Как найти координаты точки окружности зная радиус

Как найти координату точки на окружности

Как найти координату точки окружности

Как находить точки окружности

Окружность изучается в геометрии, и чтобы правильно сделать заданную задачу, нужно научиться находить точки окружности. Для этого вам понадобится список необходимых инструментов, таких как:

  • простой карандаш;
  • тетрадь в клеточку;
  • циркуль;
  • транспортир;
  • шариковая или гелевая ручка.

Как найти координаты точки окружности

Прежде, чем найти точку на окружности и обозначить ее координаты, следует эту окружность построить. При построении вам встретятся еще несколько правил, в зависимости от заданных в задаче вопросов. Это может быть как хорда, на которой тоже нужно будет найти точку в окружности, она соединяет две точки. Помните, что диаметром называется хорда, которая проходит через центр окружности и соединяет две противоположные точки на ней.

Также можно найти точку на окружности, которая находится на касательной, то есть прямой, которая имеет с окружностью одну общую точку, но не пересекает ее. Если окружность пересекается прямой, то она имеет с ней две общие точки, найти на окружности их легко, так как они одновременно относятся как к окружности, так и к прямой. Для определения координат точки на окружности можно воспользоваться как формулой для прямой, так и формулой для окружности.

Как найти координаты точки на окружности или, если известно только значение радиуса R, можно по одной из его координат, либо если дано значение угла альфа. Выглядит это так:

sin alpha = y / R
cos alpha = x / R
cos alpha * cos alpha + sin alpha * sin alpha = 1

Может помочь также найти на окружности координаты точки один из многочисленных форумов, где сидят математики и помогают решить все задачки, но не только помогают, но и стараются объяснить ее.

В школе учат, как найти точки окружности, когда начинают изучать геометрию в 6 классе.

Отличников, которые знают, как найти точки на окружности и их координаты, часто могут обижать в школе, если они не дают списывать. В таких случаях будет нелишним знать, как наказать обидчика за оскорбление.

Как найти координаты точки?

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

Окружность на координатной плоскости

Окружность на плоскости — это множество точек на плоскости равноудаленных от точки центра. На рисунке данная точка обозначена C.

Окружность радиуса R с центром в начале координат представляется уравнением:


Окружность радиуса R с центром в точке C(a;b) представляется уравнением:



Расстояние от центра окружности С(a;b) до точки M(x;y) называется радиусом окружности R (на рисунке красная линия ).
Это уравнение можно записать в виде:

Если уравнение помножить на любое число A, то получим

Примечание
Окружность относится к линии второго порядка, так как представляется уравнением второй степени.

Необходимые условия для этого:
1. Отсутствие в уравнение второй степени члена с произведением xy;
2. Коэффициенты при x 2 и y 2 были равны в уравнение вида:

3. Если выполняется неравенство

Как найти радиус и центр окружности

Уравнение Ax 2 +Bx+Ay 2 +Cy+D=0 если оно удовлетворяет примечаниям (1, 2 и 3), то тогда (a;b) и радиус R окружности можно найти по формулам:

Пример 1
Уравнение 5x 2 -10x+5y 2 +20y-20=0
Здесь
A=5, B=-10, C=20, D=-20
Оно удовлетворяет примечаниям 1, 2 и выполняется неравенство


Решая, получаем что центр есть (1;-2), а радиус R=3

Анимационный график окружности

Пример 2
Уравнение второй степени x 2 +4xy+y 2 =1 не является окружностью, так как в нём есть член 4xy.

Пример 3
Уравнение второй степени 4x 2 +9y 2 =36 не представляет окружность, так как в нём коэффициенты при x 2 и y 2 не равны.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.3 / 5. Количество оценок: 4

Как находить точки окружности

Окружность изучается в геометрии, и чтобы правильно сделать заданную задачу, нужно научиться находить точки окружности. Для этого вам понадобится список необходимых инструментов, таких как:

  • простой карандаш;
  • тетрадь в клеточку;
  • циркуль;
  • транспортир;
  • шариковая или гелевая ручка.

Как найти координаты точки окружности

Прежде, чем найти точку на окружности и обозначить ее координаты, следует эту окружность построить. При построении вам встретятся еще несколько правил, в зависимости от заданных в задаче вопросов. Это может быть как хорда, на которой тоже нужно будет найти точку в окружности, она соединяет две точки. Помните, что диаметром называется хорда, которая проходит через центр окружности и соединяет две противоположные точки на ней.

Также можно найти точку на окружности, которая находится на касательной, то есть прямой, которая имеет с окружностью одну общую точку, но не пересекает ее. Если окружность пересекается прямой, то она имеет с ней две общие точки, найти на окружности их легко, так как они одновременно относятся как к окружности, так и к прямой. Для определения координат точки на окружности можно воспользоваться как формулой для прямой, так и формулой для окружности.

Как найти координаты точки на окружности или, если известно только значение радиуса R, можно по одной из его координат, либо если дано значение угла альфа. Выглядит это так:

sin alpha = y / R
cos alpha = x / R
cos alpha * cos alpha + sin alpha * sin alpha = 1

Может помочь также найти на окружности координаты точки один из многочисленных форумов, где сидят математики и помогают решить все задачки, но не только помогают, но и стараются объяснить ее.

В школе учат, как найти точки окружности, когда начинают изучать геометрию в 6 классе.

Отличников, которые знают, как найти точки на окружности и их координаты, часто могут обижать в школе, если они не дают списывать. В таких случаях будет нелишним знать, как наказать обидчика за оскорбление.

Как найти координаты точки?

О чем эта статья:

3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие системы координат

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

  • Координатные оси — это прямые, образующие систему координат.
  • Ось абсцисс Ox — горизонтальная ось.
  • Ось ординат Oy — вертикальная ось.
  • Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
  • Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

  • верхний правый угол — первая четверть I;
  • верхний левый угол — вторая четверть II;
  • нижний левый угол — третья четверть III;
  • нижний правый угол — четвертая четверть IV;
  • Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
  • Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
  • Если обе координаты отрицательны, то число находится в третьей четверти.
  • Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.

Определение координат точки

Каждой точке координатной плоскости соответствуют две координаты.

Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.

Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.

Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.

Смотрим на график и фиксируем: A (1; 2) и B (2; 3).

Особые случаи расположения точек

В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:

  1. Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
    точка С (0, 2).
  2. Если точка лежит на оси Ox, то ее ордината равна 0. Например,
    точка F (3, 0).
  3. Начало координат — точка O. Ее координаты равны нулю: O (0,0).
  4. Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
  5. Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
  6. Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
  7. Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).

Способы нахождения точки по её координатам

Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.

Способ первый. Как определить положение точки D по её координатам (-4, 2):

  1. Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
  2. Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
  3. Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.

Способ второй. Как определить положение точки D (-4, 2):

  1. Сместить прямую по оси Ox влево на 4 единицы, так как у нас
    перед 4 стоит знак минус.
  2. Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.

Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:

Как находить точки окружности

Окружность изучается в геометрии, и чтобы правильно сделать заданную задачу, нужно научиться находить точки окружности. Для этого вам понадобится список необходимых инструментов, таких как:

  • простой карандаш;
  • тетрадь в клеточку;
  • циркуль;
  • транспортир;
  • шариковая или гелевая ручка.

Как найти координаты точки окружности

Прежде, чем найти точку на окружности и обозначить ее координаты, следует эту окружность построить. При построении вам встретятся еще несколько правил, в зависимости от заданных в задаче вопросов. Это может быть как хорда, на которой тоже нужно будет найти точку в окружности, она соединяет две точки. Помните, что диаметром называется хорда, которая проходит через центр окружности и соединяет две противоположные точки на ней.

Также можно найти точку на окружности, которая находится на касательной, то есть прямой, которая имеет с окружностью одну общую точку, но не пересекает ее. Если окружность пересекается прямой, то она имеет с ней две общие точки, найти на окружности их легко, так как они одновременно относятся как к окружности, так и к прямой. Для определения координат точки на окружности можно воспользоваться как формулой для прямой, так и формулой для окружности.

Как найти координаты точки на окружности или, если известно только значение радиуса R, можно по одной из его координат, либо если дано значение угла альфа. Выглядит это так:

sin alpha = y / R
cos alpha = x / R
cos alpha * cos alpha + sin alpha * sin alpha = 1

Может помочь также найти на окружности координаты точки один из многочисленных форумов, где сидят математики и помогают решить все задачки, но не только помогают, но и стараются объяснить ее.

В школе учат, как найти точки окружности, когда начинают изучать геометрию в 6 классе.

Отличников, которые знают, как найти точки на окружности и их координаты, часто могут обижать в школе, если они не дают списывать. В таких случаях будет нелишним знать, как наказать обидчика за оскорбление.

Как найти координаты центр окружности??

Инструкция
1
Аналитически окружность задается уравнением вида (x-x0)²+(y-y0)²=R², где x0 и y0 − координаты центра окружности, R − ее радиус. Итак, центр окружности (x0;y0) здесь задан в явном виде.
2
Пример. Установите центр фигуры, заданной в декартовой системе координат уравнением (x-2)²+(y-5)²=25.
Решение. Данное уравнение является уравнением окружности. Ее центр имеет координаты (2;5). Радиус такой окружности равен 5.
3
Уравнение x²+y²=R² соответствует окружности с центром в начале координат, то есть, в точке (0;0). Уравнение (x-x0)²+y²=R² означает, что центр окружности имеет координаты (x0;0) и лежит на оси абсцисс. Вид уравнения x²+(y-y0)²=R² говорит о расположении центра с координатами (0;y0) на оси ординат.
4
Общее уравнение окружности в аналитической геометрии запишется как: x²+y²+Ax+By+C=0. Чтобы привести такое уравнение к выше обозначенному виду, надо сгруппировать члены и выделить полные квадраты: [x²+2(A/2)x+(A/2)²]+[y²+2(B/2)y+(B/2)²]+C-(A/2)²-(B/2)²=0. Для выделения полных квадратов, как можно заметить, требуется добавлять дополнительные величины: (A/2)² и (B/2)². Чтобы знак равенства сохранялся, эти же величины надо вычесть. Прибавление и вычитание одного и того же числа не меняет уравнения.
5
Таким образом, получается: [x+(A/2)]²+[y+(B/2)]²=(A/2)²+(B/2)²-C. Из этого уравнения уже видно, что x0=-A/2, y0=-B/2, R=√[(A/2)²+(B/2)²-C]. Кстати, выражение для радиуса можно упростить. Домножьте обе части равенства R=√[(A/2)²+(B/2)²-C] на 2. Тогда: 2R=√[A²+B²-4C]. Отсюда R=1/2·√[A²+B²-4C].
6
Окружность не может быть графиком функции в декартовой системе координат, так как, по определению, в функции каждому x соответствует единственное значение y, а для окружности таких «игреков» будет два. Чтобы убедиться в этом, проведите перпендикуляр к оси Ox, пересекающий окружность. Вы увидите, что точек пересечения две.
7
Но окружность можно представить как объединение двух функций: y=y0±√[R²-(x-x0)²]. Здесь x0 и y0, соответственно, представляют собой искомые координаты центра окружности. При совпадении центра окружности с началом координат объединение функций принимает вид: y=√[R²-x²].

источники:

Как находить точки окружности

http://sprashivalka.com/tqa/q/4723581

Сегодня поговорим об единичной окружности 🧑‍🏫

 

Можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота?🤔

Ну, конечно, можно! Записывай и запоминай общую формулу для нахождения координат точки:

x=x0+r⋅cos δ

y=y0+r⋅sin δ

x0,y0 — координаты центра окружности;

r — радиус окружности;

δ —угол поворота радиуса вектора.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

I have a complicated problem and it involves an understanding of Maths I’m not confident with.

Some slight context may help. I’m building a 3D train simulator for children and it will run in the browser using WebGL. I’m trying to create a network of points to place the track assets (see image) and provide reference for the train to move along.

To help explain my problem I have created a visual representation as I am a designer who can script and not really a programmer or a mathematician:

visualisation of problem

Basically, I have 3 shapes (Figs. A, B & C) and although they have width, can be represented as a straight line for A and curves (B & C). Curves B & C are derived (bend modified) from A so are all the same length (l) which is 112. The curves (B & C) each have a radius (r) of 285.5 and the (a) angle they were bent at was 22.5°.

Each shape (A, B & C) has a registration point (start point) illustrated by the centre of the green boxes attached to each of them.

What I am trying to do is create a network of «track» starting at 0, 0 (using standard Cartesian coordinates).

My problem is where to place the next element after a curve. If it were straight track then there is no problem as I can use the length as a constant offset along the y axis but that would be boring so I need to add curves.

Fig. D. demonstrates an example of a possible track layout but please understand that I am not looking for a static answer (based on where everything is positioned in the image), I need a formula that can be applied no matter how I configure the track.

Using Fig. D. I tried to work out where to place the second curved element after the first one. I used the formula for plotting a point of the circumference of a circle given its centre coordinates and radius (Fig. E.).

I had point 1 as that was simply a case of setting the length (y position) of the straight line. I could easily work out the centre of the circle because that’s just the offset y position, the offset of the radius (r) (x position) and the angle (a) which is always 22.5° (which, incidentally, was converted to Radians as per formula requirements).

After passing the values through the formula I didn’t get the correct result because the formula assumed I was working anti-clockwise starting at 3 o’clock so I had to deduct 180 from (a) and convert that to Radians to get the expected result.

That did work and if I wanted to create a 180° track curve I could use the same centre point and simply deducted 22.5° from the angle each time. Great. But I want a more dynamic track layout like in Figs. D & E.

So, how would I go about working point 5 in Fig. E. because that represents the centre point for that curve segment? I simply have no idea.

Also, as a bonus question, is this the correct way to be doing this or am I over-complicating things?

This problem is the only issue stopping me from building my game and, as you can appreciate, it is a bit of a biggie so I thank anyone for their contribution in advance.

Как найти координаты центра окружности 🚩 центр и радиус окружности 🚩 Математика

Инструкция

Предположим, что ваша задача — составить уравнение окружности заданного радиуса R, центр которой находится в начале координат. Окружность, по определению — множество точек, находящихся на заданном расстоянии от центра. Это расстояние как раз и равно радиусу R.

Расстояние от точки (x, y) до центра координат равно длине отрезка, соединяющего ее с точкой (0, 0). Этот отрезок вместе с его проекциями на координатные оси составляют прямоугольный треугольник, катеты которого равны x0 и y0, а гипотенуза, по теореме Пифагора, равна √(x^2 + y^2).

Чтобы получить окружность, вам нужно уравнение, определяющее все точки, для которых это расстояние будет равно R. Таким образом:√(x^2 + y^2) = R, а следовательно,
x^2 + y^2 = R^2.

Аналогичным способом составляется уравнение окружности радиусом R, центр которой находится в точке (x0, y0). Расстояние от произвольной точки (x, y) до заданной точки (x0, y0) равно √((x — x0)^2 + (y — y0)^2). Следовательно, уравнение нужной вам окружности будет выглядеть так:(x — x0)^2 + (y — y0)^2 = R^2.

Вам может понадобиться также составить уравнение окружности с центром в точке координат, проходящей через заданную точку (x0, y0). В этом случае радиус искомой окружности не задан в явном виде, и его придется вычислять. Очевидно, он будет равен расстоянию от точки (x0, y0) до начала координат, то есть √(x0^2 + y0^2). Подставляя это значение в уже выведенное уравнение окружности, вы получите:x^2 + y^2 = x0^2 + y0^2.

Если вам предстоит построить окружность по выведенным формулам, то их придется разрешать относительно y. Даже самое простое из этих уравнений при этом превращается в:y = ±√(R^2 — x^2).Знак ± необходим здесь потому, что квадратный корень числа всегда неотрицателен, а это значит, что без знака ± такое уравнение описывает только верхнюю полуокружность.Чтобы построить окружность, удобнее составить ее параметрическое уравнение, в котором обе координаты x и y зависят от параметра t.

Согласно определению тригонометрических функций, если гипотенуза прямоугольного треугольника равна 1, а один из углов при гипотенузе равен φ, то прилежащий к нему катет равен cos(φ), а противолежащий — sin(φ). Таким образом, sin(φ)^2 + cos(φ)^2 = 1 для любого φ.

Предположим, вам дана окружность единичного радиуса с центром в начале координат. Возьмем любую точку (x, y) на этой окружности и проведем от нее отрезок к центру. Этот отрезок образует угол с положительной полуосью x, который может быть равен от 0 до 360° или от 0 до 2π радиан. Обозначая этот угол t, вы получите зависимость:x = cos(t),
y = sin(t).

Эту формулу можно обобщить на случай окружности радиуса R с центром в произвольной точке (x0, y0):x = R*cos(t) + x0,
y = R*sin(t) + y0.

www.kakprosto.ru

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике — Алгебра

Числовая ось

      Определение 1. Числовой осью (числовой прямой, координатной прямой)   Ox   называют прямую линию, на которой точка   O   выбрана началом отсчёта (началом координат) (рис.1), направление

O x

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Рис.1

      Определение 2. Отрезок, длина которого принята за единицу длины, называют масштабом.

      Каждая точка числовой оси имеет координату, являющуюся вещественным числом. Координата точки   O   равна нулю. Координата произвольной точки   A ,   лежащей на луче   Ox ,   равна длине отрезка   OA .   Координата произвольной точки   A   числовой оси, не лежащей на луче   Ox ,   отрицательна, а по абсолютной величине равна длине отрезка   OA .

Прямоугольная декартова система координат на плоскости

      Определение 3. Прямоугольной декартовой системой координат   Oxy   на плоскости называют две взаимно перпендикулярных числовых оси   Ox   и   Oy   с одинаковыми масштабами и общим началом отсчёта в точке   O ,   причём таких, что поворот от луча   Ox   на угол   90°   до луча   Oy   осуществляется в направлении против хода часовой стрелки (рис.2).

Рис.2

      Замечание. Прямоугольную декартову систему координат   Oxy ,   изображённую на рисунке 2, называют правой системой координат, в отличие от левых систем координат, в которых поворот луча   Ox   на угол   90°   до луча   Oy   осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

      Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат   Oxy ,   то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть   A   – произвольная точка плоскости. Опустим из точки   A   перпендикуляры   AA1   и   AA2   на прямые   Ox   и   Oy   соответственно (рис.3).

Рис.3

      Определение 4. Абсциссой точки   A   называют координату точки   A1   на числовой оси   Ox ,   ординатой точки   A   называют координату точки   A2   на числовой оси   Oy .

      Обозначение. Координаты (абсциссу и ординату) точки   A   в прямоугольной декартовой системе координат   Oxy   (рис.4) принято обозначать   (; y)   или   A = (y).

Рис.4

      Замечание. Точка   O ,   называемая началом координат, имеет координаты   (0 ; 0) .

      Определение 5 . В прямоугольной декартовой системе координат   Oxy   числовую ось   Ox   называют осью абсцисс, а числовую ось   Oy   называют осью ординат (рис. 5).

      Определение 6. Каждая прямоугольная декартова система координат делит плоскость на   4   четверти (квадранта), нумерация которых показана на рисунке 5.

Рис.5

      Определение 7. Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью.

      Замечание. Ось абсцисс задаётся на координатной плоскости уравнением   y = 0 ,   ось ординат задаётся на координатной плоскости уравнением   x = 0.

Формула для расстояния между двумя точками координатной плоскости

      Утверждение 1. Расстояние между двумя точками координатной плоскости

A1 (x1 ; y1)   и   A2 (x2 ; y2)

вычисляется по формуле

      Доказательство. Рассмотрим рисунок 6.

Рис.6

      Поскольку в прямоугольном треугольнике   A1A2B   длина катета   A1B   равна   | x2 – x1|    а длина катета   A2B   равна   | y2 – y1| ,   то по теореме Пифагора

| A1A2|2 =
= ( x2 x1)2 + ( y2 y1)2 .
(1)

     Следовательно,

что и требовалось доказать.

Уравнение окружности на координатной плоскости

      Рассмотрим на координатной плоскости   Oxy   (рис. 7) окружность радиуса   R   с центром в точке   A0 (x0 ; y0) .

Рис.7

      Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

( x – x0)2 + ( y – y0)2 = R2.

Уравнение (2) и есть искомое уравнение окружности радиуса   R   с центром в точке   A0 (x0 ; y0) .

      Следствие. Уравнение окружности радиуса   R   с центром в начале координат имеет вид

x2 + y2 = R2.

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ или ОГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

геометрия / Поиск координат точек на окружности / Математика

Координаты векторов $%vec{OA}$% и $%vec{OB}$% находятся при помощи вычитания: из координат конца вектора вычитаются координаты его начала. Например, если $%O(3;2)$% и $%A(5,1)$%, то первый вектор будет иметь координаты $%(2;-1)$%.

Зная координаты вектора, можно найти квадрат его длины как сумму квадратов координат. Для предыдущего примера получится $%2^2+(-1)^2=5$%. Извлекая квадратный корень, находим длину вектора (в примере это даёт $%sqrt{5}$%). Это радиус окружности $%r$%.

Для того, чтобы разделить дугу на 4 равные части, достаточно научиться делить её на 2 равные части. Тогда сначала находим координаты точки $%E_1$%, а далее, зная их, по той же процедуре делим на равные части дуги $%AE_1$% и $%E_1B$%, выявляя точки $%E_0$%, $%E_2$%.

Сначала находим сумму векторов $%vec{OA}$% и $%vec{OB}$% покоординатным сложением. Этот вектор будет иметь то же направление, что и $%vec{OE_1}$%. Далее его надо будет поделить на свою длину, получая единичный вектор того же направления, а затем умножить на $%r$% — радиус окружности, найденный ранее. То есть всё сводится к нахождению длины вектора $%vec{OA}+vec{OB}$%. Делается это так же, как и раньше: координаты вектора найдены; их сумма квадратов есть квадрат длины вектора. Осталось извлечь квадратный корень.

Теперь о длине дуги: она равна $%ralpha$%, где $%alpha$% — угол между векторами. Радиус мы знаем, и остаётся найти угол. Сначала находим его косинус: это будет отношение скалярного произведения векторов к произведению их длин. Длины нам известны, и обе они равны $%r$%. Скалярное произведение есть сумма произведений координат. Например, у векторов с координатами $%(4;-1)$% и $%(3;7)$% скалярное произведение равно $%4cdot3+(-1)cdot7=5$%. Поделив его на произведение длин векторов, находим $%cosalpha$%. Тогда сам угол будет равен арккосинусу полученного числа.

отвечен
9 Сен ’13 23:55

math.hashcode.ru

Как найти координаты центра окружности

Окружность ? геометрическое место точек плоскости, равноудаленных от центра на некоторое расстояние, называемое радиусом. Если задана нулевая точка отсчета, единичный отрезок и направление координатных осей, центр окружности будет характеризоваться определенными координатами. Как водится, окружность рассматривают в декартовой прямоугольной системе координат.

Инструкция

1. Аналитически окружность задается уравнением вида (x-x0)?+(y-y0)?=R?, где x0 и y0 ? координаты центра окружности , R ? ее радиус. Выходит, центр окружности (x0;y0) тут задан в очевидном виде.

2. Пример. Установите центр фигуры, заданной в декартовой системе координат уравнением (x-2)?+(y-5)?=25.Решение. Данное уравнение является уравнением


окружности . Ее центр имеет координаты (2;5). Радиус такой окружности равен 5.

3. Уравнение x?+y?=R? соответствует окружности с центром в начале координат, то есть, в точке (0;0). Уравнение (x-x0)?+y?=R? обозначает, что центр окружности имеет координаты (x0;0) и лежит на оси абсцисс. Вид уравнения x?+(y-y0)?=R? говорит о расположении центра с координатами (0;y0) на оси ординат.

4. Всеобщее уравнение окружности в аналитической геометрии запишется как: x?+y?+Ax+By+C=0. Дабы привести такое уравнение к выше обозначенному виду, нужно сгруппировать члены и выделить полные квадраты: [x?+2(A/2)x+(A/2)?]+[y?+2(B/2)y+(B/2)?]+C-(A/2)?-(B/2)?=0. Для выделения полных квадратов, как дозволено подметить, требуется добавлять добавочные величины: (A/2)? и (B/2)?. Дабы знак равенства сохранялся, эти же величины нужно вычесть. Прибавление и вычитание одного и того же числа не меняет уравнения.

5. Таким образом, получается: [x+(A/2)]?+[y+(B/2)]?=(A/2)?+(B/2)?-C. Из этого уравнения теснее видно, что x0=-A/2, y0=-B/2, R=?[(A/2)?+(B/2)?-C]. Кстати, выражение для радиуса дозволено упростить. Домножьте обе части равенства R=?[(A/2)?+(B/2)?-C] на 2. Тогда: 2R=?[A?+B?-4C]. Отсель R=1/2·?[A?+B?-4C].

6. Окружность не может быть графиком функции в декартовой системе координат, потому что, по определению, в функции всем x соответствует исключительное значение y, а для окружности таких «игреков» будет два. Дабы удостовериться в этом, проведите перпендикуляр к оси Ox, пересекающий окружность. Вы увидите, что точек пересечения две.

7. Но окружность дозволено представить как объединение 2-х функций: y=y0±?[R?-(x-x0)?]. Тут x0 и y0, соответственно, представляют собой желанные координаты центра окружности . При совпадении


центра окружности с началом координат объединение функций принимает вид: y=?[R?-x?].

Отрезок прямой определяется двумя крайними точками и состоит из множества точек, лежащих на проходящей через крайние точки прямой линии. Если отрезок размещен в какую-нибудь систему координат, то, обнаружив средние точки его проекций на всякую из осей, дозволено узнать координаты середины отрезка. По сути, операция сводится к нахождению среднего арифметического значения пар чисел для всей из координатных осей.

Инструкция

1. Разделяете напополам сумму исходной и финальной координат крайних точек отрезка по всякой оси, дабы определить координаты средней точки по этой оси. Скажем, пускай отрезок размещен в трехмерную систему координат XYZ и знамениты координаты его крайних точек A(Xa,Ya,Za) и C(Xc,Yc,Zc). Тогда


координаты
его средней точки E(Xe,Ye,Ze) дозволено вычислить по формулам Xe=(Xa+Xc)/2, Ye=(Ya+Yc)/2, Ze=(Za+Zc)/2.

2. Используйте всякий из калькуляторов, если вычислить средние значения координат крайних точек отрезка в уме не представляется допустимым. Если под рукой нет такого гаджета, то используйте программный калькулятор из состава ОС Windows. Его дозволено запустить, если, щелкнув кнопку «Пуск» раскрыть основное меню системы. В меню нужно перейти в раздел «Типовые», после этого в подраздел «Служебные», а потом в сегменты «Все программы» предпочесть пункт «Калькулятор». Дозволено обойтись без основного меню, если нажать сочетание клавиш WIN + R, ввести команду calc, а после этого нажать клавишу Enter.

3. Суммируйте попарно исходные и финальные координаты крайних точек отрезка по всякой оси и разделяете итог на два. Интерфейс программного калькулятора имитирует обыкновенный калькулятор, а вводить числовые значения и символы математических операций дозволено как щелкая кнопки курсором мыши на экране, так и нажимая соответствующие клавиши на клавиатуре. Никаких трудностей с этими вычислениями появиться не должно.

4. Записывайте математические операции в текстовом виде и вводите их в поле поискового запроса на основной странице сайта Google, если отчего-либо не можете применять калькулятор, но имеете доступ в интернет. Данный поисковик имеет встроенный универсальный калькулятор, пользоваться которым гораздо проще, чем любым иным. Тут нет никакого интерфейса с кнопками – вводить все данные нужно в текстовом виде в исключительное поле. Скажем, если знамениты координаты крайних точек отрезка в трехмерной системе координат A(51,34 17,2 13,02) и A(-11,82 7,46 33,5), то координаты средней точки отрезка C((51,34-11,82)/2 (17,2+7,46)/2 (13,02+33,5)/2). Вводя в поле поискового запроса (51,34-11,82)/2, после этого (17,2+7,46)/2 и (13,02+33,5)/2, дозволено с поддержкой Google получить


координаты
С(19,76 12,33 23,26).

Стандартное уравнение окружности дозволяет узнать несколько значимых сведений об этой фигуре, скажем, координаты ее центра, длину радиуса. В некоторых задачах, напротив, по заданным параметрам требуется составить уравнение.

Инструкция

1. Проверьте, указаны ли в условиях задачи координаты центральной точки окружности и длина радиуса в очевидном виде. В этом случае вам довольно подставить данные в стандартную запись уравнения, дабы получить результат.

2. Определите, какими сведениями об окружности вы располагаете, исходя из данной вам задачи. Запомните, что финальной целью является надобность определить координаты центра, а также диаметр. Все ваши действия обязаны быть направлены на достижение именно этого итога.

3. Используйте данные о наличии точек пересечения с координатными прямыми либо другими прямыми. Обратите внимание, что, если окружность проходит через ось абсцисс, вторая точка пересечения будет иметь координату 0, а если через ось ординат – то первая. Эти координаты дозволят вам обнаружить координаты центра окружности, а также вычислить радиус.

4. Не забывайте об основных свойствах секущих и касательных. В частности, особенно пригодной оказывается теорема о том, что в точке касания радиус и касательная образуют прямой угол. Но обратите внимание на то, что вас могут попросить подтвердить все использованные в ходе решения теоремы.

5. Прорешайте особенно типовые типы задач, дабы обучиться сразу видеть, как применять те либо иные данные для приобретения уравнения окружности. Так, помимо теснее указанных задач с прямо заданными координатами и теми, в условиях которых даны данные о наличии точек пересечения, для составления уравнения окружности дозволено воспользоваться познаниями о центре окружности, длине хорды и уравнения прямой, на которой эта хорда лежит.

6. Для решения постройте равнобедренный треугольник, основанием которого будет данная хорда, а равные стороны – радиусами. Составьте систему уравнений, из которой вы легко обнаружите нужные данные. Для этого довольно воспользоваться формулой для нахождения длины отрезка в координатной плоскости.

Видео по теме

Под окружностью понимают фигуру, которая состоит из множества точек плоскости, равноудаленных от ее центра. Расстояние от центра до точек окружности именуется радиусом.

Вам понадобится

  • – примитивный карандаш;
  • – тетрадь;
  • – транспортир;
  • – циркуль;
  • – ручка.

Инструкция

1. Раньше чем обнаружить координаты той либо другой точки окружности , постройте заданную окружность. При ее построении вам могут встретиться уйма новых представлений. Так хорда – это отрезок, тот, что соединяет две точки окружности , причем хорда, проходящая через центр окружности – максимальная (она носит наименование диаметра). Помимо того, к окружности может быть проведена касательная, которая представляет собой прямую, перпендикулярно расположенную к радиусу окружности , тот, что проведен к точке пересечения касательной и рассматриваемой геометрической фигуры.

2. Если по условию задания вестимо, что построенную вами окружность пересекает иная окружность (она поменьше по размерам), изобразите это графически: на рисунке должно быть изображено, что две эти окружности пересекаются, то есть имеют ряд всеобщих точек. Центр первой окружности обозначьте точкой 1 (ее координаты (X1,Y1)), а ее радиус – R1. Таким образом, центр 2-й окружности должен быть обозначен точкой 2 (координаты этой точки (X2,Y2)), а радиус – R2. В точках пересечения фигур поставьте точки 3 (X3,Y3) и 4 (X4,Y4). Центральная точка пересечения должна быть обозначена 0: ее координаты (X,Y).

3. Для того дабы обнаружить координаты пресечения данных окружностей, а следственно и точку, принадлежащую и первой, и 2-й из них, вам придется решить квадратное уравнение. Разглядите два образовавшихся треугольника (?103 и ?203) и проанализируйте их показатели. Гипотенузы этих треугольников – R1 и R2 соответственно. Зная значение гипотенуз, обнаружьте отрезок D, соединяющий центр первой окружности с центром 2-й. Выбранный способ расчета напрямую зависит от того, какими получились анализируемые вами треугольники. Если они прямоугольные, то квадрат длины гипотенузы всякого из них будет равен сумме квадратов катетов данного треугольника. К тому же, длину катета дозволено обнаружить по формуле: a = ccos ?, где с – длина гипотенузы, а cos? – косинус прилежащего угла. Обнаружив значение катетов, определите координаты волнующей вас точки.

Видео по теме

Обратите внимание!
Будьте внимательны, рассчитывая значения катетов: не допустите ошибку.

Полезный совет
Не позабудьте: один из углов прямоугольного треугольника прямой, то есть равен 90о.

Обратите внимание!
Две окружности, имеющие центром точку с одними и теми же координатами, именуются концентрическими. Если они заданы уравнениями (x-x0)?+(y-y0)?=R? и (x-x0′)?+(y-y0′)?=R’?, тогда x0=x0′, y0=y0′. В всеобщем уравнении для концентрических окружностей A1=A2 и B1=B2.

Полезный совет
Кстати, в физике окружность может рассматриваться как тонкое однородное кольцо. Центр этого кольца будет являться центром масс (либо центром инерции) такого тела. Если кольцо имеет массу m и радиус r, а через центр перпендикулярно плоскости кольца провести ось, то момент инерции кольца касательно оси будет равен mr?. Момент инерции твердо главен при рассмотрении вращательного движения тела.

jprosto.ru

Найти центр и радиус окружности

Если окружность задана уравнением вида

найти центр (a;b) и радиус R такой окружности несложно.

Примеры.

Определить по уравнению окружности координаты её центра и радиуса:

Решение:

a=3, b=7, R²=4.

Таким образом, центр данной окружности — точка (3;7), радиус R=2.

a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

a=0, b=-3, R²=9.

Центр окружности — (0;-3), радиус R=3.

a=6, b=0, R²=5.

Центр — в точке (6;0), радиус R=√5.

Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

Чтобы найти центр и радиус окружности, заданной уравнением вида

нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

Для этого сначала сгруппируем слагаемые

затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

Отсюда

При a²+b²-c>0 это уравнение задаёт окружность с радиусом

При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.

Примеры.

Найти координаты центра и радиус окружности:

Решение:

Группируем слагаемые

Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

Аналогично

Таким образом,

Центром этой окружности является точка (-5;3), радиус R=7.

Центр окружности — точка (2,5;0), радиус R=1,5.

Разделим обе части уравнения на 3:

Далее — аналогично

Центр этой окружности лежит в точке

www.treugolniki.ru

Координата — центр — окружность

Координата — центр — окружность

Cтраница 1

Координаты центра окружности и ее радиус будут определены автоматически.
 [2]

Координаты центра окружности равны координатам курсора, а значение радиуса высвечивается в правой части экрана в поле V и первоначально равняется шагу курсора. Перемещение курсора вызывает движение центра окружности в пространстве.
 [3]

Значения координат центра окружности приближения подвергнуты вариации только один раз. Это изменение в схеме программы 1 не дано.
 [4]

Возьмем значения координат центра окружности О, дирекцией-кого угла АК, радиуса R и угла а из предыдущего примера.
 [6]

В таблице приведены координаты Центра заменяющей окружности х0 и г / 0 и величина ее радиуса А. Величины, приведенные в таблицах, даны для значения радиуса начальной окружности г 1; поэтому для получения истинных величин необходимо табличные величины умножить на величину радиуса начальной окружности обрабатываемого валика.
 [7]

Считая, что заданы координаты центра окружности и одной из ее точек, построить все такие окружности.
 [8]

Для круговых контуров необхо-димо задавать координаты центра окружности, координаты точек сопряжения с прямыми и радиус или угол, охватываемый дугой окружности и радиус.
 [9]

После задания частоты со определяются координаты центров окружностей и соответствующие радиусы гх ( со) и гу ( со), которыми и проводятся эти окружности, проходящие через начало координат. Точка пересечения окружностей, кроме начала координат, является искомой точкой амплитудно-фазовой характеристики элемента, соответствующей заданному значению со, как это показано на фиг.
 [10]

Положение его на плоскости определяется координатами центра окружности, по которой очерчен рассматриваемый элемент, и углом наклона начальной касательной к положительному направлению оси х; угол а отсчитывается против часовой стрелки.
 [12]

Положение его на плоскости определяется координатами центра окружности, по которой очерчен рассматриваемый элемент, и углом наклона начальной касательной к положительному направлению оси х; угол а отсчитывается против часовой стрелки.
 [14]

Из этого выражения очевидно, что у есть координата центра окружности.
 [15]

Страницы:  

   1

   2

   3

www.ngpedia.ru

Окружность на координатной плоскости — Науколандия

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям — 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей — π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей — π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого — это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x2 + y2 = 12. Поскольку x = y, а 12 = 1, то уравнение упрощается до x2 + x2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M1 (π/4) = M1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M2 ((3π)/4) = M2 (-√2/2; √2/2)
M3 ((5π)/4) = M3 (-√2/2; -√2/2)
M4 ((7π)/4) = M4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x2 + (½)2 = 12
x2 = 1 — ¼ = ¾
x = √3/2

Таким образом T1 (π/6) = T1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T2 (π/3) = T2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T3 ((2π)/3) = T3 (-½; √3/2)
T4 ((5π)/6) = T4 (-√3/2; ½)
T5 ((7π)/6) = T5 (-√3/2; -½)
T6 ((4π)/3) = T6 (-½; -√3/2)
T7 ((5π)/3) = T7 (½; -√3/2)
T8 ((11π)/6) = T8 (√3/2; -½)

scienceland.info

Всем привет! Помогите найти формулу, чтобы найти координаты точки В на рисунке, зная угол по направлению к точке от центра окружности, координаты центра (могут меняться) и радиус окружности. Не силен в вычислениях. Можно также учитывать встроенные методы Unity3D (Vector3/Vector2, Quternation…). Заранее большое спасибо!

77f1c7d8302a40cbb36f885648194661.png

P.S. Забыл поправить угол, изначально нарисовал временное значение, поправка — 135 градусов относительно Unity3D, но это не сильно важно. Думаю смысл итак всем ясен…

Понравилась статья? Поделить с друзьями:
  • Как составить диафильм по рассказу
  • Как найти периметр ром
  • Электронная формула с точками как составить
  • Как найти деревню в майнкрафте смотреть
  • Как найти аналог резистора