик мимо мишени попасть не может.

Тот учащийся, который первый напишет верный ответ, получит поощрительный приз в размере 150 рублей 😉

Надеюсь материал был вам полезен. Успехов Вам!

Наука: Математика

Секция: Геометрия

  • Условия публикаций
  • Все статьи конференции

КАСАТЕЛЬНЫЕ К ПАРАБОЛЕ

Паршева Валентина Васильевна

научный руководитель, заслуженный учитель РФ, учитель математики, школа № 24, г. Северодвинск

150%;background:»>
Понятие касательной — одно из важнейших в математическом анализе. «Изучение прямых, касательных к кривым линиям, во многом определили пути развития математики» [2, с. 229]. Но касательную можно провести к различным кривым, в том и числе и к параболе, интерес к которой проявляли древние математики, такие как Апполоний Пергский, Архимед, Папп, Исидор Милетский. Интерес к касательным не ослабевал и у математиков последующих поколений. Исследования, связанные с построением касательных с помощью аналитических методов, проводили Р. Декарт, Г.В. Лейбниц, И. Ньютон.

150%;background:»>
С помощью циркуля и линейки нетрудно построить касательную к окружности в данной ее точке. В Древней Греции умели строить с помощью циркуля и линейки касательные ко всем коническим сечениям: эллипсам, гиперболам и параболам, что свидетельствует о высоком уровне развития геометрии в то время.

150%;background:»>
Актуальность работы в том, что понятия касательной к параболе, ее уравнение изучается только в 11 классе, и ее свойства не рассматриваются. В то же время исследование вопроса о касательной к параболе расширяет знания о параболе и круг решаемых задач. Одновременно актуальной является идея применения ИГС GeoGebra для проведения компьютерного моделирования исследуемого вопроса.

150%»>
Проблемный вопрос: Понятие касательной к кривым вводится в школьном курсе математики только в 11 классе с помощью производной функции. Понятие производной функции возникло на много позже (XVII век) понятий параболы и касательной к ней. Можно ли без понятия производной функции дать определение параболы, сделать вывод ее уравнения и полученные знания применить для построения касательной к параболе?

150%;background:»>
Цель исследования: применить имеющиеся знания о касательной для исследования новых свойств функции y=x 2 и попытаться использовать эти свойства для построения касательных к параболе y=x 2 без вычисления производной.

line-height:150%;background:»>
1.Установить геометрическое место точек, являющихся точками пересечения взаимно-перпендикулярных касательных к параболе у=ах 2 .

line-height:150%;background:»>
2.Установить, что касательная к параболе, проходящая через точку А параболы, является прямой, содержащей биссектрису угла, образованного лучом AF, где А — фокус параболы, и перпендикуляром, опущенном из точки А на директрису параболы.

line-height:150%;background:»>
3.Установить, что точки, симметричные фокусу параболы относительно всевозможных ее касательных, расположены на директрисе параболы.

line-height:150%;background:»>
4.Установить, что касательные в концах фокальной хорды параболы пересекаются на директрисе параболы.

line-height:150%;background:»>
5.На основании установленных свойств касательной к параболе выявить способы построения касательной.

line-height:150%»>
·Анализ школьных учебников математики, математической, справочной литературы, литературы по истории математики.

line-height:150%»>
·Компьютерное моделирование математических объектов с помощью ИГС GeoGebra (компьютерный эксперимент).

line-height:150%»>
·Анализ полученных с помощью компьютерного эксперимента данных.

line-height:150%»>
·Обобщение найденных с помощью компьютерного эксперимента закономерностей.

line-height:150%;background:»>
·Аналитические рассуждения.

150%»>
Объект исследования: парабола

150%»>
Предмет исследования: касательные к параболе.

150%»>
Гипотеза исследования Видимо, касательная к параболе, как любой геометрический объект, имеет свои свойства, которые расширят наши знания о параболе.

150%;background:»>
В учебной литературе даются такие определения касательной к параболе:

150%;background:»>
Определение 1. Прямая, имеющая с параболой только одну общую точку и не параллельная ее оси, называется касательной к параболе.

150%;background:»>
В математическом анализе касательная к кривой в точке М определяется как предельное положение секущей МN при приближении точки N по кривой к точке М.

150%;background:»>
Определение 2. Касательной к кривой в данной точке МО называется предельное положение секущей ММ1 при условии, что точка М1 стремится к точке М по данной кривой [1, с. 21].

Вывод уравнения касательной к параболе у = ах 2 в точке М; ах 2 )

150%;background:»>
•Точки М; ах 2 ) и М11; ах1 2 ) принадлежат параболе у=ах2. Уравнение секущей М0М1 имеет вид:

Пусть точка М1 стремится к точке М. Тогда х1 стремится к х и в пределе уравнение секущей переходит в уравнение касательной в точке М; ах 2 )

150%;background:»>
Касательная пересекает ось абсцисс в точке А (х/2; 0), что следует из уравнения касательной при у=0. Этот факт дает возможность построить касательную к параболе в данной точке М с помощью циркуля и линейки. Для этого нужно провести перпендикуляр МН из данной точки М к оси абсцисс, а затем построить середину отрезка ОН. Это точка А. Проведем прямую через точки А и М.

line-height:150%;background:»>
• Прямая АМО является касательной к параболе в данной точке М0.

Построение касательной в ИГС GeoGebra

Алгоритм построения с помощь. ИГС аналогичен, только выполняется с помощью инструментов программы:

line-height:150%;background:»>
• перпендикулярная прямая;

line-height:150%;background:»>
• середина или центр;

line-height:150%;background:»>
• прямая по двум точка.

150%;background:»>
Задача. К параболе y = x 2 составить уравнения взаимно-перпендикулярных касательных. Найти точку их пересечения.

150%;background:»>
Решение. Уравнение касательной к параболе y = ax 2 в точке с абсциссой х. Угловой коэффициент этой касательной k = 2ax. Уравнение касательной к параболе y = ax 2 в точке с абсциссой х1. Угловой коэффициент этой касательной k1 = 2ax1.

150%;background:»>
Найдем соотношение между абсциссами х и х1. k·k1=-1 — условие перпендикулярности двух прямых. Тогда: 2ax∙2ax1 = -1; 4a 2 xx1 = -1;

150%;background:»>
Искомое уравнение

background:»>

background:»>

150%;background:»>
Составим уравнения взаимно-перпендикулярных касательных к параболе у = х 2 в различных точках, найдем их точки пересечения и сделаем сравнение

150%;background:»>
Выполнив аналогичные рассуждения для параболы у = ах 2 и сравним координаты точек пересечения взаимно-перпендикулярных касательных к параболе у = ах 2 можно сделать вывод: абсциссы этих точек разные, а ординаты равны -1/4а, т. е. все такие точки находятся на прямой у = -1/4а, т. е. взаимно-перпендикулярные касательные пересекаются на директрисе параболы.

150%;background:»>
Возникает вопрос: всегда ли к параболе можно провести две взаимно-перпендикулярных касательных. Ответ очевиден — исключением является вершина параболы.

150%;background:»>
Теорема параболы. Пусть A — точка на параболе с фокусом F, директриса d, АD — перпендикуляр, опущенный на директрису. Тогда касательной к параболе, проходящей через точку A, будет прямая, содержащая биссектрису угла FAD.

150%;background:»>
Доказательство. Пусть касательная t в точке M параболы пересекает ее директрису в точке Q и пусть P — основание перпендикуляра, опущенного из точки M на директрису.

150%;background:»>
В четырехугольнике MFQP два противолежащих угла — прямые и стороны MP и MF равны.

150%;background:»>
Следовательно, ΔPMQ = ΔQMF и касательная t является биссектрисой угла, образованного фокальным радиусом и прямой, проходящей через данную точку параллельно оси x.

150%;background:»>
Если MP — перпендикуляр, опущенный из точки M параболы на директрису, то биссектриса угла FMP есть касательная к параболе в точке M.

150%;background:»>
Вывод. Отсюда, далее, следует, что основания перпендикуляров, опущенных из фокуса параболы на ее касательные, принадлежат касательной к параболе в ее вершине.

150%;background:»>
На основании свойств касательной можно выполнить построение касательных к параболе, проведенных из точки P. Пусть парабола задана фокусом F и директрисой d. Используя циркуль и линейку, построим касательную к параболе, проходящую через данную точку C. С центром в точке C и радиусом CF проведем окружность и найдем ее точки пересечения с директрисой d. Если расстояние от точки C до фокуса больше, чем расстояние до директрисы, то таких точек две. Обозначим их D1 и D2. Проведем биссектрисы углов FCD1 и FCD2соответственно. Прямые a1 и a2, содержащие эти биссектрисы являются серединными перпендикулярами к отрезкам FD1 и FD2 и, значит, будут искомыми касательными к параболе. Для построения точек касания через точки D1 и D2 проведем прямые, перпендикулярные директрисе и найдем их точки пересечения

150%;background:»>
A1 и A2 с прямыми a1 и a2. Они и будут искомыми точками касания. Через точку C проходят две касательные к параболе.

150%;background:»>
Построение касательных, проходящих через точку С выполнено в ИГС GeoGebra с помощью инструментов: Окружность по центру и радиусу, Отрезок по двум точкам, Пересечение двух объектов, Серединный перпендикуляр.

150%;background:»>
В результате выполнения работы установлено, что:

line-height:150%;background:»>
•геометрическое место точек, являющихся точками пересечения взаимно-перпендикулярных касательных к параболе у = ах 2 .

line-height:150%;background:»>
•касательная к параболе, проходящая через точку А параболы, является прямой, содержащей биссектрису угла, образованного лучом AF, где А — фокус параболы, и перпендикуляром, опущенном из точки А на директрису параболы.

line-height:150%;background:»>
•точки, симметричные фокусу параболы относительно всевозможных ее касательных, расположены на директрисе параболы.

line-height:150%;background:»>
•На основании установленных свойств касательной к параболе выявлены способы построения касательной

150%;background:»>
При выполнении работы были продемонстрированы возможности применения ИГС GeoGebra, что явилось новизной в исследовании поставленной проблемы.

-1.0cm;line-height:150%;background:»>
1.Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. Геометрия. Дополнительные главы к учебнику 9 класса — М.: Вита — Пресс, 2003. — 176 с.;

-1.0cm;line-height:150%;background:»>
2.Энциклопедический словарь юного математика. Сост. Савин А.П. — М.: Педагогика, 1985. — 352 с.;

План занятий

Парабола. Фокус. Директриса. У равнение параболы.

Уравнение касательной к параболе.

Условие касания прямой и параболы.

Параболой ( рис.1 ) называется геометрическое место точек, равноудалённых от заданной точки F , называемой фокусом параболы, и данной прямой, не проходящей через эту точку и называемой директрисой параболы.

Уравнение параболы ( рис.1 ) :

Здесь ось ОХ является осью симметрии параболы.

Пусть Р ( х 1 , у 1 ) – точка параболы, тогда уравнение касательной к параболе в данной точке имеет вид:

Окружности помещены внутри параболы

Окружности w1, w2, w3, . помещены внутри параболы y = x 2 так, что w1 касается параболы в ее вершине и имеет радиус 0,5, окружность wт + 1 при каждом m касается окружности wm и ветвей параболы. Найти радиус окружности w2009.

Решение:

(№641 Математика 11, Л.А. Латотин, Б.Д. Чеботаревский)

Эту задачу можно решить, используя метод индукции.

Тогда уравнение окружности wт + 1 имеет вид:

Условие касания означает, что уравнение y + (y– (2Sn+ rn+1)) 2 = rn+1 2 имеет единственный корень, тогда его дискриминант:

Индукцией можно убедиться, что rn = n – 1/2.

.

Значит, r2009 = 2009 – 1/2 = 2008,5.

Касательная к графику функции в точке. Уравнение касательной. Геометрический смысл производной

Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

Определения и понятия

Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.

На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .

Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .

  • Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
  • Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 α π 2 или 0 ° α 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
  • Если α = π 2 , тогда расположение прямой перпендикулярно о х . Равенство задается при помощи равенства x = c со значением с , являющимся действительным числом.
  • Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 α π или 90 ° α 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.

Определение 3

Секущей называют прямую, которая проходит через 2 точки функции f ( x ) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

По рисунку видно, что А В является секущей, а f ( x ) – черная кривая, α — красная дуга, означающая угол наклона секущей.

Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.

Получаем формулу для нахождения секущей вида:

k = t g α = B C A C = f ( x B ) — f x A x B — x A , где абсциссами точек А и В являются значения x A , x B , а f ( x A ) , f ( x B ) — это значения функции в этих точках.

Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f ( x B ) — f ( x A ) x B — x A или k = f ( x A ) — f ( x B ) x A — x B , причем уравнение необходимо записать как y = f ( x B ) — f ( x A ) x B — x A · x — x A + f ( x A ) или
y = f ( x A ) — f ( x B ) x A — x B · x — x B + f ( x B ) .

Секущая делит график визуально на 3 части: слева от точки А , от А до В , справа от В . На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

По определению видно, что прямая и ее секущая в данном случае совпадают.

Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

Касательная к графику функции f ( x ) в точке x 0 ; f ( x 0 ) называется прямая, проходящая через заданную точку x 0 ; f ( x 0 ) , с наличием отрезка, который имеет множество значений х , близких к x 0 .

Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами ( 1 ; 2 ) . Для наглядности, необходимо рассмотреть графики с приближенными к ( 1 ; 2 ) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

Очевидно, что y = 2 x сливается с прямой у = х + 1 .

Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А . Для наглядности приведем рисунок.

Секущая А В , обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .

Касательной к графику функции y = f ( x ) в точке А считается предельное положение секущей А В при В стремящейся к А , то есть B → A .

Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

Геометрический смысл производной функции в точке

Перейдем к рассмотрению секущей А В для функции f ( x ) , где А и В с координатами x 0 , f ( x 0 ) и x 0 + ∆ x , f ( x 0 + ∆ x ) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f ( x ) = f ( x 0 + ∆ x ) — f ( ∆ x ) . Для наглядности приведем в пример рисунок.

Рассмотрим полученный прямоугольный треугольник А В С . Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f ( x ) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x .

Отсюда следует, что f ‘ ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.

То есть получаем, что f ’ ( x ) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 ( x 0 ) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f ‘ ( x 0 ) .

Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

Уравнение касательной прямой

Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.

Уравнение касательной к графику функции y = f ( x ) в точке x 0 , f 0 ( x 0 ) принимает вид y = f ‘ ( x 0 ) · x — x 0 + f ( x 0 ) .

Имеется в виду, что конечным значением производной f ‘ ( x 0 ) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f ‘ ( x ) = ∞ и lim x → x 0 — 0 f ‘ ( x ) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f ‘ ( x ) ≠ lim x → x 0 — 0 f ‘ ( x ) .

Расположение касательной зависит от значения ее углового коэффициента k x = f ‘ ( x 0 ) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у — k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x 0 .

Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 — 6 — 3 3 x — 17 — 3 3 в точке с координатами ( 1 ; 3 ) с определением угла наклона.

Решение

По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, ( 1 ; 3 ) является точкой касания, тогда x 0 = — 1 , f ( x 0 ) = — 3 .

Необходимо найти производную в точке со значением — 1 . Получаем, что

y ‘ = e x + 1 + x 3 3 — 6 — 3 3 x — 17 — 3 3 ‘ = = e x + 1 ‘ + x 3 3 ‘ — 6 — 3 3 x ‘ — 17 — 3 3 ‘ = e x + 1 + x 2 — 6 — 3 3 y ‘ ( x 0 ) = y ‘ ( — 1 ) = e — 1 + 1 + — 1 2 — 6 — 3 3 = 3 3

Значение f ’ ( x ) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.

Тогда k x = t g α x = y ‘ ( x 0 ) = 3 3

Отсюда следует, что α x = a r c t g 3 3 = π 6

Ответ: уравнение касательной приобретает вид

y = f ‘ ( x 0 ) · x — x 0 + f ( x 0 ) y = 3 3 ( x + 1 ) — 3 y = 3 3 x — 9 — 3 3

Для наглядности приведем пример в графической иллюстрации.

Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.

Выяснить наличие существования касательной к графику заданной функции
y = 3 · x — 1 5 + 1 в точке с координатами ( 1 ; 1 ) . Составить уравнение и определить угол наклона.

Решение

По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

Перейдем к нахождению производной

y ‘ = 3 · x — 1 5 + 1 ‘ = 3 · 1 5 · ( x — 1 ) 1 5 — 1 = 3 5 · 1 ( x — 1 ) 4 5

Если x 0 = 1 , тогда f ’ ( x ) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 ( x — 1 ) 4 5 = 3 5 · 1 ( + 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 — 0 3 5 · 1 ( x — 1 ) 4 5 = 3 5 · 1 ( — 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке ( 1 ; 1 ) .

Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .

Для наглядности изобразим графически.

Найти точки графика функции y = 1 15 x + 2 3 — 4 5 x 2 — 16 5 x — 26 5 + 3 x + 2 , где

  1. Касательная не существует;
  2. Касательная располагается параллельно о х ;
  3. Касательная параллельна прямой y = 8 5 x + 4 .

Решение

Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ — ∞ ; 2 и [ — 2 ; + ∞ ) . Получаем, что

y = — 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ — ∞ ; — 2 1 15 x 3 — 6 x 2 + 9 x + 12 , x ∈ [ — 2 ; + ∞ )

Необходимо продифференцировать функцию. Имеем, что

y ‘ = — 1 15 x 3 + 18 x 2 + 105 x + 176 ‘ , x ∈ — ∞ ; — 2 1 15 x 3 — 6 x 2 + 9 x + 12 ‘ , x ∈ [ — 2 ; + ∞ ) ⇔ y ‘ = — 1 5 ( x 2 + 12 x + 35 ) , x ∈ — ∞ ; — 2 1 5 x 2 — 4 x + 3 , x ∈ [ — 2 ; + ∞ )

Когда х = — 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:

lim x → — 2 — 0 y ‘ ( x ) = lim x → — 2 — 0 — 1 5 ( x 2 + 12 x + 35 = — 1 5 ( — 2 ) 2 + 12 ( — 2 ) + 35 = — 3 lim x → — 2 + 0 y ‘ ( x ) = lim x → — 2 + 0 1 5 ( x 2 — 4 x + 3 ) = 1 5 — 2 2 — 4 — 2 + 3 = 3

Вычисляем значение функции в точке х = — 2 , где получаем, что

  1. y ( — 2 ) = 1 15 — 2 + 2 3 — 4 5 ( — 2 ) 2 — 16 5 ( — 2 ) — 26 5 + 3 — 2 + 2 = — 2 , то есть касательная в точке ( — 2 ; — 2 ) не будет существовать.
  2. Касательная параллельна о х , когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f ‘ ( x 0 ) . То есть необходимо найти значения таких х , когда производная функции обращает ее в ноль. То есть значения f ’ ( x ) и будут являться точками касания, где касательная является параллельной о х .

Когда x ∈ — ∞ ; — 2 , тогда — 1 5 ( x 2 + 12 x + 35 ) = 0 , а при x ∈ ( — 2 ; + ∞ ) получаем 1 5 ( x 2 — 4 x + 3 ) = 0 .

— 1 5 ( x 2 + 12 x + 35 ) = 0 D = 12 2 — 4 · 35 = 144 — 140 = 4 x 1 = — 12 + 4 2 = — 5 ∈ — ∞ ; — 2 x 2 = — 12 — 4 2 = — 7 ∈ — ∞ ; — 2 1 5 ( x 2 — 4 x + 3 ) = 0 D = 4 2 — 4 · 3 = 4 x 3 = 4 — 4 2 = 1 ∈ — 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ — 2 ; + ∞

Вычисляем соответствующие значения функции

y 1 = y — 5 = 1 15 — 5 + 2 3 — 4 5 — 5 2 — 16 5 — 5 — 26 5 + 3 — 5 + 2 = 8 5 y 2 = y ( — 7 ) = 1 15 — 7 + 2 3 — 4 5 ( — 7 ) 2 — 16 5 — 7 — 26 5 + 3 — 7 + 2 = 4 3 y 3 = y ( 1 ) = 1 15 1 + 2 3 — 4 5 · 1 2 — 16 5 · 1 — 26 5 + 3 1 + 2 = 8 5 y 4 = y ( 3 ) = 1 15 3 + 2 3 — 4 5 · 3 2 — 16 5 · 3 — 26 5 + 3 3 + 2 = 4 3

Отсюда — 5 ; 8 5 , — 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.

Рассмотрим графическое изображение решения.

Черная линия – график функции, красные точки – точки касания.

  1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y ‘ ( x ) = 8 5 . Тогда, если x ∈ — ∞ ; — 2 , получаем, что — 1 5 ( x 2 + 12 x + 35 ) = 8 5 , а если x ∈ ( — 2 ; + ∞ ) , тогда 1 5 ( x 2 — 4 x + 3 ) = 8 5 .

Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

— 1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 — 4 · 43 = — 28 0

Другое уравнение имеет два действительных корня, тогда

1 5 ( x 2 — 4 x + 3 ) = 8 5 x 2 — 4 x — 5 = 0 D = 4 2 — 4 · ( — 5 ) = 36 x 1 = 4 — 36 2 = — 1 ∈ — 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ — 2 ; + ∞

Перейдем к нахождению значений функции. Получаем, что

y 1 = y ( — 1 ) = 1 15 — 1 + 2 3 — 4 5 ( — 1 ) 2 — 16 5 ( — 1 ) — 26 5 + 3 — 1 + 2 = 4 15 y 2 = y ( 5 ) = 1 15 5 + 2 3 — 4 5 · 5 2 — 16 5 · 5 — 26 5 + 3 5 + 2 = 8 3

Точки со значениями — 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .

Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках — 1 ; 4 15 , 5 ; 8 3 .

Возможно существование бесконечного количества касательных для заданных функций.

Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x — π 4 — 1 3 , которые располагаются перпендикулярно прямой y = — 2 x + 1 2 .

Решение

Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется — 1 , то есть записывается как k x · k ⊥ = — 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = — 2 , тогда k x = — 1 k ⊥ = — 1 — 2 = 1 2 .

Теперь необходимо найти координаты точек касания. Нужно найти х , после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
x 0 получаем, что k x = y ‘ ( x 0 ) . Из данного равенства найдем значения х для точек касания.

y ‘ ( x 0 ) = 3 cos 3 2 x 0 — π 4 — 1 3 ‘ = 3 · — sin 3 2 x 0 — π 4 · 3 2 x 0 — π 4 ‘ = = — 3 · sin 3 2 x 0 — π 4 · 3 2 = — 9 2 · sin 3 2 x 0 — π 4 ⇒ k x = y ‘ ( x 0 ) ⇔ — 9 2 · sin 3 2 x 0 — π 4 = 1 2 ⇒ sin 3 2 x 0 — π 4 = — 1 9

Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

3 2 x 0 — π 4 = a r c sin — 1 9 + 2 πk или 3 2 x 0 — π 4 = π — a r c sin — 1 9 + 2 πk

3 2 x 0 — π 4 = — a r c sin 1 9 + 2 πk или 3 2 x 0 — π 4 = π + a r c sin 1 9 + 2 πk

x 0 = 2 3 π 4 — a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z

Z — множество целых чисел.

Найдены х точек касания. Теперь необходимо перейти к поиску значений у :

y 0 = 3 cos 3 2 x 0 — π 4 — 1 3

y 0 = 3 · 1 — sin 2 3 2 x 0 — π 4 — 1 3 или y 0 = 3 · — 1 — sin 2 3 2 x 0 — π 4 — 1 3

y 0 = 3 · 1 — — 1 9 2 — 1 3 или y 0 = 3 · — 1 — — 1 9 2 — 1 3

y 0 = 4 5 — 1 3 или y 0 = — 4 5 + 1 3

Отсюда получаем, что 2 3 π 4 — a r c sin 1 9 + 2 πk ; 4 5 — 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; — 4 5 + 1 3 являются точками касания.

Ответ: необходимы уравнения запишутся как

y = 1 2 x — 2 3 π 4 — a r c sin 1 9 + 2 πk + 4 5 — 1 3 , y = 1 2 x — 2 3 5 π 4 + a r c sin 1 9 + 2 πk — 4 5 + 1 3 , k ∈ Z

Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

Рисунок показывает, что расположение функции идет на промежутке [ — 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = — 2 x + 1 2 . Красные точки – это точки касания.

Касательная к окружности, эллипсу, гиперболе, параболе

Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

Касательная к окружности

Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x — x c e n t e r 2 + y — y c e n t e r 2 = R 2 .

Данное равенство может быть записано как объединение двух функций:

y = R 2 — x — x c e n t e r 2 + y c e n t e r y = — R 2 — x — x c e n t e r 2 + y c e n t e r

Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 — x — x c e n t e r 2 + y c e n t e r или y = — R 2 — x — x c e n t e r 2 + y c e n t e r в указанной точке.

Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r — R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r — R , а в точках x c e n t e r + R ; y c e n t e r и
x c e n t e r — R ; y c e n t e r будут являться параллельными о у , тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r — R .

Касательная к эллипсу

Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x — x c e n t e r 2 a 2 + y — y c e n t e r 2 b 2 = 1 .

Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

y = b a · a 2 — ( x — x c e n t e r ) 2 + y c e n t e r y = — b a · a 2 — ( x — x c e n t e r ) 2 + y c e n t e r

Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у . Ниже для наглядности рассмотрим рисунок.

Написать уравнение касательной к эллипсу x — 3 2 4 + y — 5 2 25 = 1 в точках со значениями x равного х = 2 .

Решение

Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что

x — 3 2 4 x = 2 + y — 5 2 25 = 1 1 4 + y — 5 2 25 = 1 ⇒ y — 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5

Тогда 2 ; 5 3 2 + 5 и 2 ; — 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что

x — 3 2 4 + y — 5 2 25 = 1 y — 5 2 25 = 1 — x — 3 2 4 ( y — 5 ) 2 = 25 · 1 — x — 3 2 4 y — 5 = ± 5 · 1 — x — 3 2 4 y = 5 ± 5 2 4 — x — 3 2

Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 — x — 3 2 , а нижний y = 5 — 5 2 4 — x — 3 2 .

Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид

y ‘ = 5 + 5 2 4 — x — 3 2 ‘ = 5 2 · 1 2 4 — ( x — 3 ) 2 · 4 — ( x — 3 ) 2 ‘ = = — 5 2 · x — 3 4 — ( x — 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = — 5 2 · 2 — 3 4 — ( 2 — 3 ) 2 = 5 2 3 ⇒ y = y ‘ ( x 0 ) · x — x 0 + y 0 ⇔ y = 5 2 3 ( x — 2 ) + 5 3 2 + 5

Получаем, что уравнение второй касательной со значением в точке
2 ; — 5 3 2 + 5 принимает вид

y ‘ = 5 — 5 2 4 — ( x — 3 ) 2 ‘ = — 5 2 · 1 2 4 — ( x — 3 ) 2 · 4 — ( x — 3 ) 2 ‘ = = 5 2 · x — 3 4 — ( x — 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = 5 2 · 2 — 3 4 — ( 2 — 3 ) 2 = — 5 2 3 ⇒ y = y ‘ ( x 0 ) · x — x 0 + y 0 ⇔ y = — 5 2 3 ( x — 2 ) — 5 3 2 + 5

Графически касательные обозначаются так:

Касательная к гиперболе

Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r — α ; y c e n t e r , имеет место задание неравенства x — x c e n t e r 2 α 2 — y — y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r — b , тогда задается при помощи неравенства x — x c e n t e r 2 α 2 — y — y c e n t e r 2 b 2 = — 1 .

Гипербола может быть представлена в виде двух объединенных функций вида

y = b a · ( x — x c e n t e r ) 2 — a 2 + y c e n t e r y = — b a · ( x — x c e n t e r ) 2 — a 2 + y c e n t e r или y = b a · ( x — x c e n t e r ) 2 + a 2 + y c e n t e r y = — b a · ( x — x c e n t e r ) 2 + a 2 + y c e n t e r

В первом случае имеем, что касательные параллельны о у , а во втором параллельны о х .

Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

Составить уравнение касательной к гиперболе x — 3 2 4 — y + 3 2 9 = 1 в точке 7 ; — 3 3 — 3 .

Решение

Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

x — 3 2 4 — y + 3 2 9 = 1 ⇒ y + 3 2 9 = x — 3 2 4 — 1 ⇒ y + 3 2 = 9 · x — 3 2 4 — 1 ⇒ y + 3 = 3 2 · x — 3 2 — 4 и л и y + 3 = — 3 2 · x — 3 2 — 4 ⇒ y = 3 2 · x — 3 2 — 4 — 3 y = — 3 2 · x — 3 2 — 4 — 3

Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; — 3 3 — 3 .

Очевидно, что для проверки первой функции необходимо y ( 7 ) = 3 2 · ( 7 — 3 ) 2 — 4 — 3 = 3 3 — 3 ≠ — 3 3 — 3 , тогда точка графику не принадлежит, так как равенство не выполняется.

Для второй функции имеем, что y ( 7 ) = — 3 2 · ( 7 — 3 ) 2 — 4 — 3 = — 3 3 — 3 ≠ — 3 3 — 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

y ‘ = — 3 2 · ( x — 3 ) 2 — 4 — 3 ‘ = — 3 2 · x — 3 ( x — 3 ) 2 — 4 ⇒ k x = y ‘ ( x 0 ) = — 3 2 · x 0 — 3 x 0 — 3 2 — 4 x 0 = 7 = — 3 2 · 7 — 3 7 — 3 2 — 4 = — 3

Ответ: уравнение касательной можно представить как

y = — 3 · x — 7 — 3 3 — 3 = — 3 · x + 4 3 — 3

Наглядно изображается так:

Касательная к параболе

Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y ( x 0 ) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y ‘ ( x 0 ) · x — x 0 + y ( x 0 ) . Такая касательная в вершине параллельна о х .

Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у . Получаем, что

x = a y 2 + b y + c ⇔ a y 2 + b y + c — x = 0 D = b 2 — 4 a ( c — x ) y = — b + b 2 — 4 a ( c — x ) 2 a y = — b — b 2 — 4 a ( c — x ) 2 a

Графически изобразим как:

Для выяснения принадлежности точки x 0 , y ( x 0 ) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.

Написать уравнение касательной к графику x — 2 y 2 — 5 y + 3 , когда имеем угол наклона касательной 150 ° .

Решение

Начинаем решение с представления параболы в качестве двух функций. Получим, что

— 2 y 2 — 5 y + 3 — x = 0 D = ( — 5 ) 2 — 4 · ( — 2 ) · ( 3 — x ) = 49 — 8 x y = 5 + 49 — 8 x — 4 y = 5 — 49 — 8 x — 4

Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.

k x = y ‘ ( x 0 ) = t g α x = t g 150 ° = — 1 3

Отсюда определим значение х для точек касания.

Первая функция запишется как

y ‘ = 5 + 49 — 8 x — 4 ‘ = 1 49 — 8 x ⇒ y ‘ ( x 0 ) = 1 49 — 8 x 0 = — 1 3 ⇔ 49 — 8 x 0 = — 3

Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.

Вторая функция запишется как

y ‘ = 5 — 49 — 8 x — 4 ‘ = — 1 49 — 8 x ⇒ y ‘ ( x 0 ) = — 1 49 — 8 x 0 = — 1 3 ⇔ 49 — 8 x 0 = — 3 x 0 = 23 4 ⇒ y ( x 0 ) = 5 — 49 — 8 · 23 4 — 4 = — 5 + 3 4

Имеем, что точки касания — 23 4 ; — 5 + 3 4 .

Ответ: уравнение касательной принимает вид

Как найти точки касания окружности и параболы

Найдите все значения параметра а, при каждом из которых система имеет ровно 4 решения.

Первое уравнение задает части двух парабол (см. рисунок):

Второе уравнение задает окружность радиусом с центром

На рисунке видно, что четыре решения системы получаются в двух случаях.

1. Окружность касается каждой из ветвей обеих парабол.

2. Окружность пересекает каждую из ветвей обеих парабол в двух точках, лежащих по разные стороны от оси абсцисс.

Составим уравнение для ординат общих точек окружности и параболы Получим: откуда

Чтобы окружность касалась парабол, уравнение должно иметь нулевой дискриминант: откуда

Во втором случае радиус окружности заключен между числами 3 и 9.

Ответ:

Критерии оценивания ответа на задание С5 Баллы
Обоснованно получен верный ответ. 4
Рассмотрены все возможные случаи. Получен верный ответ, но решение либо содержит пробелы, либо вычислительную ошибку или описку. 3
Рассмотрены все возможные случаи. Получен ответ, но решение содержит ошибки. 2
Рассмотрены некоторые случаи. Для рассмотренных случаев получен ответ, возможно неверный из-за ошибок. 1
Все прочие случаи. 0
Максимальное количество баллов 4

Аналоги к заданию № 484646: 484647 484648 511316 Все

источники:

http://zaochnik.com/spravochnik/matematika/proizvodnye/kasatelnaja-k-grafiku-funktsii-v-tochke/

http://ege.sdamgia.ru/problem?id=484647

Уравнение касательной к графику функции

П. Романов, Т. Романова,
г. Магнитогорск,
Челябинская обл.

Уравнение
касательной к графику функции

Статья опубликована при поддержке Гостиничного комплекса «ИТАКА+». Останавливаясь в городе судостроителей Северодвинске, вы не столкнетесь с проблемой поиска временного жилья. Тут, на сайте гостиничного комплекса «ИТАКА+» http://itakaplus.ru, вы сможете легко и быстро снять квартиру в городе, на любой срок, с посуточной оплатой.

На современном этапе развития
образования в качестве одной из основных его
задач выступает формирование творчески мыслящей
личности. Способность же к творчеству у учащихся
может быть развита лишь при условии
систематического привлечения их к основам
исследовательской деятельности. Фундаментом для
применения учащимися своих творческих сил,
способностей и дарований являются
сформированные полноценные знания и умения. В
связи с этим проблема формирования системы
базовых знаний и умений по каждой теме школьного
курса математики имеет немаловажное значение.
При этом полноценные умения должны являться
дидактической целью не отдельных задач, а
тщательно продуманной их системы. В самом
широком смысле под системой понимается
совокупность взаимосвязанных взаимодействующих
элементов, обладающая целостностью и устойчивой
структурой.

Рассмотрим методику обучения
учащихся составлению уравнения касательной к
графику функции. По существу, все задачи на
отыскание уравнения касательной сводятся к
необходимости отбора из множества (пучка,
семейства) прямых тех из них, которые
удовлетворяют определенному требованию
– являются касательными к графику некоторой
функции. При этом множество прямых, из которого
осуществляется отбор, может быть задано двумя
способами:

а) точкой, лежащей на
плоскости xOy (центральный пучок прямых);
б) угловым коэффициентом (параллельный пучок
прямых).

В связи с этим при изучении
темы «Касательная к графику функции» с целью
вычленения элементов системы нами были выделены
два типа задач:

1) задачи на касательную,
заданную точкой, через которую она проходит;
2) задачи на касательную, заданную ее угловым
коэффициентом.

Обучение решению задач на
касательную осуществлялось при помощи
алгоритма, предложенного А.Г. Мордковичем [2].
Его принципиальное отличие от уже известных
заключается в том, что абсцисса точки касания
обозначается буквой a (вместо x0), в связи с чем
уравнение касательной приобретает вид

y = f(a) + f ‘(a)(x – a)

(сравните с y = f(x0) + f ‘(x0)(x
– x0)). Этот методический прием, на наш
взгляд, позволяет учащимся быстрее и легче
осознать, где в общем уравнении касательной
записаны координаты текущей точки, а где
– точки касания.

Алгоритм
составления уравнения касательной к графику
функции y = f(x)

1. Обозначить буквой a
абсциссу точки касания.
2. Найти f(a).
3. Найти f ‘(x) и f ‘(a).
4. Подставить найденные числа a, f(a), f ‘(a) в
общее уравнение касательной y = f(a) = f ‘(a)(x – a).

Этот алгоритм может быть
составлен на основе самостоятельного выделения
учащимися операций и последовательности их
выполнения.

Практика показала, что
последовательное решение каждой из ключевых
задач при помощи алгоритма позволяет
формировать умения написания уравнения
касательной к графику функции поэтапно, а шаги
алгоритма служат опорными пунктами действий.
Данный подход соответствует теории поэтапного
формирования умственных действий, разработанной
П.Я. Гальпериным и Н.Ф. Талызиной [3].

В первом типе задач были
выделены две ключевые задачи:

  • касательная проходит через
    точку, лежащую на кривой (задача 1);
  • касательная проходит через
    точку, не лежащую на кривой (задача 2).

Задача 1. Составьте уравнение
касательной к графику функции в точке M(3; – 2).

Решение. Точка M(3; – 2)
является точкой касания, так как

1. a = 3 – абсцисса точки
касания.
2. f(3) = – 2.
3. f ‘(x) = x2 – 4, f ‘(3) = 5.
y = – 2 + 5(x – 3), y = 5x – 17 – уравнение
касательной.

Задача 2. Напишите уравнения
всех касательных к графику функции y = – x2
– 4x + 2, проходящих через точку M(– 3; 6).

Решение. Точка M(– 3; 6) не
является точкой касания, так как f(– 3)
­ 6 (рис. 2).

1. a – абсцисса точки
касания.
2. f(a) = – a2 – 4a + 2.
3. f ‘(x) = – 2x – 4, f ‘(a) = – 2a – 4.
4. y = – a2 – 4a + 2 – 2(a + 2)(x – a)
– уравнение касательной.

Касательная проходит через
точку M(– 3; 6), следовательно, ее координаты
удовлетворяют уравнению касательной.

6 = – a2 – 4a + 2 – 2(a +
2)(– 3 – a),
a2 + 6a + 8 = 0
^ a1 = – 4, a2 = – 2.

Если a = – 4, то уравнение
касательной имеет вид y = 4x + 18.

Если a = – 2, то уравнение
касательной имеет вид y = 6.

Во втором типе ключевыми
задачами будут следующие:

  • касательная параллельна
    некоторой прямой (задача 3);
  • касательная проходит под
    некоторым углом к данной прямой (задача 4).

Задача 3. Напишите уравнения
всех касательных к графику функции y = x3 – 3x2
+ 3, параллельных прямой y = 9x + 1.

Решение.

1. a – абсцисса точки
касания.
2. f(a) = a3 – 3a2 + 3.
3. f ‘(x) = 3x2 – 6x, f ‘(a) = 3a2 – 6a.

Но, с другой стороны, f ‘(a) = 9
(условие параллельности). Значит, надо решить
уравнение 3a2 – 6a = 9. Его корни a = – 1, a = 3
(рис. 3).

4. 1) a = – 1;
2) f(– 1) = – 1;
3) f ‘(– 1) = 9;
4) y = – 1 + 9(x + 1);

y = 9x + 8 – уравнение
касательной;

1) a = 3;
2) f(3) = 3;
3) f ‘(3) = 9;
4) y = 3 + 9(x – 3);

y = 9x – 24 – уравнение
касательной.

Задача 4. Напишите уравнение
касательной к графику функции y = 0,5x2 – 3x + 1,
проходящей под углом 45° к прямой y = 0 (рис. 4).

Решение. Из условия f ‘(a) =
tg 45° найдем a:  a – 3 = 1
^ a = 4.

1. a = 4 – абсцисса точки
касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f ‘(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).

y = x – 7 – уравнение
касательной.

Несложно показать, что
решение любой другой задачи сводится к решению
одной или нескольких ключевых задач. Рассмотрим
в качестве примера следующие две задачи.

1. Напишите уравнения
касательных к параболе y = 2x2 – 5x – 2, если
касательные пересекаются под прямым углом и одна
из них касается параболы в точке с абсциссой 3
(рис. 5).

Решение. Поскольку дана
абсцисса точки касания, то первая часть решения
сводится к ключевой задаче 1.

1. a = 3 – абсцисса точки
касания одной из сторон прямого угла.
2. f(3) = 1.
3. f ‘(x) = 4x – 5, f ‘(3) = 7.
4. y = 1 + 7(x – 3), y = 7x – 20 – уравнение первой
касательной.

Пусть a – угол наклона первой
касательной. Так как касательные
перпендикулярны, то – угол наклона второй касательной. Из
уравнения y = 7x – 20 первой касательной имеем tg 
a = 7. Найдем

Это значит, что угловой
коэффициент второй касательной равен .

Дальнейшее решение сводится к
ключевой задаче 3.

Пусть B(c; f(c)) есть точка
касания второй прямой, тогда

1.  – абсцисса второй точки касания.
2. 
3. 
4. 
– уравнение
второй касательной.

Примечание. Угловой
коэффициент касательной может быть найден проще,
если учащимся известно соотношение
коэффициентов перпендикулярных прямых k1•k2
= – 1.

2. Напишите уравнения всех
общих касательных к графикам функций

Решение. Задача сводится к
отысканию абсцисс точек касания общих
касательных, то есть к решению ключевой задачи 1 в
общем виде, составлению системы уравнений и
последующему ее решению (рис. 6).

1. Пусть a – абсцисса
точки касания, лежащей на графике функции y = x2
+ x + 1.
2. f(a) = a2 + a + 1.
3. f ‘(a) = 2a + 1.
4. y = a2 + a + 1 + (2a + 1)(x – a) = (2a + 1)x + 1 – a2.

1. Пусть c – абсцисса
точки касания, лежащей на графике функции  
2.
3. f ‘(c) = c.
4. 

Так как касательные общие, то

Итак, y = x + 1 и y = – 3x – 3
– общие касательные.

Основная цель рассмотренных
задач – подготовить учащихся к
самостоятельному распознаванию типа ключевой
задачи при решении более сложных задач,
требующих определенных исследовательских
умений (умения анализировать, сравнивать,
обобщать, выдвигать гипотезу и т. д.). К числу
таких задач можно отнести любую задачу, в которую
ключевая задача входит как составляющая.
Рассмотрим в качестве примера задачу (обратную
задаче 1) на нахождение функции по семейству ее
касательных.

3. При каких b и c прямые y = x и
y = – 2x являются касательными к графику функции
y = x2 + bx + c?

Решение.

Пусть t – абсцисса точки
касания прямой y = x с параболой y = x2 + bx + c; p
– абсцисса точки касания прямой y = – 2x с
параболой y = x2 + bx + c. Тогда уравнение
касательной y = x примет вид y = (2t + b)x + c – t2, а
уравнение касательной y = – 2x примет вид y = (2p +
b)x + c – p2.

Составим и решим систему
уравнений

Ответ:

 Задачи для
самостоятельного решения

1. Напишите уравнения
касательных, проведенных к графику функции y = 2x2
– 4x + 3 в точках пересечения графика с прямой y = x +
3.

Ответ: y = – 4x + 3, y = 6x – 9,5.

2. При каких значениях a
касательная, проведенная к графику функции y = x2
– ax в точке графика с абсциссой x0 = 1,
проходит через точку M(2; 3)?

Ответ: a = 0,5.

3. При каких значениях p
прямая y = px – 5 касается кривой y = 3x2 – 4x – 2?

Ответ: p1 = – 10, p2
= 2.

4. Найдите все общие точки
графика функции y = 3x – x3 и касательной,
проведенной к этому графику через точку P(0; 16).

Ответ: A(2; – 2), B(– 4; 52).

5. Найдите кратчайшее
расстояние между параболой y = x2 + 6x + 10 и
прямой

Ответ:

6. На кривой y = x2 – x + 1
найдите точку, в которой касательная к графику
параллельна прямой y – 3x + 1 = 0.

Ответ: M(2; 3).

7. Напишите уравнение
касательной к графику функции y = x2 + 2x –
| 4x |, которая касается его в двух точках.
Сделайте чертеж.

Ответ: y = 2x – 4.

8. Докажите, что прямая y = 2x
– 1 не пересекает кривую y = x4 + 3x2 + 2x.
Найдите расстояние между их ближайшими точками.

Ответ:

9. На параболе y = x2
взяты две точки с абсциссами x1 = 1, x2 = 3.
Через эти точки проведена секущая. В какой точке
параболы касательная к ней будет параллельна
проведенной секущей? Напишите уравнения секущей
и касательной.

Ответ: y = 4x – 3 – уравнение
секущей; y = 4x – 4 – уравнение касательной.

10. Найдите угол q между касательными
к графику функции y = x3 – 4x2 + 3x + 1,
проведенными в точках с абсциссами 0 и 1.

Ответ: q = 45°.

11. В каких точках
касательная к графику функции образует с осью Ox угол в 135°?

Ответ: A(0; – 1), B(4; 3).

12. В точке A(1; 8) к кривой проведена
касательная. Найдите длину отрезка касательной,
заключенного между осями координат.

Ответ:

13. Напишите уравнение всех
общих касательных к графикам функций y = x2
x + 1 и y = 2x2 – x + 0,5.

Ответ: y = – 3x и y = x.

14. Найдите расстояние между
касательными к графику функции параллельными оси абсцисс.

Ответ:

15. Определите, под какими
углами парабола y = x2 + 2x – 8 пересекает ось
абсцисс.

Ответ: q1 = arctg 6, q2 = arctg (– 6).

16. На графике функции найдите все
точки, касательная в каждой из которых к этому
графику пересекает положительные полуоси
координат, отсекая от них равные отрезки.

Ответ: A(– 3; 11).

17. Прямая y = 2x + 7 и парабола y
= x2 – 1 пересекаются в точках M и N. Найдите
точку K пересечения прямых, касающихся параболы в
точках M и N.

Ответ: K(1; – 9).

18. При каких значениях b
прямая y = 9x + b является касательной к графику
функции y = x3 – 3x + 15?

Ответ: – 1; 31.

19. При каких значениях k
прямая y = kx – 10 имеет только одну общую точку с
графиком функции y = 2x2 + 3x – 2? Для найденных
значений k определите координаты точки.

Ответ: k1 = – 5, A(– 2;
0); k2 = 11, B(2; 12).

20. При каких значениях b
касательная, проведенная к графику функции y = bx3
– 2x2 – 4 в точке с абсциссой x0 = 2,
проходит через точку M(1; 8)?

Ответ: b = – 3.

21. Парабола с вершиной на
оси Ox касается прямой, проходящей через точки A(1;
2) и B(2; 4), в точке B. Найдите уравнение параболы.

Ответ:

22. При каком значении
коэффициента k парабола y = x2 + kx + 1 касается
оси Ox?

Ответ: k = д 2.

23. Найдите углы между
прямой y = x + 2 и кривой y = 2x2 + 4x – 3.

Ответ:

24. Определите, под какими
углами пересекаются графики функций y = 2x2 +
3x – 3 и y = x2 + 2x + 3.

Ответ:

25. При каком значении k угол
между кривыми y = x2 + 2x + k и y = x2 + 4x + 4
будет равен 45°?

Ответ: k = – 3.

26. Найдите все значения x0,
при каждом из которых касательные к графикам
функции y = 5cos 3x + 2 и y = 3cos 5x в точках в
абсциссой x0 параллельны.

Ответ:

27. Под каким углом видна
окружность x2 + y2 = 16 из точки (8; 0)?

Ответ:

28. Найдите геометрическое
место точек, из которых парабола y = x2 видна
под прямым углом?

Ответ: прямая

29. Найдите расстояние между
касательными к графику функции образующими с
положительным направлением оси Ox угол 45°.

Ответ:

30. Найдите геометрическое
место вершин всех парабол вида y = x2 + ax + b,
касающихся прямой y = 4x – 1.

Ответ: прямая y = 4x + 3.

Литература

1. Звавич Л.И., Шляпочник Л.Я.,
Чинкина М.В. Алгебра и начала анализа: 3600 задач
для школьников и поступающих в вузы. – М., Дрофа,
1999.
2. Мордкович А. Семинар четвертый для молодых
учителей. Тема «Приложения производной». – М.,
«Математика», № 21/94.
3. Формирование знаний и умений на основе
теории поэтапного усвоения умственных действий.
/ Под ред. П.Я. Гальперина, Н.Ф. Талызиной.
– М., МГУ, 1968.

TopList

На примере двух парабол покажем, как составить уравнение общей касательной к графикам функций. Заметим, что общих касательных может быть несколько.

Для решения данной задачи потребуются знания о производной на уровне школьного курса.

В рамках подготовки к профильному ЕГЭ при изучении производной я предлагаю своим ученикам решать, в том числе, и подобные задачи, помимо стандартных 7 и 12 заданий.

Это необходимо для того, чтобы школьники учились применять свои знания при решении задач, а не просто решать стандартные задания по шаблону.

Составим уравнение общих касательных к графикам квадратичных функций (параболам):

Касательная представляет собой прямую. Запишем уравнение касательной в виде уравнения прямой с угловым коэффициентом:
y = kx + b, k – угловой коэффициент.
Обозначим точку, в которой она касается первой параболы, как A (a1, a2), второй параболы – B (b1, b2).

Рассмотрим функцию

1. Вычислим ее производную: y’ = 2(x – 1).

2. Найдем координаты точки касания A (a1, a2).
Используем геометрический смысл производной: значение производной в точке касания равно угловому коэффициенту касательной.
y’ = 2(a1 – 1) — значение производной в точке касания, 
k – угловой коэффициент.
Таким образом,
2(a1 – 1) = k
a1 = k/2 + 1.

Подставим a1 в уравнение (1) и найдем a2:
a2 = (a1 — 1)^2 + 1 = (k/2 + 1 — 1)^2 + 1 = k^2/4 + 1.

Таким образом, мы выразили координаты точки A через угловой коэффициент касательной:
A (k/2 + 1, k^2/4 + 1).

Аналогичным способом выразим координаты точки B:
B (-k/2 + 3, — k^2/4 + 1).

3. Угловой коэффициент прямой, проходящей через точки A (a1, a2) и B (b1, b2), равен (a2 – b2) / (a1 – b1). Значит
k = (a2 – b2) / (a1 – b1).

Подставим в это уравнение координаты точек A и B и получим уравнение относительно k:

Находим корни: k = 0 и k = 4.

Для k = 4.
4. Находим координаты точек A и B.
A (4/2 + 1, 4^2/4 + 1) = A (3, 5)
B (-4/2 + 3, — 4^2/4 + 1) = B (1, -3).

5. Составляем уравнение касательной (прямой) по двум точкам. (Данная тема разобрана в предыдущем посте)
(x – a1) / (b1 – a1) = (y – a2) / (b2 – a2)
(x – 3) / (1 – 3) = (y – 5) / (-3 – 5)
(x – 3) / (–2) = (y – 5) / (-8) – каноническое уравнение прямой
Выражаем y:
y = 4x – 7 – уравнение прямой с угловым коэффициентом.

Аналогично находим уравнение еще одной касательной (при k = 0):
y = 1.

✔ Для того, чтобы задать вопрос или записаться на консультацию, пишите в whatsapp 8 968 814 30 80.

Содержание  

Понравилась статья? Поделить с друзьями:
  • Как найти работу человеку с улицы
  • Как найти хорошего психотерапевта москвы
  • Свойства равнобедренного треугольника как найти стороны
  • Как найти среднюю заработную плату всех работников
  • Как найти своих однокурсников по училище