Как найти координаты точки по уравнению плоскости

Содержание:

Система координат на плоскости позволяет установить взаимно однозначное соответствие между точками плоскости и упорядоченными парами чисел (рис. 331). Координаты вы широко использовали для графического представления зависимостей, при решении систем уравнений, а также в геометрии, чтобы геометрическую задачу свести к задаче алгебраической.

Декартова система координат в пространстве

Чтобы ввести декартову систему координат в пространстве, выберем точку Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Б) Вы знаете, что по координатам концов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения отрезка Векторы и координаты в пространстве с примерами решения на плоскости можно определить его длину:

Векторы и координаты в пространстве с примерами решения

Аналогичная формула выражает длину отрезка Векторы и координаты в пространстве с примерами решения в пространстве через координаты его концов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Чтобы доказать эту формулу, рассмотрим плоскости, которые проходят через точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения перпендикулярно координатным осям. Получаем, что отрезок Векторы и координаты в пространстве с примерами решения по сути является диагональю прямоугольного параллелепипеда, рёбра которого параллельны координатным осям и имеют длины Векторы и координаты в пространстве с примерами решения

и Векторы и координаты в пространстве с примерами решения (рис. 334) (если же какие-либо из проведённых плоскостей совпадут, то параллелепипед превратится в прямоугольник или отрезок).

Векторы и координаты в пространстве с примерами решения

Ранее вы доказывали, что координаты середины отрезка равны средним арифметическим соответствующих координат его концов. Это утверждение остаётся истинным и в случае пространства (см. пример 2 в § 6): если Векторы и координаты в пространстве с примерами решения и точка Векторы и координаты в пространстве с примерами решения — середина отрезка Векторы и координаты в пространстве с примерами решения то

Векторы и координаты в пространстве с примерами решения

Пример:

На оси ординат найдём точку, равноудалённую от точек Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение:

Пусть Векторы и координаты в пространстве с примерами решения — искомая точка. Тогда Векторы и координаты в пространстве с примерами решения и, поскольку Векторы и координаты в пространстве с примерами решения то

Векторы и координаты в пространстве с примерами решения

или Векторы и координаты в пространстве с примерами решения Отсюда Векторы и координаты в пространстве с примерами решения

Ответ: Векторы и координаты в пространстве с примерами решения

Пример:

Найдём условие, задающее геометрическое место точек, равноудалённых от начала координат и от точки Векторы и координаты в пространстве с примерами решения

Решение:

Согласно геометрическим соображениям искомое множество состоит из всех тех точек, размещённых на серединных перпендикулярах к отрезку Векторы и координаты в пространстве с примерами решения Такие точки заполняют плоскость, проходящую через середину отрезка Векторы и координаты в пространстве с примерами решенияперпендикулярно ему. Найдём условие, которому удовлетворяют координаты Векторы и координаты в пространстве с примерами решения произвольной точки Векторы и координаты в пространстве с примерами решения этой плоскости. Условие Векторы и координаты в пространстве с примерами решения означает, что

Векторы и координаты в пространстве с примерами решения

Ответ: Искомое геометрическое место точек есть плоскость, которая задаётся уравнением Векторы и координаты в пространстве с примерами решения

Пример:

Найдём условие, которому удовлетворяют координаты точек плоскости Векторы и координаты в пространстве с примерами решения проходящей через точку Векторы и координаты в пространстве с примерами решения перпендикулярно прямой Векторы и координаты в пространстве с примерами решения где Векторы и координаты в пространстве с примерами решения

Решение:

Пусть Векторы и координаты в пространстве с примерами решения — произвольная точка плоскости Векторы и координаты в пространстве с примерами решения Тогда из прямоугольного треугольника Векторы и координаты в пространстве с примерами решения по теореме Пифагора имеем: Векторы и координаты в пространстве с примерами решения

Поскольку

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения то

Векторы и координаты в пространстве с примерами решения или

Векторы и координаты в пространстве с примерами решения

Ответ: Векторы и координаты в пространстве с примерами решения

Вектор. Действия над векторами

А) С векторами вы встречались в курсе физики девятого класса, когда знакомились с векторными величинами. Физическая величина является векторной, если она характеризуется не только числовым значением, но и направлением. Такие величины, как сила, скорость и другие, обозначают направленными отрезками. Длина направленного отрезка (стрелки) характеризует числовое значение векторной величины (её модуль).

Особенностью понятия вектор является то, что все основные определения и свойства, связанные с этим понятием, формулируются почти одинаково как в планиметрии, так и в стереометрии.

Вектор в геометрии представляется направленным отрезком (рис. 336), начало которого считается началом вектора, а конец — концом вектора.

Векторы и координаты в пространстве с примерами решения

Расстояние между началом направленного отрезка и его концом считается длиной вектора.

Направленные отрезки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения представляют один вектор, если они одинаково направлены и имеют одинаковую длину (рис. 337). В таком случае говорят, что векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равны, и пишут Векторы и координаты в пространстве с примерами решения Векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равны тогда и только тогда, когда совпадают середины отрезков Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения (рис. 338).

Векторы и координаты в пространстве с примерами решения

Это напоминает ситуацию с дробями: определённое число может представляться разными дробями, например, дроби Векторы и координаты в пространстве с примерами решения представляют одно и то же число. Дроби Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равны тогда и только тогда, когда Векторы и координаты в пространстве с примерами решения

Если вектор Векторы и координаты в пространстве с примерами решения изображается направленным отрезком Векторы и координаты в пространстве с примерами решения то говорят, что этот вектор отложен от точки Векторы и координаты в пространстве с примерами решения Вектор можно, и при этом однозначно, отложить от любой точки.

Вектор, представленный направленным отрезком Векторы и координаты в пространстве с примерами решения называют нулевым: Векторы и координаты в пространстве с примерами решения Векторы, представленные направленными отрезками Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения называют противоположными и пишут Векторы и координаты в пространстве с примерами решения

Если ненулевые векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения отложены от одной точки: Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения то угол Векторы и координаты в пространстве с примерами решения называется углом между векторами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения.

Ненулевые векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения называют коллинеарными, если прямые Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения параллельны или совпадают. Нулевой вектор считают кол-линеарным с любым вектором.

Векторы можно складывать и умножать на число. Чтобы сложить векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения можно один из них заменить таким равным ему вектором, чтобы конец первого направленного отрезка совпадал с началом второго:

Векторы и координаты в пространстве с примерами решения

и тогда сумма векторов представляется направленным отрезком Векторы и координаты в пространстве с примерами решения (рис. 339).

Сложение векторов имеет переместительное свойство, т. е. Векторы и координаты в пространстве с примерами решения сочетательное свойство, т. е. Векторы и координаты в пространстве с примерами решения кроме того, уравнение Векторы и координаты в пространстве с примерами решения всегда имеет единственное решение, которое называют разностью векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения (рис. 340).

Произведением вектора Векторы и координаты в пространстве с примерами решения на число Векторы и координаты в пространстве с примерами решения является такой вектор Векторы и координаты в пространстве с примерами решения что, во-первых, векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения одинаково направлены при Векторы и координаты в пространстве с примерами решения и противоположно направлены при Векторы и координаты в пространстве с примерами решения и, во-вторых, длины векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения связаны равенством Векторы и координаты в пространстве с примерами решения (рис. 341). Векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения являются коллинеарными. При этом верно равенство Векторы и координаты в пространстве с примерами решения Если Векторы и координаты в пространстве с примерами решения то произведением Векторы и координаты в пространстве с примерами решения является нулевой вектор.

Векторы и координаты в пространстве с примерами решения

С действием умножения вектора на число связываются два распределительных свойства— Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Б) Если векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны, то один из них можно выразить через другой: либоВекторы и координаты в пространстве с примерами решения либо Векторы и координаты в пространстве с примерами решения при определённых числах Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Для любых двух векторов существует плоскость, которой они параллельны. Векторы, параллельные одной плоскости, называют компланарными. Если векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения неколлинеарны, то любой вектор Векторы и координаты в пространстве с примерами решения компланарный с ними, можно однозначно выразить через векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения: Векторы и координаты в пространстве с примерами решения (рис. 342).

Истинно и обратное утверждение: если векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения связаны равенством Векторы и координаты в пространстве с примерами решения то они компланарны.

Действительно, если векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения представить направленными отрезками с общим началом Векторы и координаты в пространстве с примерами решения (рис. 343), то Векторы и координаты в пространстве с примерами решения поэтому точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения находятся в плоскости Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Теорема 1. Если векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения некомпланарны, то для любого вектора Векторы и координаты в пространстве с примерами решения существует такая единственная упорядоченная тройка действительных чисел Векторы и координаты в пространстве с примерами решения что Векторы и координаты в пространстве с примерами решения

Доказательство: Сначала докажем существование нужных чисел. Представим векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения направленными отрезками с общим началом Векторы и координаты в пространстве с примерами решения Через точку Векторы и координаты в пространстве с примерами решения проведём прямую Векторы и координаты в пространстве с примерами решения параллельно Векторы и координаты в пространстве с примерами решения и пусть Векторы и координаты в пространстве с примерами решения — точка пересечения прямой Векторы и координаты в пространстве с примерами решения с плоскостью Векторы и координаты в пространстве с примерами решения (рис. 344). Тогда Векторы и координаты в пространстве с примерами решения Поскольку вектор Векторы и координаты в пространстве с примерами решения ненулевой и векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны, то существует такое число Векторы и координаты в пространстве с примерами решения что Векторы и координаты в пространстве с примерами решения А поскольку векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения компланарны, а векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения неколлинеарны, то существуют такие числа Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения что Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Поэтому

Векторы и координаты в пространстве с примерами решения

Теперь докажем единственность представления. Допустим, что существуют две разные упорядоченные тройки чисел Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения при которых Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Тогда Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Поскольку тройки чисел Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения различны, то числа на соответствующих местах не могут все совпадать. Пусть, например, Векторы и координаты в пространстве с примерами решения В этом случае из последнего равенства можно выразить вектор Векторы и координаты в пространстве с примерами решения Последнее равенство означает, что векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения компланарны. Полученное противоречие с условием означает, что сделанное допущение о существовании двух разных троек чисел неверно.

Следствие 1. Из четырёх любых векторов пространства один может быть выражен через три других.

Действительно, если среди данных четырёх векторов пространства есть три некомпланарных, то четвёртый вектор можно через эти три выразить. Далее, если среди данных четырёх векторов пространства любые три компланарны, то может найтись среди них два неколлинеарных, или любых два вектора коллинеарны. В первом случае через эти два неколлинеарных вектора можно выразить третий и к полученному выражению прибавить четвёртый, умноженный на ноль. Во втором случае один из векторов можно выразить через другой и потом прибавить к этому выражению два оставшихся вектора, умноженных на ноль.

Таким образом, теперь вы знаете, что из двух коллинеарных векторов один может быть выражен через другой, из трёх компланарных векторов один может быть выражен через два других, а из четырёх любых векторов один может быть выражен через три других.

Пример №1

На кронштейне, состоящем из подкоса Векторы и координаты в пространстве с примерами решения и растяжки Векторы и координаты в пространстве с примерами решения подвешен груз. Кронштейн прикреплён к вертикальной стене Векторы и координаты в пространстве с примерами решения растяжка занимает горизонтальное положение (рис. 345). Найдём силы, действующие на подкос и растяжку, если угол между ними равен Векторы и координаты в пространстве с примерами решения a масса груза равна Векторы и координаты в пространстве с примерами решения

Решение:

Сила тяжести выражается вектором Векторы и координаты в пространстве с примерами решения направленным вниз по вертикали. Выразим его суммой векторов, которые коллинеарны векторам Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Для этого построим параллелограмм Векторы и координаты в пространстве с примерами решения с диагональю Векторы и координаты в пространстве с примерами решения стороны которого расположены на прямых Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения (рис. 346).

Векторы и координаты в пространстве с примерами решения

Поскольку углы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения являются внутренними накрест лежащими при параллельных прямых Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения и секущей Векторы и координаты в пространстве с примерами решения то в прямоугольном треугольнике Векторы и координаты в пространстве с примерами решения угол Векторы и координаты в пространстве с примерами решения равен Векторы и координаты в пространстве с примерами решения и катет Векторы и координаты в пространстве с примерами решения равен Векторы и координаты в пространстве с примерами решения Поэтому

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Ответ. Под воздействием груза подкос сжимается с силой Векторы и координаты в пространстве с примерами решения а растяжка растягивается с силой Векторы и координаты в пространстве с примерами решения

Пример №2

В правильной четырёхугольной пирамиде Векторы и координаты в пространстве с примерами решения точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения — середины рёбер Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответственно. Плоскость, проходящая через точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения параллельно прямой Векторы и координаты в пространстве с примерами решения пересекает прямую Векторы и координаты в пространстве с примерами решения в точке Векторы и координаты в пространстве с примерами решения (рис. 347). Найдём отношение Векторы и координаты в пространстве с примерами решения

Решение:

Поскольку Векторы и координаты в пространстве с примерами решениято векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения полностью определяют пирамиду. Поскольку векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны, то вектор Векторы и координаты в пространстве с примерами решения можно выразить через Векторы и координаты в пространстве с примерами решения при определённом числе Векторы и координаты в пространстве с примерами решения Вектор Векторы и координаты в пространстве с примерами решения можно выразить через векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения используя то, что точка Векторы и координаты в пространстве с примерами решения находится в плоскости, проходящей через точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения параллельно прямой Векторы и координаты в пространстве с примерами решения Вектор Векторы и координаты в пространстве с примерами решения компланарен с векторами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения поэтому Векторы и координаты в пространстве с примерами решения при определённых множителях Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Выразим векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения через векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Имеем:

Векторы и координаты в пространстве с примерами решения

Поэтому

Векторы и координаты в пространстве с примерами решения

Учтём теперь то, что через некомпланарные векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения каждый вектор пространства, в том числе и вектор Векторы и координаты в пространстве с примерами решения выражается единственным образом. Поэтому должны одновременно выполняться условия: Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения Отсюда получаем, что Векторы и координаты в пространстве с примерами решения А поскольку Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения

В) Пусть в пространстве выбрана декартова система координат Векторы и координаты в пространстве с примерами решения С каждой точкой Векторы и координаты в пространстве с примерами решения пространства можно связать вектор Векторы и координаты в пространстве с примерами решения Это соответствие между точками пространства и векторами является взаимно однозначным: различным точкам соответствуют различные векторы с началом Векторы и координаты в пространстве с примерами решения и концами в этих точках, и различным векторам соответствуют различные точки пространства.

Будем говорить, что вектор Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения в декартовой системе координат Векторы и координаты в пространстве с примерами решения если Векторы и координаты в пространстве с примерами решения и точка Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения Это будем записывать: Векторы и координаты в пространстве с примерами решения

Теорема 2. Если Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения

Доказательство: Пусть задана декартова система координат Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Пусть также Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Нужно доказать, что Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Поскольку Векторы и координаты в пространстве с примерами решения то середины отрезков Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения совпадают.

Середина отрезка Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения а середина отрезка Векторы и координаты в пространстве с примерами решения — координаты Векторы и координаты в пространстве с примерами решения Получаем:

Векторы и координаты в пространстве с примерами решения

Отсюда:

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Теорема 3. Если Векторы и координаты в пространстве с примерами решения то

Векторы и координаты в пространстве с примерами решения

Доказательство: Пусть задана декартова система координат Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения (рис. 348). Поскольку

Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения По теореме 2 получаем:

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Поэтому

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Значит, вектор Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения

Докажем второе утверждение теоремы 3. Пусть сначала Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Сравним одноимённые, например первые, координаты векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Для этого через точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения проведём плоскости, параллельные плоскости Векторы и координаты в пространстве с примерами решения (рис. 349), которые пересекают ось Векторы и координаты в пространстве с примерами решения в точках Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Из подобия треугольников Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения следует, что Векторы и координаты в пространстве с примерами решенияАналогично получается, что Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Если же Векторы и координаты в пространстве с примерами решения то аналогичные рассуждения проводятся для рисунка 350. Векторы Векторы и координаты в пространстве с примерами решения называют единичными координатными векторами.

Следствие 2. Если Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения

Пример №3

Дан параллелепипед Векторы и координаты в пространстве с примерами решения Точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения — середины отрезков Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответственно (рис. 351). Выразим:

а) векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения через векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

б) векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения через векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Решение:

а) Имеем:

Векторы и координаты в пространстве с примерами решения

б) Будем рассматривать полученные равенства — Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения как систему условий, из которой нужно найти Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Из первого условия выразим

Векторы и координаты в пространстве с примерами решения и исключим Векторы и координаты в пространстве с примерами решения из двух других:

Векторы и координаты в пространстве с примерами решения

Теперь из последнего равенства выразим Векторы и координаты в пространстве с примерами решения и исключим Векторы и координаты в пространстве с примерами решения из предыдущего:

Векторы и координаты в пространстве с примерами решения

Далее можно последовательно выразить Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения через векторы

Векторы и координаты в пространстве с примерами решения и

Векторы и координаты в пространстве с примерами решения

Пример №4

Через диагональ Векторы и координаты в пространстве с примерами решения грани треугольной призмы Векторы и координаты в пространстве с примерами решения проведена плоскость так, что она пересекает диагонали Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения граней в точках Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответственно (рис. 352). Найдём отношение Векторы и координаты в пространстве с примерами решения учитывая, что Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Решение:

Векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения некомпланарны, поэтому через них можно выразить векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Учтём, что Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны. Значит, существует такое число Векторы и координаты в пространстве с примерами решения что Векторы и координаты в пространстве с примерами решения

Аналогично, существует такое число Векторы и координаты в пространстве с примерами решения что Векторы и координаты в пространстве с примерами решения Кроме того,

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Значит,

Векторы и координаты в пространстве с примерами решения

Из условия следует, что векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны. Поэтому Векторы и координаты в пространстве с примерами решения при определённом Векторы и координаты в пространстве с примерами решения

Поскольку Векторы и координаты в пространстве с примерами решения и учитывая однозначность разложения вектора по трём некомпланарным векторам, получаем, что Векторы и координаты в пространстве с примерами решенияОтсюда находим Векторы и координаты в пространстве с примерами решения

Ответ: Векторы и координаты в пространстве с примерами решения

Скалярное произведение векторов

А) Скалярным произведением векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения называется число Векторы и координаты в пространстве с примерами решения, равное произведению длин этих векторов на косинус угла Векторы и координаты в пространстве с примерами решения между ними:

Векторы и координаты в пространстве с примерами решения

Скалярное произведение векторов имеет переместительное свойство Векторы и координаты в пространстве с примерами решения распределительное свойство Векторы и координаты в пространстве с примерами решения кроме того, множитель можно выносить за знак скалярного произведения Векторы и координаты в пространстве с примерами решения С помощью скалярного произведения можно находить длины векторов и косинусы углов между ними: Векторы и координаты в пространстве с примерами решения

У нулевого вектора направление не определено, поэтому удобно считать, что нулевой вектор перпендикулярен любому другому вектору.

С учётом этого получается следующее полезное утверждение: два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю.

Теорема 1. Скалярное произведение векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения выражается через их координаты в декартовой системе

равенством Векторы и координаты в пространстве с примерами решения

Доказательство: Поскольку Векторы и координаты в пространстве с примерами решения то

Векторы и координаты в пространстве с примерами решения

Находим далее:

Векторы и координаты в пространстве с примерами решения

Аналогично,

Векторы и координаты в пространстве с примерами решения

Поэтому Векторы и координаты в пространстве с примерами решения

Пример №5

Найдём длину вектора Векторы и координаты в пространстве с примерами решения

Имеем: Векторы и координаты в пространстве с примерами решения Поэтому Векторы и координаты в пространстве с примерами решения

Пример №6

Найдём угол Векторы и координаты в пространстве с примерами решения между векторами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Имеем: Векторы и координаты в пространстве с примерами решения

Поэтому:

Векторы и координаты в пространстве с примерами решения

Пример №7

Найдём длину вектора Векторы и координаты в пространстве с примерами решения равного Векторы и координаты в пространстве с примерами решения учитывая, что векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения перпендикулярны вектору Векторы и координаты в пространстве с примерами решения а между собой образуют угол 60° и Векторы и координаты в пространстве с примерами решения

Имеем:

Векторы и координаты в пространстве с примерами решения

Поскольку

Векторы и координаты в пространстве с примерами решения

Поэтому Векторы и координаты в пространстве с примерами решения

Б) Вы знаете, что плоскость в пространстве можно задать тремя точками, не лежащими на одной прямой. Поскольку существует единственная плоскость, проходящая через данную точку перпендикулярно данной прямой, то плоскость можно задавать указанием одной из её точек и вектора, ей перпендикулярного.

Теорема 2. Если плоскость проходит через точку Векторы и координаты в пространстве с примерами решения перпендикулярно ненулевому вектору Векторы и координаты в пространстве с примерами решения то координаты Векторы и координаты в пространстве с примерами решениялюбой точки Векторы и координаты в пространстве с примерами решения этой плоскости удовлетворяют уравнению Векторы и координаты в пространстве с примерами решения

Доказательство: Если Векторы и координаты в пространстве с примерами решения— произвольная точка плоскости,

проходящей через точку Векторы и координаты в пространстве с примерами решения перпендикулярно вектору Векторы и координаты в пространстве с примерами решения

то векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения перпендикулярны, а потому их скалярное произведение равно нулю:

Векторы и координаты в пространстве с примерами решения

Истинно и обратное утверждение.

Теорема 3. Уравнению Векторы и координаты в пространстве с примерами решения в котором коэффициенты Векторы и координаты в пространстве с примерами решения не равны нулю одновременно, удовлетворяет любая точка некоторой плоскости. Этой плоскости перпендикулярен вектор Векторы и координаты в пространстве с примерами решения

Доказательство: Если есть уравнение Векторы и координаты в пространстве с примерами решения и числа Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения не равны нулю одновременно, то можно найти упорядоченную тройку чисел Векторы и координаты в пространстве с примерами решения удовлетворяющую этому уравнению. Например, если Векторы и координаты в пространстве с примерами решения то можно, взяв Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения найти значение переменной Векторы и координаты в пространстве с примерами решения так, чтобы тройка чисел Векторы и координаты в пространстве с примерами решения удовлетворяла уравнению Векторы и координаты в пространстве с примерами решения

Поскольку Векторы и координаты в пространстве с примерами решения то условия Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равносильны. Получили, что исходное уравнение равносильно уравнению Векторы и координаты в пространстве с примерами решения которому удовлетворяют координаты Векторы и координаты в пространстве с примерами решения любой точки Векторы и координаты в пространстве с примерами решения расположенной на прямой, проходящей через точку Векторы и координаты в пространстве с примерами решения перпендикулярно вектору Векторы и координаты в пространстве с примерами решения т. е. любой точки плоскости, проходящей через точку Векторы и координаты в пространстве с примерами решения перпендикулярно вектору Векторы и координаты в пространстве с примерами решения

Пример №8

Найдём уравнение плоскости, проходящей через точки А(2; 1; 3), В(4; 1, 2) и С(5; 2; 1).

Решение:

Найдём координаты векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решенияПоскольку координаты (2; 0; -1) и (3; 1; -2) этих векторов не пропорциональны, то сами векторы не коллинеарны, и, значит, точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения не лежат на одной прямой, они задают единственную плоскость.

Чтобы записать уравнение плоскости Векторы и координаты в пространстве с примерами решения используя теорему 2, найдём вектор Векторы и координаты в пространстве с примерами решения перпендикулярный этой плоскости. Поскольку Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Из этих условий получаем: Векторы и координаты в пространстве с примерами решения Таким образом, в качестве искомого вектора можно взять вектор с координатами (1; 1; 2).

Теперь можно записать уравнение плоскости, которая проходит через точкуВекторы и координаты в пространстве с примерами решения перпендикулярно найденному вектору Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения

В) Теорема 4. Если плоскость имеет уравнение Векторы и координаты в пространстве с примерами решения то расстояние до неё от точки Векторы и координаты в пространстве с примерами решения равно Векторы и координаты в пространстве с примерами решения

Доказательство: Пусть из точки Векторы и координаты в пространстве с примерами решения на данную плоскость опущен перпендикуляр Векторы и координаты в пространстве с примерами решения основание которого — точка Векторы и координаты в пространстве с примерами решения — имеет координаты

Векторы и координаты в пространстве с примерами решения Тогда вектор Векторы и координаты в пространстве с примерами решения коллинеарен с

вектором Векторы и координаты в пространстве с примерами решения Поскольку угол между этими векторами равен 0°

или 180°, то Векторы и координаты в пространстве с примерами решения откуда

Векторы и координаты в пространстве с примерами решения

Находим

Векторы и координаты в пространстве с примерами решения

поскольку координаты точки Векторы и координаты в пространстве с примерами решения удовлетворяют уравнению плоскости. Далее: Векторы и координаты в пространстве с примерами решения А поскольку искомое расстояние равно длине вектора Векторы и координаты в пространстве с примерами решения то требуемое утверждение обосновано.

Пример №9

Найдём расстояние от точки Векторы и координаты в пространстве с примерами решения до плоскости, заданной уравнением Векторы и координаты в пространстве с примерами решения

Решение:

Используя теорему 4, получаем:

Векторы и координаты в пространстве с примерами решения

Ответ: 5.

Применение векторов и координат

А) В ряде задач условие содержит сведения о параллельности некоторых прямых или об их точках пересечения, об отношениях длин параллельных отрезков. Для решения таких задач может быть полезным применение векторов, как это было при решении примера 3 из параграфа 12. При решении таких задач достаточно использовать действия сложения векторов и умножения вектора на число. Рассмотрим ещё один пример.

Пример №10

Пусть Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения — параллелограммы в пространстве, Векторы и координаты в пространстве с примерами решения — середины отрезков Векторы и координаты в пространстве с примерами решения соответственно. Докажем, что середины отрезков Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения совпадают.

Решение. Выберем в пространстве точку Векторы и координаты в пространстве с примерами решения Тогда положение каждой точки полностью характеризуется соответствующим вектором. Из условия

следует, что Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Точки Векторы и координаты в пространстве с примерами решения определяются

векторами Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Чтобы доказать, что середины отрезков Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения совпадают, докажем, что Векторы и координаты в пространстве с примерами решения

Находим: Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

А поскольку

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

то выражения в двух последних скобках принимают одинаковые значения. Требуемое утверждение доказано.

Б) При решении других задач целесообразно пользоваться скалярным умножением векторов. Такими являются задачи, в которых нужно использовать или определять некоторые расстояния или углы.

Пример №11

Найдём угол между скрещивающимися диагоналями соседних боковых граней правильной шестиугольной призмы, у которой боковые грани — квадраты.

Решение:

Пусть нужно найти угол между прямыми Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения (рис. 370). Искомый угол может совпадать с углом между векторами, параллельными данным прямым, или дополнять его до 180°. Поэтому косинус искомого угла совпадает с модулем косинуса угла между векторами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Выразим векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения через некомпланарные векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Примем длину ребра призмы за а и найдём скалярное произведение векторов:

Векторы и координаты в пространстве с примерами решения

А поскольку

Векторы и координаты в пространстве с примерами решения то

Векторы и координаты в пространстве с примерами решения

Ответ: Векторы и координаты в пространстве с примерами решения

Скалярное произведение векторов можно использовать и для нахождения угла между плоскостями. Как и при определении угла между прямыми, так и при определении угла Векторы и координаты в пространстве с примерами решения между плоскостями можно использовать векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения только перпендикулярные рассматриваемым плоскостям:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Пример №12

У правильной шестиугольной призмы Векторы и координаты в пространстве с примерами решения все рёбра имеют длину 1 (рис. 371). Найдём угол между плоскостями Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение:

Для получения ответа нужно определить векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения перпендикулярные плоскостям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответственно. Они должны удовлетворять условиям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Используем прямоугольную декартову систему координат, начало которой находится в центре Векторы и координаты в пространстве с примерами решения основания Векторы и координаты в пространстве с примерами решения и точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения имеют координаты Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответственно. Тогда точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения будут иметь координаты Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответственно. Найдём координаты векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения по координатам их концевых точек:

Векторы и координаты в пространстве с примерами решения

Поскольку Векторы и координаты в пространстве с примерами решения то координаты Векторы и координаты в пространстве с примерами решения вектора Векторы и координаты в пространстве с примерами решения

удовлетворяют условиям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Этим условиям удовлетворяют числа Векторы и координаты в пространстве с примерами решения Поэтому в качестве вектора, перпендикулярного плоскости Векторы и координаты в пространстве с примерами решения можно взять вектор Векторы и координаты в пространстве с примерами решения

Для нахождения вектора Векторы и координаты в пространстве с примерами решения действовать будем аналогично. Координаты Векторы и координаты в пространстве с примерами решения вектора Векторы и координаты в пространстве с примерами решения перпендикулярного плоскости Векторы и координаты в пространстве с примерами решения удовлетворяют условиям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения удовлетворяют числа Векторы и координаты в пространстве с примерами решенияПоэтому Векторы и координаты в пространстве с примерами решения

Используем равенство Векторы и координаты в пространстве с примерами решения Поскольку угол Векторы и координаты в пространстве с примерами решения между векторами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения или совпадает с углом Векторы и координаты в пространстве с примерами решения между плоскостями Векторы и координаты в пространстве с примерами решения и

Векторы и координаты в пространстве с примерами решения или дополняет его до 180°, то Векторы и координаты в пространстве с примерами решения

Находим:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Ответ: Векторы и координаты в пространстве с примерами решения

Для нахождения угла между прямой и плоскостью также можно использовать векторы, из которых один параллелен прямой, а другой перпендикулярен плоскости. Угол Векторы и координаты в пространстве с примерами решения между этими векторами связан с углом Векторы и координаты в пространстве с примерами решения между прямой и плоскостью равенством Векторы и координаты в пространстве с примерами решения (рис. 372).

Векторы и координаты в пространстве с примерами решения

Пример №13

На рёбрах Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения куба Векторы и координаты в пространстве с примерами решения отмечены точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения так, что Векторы и координаты в пространстве с примерами решения (рис. 373). Найдём угол Векторы и координаты в пространстве с примерами решения между прямой Векторы и координаты в пространстве с примерами решения и плоскостью Векторы и координаты в пространстве с примерами решения

Решение:

Примем точку Векторы и координаты в пространстве с примерами решения за начало системы координат, координатные оси направим по рёбрам куба, взяв рёбра за единичные отрезки. Тогда определятся координаты нужных точек: Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

По теореме 3 из параграфа 13 уравнение плоскости Векторы и координаты в пространстве с примерами решения имеет вид Векторы и координаты в пространстве с примерами решения а поскольку координаты точек Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения удовлетворяют уравнению Векторы и координаты в пространстве с примерами решения то это уравнение и есть уравнение плоскости Векторы и координаты в пространстве с примерами решения а вектор Векторы и координаты в пространстве с примерами решения этой плоскости перпендикулярен.

Прямой Векторы и координаты в пространстве с примерами решения параллелен вектор Векторы и координаты в пространстве с примерами решения Находим:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

и Векторы и координаты в пространстве с примерами решения

Ответ: Векторы и координаты в пространстве с примерами решения

В) В предыдущем параграфе обсуждалось использование координат для вычисления расстояния от точки до прямой. Рассмотрим решение ещё двух задач на нахождение расстояний: от точки до прямой и расстояния между скрещивающимися прямыми.

Пример №14

В правильной шестиугольной пирамиде Векторы и координаты в пространстве с примерами решения все рёбра основания имеют длину 3, они вдвое короче боковых рёбер. На рёбрах Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения отмечены точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения так, что Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения Найдём расстояние Векторы и координаты в пространстве с примерами решения от точки Векторы и координаты в пространстве с примерами решения до прямой Векторы и координаты в пространстве с примерами решения

Решение:

Пусть Векторы и координаты в пространстве с примерами решения — центр основания Векторы и координаты в пространстве с примерами решения Поскольку Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения то из прямоугольного треугольника Векторы и координаты в пространстве с примерами решения находим:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Используем прямоугольную декартову систему координат, начало которой находится в центре Векторы и координаты в пространстве с примерами решения основания Векторы и координаты в пространстве с примерами решения оси абсцисс и аппликат проходят через точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответственно и точка Векторы и координаты в пространстве с примерами решения имеет неотрицательные координаты (рис. 374). Точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения имеют координаты Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения. Тогда точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения будут иметь координаты

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответственно. Найдем координаты векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения по координатам их концевых точек:

Векторы и координаты в пространстве с примерами решения

Искомое расстояние есть длина перпендикуляра, опущенного из точки Векторы и координаты в пространстве с примерами решения на прямую Векторы и координаты в пространстве с примерами решения и равна высоте треугольника Векторы и координаты в пространстве с примерами решения проведённой из точки Векторы и координаты в пространстве с примерами решения Для её нахождения можно использовать формулу Векторы и координаты в пространстве с примерами решения Поскольку Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

то

Векторы и координаты в пространстве с примерами решения

Теперь находим:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Ответ: Векторы и координаты в пространстве с примерами решения

Пример №15

Измерения Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения прямоугольного параллелепипеда Векторы и координаты в пространстве с примерами решения равны соответственно 5, 4 и 4. Точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения на рёбрах Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения выбраны так, что Векторы и координаты в пространстве с примерами решения (рис. 375). Найдём расстояние Векторы и координаты в пространстве с примерами решения между прямыми Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Решение:

Расстояние между скрещивающимися прямыми Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения можно найти как расстояние от какой-либо точки прямой Векторы и координаты в пространстве с примерами решения до плоскости Векторы и координаты в пространстве с примерами решения проходящей через прямую Векторы и координаты в пространстве с примерами решения параллельно Векторы и координаты в пространстве с примерами решения

Примем точку Векторы и координаты в пространстве с примерами решения за начало системы координат, координатные оси направим по рёбрам параллелепипеда так, чтобы точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения имели координаты Векторы и координаты в пространстве с примерами решения соответственно. Тогда Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения Чтобы записать уравнение плоскости Векторы и координаты в пространстве с примерами решения найдём координаты вектора Векторы и координаты в пространстве с примерами решения перпендикулярного как вектору Векторы и координаты в пространстве с примерами решения так и вектору Векторы и координаты в пространстве с примерами решения Поскольку Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решениято координаты Векторы и координаты в пространстве с примерами решения вектора Векторы и координаты в пространстве с примерами решения должны удовлетворять равенствам Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения например Векторы и координаты в пространстве с примерами решения

Теперь запишем уравнение плоскости Векторы и координаты в пространстве с примерами решения используя координаты точки Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения Для нахождения расстояния Векторы и координаты в пространстве с примерами решения используем теорему 4 из параграфа 13:

Векторы и координаты в пространстве с примерами решения

Ответ: Векторы и координаты в пространстве с примерами решения

Векторы в пространстве

Это интересно!

Основоположниками аналитической геометрии являются знаменитые ученые Декарт и Ферма. Однако Декарт свои исследования опубликовал первым. А исследования Ферма увидели свет намного позже, после его смерти. Интересно, что подойдя к проблеме с разных сторон, они пришли к одинаковым выводам. Декарт искал уравнение исследуемой кривой, а Ферма для заданного уравнения искал соответствующую кривую.

Векторы и координаты в пространстве с примерами решения

Применение правил алгебры к геометрии привело к возникновению аналитической геометрии. В последствии аналитическая геометрия была усовершенствована основателем математического анализа Исааком Ньютоном, который писал » … я смог пойти дальше Декарта, только потому, что стоял на плечах гигантов»

Векторы и координаты в пространстве с примерами решения

Прямоугольная система координат в пространстве

Пусть мяч ударился о пол и отскочил вертикально вверх. Координаты мяча в точке на полу можно определить относительно длины и ширины комнаты двумя значениями. Однако когда мяч отскочил от пола, то его положение уже невозможно определить двумя координатами. Если положение мяча на полу определяется как Векторы и координаты в пространстве с примерами решения то после поднятия на высоту 2,5 м его положение в пространстве задается уже гремя координатами Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Прямоугольная система координат в пространстве. В пространстве возьмем произвольную точку Векторы и координаты в пространстве с примерами решения и проведем через нее три попарно перпендикулярные прямые линии. Примем точку Векторы и координаты в пространстве с примерами решения за начало координат и, выбрав на этих прямых положительное направление и единичный отрезок, назовем эти прямые координатными осями Векторы и координаты в пространстве с примерами решения Начало координат Векторы и координаты в пространстве с примерами решения делит каждую ось на две полуоси (положительную и отрицательную). Пересекаясь попарно, три координатные оси образуют координатные плоскости. Плоскость Векторы и координаты в пространстве с примерами решения берется но горизонтали, положительное направление оси Векторы и координаты в пространстве с примерами решения проводится по направлению вверх. Трехмерная система координат, образованная по данному правилу, называется еще системой правой руки. Если согнуть пальцы правой руки от положительного направления оси Векторы и координаты в пространстве с примерами решения вдоль положительного направления оси Векторы и координаты в пространстве с примерами решения то большой палец будет направлен вдоль положительного направления оси Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Координатные плоскости обозначаются как и Векторы и координаты в пространстве с примерами решения

Каждая координатная плоскость делит пространство на два полупространства и, таким образом, три координатные плоскости вместе делят пространство на восемь частей, каждая из которых называется октантом:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Пусть точка Векторы и координаты в пространстве с примерами решения произвольная точка в пространстве. Параллельно плоскостям Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения через точку Векторы и координаты в пространстве с примерами решения проведем плоскости, которые пересекают соответствующие координатные оси в точках Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Получим три плоскости:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Координаты точки в пространстве

1) Плоскость, проходящая через точку Векторы и координаты в пространстве с примерами решения и параллельная плоскости Векторы и координаты в пространстве с примерами решения пересекает ось Векторы и координаты в пространстве с примерами решения в точке Векторы и координаты в пространстве с примерами решения

2) Плоскость, проходящая через точку Векторы и координаты в пространстве с примерами решения и параллельная плоскости Векторы и координаты в пространстве с примерами решения пересекает ось Векторы и координаты в пространстве с примерами решения в точке Векторы и координаты в пространстве с примерами решения

3) Плоскость, проходящая через точку Векторы и координаты в пространстве с примерами решения и параллельная плоскости Векторы и координаты в пространстве с примерами решения пересекает ось Векторы и координаты в пространстве с примерами решения в точке Векторы и координаты в пространстве с примерами решения

Значит, каждой точке Векторы и координаты в пространстве с примерами решения пространства соответствует упорядоченная тройка Векторы и координаты в пространстве с примерами решения и наоборот: Векторы и координаты в пространстве с примерами решения

Упорядоченная тройка Векторы и координаты в пространстве с примерами решения в прямоугольной системе координат Векторы и координаты в пространстве с примерами решения называется координатами точки Векторы и координаты в пространстве с примерами решения и декартовыми координатами. Расстояние от точки Векторы и координаты в пространстве с примерами решения до плоскостей Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответствует абсолютным значениям координат Векторы и координаты в пространстве с примерами решения Числа Векторы и координаты в пространстве с примерами решения соответственно называются абсциссой, ординатой и аппликатой точки Векторы и координаты в пространстве с примерами решения и это записывается так: Векторы и координаты в пространстве с примерами решения

1) Начало координат: Векторы и координаты в пространстве с примерами решения

2) Точка, расположенная на оси Векторы и координаты в пространстве с примерами решения

Точка, расположенная на оси Векторы и координаты в пространстве с примерами решения

Точка, расположенная на оси Векторы и координаты в пространстве с примерами решения

3) Точка, расположенная на плоскости Векторы и координаты в пространстве с примерами решения

Точка, расположенная на плоскости Векторы и координаты в пространстве с примерами решения

Точка, расположенная на плоскости Векторы и координаты в пространстве с примерами решения

Точка Векторы и координаты в пространстве с примерами решения в пространстве расположена в I октанте, точка Векторы и координаты в пространстве с примерами решения расположена на отрицательной полуоси Векторы и координаты в пространстве с примерами решения точка Векторы и координаты в пространстве с примерами решения расположена на плоскости Векторы и координаты в пространстве с примерами решения точка Векторы и координаты в пространстве с примерами решения расположена в III октанте.

Векторы и координаты в пространстве с примерами решения

Знаки координат точки

Знак координаты точки зависит от того, в каком октанте расположена точка. В следующей таблице показаны знаки координат точек в различных октантах.

Векторы и координаты в пространстве с примерами решения

В первом октанте все знаки координат положительны, в седьмом октанте все знаки отрицательны.

Пример №16

В прямоугольной системе координат в пространстве постройте точки: Векторы и координаты в пространстве с примерами решения

Решение: а) для построения точки Векторы и координаты в пространстве с примерами решения от начала координат но оси Векторы и координаты в пространстве с примерами решения в положительном направлении на расстоянии 2-х единичных отрезков отметим точку Векторы и координаты в пространстве с примерами решения От точки Векторы и координаты в пространстве с примерами решения вдоль положительного направления оси Векторы и координаты в пространстве с примерами решения и параллельно этой оси, на расстоянии 4-х единичных отрезков отметим точку Векторы и координаты в пространстве с примерами решения От точки Векторы и координаты в пространстве с примерами решения вдоль положительного направления оси Векторы и координаты в пространстве с примерами решения и параллельно этой оси, на расстоянии 3-х единичных отрезков отметим точку Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

b) для построения точки Векторы и координаты в пространстве с примерами решения от начала координат по оси Векторы и координаты в пространстве с примерами решения в отрицательном направлении на расстоянии 2-х единичных отрезков отметим точку Векторы и координаты в пространстве с примерами решения от точки Векторы и координаты в пространстве с примерами решения вдоль отрицательного направления оси Векторы и координаты в пространстве с примерами решения и параллельно этой оси, на расстоянии 2-х единичных отрезков отметим точку Векторы и координаты в пространстве с примерами решения От точки Векторы и координаты в пространстве с примерами решения вдоль положительного направления оси Векторы и координаты в пространстве с примерами решения и параллельно этой оси, на расстоянии 3-х единичных отрезков отметим точку Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Пример №17

От точки Векторы и координаты в пространстве с примерами решенияк осям координат проведены перпендикуляры. Запишите координаты оснований перпендикуляров, соответствующих точкам Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение: для точки основания перпендикуляра, проведенного из точки Векторы и координаты в пространстве с примерами решения на ось Векторы и координаты в пространстве с примерами решения координаты Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равны нулю. Значит, координаты точки — Векторы и координаты в пространстве с примерами решения Аналогично, координаты остальных точек — Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Пример №18

От точки Векторы и координаты в пространстве с примерами решения к плоскостям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения проведены перпендикуляры. Запишите координаты точек Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения которые являются основаниями перпендикуляров.

Решение: координата Векторы и координаты в пространстве с примерами решения точки основания перпендикуляра, опущенного от точки Векторы и координаты в пространстве с примерами решения на плоскость Векторы и координаты в пространстве с примерами решения равна нулю. Значит, точка Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения Аналогично находят координаты других точек: Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Расстояние между двумя точками в пространстве

Расстояние между точками Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения вычисляется но формуле

Векторы и координаты в пространстве с примерами решения

Доказательство. Пусть Векторы и координаты в пространстве с примерами решения диагональ параллелепипеда Векторы и координаты в пространстве с примерами решения с ребрами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решениякоторые параллельны координатным осям Векторы и координаты в пространстве с примерами решенияИз прямоугольного треугольника Векторы и координаты в пространстве с примерами решения прямой) имеем: Векторы и координаты в пространстве с примерами решения Из прямоугольного треугольника Векторы и координаты в пространстве с примерами решенияпрямой) имеем: Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Учитывая, что Векторы и координаты в пространстве с примерами решения

получаем, Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Расстояние от начала координат

В прямоугольной системе координат в пространстве расстояние от точки Векторы и координаты в пространстве с примерами решения начала координат до любой точки Векторы и координаты в пространстве с примерами решения вычисляется по формуле:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Пример №19

Точки, расположенные на одной прямой, называются коллинеарными точками.

Докажите, что точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения являются коллинеарными точками, используя формулу нахождения расстояния между двумя точками.

Решение:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Так как Векторы и координаты в пространстве с примерами решения то точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения расположены на одной прямой, т. е. они коллинеарны.

Векторы и координаты в пространстве с примерами решения

Пример №20

Найдите координаты точки, расположенной на оси абсцисс и равноудаленной от точек Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение: если точка Векторы и координаты в пространстве с примерами решения расположена на оси абсцисс, значит ее координаты-Векторы и координаты в пространстве с примерами решения Так как точка Векторы и координаты в пространстве с примерами решения равноудалена от точек Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения По формуле расстояния между двумя точками имеем:

Векторы и координаты в пространстве с примерами решения

Значит, точка Векторы и координаты в пространстве с примерами решения расположена на оси абсцисс и равноудалена от точек Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Координаты точки, делящей отрезок в некотором отношении

Координаты точки Векторы и координаты в пространстве с примерами решения делящей отрезок с концами в точках Векторы и координаты в пространстве с примерами решения

и Векторы и координаты в пространстве с примерами решения в отношении Векторы и координаты в пространстве с примерами решения находятся как:

Векторы и координаты в пространстве с примерами решения

Доказательство: пусть точка Векторы и координаты в пространстве с примерами решения делит отрезок Векторы и координаты в пространстве с примерами решения в заданном отношении. Через точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения к плоскости Векторы и координаты в пространстве с примерами решения проведем перпендикуляры Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения и через точки Векторы и координаты в пространстве с примерами решения перпендикуляры Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения к оси Векторы и координаты в пространстве с примерами решения По рисунку видно, что Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

На основе теоремы о пропорциональных отрезках имеем:

Векторы и координаты в пространстве с примерами решения

Аналогично, используя перпендикуляры к осям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения можно определить координаты Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Координаты середины отрезка

Координаты середины отрезка, соединяющих точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения находятся следующим образом:

Векторы и координаты в пространстве с примерами решения

Координаты центра тяжести треугольника

Координаты центра тяжести треугольника (точка пересечения медиан) с вершинами в точках Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения находятся следующим образом:

Векторы и координаты в пространстве с примерами решения (проверьте сами)

Пример №21

Даны точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Найдите

координаты точки Векторы и координаты в пространстве с примерами решения которая делит отрезок Векторы и координаты в пространстве с примерами решения как Векторы и координаты в пространстве с примерами решения

Решение: пусть точка Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения Эта точка делит отрезок Векторы и координаты в пространстве с примерами решения в отношении Векторы и координаты в пространстве с примерами решения По формуле нахождения координаты

точки, делящей отрезок в заданном отношении, получаем:

Векторы и координаты в пространстве с примерами решения

Пример №22

Даны координаты двух вершин треугольника Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Найдите координаты третьей вершины, если центр тяжести треугольника совпадает с началом координат.

Решение: так как центр тяжести находится в начале координат, то:

Векторы и координаты в пространстве с примерами решения

Отсюда, Векторы и координаты в пространстве с примерами решения

Значит, третьей вершиной треугольника является точка Векторы и координаты в пространстве с примерами решения

Векторы в пространстве

Векторной величиной или вектором называется величина, которая определяется не только значением, но и направлением. Изображается вектор направленным отрезком. Длина отрезка, образующего вектор, называется длиной вектора или его модулем.

Вектор можно изобразить в одномерной, двухмерной и трехмерной системе координат.

Векторы и координаты в пространстве с примерами решения

Вектор, у которого начальная и конечная точки совпадают, называется нулевым вектором. Направление нулевого вектора не определено. Местоположение любой точки (объекта) в пространстве изображается вектором, начало которого совпадает с началом координат, а конец — с данной точкой. Например, на рисунке изображен вектор, показывающий положение мяча в пространстве, который брошен на высоту 3 м на игровой площадке, длина которой равна 4 м, а ширина 2 м.

Векторы и координаты в пространстве с примерами решения

В пространстве вектор, который определяет место (положение, позицию) точки и соединяет начальную и заданную точку, называется позиционным вектором или радиус — вектором. Каждой точке пространства соответствует единственный позиционный вектор. Положение точки Векторы и координаты в пространстве с примерами решения в пространственной системе координат определяет вектор Векторы и координаты в пространстве с примерами решения — вектор, заданный компонентами.

Векторы и координаты в пространстве с примерами решения

Два вектора называются равными если они имеют равные модули и одинаково направлены. Равные векторы, при помощи параллельного переноса, можно расположить друг на друге. Например, на рисунке векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равны. Для позиционного вектора Векторы и координаты в пространстве с примерами решения можно провести бесконечно много равных по модулю и направлению векторов. В пространстве вектор Векторы и координаты в пространстве с примерами решения с началом в точке Векторы и координаты в пространстве с примерами решения и концом в точке Векторы и координаты в пространстве с примерами решения записывается компонентами как Векторы и координаты в пространстве с примерами решения Соответствующие компоненты равных векторов равны и наоборот. Векторы, которые равны по модулю, но имеют противоположные направления, называются противоположными векторами.

Векторы и координаты в пространстве с примерами решения

В пространстве, как и на плоскости, можно геометрически построить сумму и разность векторов, и произведение вектора на число.

Векторы и координаты в пространстве с примерами решения

Найти компоненты и длину вектора, а также выполнить действия над векторами в пространственной Декартовой системе координат можно но правилам, аналогичным для прямоугольной системы координат на плоскости.

Длина вектора

Модуль вектора можно найти, используя формулу нахождения расстояния между двумя точками.

Теорема. Если начало вектора расположено в точке Векторы и координаты в пространстве с примерами решения а конец в точке Векторы и координаты в пространстве с примерами решения то длина вектора Векторы и координаты в пространстве с примерами решения вычисляется по формуле:

Векторы и координаты в пространстве с примерами решения

Следствие. Длина радиус-вектора равна Векторы и координаты в пространстве с примерами решения (находится по формуле нахождения расстояния от начала координат до точки).

Сложение и вычитание векторов

Сложение и вычитание векторов: суммой (разностью) векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения является вектор, компоненты которого равны сумме (разности) соответствующих компонент векторов, т. е. сумма (разность) векторов Векторы и координаты в пространстве с примерами решения иВекторы и координаты в пространстве с примерами решения равна вектору:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Пример №23

Найдите сумму и разность векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение:

Векторы и координаты в пространстве с примерами решения

Умножение вектора на число

Умножение вектора на число: произведение вектора Векторы и координаты в пространстве с примерами решения на действительное число к определяется как вектор Векторы и координаты в пространстве с примерами решения Для произведения вектора на действительное число справедливы следующие правила:

Пример №24

Для вектора Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения запишите компонентами вектор Векторы и координаты в пространстве с примерами решения

Решение: Векторы и координаты в пространстве с примерами решения

Коллинеарные векторы

Если направленные отрезки, которыми изображены векторы, параллельны или лежат на одной прямой, то вектора называются коллинеарными. Если векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны, тогда существует единственное число Векторы и координаты в пространстве с примерами решения которое удовлетворяет условию Векторы и координаты в пространстве с примерами решения При Векторы и координаты в пространстве с примерами решениявекторы сонаправленные, при Векторы и координаты в пространстве с примерами решения они направлены в противоположные стороны. Соответствующие координаты коллинеарных векторов пропорциональны:

Векторы и координаты в пространстве с примерами решения

При Векторы и координаты в пространстве с примерами решения это условие запишется как: Векторы и координаты в пространстве с примерами решения

Пример №25

Определите, являются ли расположенные в пространстве векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарными.

Решение: так как Векторы и координаты в пространстве с примерами решения вектор Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны и сонаправлены.

Пример №26

Постройте радиус-вектор, равный вектору Векторы и координаты в пространстве с примерами решения

Решение: в _соответствии с правилом треугольника Векторы и координаты в пространстве с примерами решения Точкам Векторы и координаты в пространстве с примерами решенияи Векторы и координаты в пространстве с примерами решения соответствуют радиус-векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

По правилу сложения векторов на плоскости Векторы и координаты в пространстве с примерами решения Отсюда,

Векторы и координаты в пространстве с примерами решения

Пример №27

В трехмерной системе координат задан вектор Векторы и координаты в пространстве с примерами решения с началом в точке Векторы и координаты в пространстве с примерами решения и концом в точке Векторы и координаты в пространстве с примерами решения а) Найдите длину вектора Векторы и координаты в пространстве с примерами решения б) Запишите компонентами радиус-вектор, равный вектору Векторы и координаты в пространстве с примерами решения

Решение: а) Векторы и координаты в пространстве с примерами решения

b) Обозначим вектор, равный вектору Векторы и координаты в пространстве с примерами решения через Векторы и координаты в пространстве с примерами решения Тогда точке Векторы и координаты в пространстве с примерами решения

соответствует радиус-вектор Векторы и координаты в пространстве с примерами решения точке Векторы и координаты в пространстве с примерами решения соответствует

радиус-вектор Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Так как Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения

Пример №28

Установите справедливость равенства Векторы и координаты в пространстве с примерами решения для точек Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение:

Векторы и координаты в пространстве с примерами решения

Из равенства соответствующих компонентов следует Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Векторы, расположенные на одной плоскости или на параллельных плоскостях, называются компланарными векторами. Например, векторы, расположенные на противолежащих гранях куба, компланарны, а векторы, направленные по трем ребрам выходящим из одной вершины, некомпланарны.

Единичный вектор — вектор, длина которого равна единице.

Для любого, отличного от нуля вектора Векторы и координаты в пространстве с примерами решения вектор вида Векторы и координаты в пространстве с примерами решения является единичным вектором. 1 1

Пример №29

Для вектора Векторы и координаты в пространстве с примерами решения а) найдите единичный сонаправленный вектор Векторы и координаты в пространстве с примерами решения b) запишите компонентами вектор Векторы и координаты в пространстве с примерами решения сонанравленный вектору Векторы и координаты в пространстве с примерами решения длина которого равна 10 единицам.

Решение: обозначим единичный вектор через Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения

Проверим, действительно ли длина этого вектора равна единице:

Векторы и координаты в пространстве с примерами решения

b) чтобы определить вектор, сонаправленный с вектором Векторы и координаты в пространстве с примерами решения длиной 10 единиц, надо компоненты единичного вектора, найденного в пункте а, увеличить в 10 раз.

Векторы и координаты в пространстве с примерами решения

В прямоугольной системе координат в пространстве векторы, направленные вдоль положительных направлений координатных осей Векторы и координаты в пространстве с примерами решения и определенные как Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения при

Векторы и координаты в пространстве с примерами решения называются орт векторами. Понятно, что векторы Векторы и координаты в пространстве с примерами решения

— некомпланарны.

Векторы и координаты в пространстве с примерами решения

Любой позиционный вектор и на плоскости, и в пространстве, можно выразить через орт вектора. На плоскости точке Векторы и координаты в пространстве с примерами решения соответствует позиционный вектор Векторы и координаты в пространстве с примерами решения в пространстве точке Векторы и координаты в пространстве с примерами решения соответствует вектор Векторы и координаты в пространстве с примерами решения Данное выражение называется записью вектора компонентами. Здесь числа Векторы и координаты в пространстве с примерами решения координаты точки Векторы и координаты в пространстве с примерами решения

Теорема. Любой вектор Векторы и координаты в пространстве с примерами решения можно разложить но орт векторам Векторы и координаты в пространстве с примерами решения единственным образом, при этом справедливо равенство

Векторы и координаты в пространстве с примерами решения

Пример №30

Вектор Векторы и координаты в пространстве с примерами решения началом которого на плоскости является точка Векторы и координаты в пространстве с примерами решения а концом точка Векторы и координаты в пространстве с примерами решения выразите через орт вектора.

Решение: зная, что Векторы и координаты в пространстве с примерами решения получим Векторы и координаты в пространстве с примерами решения

Пример №31

Запишите разложение вектора Векторы и координаты в пространстве с примерами решения в пространстве по орт векторам.

Решение: по теореме разложения вектора по орт векторам имеем: Векторы и координаты в пространстве с примерами решения

Пример №32

а) Запишите в виде Векторы и координаты в пространстве с примерами решения позиционный вектор, соответствующий точке Векторы и координаты в пространстве с примерами решения

b) Запишите вектор Векторы и координаты в пространстве с примерами решения компонентами в виде Векторы и координаты в пространстве с примерами решения

Решение: а) начало позиционного вектора совпадает с началом координат Векторы и координаты в пространстве с примерами решения Таким образом вектор Векторы и координаты в пространстве с примерами решения имеет вид Векторы и координаты в пространстве с примерами решения

Пример №33

Найдите сумму и разность векторов.

Векторы и координаты в пространстве с примерами решения

Решение:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Скалярное произведение двух векторов

Тележка переместилась на расстояние Векторы и координаты в пространстве с примерами решения по прямой под действием силы Векторы и координаты в пространстве с примерами решения направленной под углом наклона Векторы и координаты в пространстве с примерами решения Вычислите совершаемую работу: если значение силы Векторы и координаты в пространстве с примерами решения равно Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения На горизонтальном пути работа вертикальной компоненты силы Векторы и координаты в пространстве с примерами решения равна нулю. Тогда работа, совершаемая горизонтальной компонентой силы Векторы и координаты в пространстве с примерами решения на расстоянии Векторы и координаты в пространстве с примерами решения будет:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Работа, совершаемая при перемещении груза на расстояние Векторы и координаты в пространстве с примерами решения равна произведению длины вектора перемещения и значения компонента вектора силы Векторы и координаты в пространстве с примерами решения направленной вдоль перемещения.

Векторы и координаты в пространстве с примерами решения

Работа является скалярной величиной, однако ее значение зависит от угла между силой, действующей на тело, и вектором перемещения.

Скалярное произведение двух векторов

Углом между любыми двумя ненулевыми векторами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения называется угол Векторы и координаты в пространстве с примерами решения между равными им векторами с общим началом. Ясно, что Векторы и координаты в пространстве с примерами решения

Скалярное произведение двух ненулевых векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равно произведению модулей этих векторов и косинуса угла между ними.

Скалярное произведение записывается как: Векторы и координаты в пространстве с примерами решения

Значит, Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Свойство скалярного произведения

• Для любого вектора Векторы и координаты в пространстве с примерами решения справедливо равенство Векторы и координаты в пространстве с примерами решения то есть скалярный квадрат вектора равен квадрату его длины.

Переместительное свойство скалярного произведения.

Для любых векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решениясправедливо равенство Векторы и координаты в пространстве с примерами решения

Свойство группировки скалярного произведения. Для любых векторов Векторы и координаты в пространстве с примерами решенияи Векторы и координаты в пространстве с примерами решенияи действительного числа Векторы и координаты в пространстве с примерами решения справедливо равенство

Векторы и координаты в пространстве с примерами решения

Распределительное свойство скалярного произведения:

1) Для любых векторовВекторы и координаты в пространстве с примерами решения, Векторы и координаты в пространстве с примерами решения и действительного числа Векторы и координаты в пространстве с примерами решения справедливо следующее равенство Векторы и координаты в пространстве с примерами решения 2) Для любых векторов Векторы и координаты в пространстве с примерами решения справедливо равенство

Векторы и координаты в пространстве с примерами решения

В частном случае, для скалярного произведения орт векторов получим:

Векторы и координаты в пространстве с примерами решения

Пример №34

По данным на рисунке найдите скалярное произведение векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение: Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Пример №35

Упростите выражение Векторы и координаты в пространстве с примерами решения используя свойство скалярного произведения векторов.

Решение:

Векторы и координаты в пространстве с примерами решения

Скалярное произведение двух векторов на координатной плоскости можно найти при помощи координат.

Пусть даны векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения По определению скалярного произведения имеем

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Из Векторы и координаты в пространстве с примерами решения получаем Векторы и координаты в пространстве с примерами решения

По теореме косинусов получаем Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения а это значит, что Векторы и координаты в пространстве с примерами решения

Таким образом, скалярное произведение двух векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равно сумме произведений соответствующих компонент.

Аналогичным образом, скалярное произведение двух векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения в трехмерной, Декартовой системе координат находится как: Векторы и координаты в пространстве с примерами решения.

Пример №36

Зная, что Векторы и координаты в пространстве с примерами решения найдите скалярное произведение Векторы и координаты в пространстве с примерами решения

Решение: Векторы и координаты в пространстве с примерами решения

Угол между двумя векторами

Угол между двумя ненулевыми векторами находится из соотношения Векторы и координаты в пространстве с примерами решения, здесь Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Пример №37

Найдите косинус угла между векторами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение:

Векторы и координаты в пространстве с примерами решения

Вывод: два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю: Векторы и координаты в пространстве с примерами решения

Пример №38

При каком значении Векторы и координаты в пространстве с примерами решения вектораВекторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения взаимно перпендикулярны?

Решение: Векторы и координаты в пространстве с примерами решения при Векторы и координаты в пространстве с примерами решения имеем Векторы и координаты в пространстве с примерами решения

Общее уравнение прямой

В системе координат на плоскости уравнение прямой имеет вид Векторы и координаты в пространстве с примерами решения Это уравнение называется общим уравнением прямой. Вектор, перпендикулярный прямой, называется нормальным вектором к данной прямой или нормалью. Покажем, что общее уравнение прямой с нормалью Векторы и координаты в пространстве с примерами решения имеет вид Векторы и координаты в пространстве с примерами решения Пусть Векторы и координаты в пространстве с примерами решения заданная точка на прямой, а точка Векторы и координаты в пространстве с примерами решения произвольная точка на прямой, отличная от точки Векторы и координаты в пространстве с примерами решения а вектор Векторы и координаты в пространстве с примерами решения — нормаль к прямой.

Векторы и координаты в пространстве с примерами решения

Так как векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения перпендикулярны, то

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Если ввести обозначение Векторы и координаты в пространстве с примерами решения то получим уравнение в виде Векторы и координаты в пространстве с примерами решения Здесь Векторы и координаты в пространстве с примерами решения

Частные случаи:

Векторы и координаты в пространстве с примерами решения уравнение прямой, параллельной оси абсцисс

Векторы и координаты в пространстве с примерами решения уравнение прямой, параллельной оси ординат

Векторы и координаты в пространстве с примерами решения уравнение прямой, проходящей через начало координат

Пример №39

Запишите уравнение прямой Векторы и координаты в пространстве с примерами решения проходящей через точку Векторы и координаты в пространстве с примерами решения нормаль к которой равна Векторы и координаты в пространстве с примерами решения

Решение: на координатной плоскости построим вектор Векторы и координаты в пространстве с примерами решенияи изобразим графическое решение задания, проведя через точку Векторы и координаты в пространстве с примерами решения прямую перпендикулярную нормали. Теперь запишем требуемое уравнение.

Векторы и координаты в пространстве с примерами решения

Способ 1.

Пусть точка Векторы и координаты в пространстве с примерами решения является точкой, расположенной на прямой Векторы и координаты в пространстве с примерами решения и отличной от точки Векторы и координаты в пространстве с примерами решения Тогда вектор Векторы и координаты в пространстве с примерами решения коллинеарен прямой Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решенияТак как вектора Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения перпендикулярны, то Векторы и координаты в пространстве с примерами решения Тогда получим: Векторы и координаты в пространстве с примерами решения

Таким образом, Векторы и координаты в пространстве с примерами решения

Способ 2.

Зная нормаль Векторы и координаты в пространстве с примерами решения уравнение Векторы и координаты в пространстве с примерами решения можно записать следующим образом: Векторы и координаты в пространстве с примерами решения Так как точка Векторы и координаты в пространстве с примерами решения должна находится на прямой, то Векторы и координаты в пространстве с примерами решения и уравнение будет Векторы и координаты в пространстве с примерами решения

Пример №40

Найдите угол между прямыми, заданными уравнениями Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Решение: угол между прямыми можно найти как угол между их нормалями.

Для угла Векторы и координаты в пространстве с примерами решения между нормальных векторов Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения имеем: Векторы и координаты в пространстве с примерами решения

Отсюда Векторы и координаты в пространстве с примерами решения

Пример №41

Найдите расстояние от точки Векторы и координаты в пространстве с примерами решения до прямой Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Решение: пусть точка Векторы и координаты в пространстве с примерами решения является основанием перпендикуляра, проведенного к прямой от точки Векторы и координаты в пространстве с примерами решения

Так как векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны, го существует такое число Векторы и координаты в пространстве с примерами решения что Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения Из равенства соответствующих компонент получим Векторы и координаты в пространстве с примерами решения Координаты Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения точки Векторы и координаты в пространстве с примерами решения должны удовлетворять уравнению Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Отсюда Векторы и координаты в пространстве с примерами решения Тогда Векторы и координаты в пространстве с примерами решения

Уравнение плоскости

Исследование. Какому множеству точек соответствует одно и тоже уравнение, например Векторы и координаты в пространстве с примерами решения в одномерной, двухмерной и трехмерной системах координат?

1. В одномерной системе координат, т.е. на числовой оси, уравнению Векторы и координаты в пространстве с примерами решения соответствует одна точка.

Векторы и координаты в пространстве с примерами решения

2. В двухмерной системе координат уравнению Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решенияудовлетворяют все точки с координатами Векторы и координаты в пространстве с примерами решения Множеством таких точек является прямая, параллельная оси Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

3. В трехмерной системе координат уравнению Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения удовлетворяет множество точек Векторы и координаты в пространстве с примерами решения Множеством таких точек является плоскость, параллельная плоскости Аналогично, уравнениям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения соответствуют плоскости, параллельные плоскостям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

4. В трехмерной системе координат представьте множество точек, удовлетворяющих уравнениям Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения 5. Сопоставьте координаты точек, данных на плоскости, с уравнениями Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Представьте плоскости.

Векторы и координаты в пространстве с примерами решения

Уравнение прямой в двухмерной системе координат имеет вид Векторы и координаты в пространстве с примерами решения

Например, уравнение Векторы и координаты в пространстве с примерами решения определяет прямую, проходящую через точки Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

В трехмерной системе координат мы можем написать это уравнение в виде: Векторы и координаты в пространстве с примерами решения Так как коэффициент Векторы и координаты в пространстве с примерами решения равен нулю, то аппликата Векторы и координаты в пространстве с примерами решения может получать любые значения. Т. е. в трехмерной системе координат для любого Векторы и координаты в пространстве с примерами решения координаты точек Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения удовлетворяет уравнению Векторы и координаты в пространстве с примерами решения Если отметить все такие точки в трехмерной системе координат, то получим плоскость, параллельную оси Векторы и координаты в пространстве с примерами решения В общем, уравнение плоскости в трехмерной системе координат имеет вид Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Плоскость может быть определена различными способами.

  • тремя неколлинеарными точками
  • прямой и точкой, не принадлежащей этой прямой
  • двумя пересекающимися прямыми
  • двумя параллельными прямыми
  • точкой и перпендикуляром в этой точке в заданном направлении

Используя последний способ, которым можно задать плоскость, покажем, что уравнение плоскости имеет вид Векторы и координаты в пространстве с примерами решения Вектор, перпендикулярный к плоскости называется ее нормалью. Пусть, дана плоскость Векторы и координаты в пространстве с примерами решения точка Векторы и координаты в пространстве с примерами решения расположенная на этой плоскости и нормаль Векторы и координаты в пространстве с примерами решения к этой плоскости. Выберем на этой плоскости какую-либо другую точку Векторы и координаты в пространстве с примерами решения и соединим точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения Прямая, перпендикулярная плоскости, перпендикулярна каждой прямой, лежащей в данной плоскости. Значит

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

А это значит, что Векторы и координаты в пространстве с примерами решения Учитывая, что Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения имеем:

Векторы и координаты в пространстве с примерами решения

Обозначим Векторы и координаты в пространстве с примерами решения тогда уравнение плоскости будет иметь вид: Векторы и координаты в пространстве с примерами решения

Внимание! Три коэффициента при переменных в уравнении плоскости являются компонентами нормали и Векторы и координаты в пространстве с примерами решения

Пример №42

Плоскость с нормалью Векторы и координаты в пространстве с примерами решения проходит через точку Векторы и координаты в пространстве с примерами решенияЗапишите уравнение этой плоскости.

Решение: задание можно выполнить двумя способами.

1-ый способ. Возьмем произвольную точку Векторы и координаты в пространстве с примерами решения на плоскости и запишем компонентами вектор с началом в точке Векторы и координаты в пространстве с примерами решения и концом в точке Векторы и координаты в пространстве с примерами решения Вектор будет иметь вид Векторы и координаты в пространстве с примерами решения Так как нормальный вектор имеет вид Векторы и координаты в пространстве с примерами решения то Векторы и координаты в пространстве с примерами решения или справедливо следующее:

Векторы и координаты в пространстве с примерами решения Отсюда

Векторы и координаты в пространстве с примерами решения

Умножим обе части уравнения на Векторы и координаты в пространстве с примерами решения Тогда уравнение данной плоскости будет иметь вид Векторы и координаты в пространстве с примерами решения

2-ой способ. Известно, что уравнение плоскости имеет вид Векторы и координаты в пространстве с примерами решения а нормаль к плоскости имеет вид Векторы и координаты в пространстве с примерами решенияЗначит, коэффициенты Векторы и координаты в пространстве с примерами решения известны. Из вектора нормали Векторы и координаты в пространстве с примерами решенияимеем: Векторы и координаты в пространстве с примерами решения Записав координаты точки Векторы и координаты в пространстве с примерами решения принадлежащей плоскости, в уравнение Векторы и координаты в пространстве с примерами решения найдем переменную Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения и уравнение плоскости будет иметь вид: Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения

Пример №43

Дано уравнение плоскости Векторы и координаты в пространстве с примерами решения

a) Определите, принадлежат ли точки Векторы и координаты в пространстве с примерами решения плоскости.

b) Определите координаты точки пересечения плоскости с осями Векторы и координаты в пространстве с примерами решения

c) Запишите координаты какой-либо другой точки, принадлежащей данной плоскости.

Решение:

а) Проверка:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Принадлежит плоскости

Векторы и координаты в пространстве с примерами решения

Принадлежит плоскости

Векторы и координаты в пространстве с примерами решения

Не принадлежит плоскости

b) Координаты точек пересечения с осями Векторы и координаты в пространстве с примерами решения

в точке пересечения с осью Векторы и координаты в пространстве с примерами решения координаты Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равны нулю

Векторы и координаты в пространстве с примерами решения

в точке пересечения с осью Векторы и координаты в пространстве с примерами решения координаты Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равны нулю

Векторы и координаты в пространстве с примерами решения

в точке пересечения с осью Векторы и координаты в пространстве с примерами решения координаты Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения равны нулю

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

c) Для определения координаты другой точки на заданной плоскости задайте любые значения двум переменным и найдите третью координату.

Например, при Векторы и координаты в пространстве с примерами решения значение Векторы и координаты в пространстве с примерами решения находят гак: Векторы и координаты в пространстве с примерами решенияЗначит, точка Векторы и координаты в пространстве с примерами решения принадлежит данной плоскости.

  • Заказать решение задач по высшей математике

Пример №44

Найдите расстояние от точки Векторы и координаты в пространстве с примерами решения до плоскости Векторы и координаты в пространстве с примерами решения

Решение: пусть точка Векторы и координаты в пространстве с примерами решения является основанием перпендикуляра, проведенного от точки Векторы и координаты в пространстве с примерами решения Так как векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения коллинеарны, то существует такое число Векторы и координаты в пространстве с примерами решения что Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения Из равенства соответствующих компонент получим Векторы и координаты в пространстве с примерами решения Координаты Векторы и координаты в пространстве с примерами решенияВекторы и координаты в пространстве с примерами решения точки Векторы и координаты в пространстве с примерами решения удовлетворяют уравнению:

Векторы и координаты в пространстве с примерами решения

Отсюда Векторы и координаты в пространстве с примерами решения Тогда Векторы и координаты в пространстве с примерами решения

Это говорит о том, что расстояние от заданной точки Векторы и координаты в пространстве с примерами решения до плоскости равно 3 единицам.

Взаимное расположение плоскостей

Плоскости Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решенияперпендикулярны тогда и только тогда, когда перпендикулярны их нормали: Векторы и координаты в пространстве с примерами решения

Плоскости Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решенияпараллельны тогда и только тогда, когда параллельны их нормали: Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Пример №45

Определение параллельности или перпендикулярности плоскостей но уравнению.

a) плоскость Векторы и координаты в пространстве с примерами решения задана уравнением Векторы и координаты в пространстве с примерами решения а плоскость Векторы и координаты в пространстве с примерами решения задана уравнением Векторы и координаты в пространстве с примерами решения Обоснуйте, что данные плоскости перпендикулярны.

b) плоскость Векторы и координаты в пространстве с примерами решения задана уравнением Векторы и координаты в пространстве с примерами решения а плоскость Векторы и координаты в пространстве с примерами решения задана уравнением Векторы и координаты в пространстве с примерами решения Обоснуйте, что данные плоскости параллельны.

Решение: для того чтобы плоскости Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решениябыли перпендикулярны, скалярное произведение нормалей Векторы и координаты в пространстве с примерами решенияи Векторы и координаты в пространстве с примерами решения плоскостей Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решениядолжно равняться нулю.

Векторы и координаты в пространстве с примерами решения

Значит, плоскости Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решенияперпендикулярны: Векторы и координаты в пространстве с примерами решения

Нормали плоскостей Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решенияравны: Векторы и координаты в пространстве с примерами решения Если для данных плоскостей постоянная Векторы и координаты в пространстве с примерами решения имеет различное значение, то это значит, что плоскости не лежат друг на друге, т. е. они параллельны.

Уравнение сферы

Определение. Сферой называется множество всех точек, расположенных на расстоянии Векторы и координаты в пространстве с примерами решения от заданной точки Векторы и координаты в пространстве с примерами решенияТочка Векторы и координаты в пространстве с примерами решения называется центром сферы, Векторы и координаты в пространстве с примерами решениярадиусом сферы.

Если точка Векторы и координаты в пространстве с примерами решения — произвольная точка сферы, то по формуле расстояния между двумя точками имеем:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Это уравнение сферы с центром в точке Векторы и координаты в пространстве с примерами решения и радиусом Векторы и координаты в пространстве с примерами решения

Если центр сферы находится в начале координат, то уравнение сферы радиуса Векторы и координаты в пространстве с примерами решения имеет вид:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Как видно из рисунка, пересечение этой сферы с координатной плоскостью Векторы и координаты в пространстве с примерами решенияявляется ее большой окружностью.

Пример №46

Запишите уравнение сферы, радиус которой равен г а центр расположен в точке Векторы и координаты в пространстве с примерами решения

Решение: Векторы и координаты в пространстве с примерами решения

Пример №47

Представьте фигуру, которая получается при пересечении сферы Векторы и координаты в пространстве с примерами решения с плоскостью Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Решение: радиус сферы Векторы и координаты в пространстве с примерами решения Учитывая в уравнении сферы, что Векторы и координаты в пространстве с примерами решенияполучим: Векторы и координаты в пространстве с примерами решения Пересечение плоскости z = 12 и данной сферы является окружность с центром в точке (0; 0; 12) и радиусом г = 5.

Плоскость, имеющая со сферой только одну общую точку, называется плоскостью, касательной к сфере.

Например, плоскость Векторы и координаты в пространстве с примерами решения касается сферы Векторы и координаты в пространстве с примерами решения в точке Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Плоскость, касательная к сфере, в точке касания перпендикулярна радиусу сферы.

Преобразования на плоскости и в пространстве

Ремесленники и художники создают узоры, заполняя некоторую площадь без пробела рисунком при помощи преобразований (параллельный перенос, поворот, отображение) или увеличения или уменьшения этого рисунка (гомотетия).

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Это знать интересно. Великий голландский художник Эшер, объединив такие разделы математики как симметрия, комбинаторика, стереометрия и топология, создал динамические рисунки, заполняя плоскости цветовыми оттенками. Не имея специального математического образования, Эшер создавал свои произведения, опираясь на интуицию и визуальные представления. Ряду работ, построенных на параллельном переносе, он дал название «Правильное движение плоскости».

https://en.wikipedia.org/wiki/M._C._Escher

Векторы и координаты в пространстве с примерами решения

Если каждой точке Векторы и координаты в пространстве с примерами решения фигуры Векторы и координаты в пространстве с примерами решения в пространстве, по определенному правилу, ставится в соответствие единственная точка Векторы и координаты в пространстве с примерами решения то это называется преобразованием фигуры Векторы и координаты в пространстве с примерами решения в пространстве. Преобразование, сохраняющее расстояние между точками, называется движением. Движение преобразовывает плоскость в плоскость, прямую в прямую, отрезок в отрезок, а угол — в конгруэнтный ему угол. Значит, движение преобразовывает фигуру в конгруэнтную себе фигуру. Известно, что в двухмерной системе координат за преобразование каждой точки Векторы и координаты в пространстве с примерами решения в точку Векторы и координаты в пространстве с примерами решения т. е. за параллельный перенос отвечает вектор Векторы и координаты в пространстве с примерами решения Аналогичным образом, в пространстве при параллельном переносе координаты каждой точки изменяются так: Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Параллельный перенос является движением. Каждому параллельному переносу соответствует один вектор. Справедливо и обратное.

Пример №48

В какую точку переходит точка Векторы и координаты в пространстве с примерами решения при параллельном переносе на вектор Векторы и координаты в пространстве с примерами решения

Решение: по определению при данном преобразовании, координаты точки Векторы и координаты в пространстве с примерами решения преобразуются в координаты точки Векторы и координаты в пространстве с примерами решенияследующим образом: Векторы и координаты в пространстве с примерами решения Т. е. при этом параллельном переносе точка Векторы и координаты в пространстве с примерами решения преобразуется в точку Векторы и координаты в пространстве с примерами решения

Симметрия. В пространстве симметрии относительно точки и прямой дается такое же определение как и на плоскости. В пространстве также рассматривается симметрия относительно плоскости.

Для точки Векторы и координаты в пространстве с примерами решения пространства

Пример №49

Найдите точку, симметричную точке Векторы и координаты в пространстве с примерами решения относительно плоскости Векторы и координаты в пространстве с примерами решения

Решение: точка Векторы и координаты в пространстве с примерами решения симметричная точке Векторы и координаты в пространстве с примерами решения относительно плоскости Векторы и координаты в пространстве с примерами решения расположена на прямой, перпендикулярной как плоскости Векторы и координаты в пространстве с примерами решения так и плоскости Векторы и координаты в пространстве с примерами решения Поэтому абсциссы и ординаты точек равны: Векторы и координаты в пространстве с примерами решения Координаты точки Векторы и координаты в пространстве с примерами решения можно найти из отношения Векторы и координаты в пространстве с примерами решения Таким образом, это точка Векторы и координаты в пространстве с примерами решения

Поворот. Поворотом фигуры в пространстве вокруг прямой Векторы и координаты в пространстве с примерами решения на угол Векторы и координаты в пространстве с примерами решения называется такое преобразование, при котором каждая плоскость, перпендикулярная прямой Векторы и координаты в пространстве с примерами решения поворачивается в одном направлении на угол Векторы и координаты в пространстве с примерами решения вокруг точек пересечения прямой Векторы и координаты в пространстве с примерами решения с плоскостью. Прямая Векторы и координаты в пространстве с примерами решения называется осью симметрии, угол Векторы и координаты в пространстве с примерами решения называется углом поворота.

Ниже на рисунках представлены примеры различных изображений поворота куба вокруг оси Векторы и координаты в пространстве с примерами решения в направлении по часовой стрелке на угол 90°, 180°, 270°.

Векторы и координаты в пространстве с примерами решения

Гомотетия

Аналогичным образом в пространстве вводится понятие преобразования подобия. Если при преобразовании фигуры расстояние между двумя точками Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения изменяется в Векторы и координаты в пространстве с примерами решения раз, то такое преобразование называется преобразованием подобия. Здесь число к называется коэффициентом подобия.

Если для любой точки Векторы и координаты в пространстве с примерами решения фигуры Векторы и координаты в пространстве с примерами решения при преобразовании ее в точку Векторы и координаты в пространстве с примерами решения выполняется равенство Векторы и координаты в пространстве с примерами решения то это преобразование называется гомотетией с центром в точке Векторы и координаты в пространстве с примерами решения и с коэффициентом Векторы и координаты в пространстве с примерами решения Гомотетия — это преобразование подобия. В частном случае, при Векторы и координаты в пространстве с примерами решения получаем центральную симметрию относительно Векторы и координаты в пространстве с примерами решения при Векторы и координаты в пространстве с примерами решения — тождественное преобразование.

Пример №50

Пусть дана сфера с центром в точке Векторы и координаты в пространстве с примерами решения и радиусом 2. Запишите уравнение сферы, полученной гомотетией с центром в начале координат и коэффициентом Векторы и координаты в пространстве с примерами решения

Решение: позиционный вектор, соответствующий точке Векторы и координаты в пространстве с примерами решения равен Векторы и координаты в пространстве с примерами решенияПусть позиционный вектор, соответствующий точке Векторы и координаты в пространстве с примерами решения будет Векторы и координаты в пространстве с примерами решенияТогда, по определению, Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения Тогда Векторы и координаты в пространстве с примерами решения Т. е. центром данной сферы будет точка Векторы и координаты в пространстве с примерами решения Зная, что радиус сферы равен Векторы и координаты в пространстве с примерами решения получим уравнение сферы Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Предел

Это интересно!

Предел (лимит) от латинского слова «limes», что означает цель.

Понятие предела независимо друг от друга было введено английским математиком Исааком Ньютоном (1642-1727) и немецким математиком Готфридом Лейбницом (1646-1716). Однако ни Ни Ныотон, ни Лейбниц не смогли полностью объяснить вводимые ими понятия. Точное определение предела было дано французским математиком Коши. А работы немецкого ученого » Вейерштрасса наконец завершили создание этой серьезной теории.

Координаты и векторы в пространстве

В этом параграфе вы ознакомитесь с прямоугольной системой координат в пространстве, научитесь находить координаты точек в пространстве, длину отрезка и координаты его середины. Вы обобщите и расширите свои знания о векторах.

Декартовы координаты точки в пространстве

В предыдущих классах вы ознакомились с прямоугольной (декартовой) системой координат на плоскости — это две перпендикулярные координатные прямые с общим началом отсчета (рис. 38.1).

Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения

Систему координат можно ввести и в пространстве. Прямоугольной (декартовой) системой координат в пространстве называют три попарно перпендикулярные координатные прямые с общим началом отсчета (рис. 38.2). Точку, в которой пересекаются три координатные прямые, обозначают буквой О. Ее называют началом координат. Координатные прямые обозначают буквами Векторы и координаты в пространстве с примерами решения их соответственно называют осью абсцисс, осью ординат и осью аппликат.

Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения

Плоскости, проходящие через пары координатных прямых Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения называют координатными плоскостями, их соответственно обозначают Векторы и координаты в пространстве с примерами решения (рис. 38.3).

Пространство, в котором задана система координат, называют координатным пространством. Если оси координат обозначены буквами Векторы и координаты в пространстве с примерами решения то координатное пространство обозначают Векторы и координаты в пространстве с примерами решения Из курса планиметрии вы знаете, что каждой точке М координатной плоскости Векторы и координаты в пространстве с примерами решения ставится в соответствие упорядоченная пара чисел Векторы и координаты в пространстве с примерами решения, которые называют координатами точки М. Записыва­ ют:Векторы и координаты в пространстве с примерами решения

Аналогично каждой точке М координатного пространства ставится в соответствие упорядоченная тройка чисел Векторы и координаты в пространстве с примерами решения, определяемая следующим образом. Проведем через точку М три плоскости Векторы и координаты в пространстве с примерами решения перпендикулярно осям Векторы и координаты в пространстве с примерами решения соответственно. Точки пересечения этих плоскостей с координатными осями обозначим Векторы и координаты в пространстве с примерами решения(рис. 38.4). Координату точки Векторы и координаты в пространстве с примерами решения на оси Векторы и координаты в пространстве с примерами решения называют абсциссой точки М и обозначают буквой Векторы и координаты в пространстве с примерами решения Координату точки Векторы и координаты в пространстве с примерами решения на оси у называют ординатой точки М и обозначают буквой Векторы и координаты в пространстве с примерами решения. Координату точки Векторы и координаты в пространстве с примерами решения, на оси Векторы и координаты в пространстве с примерами решения называют аппликатой точки М и обозначают буквой Векторы и координаты в пространстве с примерами решения.

Полученную упорядоченную тройку чисел Векторы и координаты в пространстве с примерами решения называют координатами точки М в пространстве. Записывают: Векторы и координаты в пространстве с примерами решения. Если точка М имеет координаты Векторы и координаты в пространстве с примерами решения, то числа Векторы и координаты в пространстве с примерами решенияВекторы и координаты в пространстве с примерами решения равны расстояниям от точки М до координатных плоскостей Векторы и координаты в пространстве с примерами решения. Используя этот факт, можно доказать, что, например точки с координатами Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения лежат на прямой, перпендикулярной плоскости Векторы и координаты в пространстве с примерами решения и равноудалены от этой плоскости (рис. 38.5). В этом случае говорят, что точки М и N симметричны относительно плоскости Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Если точка принадлежит координатной плоскости или координатной оси, то некоторые ее координаты равны нулю. Например, точка Векторы и координаты в пространстве с примерами решения принадлежит координатной плоскости Векторы и координаты в пространстве с примерами решения, а точка Векторы и координаты в пространстве с примерами решения — оси аппликат. Справедливы следующие утверждения.

Теорема 38.1. Расстояние между двумя точками Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения можно найти по формуле

Векторы и координаты в пространстве с примерами решения

Теорема 38.2. Каждая координата середины отрезка равна полусумме соответствующих координат его концов, то есть серединой отрезка с концами в точках Векторы и координаты в пространстве с примерами решения является точка Векторы и координаты в пространстве с примерами решения

Доказательства теорем 38.1 и 38.2 аналогичны тому, как были доказаны соответствующие теоремы в курсе планиметрии. Например, серединой отрезка с концами в точках Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения является начало координат — точка Векторы и координаты в пространстве с примерами решения.

В таком случае говорят, что точки А и В симметричны относительно начала координат.

Векторы в пространстве

В курсе планиметрии вы изучали векторы на плоскости. Теперь вы начинаете изучать векторы в пространстве. Многие понятия и свойства, связанные с векторами на плоскости, можно почти дословно отнести к векторам в пространстве. Доказательства такого рода утверждений о векторах в пространстве аналогичны доказательствам соответствующих утверждений о векторах на плоскости.

Рассмотрим отрезок АВ. Если мы договоримся точку А считать началом отрезка, а точку В — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки А до точки В. Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.

Вектор с началом в точке А и концом в точке В обозначают так: Векторы и координаты в пространстве с примерами решения (читают: «вектор АВ»). Для обозначения векторов также используют строчные буквы латинского алфавита со стрелкой сверху. На рисунке 39.1 изображены векторыВекторы и координаты в пространстве с примерами решения

В отличие от отрезка, концы которого — различные точки, у вектора начало и конец могут совпадать.

Договорились называть вектор, начало и конец которого — одна и та же точка, нулевым вектором или нуль-вектором и обозначать Векторы и координаты в пространстве с примерами решения. Модулем вектора Векторы и координаты в пространстве с примерами решения называют длину отрезка АВ. Обозначают: Векторы и координаты в пространстве с примерами решения. Модуль вектора Векторы и координаты в пространстве с примерами решения обозначают так: Векторы и координаты в пространстве с примерами решения. Считают, что модуль нулевого вектора равен нулю. Записывают: Векторы и координаты в пространстве с примерами решения

Определение. Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.

На рисунке 39.2 изображена четырехугольная призма Векторы и координаты в пространстве с примерами решения. Векторы Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решенияявляются коллинеарными.

Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения

Записывают: Векторы и координаты в пространстве с примерами решения

Ненулевые коллинеарные векторы бывают сонаправленными и противоположно направленными. Например, на рисунке 39.2 векторы Векторы и координаты в пространстве с примерами решения, сонаправлены. Записывают: Векторы и координаты в пространстве с примерами решения . Векторы Векторы и координаты в пространстве с примерами решенияпротивоположно направлены. Записывают: Векторы и координаты в пространстве с примерами решения.

Определение. Два ненулевых вектора называют равны ми, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. На рисунке 39.2 Векторы и координаты в пространстве с примерами решения

Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 39.3, Векторы и координаты в пространстве с примерами решения изображен вектор Векторы и координаты в пространстве с примерами решения. На рисунке 39.3, Векторы и координаты в пространстве с примерами решения изображены векторы, равные вектору Векторы и координаты в пространстве с примерами решения. Каждый из них также принято называть вектором Векторы и координаты в пространстве с примерами решения.

Векторы и координаты в пространстве с примерами решения

На рисунке 39.3, Векторы и координаты в пространстве с примерами решения изображены вектор Векторы и координаты в пространстве с примерами решения и точка А. Построим вектор Векторы и координаты в пространстве с примерами решения, равный вектору Векторы и координаты в пространстве с примерами решения. В таком случае говорят, что вектор Векторы и координаты в пространстве с примерами решения отложен от точки А (рис. 39.3, Векторы и координаты в пространстве с примерами решения).

Рассмотрим в координатном пространстве вектор Векторы и координаты в пространстве с примерами решения. От начала координат отложим вектор Векторы и координаты в пространстве с примерами решения, равный вектору Векторы и координаты в пространстве с примерами решения (рис. 39.4). Координатами вектора Векторы и координаты в пространстве с примерами решения называют координаты точки А . Запись Векторы и координаты в пространстве с примерами решения означает, что вектор Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Равные векторы имеют равные соответствующие координаты, и наоборот, если соответствующие координаты век­торов равны, то равны и сами векторы.

Теорем а 39.1. Если точки Векторы и координаты в пространстве с примерами решения и Векторы и координаты в пространстве с примерами решения — соответственно начало и конец вектора Векторы и координаты в пространстве с примерами решения, то числа Векторы и координаты в пространстве с примерами решенияи Векторы и координаты в пространстве с примерами решения равны соответственно первой, второй и третьей ко­ординатам вектора Векторы и координаты в пространстве с примерами решения. Из формулы расстояния между двумя точками следует, что если вектор Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения, то

Векторы и координаты в пространстве с примерами решения

Сложение и вычитание векторов

Пусть в пространстве даны векторы Векторы и координаты в пространстве с примерами решения. Отложим от произвольной точки А пространства вектор Векторы и координаты в пространстве с примерами решения, равный вектору Векторы и координаты в пространстве с примерами решения.

Далее от точки В отложим вектор Векторы и координаты в пространстве с примерами решения, равный вектору Векторы и координаты в пространстве с примерами решения. Век тор Векторы и координаты в пространстве с примерами решения называют суммой векторов Векторы и координаты в пространстве с примерами решения (рис. 40.1) и записывают: Векторы и координаты в пространстве с примерами решения Описанный алгоритм сложения двух векторов называют правилом треугольника.

Можно показать, что сумма Векторы и координаты в пространстве с примерами решения не зависит от выбора точки А. Заметим, что для любых трех точек А, В и С выполняется равенство Векторы и координаты в пространстве с примерами решения Оно выражает правило треугольника.

Векторы и координаты в пространстве с примерами решения

Свойства сложения векторов аналогичны свойствам сложения чисел. Для любых векторов Векторы и координаты в пространстве с примерами решения выполняются равенства:

Сумму трех и большего количества векторов находят так: вначале складывают первый и второй векторы, потом к полученной сум­ме прибавляют третий вектор и т. д. Например, Векторы и координаты в пространстве с примерами решения Для тетраэдра DABC, изображенного на рисунке 40.2, можно записать: Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения

Для сложения двух неколлинеарных векторов Векторы и координаты в пространстве с примерами решения удобно пользоваться правилом параллелограмма.

Отложим от произвольной точки А вектор Векторы и координаты в пространстве с примерами решения, равный векто­ру Векторы и координаты в пространстве с примерами решения , и вектор Векторы и координаты в пространстве с примерами решения, равный вектору Векторы и координаты в пространстве с примерами решения (рис. 40.3). Построим параллелограмм ABCD. Тогда искомая сумма Векторы и координаты в пространстве с примерами решения равна вектору Векторы и координаты в пространстве с примерами решения.

Рассмотрим векторы Векторы и координаты в пространстве с примерами решения, не лежащие в одной плоскости (рис. 40.4). Найдем сумму этих векторов.

Векторы и координаты в пространстве с примерами решения

Построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были его ребрами (рис. 40.5). Отрезок OD является диагональю этого параллелепипеда. Докажем, что Векторы и координаты в пространстве с примерами решения Так как четырехугольник Векторы и координаты в пространстве с примерами решения — параллелограмм, то Векторы и координаты в пространстве с примерами решения. Имеем: Векторы и координаты в пространстве с примерами решения. Поскольку четырехугольник Векторы и координаты в пространстве с примерами решения — параллелограмм, то Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения

Описанный способ сложения трех векторов, отложенных от одной точки и не лежащих в одной плоскости, называют правилом параллелепипеда.

Определение. Разностью векторов Векторы и координаты в пространстве с примерами решения называют такой вектор Векторы и координаты в пространстве с примерами решения , сумма которого с вектором Векторы и координаты в пространстве с примерами решения равна вектору Векторы и координаты в пространстве с примерами решения .

Записывают: Векторы и координаты в пространстве с примерами решения.

Покажем, как построить вектор, равный разности векторов Векторы и координаты в пространстве с примерами решенияи Векторы и координаты в пространстве с примерами решения. От произвольной точки О отложим векторы Векторы и координаты в пространстве с примерами решения, соответственно равные векторам Векторы и координаты в пространстве с примерами решения (рис. 40.6). Тогда Векторы и координаты в пространстве с примерами решения По определению разности двух векторов Векторы и координаты в пространстве с примерами решения, то есть Векторы и координаты в пространстве с примерами решенияВекторы и координаты в пространстве с примерами решения, следовательно, вектор Векторы и координаты в пространстве с примерами решения равен разности векторов Векторы и координаты в пространстве с примерами решения.

Отметим, что для любых трех точек О, А и В выполняется равенство Векторы и координаты в пространстве с примерами решения Оно выражает правило нахождения разности двух векторов, отложенных от одной точки.

Теорема 40.1. Если координаты векторов Векторы и координаты в пространстве с примерами решения равны соответственно Векторы и координаты в пространстве с примерами решения, то координаты вектора Векторы и координаты в пространстве с примерами решенияравны Векторы и координаты в пространстве с примерами решения, а координаты вектора Векторы и координаты в пространстве с примерами решенияравны Векторы и координаты в пространстве с примерами решения.

Умножение вектора на число

Определение. Произведением ненулевого вектора Векторы и координаты в пространстве с примерами решения и чис ла Векторы и координаты в пространстве с примерами решения, отличного от нуля, называют такой вектор Векторы и координаты в пространстве с примерами решения, что:

1)Векторы и координаты в пространстве с примерами решения

2) если Векторы и координаты в пространстве с примерами решения если Векторы и координаты в пространстве с примерами решения

Записывают: Векторы и координаты в пространстве с примерами решения Если Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения, то считают, что Векторы и координаты в пространстве с примерами решения На рисунке 41.1 изображен параллелепипед Векторы и координаты в пространстве с примерами решения. Имеем: Векторы и координаты в пространстве с примерами решения, Векторы и координаты в пространстве с примерами решения Из определения следует, что

Векторы и координаты в пространстве с примерами решения.

Векторы и координаты в пространстве с примерами решения

Теорема 41.1. Для любых векторов Векторы и координаты в пространстве с примерами решения выполняется равенство Векторы и координаты в пространстве с примерами решения

Эта теорема позволяет свести вычитание векторов к сложению: чтобы из вектора Векторы и координаты в пространстве с примерами решения вычесть вектор Векторы и координаты в пространстве с примерами решения, можно к вектору Векторы и координаты в пространстве с примерами решения прибавить векторВекторы и координаты в пространстве с примерами решения. Произведение Векторы и координаты в пространстве с примерами решения обозначают Векторы и координаты в пространстве с примерами решения и называют вектором, противоположным вектору Векторы и координаты в пространстве с примерами решения. Например, записывают:

Векторы и координаты в пространстве с примерами решения Из определения умножения вектора на число следует, что еслиВекторы и координаты в пространстве с примерами решения, то векторы Векторы и координаты в пространстве с примерами решения коллинеарны. Следовательно, из равенства Векторы и координаты в пространстве с примерами решения получаем, что точки О, А и В лежат на одной прямой.

Теорема 41.2. Если векторы Векторы и координаты в пространстве с примерами решения коллинеарны и Векторы и координаты в пространстве с примерами решения то существует такое число Векторы и координаты в пространстве с примерами решения, что Векторы и координаты в пространстве с примерами решения

Теорема 41.3. Если координаты вектора Векторы и координаты в пространстве с примерами решения равны Векторы и координаты в пространстве с примерами решения, то координаты вектора Векторы и координаты в пространстве с примерами решения равны Векторы и координаты в пространстве с примерами решения.

Умножение вектора на число обладает следующими свойствами.

Для любых чисел Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения и для любых векторов Векторы и координаты в пространстве с примерами решения выполня­ются равенства:

Эти свойства позволяют преобразовывать выражения, содержа­щие сумму векторов, их разность и произведение вектора на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например, Векторы и координаты в пространстве с примерами решения

Скалярное произведение векторов

Пусть Векторы и координаты в пространстве с примерами решения — два ненулевых и несонаправленных вектора. От произвольной точки О отложим векторы Векторы и координаты в пространстве с примерами решения равные соответственно векторам Векторы и координаты в пространстве с примерами решения (рис. 42.1). Величину угла АОВ будем называть углом между векторами Векторы и координаты в пространстве с примерами решения

Угол между векторами Векторы и координаты в пространстве с примерами решения обозначают так: Векторы и координаты в пространстве с примерами решения. Очевидно, что если Векторы и координаты в пространстве с примерами решения, то Векторы и координаты в пространстве с примерами решения = 180° (рис. 42.2).

Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения Векторы и координаты в пространстве с примерами решения

Если Векторы и координаты в пространстве с примерами решения, то считают, что Векторы и координаты в пространстве с примерами решения. Если хотя бы один из векторов Векторы и координаты в пространстве с примерами решения или Векторы и координаты в пространстве с примерами решения нулевой, то также считают, что Векторы и координаты в пространстве с примерами решения.

Векторы Векторы и координаты в пространстве с примерами решения называют перпендикулярными, если угол между ними равен 90°. Записывают: Векторы и координаты в пространстве с примерами решения

На рисунке 42.3 изображена треугольная призма, основанием которой является правильный треугольник, а боковое ребро перпендикулярно плоскости основания.

Имеем:

Векторы и координаты в пространстве с примерами решения

Определение. Скалярным произведением двух векто­ров называют произведение их модулей и косинуса угла между ними.

Скалярное произведение векторов Векторы и координаты в пространстве с примерами решения обозначают так: Векторы и координаты в пространстве с примерами решения Имеем: Векторы и координаты в пространстве с примерами решения

Если хотя бы один из векторов Векторы и координаты в пространстве с примерами решения нулевой, то очевидно, что Векторы и координаты в пространстве с примерами решения Скалярное произведение Векторы и координаты в пространстве с примерами решения называют скалярным квадратом вектора Векторы и координаты в пространстве с примерами решенияи обозначают Векторы и координаты в пространстве с примерами решения .

Скалярный квадрат вектора равен квадрату его модуля, то есть Векторы и координаты в пространстве с примерами решения .

Теорема 42.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Например, для векторов, изображенных на рисунке 42.3, имеем: Векторы и координаты в пространстве с примерами решения

Теорема 42.2. Скалярное произведение векторов Векторы и координаты в пространстве с примерами решенияи Векторы и координаты в пространстве с примерами решения можно вычислить по формуле

Векторы и координаты в пространстве с примерами решения

Теорема 42.3. Косинус угла между ненулевыми векторами Векторы и координаты в пространстве с примерами решения можно вычислить по формуле

Векторы и координаты в пространстве с примерами решения

Некоторые свойства скалярного произведения векторов аналогичны соответствующим свойствам произведения чисел. Например, для любых векторов Векторы и координаты в пространстве с примерами решения и любого числа Векторы и координаты в пространстве с примерами решения справедливы равенства:

Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, по правилам преобразования алгебраических выражений. Например,

Векторы и координаты в пространстве с примерами решения

Пример №51

Основанием призмы является равнобедренный треугольник АВС (АВ =АС). Боковое ребро Векторы и координаты в пространстве с примерами решения образует равные углы с ребрами АВ и АС (рис. 42.4). Докажите, что Векторы и координаты в пространстве с примерами решения.

Векторы и координаты в пространстве с примерами решения

Решение:

Пусть Векторы и координаты в пространстве с примерами решения. С учетом условия можно записать: Векторы и координаты в пространстве с примерами решения. Найдем скалярное произведение векто­ров Векторы и координаты в пространстве с примерами решения. Имеем: Векторы и координаты в пространстве с примерами решения

Запишем: Векторы и координаты в пространстве с примерами решения

Векторы и координаты в пространстве с примерами решения

Поскольку Векторы и координаты в пространстве с примерами решения, то рассматриваемое скалярное произ­ведение равно 0. Следовательно, Векторы и координаты в пространстве с примерами решения

Напомню:

Расстояние между точками

Расстояние между двумя точками Векторы и координаты в пространстве с примерами решения можно найти по формуле Векторы и координаты в пространстве с примерами решения

Координаты середины отрезка

Каждая координата середины отрезка равна полусумме соответствующих координат его концов.

Взаимное расположение двух векторов

Два ненулевых вектора называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.

Равенство векторов

Два ненулевых вектора называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.

Координаты вектора

Если точки Векторы и координаты в пространстве с примерами решения — соответственно начало и конец вектора Векторы и координаты в пространстве с примерами решения, то числа Векторы и координаты в пространстве с примерами решения равны соответственно первой, второй и третьей координатам вектора Векторы и координаты в пространстве с примерами решения

Модуль вектора

Если вектор Векторы и координаты в пространстве с примерами решения имеет координаты Векторы и координаты в пространстве с примерами решения

Действия над векторами

Для любых трех точек А , В и С выполняется равенство Векторы и координаты в пространстве с примерами решения

Разностью векторов Векторы и координаты в пространстве с примерами решения называют такой вектор Векторы и координаты в пространстве с примерами решения, сумма которого с вектором Векторы и координаты в пространстве с примерами решения равна вектору Векторы и координаты в пространстве с примерами решения .

Для любых трех точек О, А и В выполняется равенство Векторы и координаты в пространстве с примерами решения. Произведением ненулевого вектора Векторы и координаты в пространстве с примерами решения и числа Векторы и координаты в пространстве с примерами решения, отличного от нуля, называют такой вектор Векторы и координаты в пространстве с примерами решения, что: 1) Векторы и координаты в пространстве с примерами решения 2) если Векторы и координаты в пространстве с примерами решенияесли Векторы и координаты в пространстве с примерами решения

Если векторы Векторы и координаты в пространстве с примерами решения коллинеарны и Векторы и координаты в пространстве с примерами решения, то существует такое число Векторы и координаты в пространстве с примерами решения, что Векторы и координаты в пространстве с примерами решения Произведение Векторы и координаты в пространстве с примерами решения обозначают Векторы и координаты в пространстве с примерами решения и называют вектором, противоположным вектору Векторы и координаты в пространстве с примерами решения.

Скалярным произведением двух векторов называют произведе­ние их модулей и косинуса угла между ними. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны. Если координаты векторов Векторы и координаты в пространстве с примерами решения равны соответственно Векторы и координаты в пространстве с примерами решения то:

  • Множества
  • Рациональные уравнения
  • Рациональные неравенства и их системы
  • Геометрические задачи и методы их решения
  • Предел и непрерывность числовой функции одной переменной
  • Функции, их свойства и графики
  • Параллельность в пространстве
  • Перпендикулярность в пространстве

Геометрия, 11 класс

Урок № 3. Координатный метод решения задач

Перечень вопросов, рассматриваемых в теме:

  • специфика и преимущества решения задач в пространстве координатным методом;
  • типы задач, решаемые координатным методом;
  • этап решения задачи координатным методом;
  • решение несложных задач методом координат.

Глоссарий по теме

Уравнение вида задает в пространстве плоскость α.

При этом вектор – это вектор, перпендикулярный плоскости α. Его называют вектор нормали, или нормальный вектор, или нормаль. Очевидно, что нормалью является любой вектор, коллинеарный вектору .

Вектор и любой коллинеарный ему вектор называются направляющим векторами прямой и прямой соответственно.

Основная литература:

Шарыгин И.Ф. Геометрия. 10–11 кл. : учеб. для общеобразоват. Учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 163-170.

Потоскуев Е.В., Звавич Л. И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 353-260.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

Работа по теме урока. Объяснение новой темы

Мы рассмотрели несложную задачу на применение метода координат в пространстве.

Векторы , угол между которыми мы искали, называются направляющими векторами прямой и прямой соответственно.

Рассмотрим этот метод более подробно.

Суть метода координат на плоскости и в пространстве заключается в следующем.

  1. Ввести систему координат удобным образом (исходя их свойств заданной фигуры)
  2. Записать условие задачи в координатах, определив во введенной системе координат координаты точек и/или векторов
  3. Используя алгебраические преобразования, решить задачу
  4. Интерпретировать полученный результат в соответствии с условием данной задачи

В рассмотренном нами примере, поскольку был дан куб, мы могли ввести систему координат с центром в любой его вершине.

В координатах удобно решать задачи, связанные с поиском расстояний и углов. Но для того чтобы его использовать, нужно знать некоторые формулы:

  1. Угол между прямыми
  2. Угол между прямой и плоскостью
  3. Угол между плоскостями
  4. Расстояние от точки до плоскости
  5. Расстояние от точки до прямой в пространстве
  6. Расстояние между скрещивающимися прямыми

Расстояние между параллельными плоскостями определяется как расстояние от точки, лежащей в одной плоскости, до другой плоскости.

Мы рассмотрим только первые четыре формулы.

Введем их.

Угол между прямыми

Если прямая задана двумя точками A и B, то известен направляющий вектор этой прямой с координатами {}. Пусть вторая прямая имеет направляющий вектор . Тогда угол между векторами вычисляется по формуле:

.

Дальше ищется арккосинус от найденного числа. Заметим, что если косинус получился отрицательным, то это значит, что угол между векторами тупой. Поэтому мы берем модуль получившегося числа.

Фактически мы уже рассмотрели пример вычисления угла между прямыми в пространстве.

Угол между прямой и плоскостью

Сначала рассмотрим уравнение плоскости, проходящей через три точки.

.

Вам известно, что в пространстве плоскость задается уравнением, аналогичным тому, которое на плоскости задает прямую.

Если линейное уравнение вида на плоскости задает прямую l, то уравнение вида задает в пространстве плоскость α. При этом вектор – это вектор, перпендикулярный плоскости α. Его называют вектор нормали, или нормальный вектор, или нормаль.

Вам известно, что три точки в пространстве определяют единственную плоскость. Поэтому, если заданы три точки, то мы можем найти уравнение плоскости

Мы можем подставить координаты заданных точек в уравнение плоскости и решить систему из трех уравнений с тремя переменными:

В этой системе четыре неизвестных, однако, мы можем избавиться от одной, если разделим все уравнения на D:

.

Для изучения данного способа в 11 классе на базовом уровне введение понятий матрица, определитель матрицы не желателен, данные понятия не входят в базовый курс изучения геометрии.

Иногда эта система оказывается несложной. Но иногда бывает трудно ее решить, и тогда можно использовать следующую формулу:

Обозначение |M| означает определитель матрицы М.

В нашем случае матрица представляет собой таблицу 3х3 элемента. И определитель |M| вычисляется следующим образом:

.

Таким образом, уравнение плоскости будет записано так:

Пример 1:

Написать уравнение плоскости, проходящей через точки K(1; -2; 3), L (0; 1; 1), M (1; 0; 1).

Составим систему.

.

Решая ее, получим значения А, В и С: . То есть уравнение плоскости имеет вид:

.

Ответ: .

Теперь запишем формулу угла между прямой и плоскостью.

Пусть дано уравнение плоскости: и известен — направляющий вектор прямой.

Тогда – синус угла между прямой и плоскостью.

Пример 2:

Найдем угол между прямой и плоскостью. В качестве плоскости возьмем ту, уравнение которой мы только что написали:

Прямая проходит через точки Т(2; -1; 4) и Р(3; 2; 2).

Направляющий вектор прямой: .

Найдем синус угла между прямой и плоскостью:

.

Угол между прямой и плоскостью .

Ответ: .

Угол между плоскостями

Пусть:

уравнение первой плоскости:

уравнение второй плоскости:

Тогда — косинус угла между этими плоскостями.

Пример 3:

Найдем угол между плоскостями:

и .

Найдем косинус угла между плоскостями:

.

Угол между плоскостями:

Ответ:

Расстояние от точки до плоскости

Пусть координаты точки: , уравнение плоскости: .

Тогда Расстояние от точки до плоскости вычисляется по формуле: .

Пример 4.

Найдем расстояние от точки М(4; 3; 4) до плоскости .

.

Теперь рассмотрим решение задачи координатным методом с использованием рассмотренных формул.

Пример 5.

АВС…D1 – куб с ребром 4. Найти расстояние от точки А до плоскости ЕКС (Е – середина D1C1, K – середина C1B1)

Введем систему координат с началом в вершине А так, как показано на рисунке:

Интересующие нас точки будут иметь координаты:

A(0; 0; 0), C(4; 4; 0), E(4; 2; 4), K(2; 4; 4).

Напишем уравнение плоскости ЕКС:

.

Решая ее, получим значения А, В, С и D: .

Уравнение плоскости имеет вид:

Теперь найдем расстояние от точки А до плоскости ЕКС: .

Ответ: .

Рассмотрим задачу (№14 из варианта ЕГЭ).

В кубе ABC…D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.

а) Докажите, что A1P : PB1 = 2 : 1, где P — точка пересечения плоскости α с ребром A1B1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.

Решение:

Переформулируем первый пункт этой задачи таким образом:

Проведем плоскость через точки Р, K и C1 и докажем, что она параллельна прямой BD1.

Введем систему координат так, как показано на рисунке:

Найдем координаты точек :

Р(; 0; 4), К(4; 0; 3),(4; 4; 4).

Напишем уравнение плоскости :

;

Решая ее, получим значения А, В, С и D: .

— уравнение плоскости

Теперь докажем, что плоскость параллельна прямой BD1.

Найдем угол между прямой BD1 и плоскостью .

Точки В и D1 имеют координаты: В (4; 0; 0), D1 (0; 4; 4).

Направляющий вектор прямой BD1 – это вектор .

Он имеет координаты .

Теперь найдем синус угла между вектором и плоскостью .

.

В этом случае нам не нужно считать знаменатель дроби. Так как числитель получился равен 0, то дробь равна 0, то есть синус угла между плоскостью и прямой равен 0, значит, плоскости параллельны или совпадают. Но, так как точка В, например, в плоскости, очевидно, не лежит, то плоскости параллельны.

Это значит, что плоскость, параллельная прямой BD1 и проходящая через точки действительно пересекает ребро A1B1в точке Р так, что A1P : PB1 = 2 : 1. Что и требовалось доказать.

Теперь рассмотри второй пункт задачи. Уравнение плоскости у нас есть. Плоскость BB1C1 параллельна координатной плоскости YOZ и проходит через точку

В(4; 0; 0). Поэтому она имеет уравнение .

То есть ее коэффициенты .

Найдем угол между плоскостями, используя формулу

Ответ: .

Аналитическая геометрия — область математики, изучающая геометрические образы алгебраическими методами. Еще в XVII в. французским математиком Декартом был разработан метод координат, являющийся аппаратом аналитической геометрии.

В основе метода координат лежит понятие системы координат. Мы познакомимся с прямоугольной (или декартовой) и полярной системами координат.

Прямоугольная система координат

Две взаимно перпендикулярные оси Ох и Оу, имеющие общее начало О и одинаковую масштабную единицу (рис. 8), образуют прямоугольную систему координат на плоскости.

Ось Ох называется осью абсцисс, ось Оу — осью ординат, а обе оси вместе — осями координат. Точка О пересечения осей называется началом координат. Плоскость, в которой расположены оси Ох и Оу, называется координатной плоскостью и обозначается Оху.

Пусть М — произвольная точка плоскости. Опустим из нее перпендикуляры МА и MB на оси Ох и Оу.

Прямоугольными координатами х и у точки М будем называть соответственно величины OA и ОВ направленных отрезков Аналитическая геометрия на плоскости и Аналитическая геометрия на плоскости: х= OA, у= ОВ.

Координаты хи у точки М называются соответственно ее абсцис-ой и ординатой. Тот факт, что точка М имеет координаты х и у, символически обозначают так: М (х; у). При этом первой в скобках указывают абсциссу, а второй — ординату. Начало координат имеет координаты (0; 0).

Таким образом, при выбранной системе координат каждой точке М плоскости соответствует единственная пара чисел (х;у) — ее прямоугольные координаты, и, обратно, на каждой паре чисел (х; у) соответствует, и притом одна, точка М плоскости Оху такая, что ее абсцисса равна х, а ордината у.

Итак, введение прямоугольной системы координат на плоскости позволяет установить взаимно однозначное соответствие между множеством всех точек плоскости и множеством пар чисел, что дает возможность при решении геометрических задач применять алгебраические методы.

Аналитическая геометрия на плоскости

Оси координат разбивают плоскость на четыре части, их называют четвертями, квадрантами или координатными углами и нумеруют римскими цифрами I, II, III, IV так, как показано на рис. 9. На рис. 9 указаны также знаки координат точек в зависимости от их расположения в той или иной четверти.

Простейшие задачи аналитической геометрии на плоскости

Расстояние между двумя точками.

Теорема:

Для любых двух точек Аналитическая геометрия на плоскости плоскости расстояние d между ними выражается формулой

Аналитическая геометрия на плоскости

Доказательство:

Опустим из точек Аналитическая геометрия на плоскости перпендикуляры Аналитическая геометрия на плоскости соответственно на оси Оу и Ох и обозначим через К точку пересечения прямых Аналитическая геометрия на плоскости (рис. 10). Точка К имеет координаты Аналитическая геометрия на плоскости, поэтому (см. гл. 1, § 3)

Аналитическая геометрия на плоскости

Так как треугольник Аналитическая геометрия на плоскости— прямоугольный, то по теореме Пифагора

Аналитическая геометрия на плоскости

2. Площадь треугольника.

Теорема:

Для любых точек Аналитическая геометрия на плоскости, не лежащих на одной прямой, площадь s треугольника ABC выражается формулой

Аналитическая геометрия на плоскости

Доказательство:

Площадь треугольника ABC, изображенного на рис. 11, можно найти так:

Аналитическая геометрия на плоскости

где Аналитическая геометрия на плоскости — площади соответствующих трапеций. Поскольку

Аналитическая геометрия на плоскости

подставив выражения для этих площадей в равенство (3), получим формулу

Аналитическая геометрия на плоскости

из которой следует формула (2). Для любого другого расположения треугольника ABC формула (2) доказывается аналогично.

Аналитическая геометрия на плоскости

Пример:

Даны точки А (1; 1), В (6; 4), С (8; 2). Найти площадь треугольника ABC. По формуле (2):

Аналитическая геометрия на плоскости

3. Деление отрезка в данном отношении. Пусть на плоскости дан произвольный отрезок Аналитическая геометрия на плоскости и пусть М—любая точка этого отрезка, отличная от точки Аналитическая геометрия на плоскости (рис. 12).

Число Аналитическая геометрия на плоскости, определяемое равенством

Аналитическая геометрия на плоскости

называется отношением, в котором точка М делит отрезок Аналитическая геометрия на плоскости.

Задача о делении отрезка в данном отношении состоит в том, чтобы по данному отношению к и данным координатам точек Аналитическая геометрия на плоскости и Аналитическая геометрия на плоскости найти координаты точки М.

Решить эту задачу позволяет следующая теорема.

Теорема:

Если точка М (х; у) делит отрезок Аналитическая геометрия на плоскости в отношении то координаты этой точки определяются формулами

Аналитическая геометрия на плоскости

где Аналитическая геометрия на плоскости — координаты точки Аналитическая геометрия на плоскости; Аналитическая геометрия на плоскости — координаты точки Аналитическая геометрия на плоскости

Доказательство:

Пусть прямая Аналитическая геометрия на плоскости не перпендикулярна оси Ох. Опустим перпендикуляры из точек Аналитическая геометрия на плоскости, Аналитическая геометрия на плоскости, Аналитическая геометрия на плоскости на ось Ох и обозначим точки их пересечения с осью Ох соответственно через Аналитическая геометрия на плоскости (рис. 12). На основании теоремы элементарной геометрии о пропорциональности отрезков прямых, заключенных между параллельными прямыми, имеем

Аналитическая геометрия на плоскости

но Аналитическая геометрия на плоскости (см. гл. 1, § 3).

Так как числа Аналитическая геометрия на плоскости одного и того же знака (при Аналитическая геометрия на плоскости они положительны, а при Аналитическая геометрия на плоскости —отрицательны), то Аналитическая геометрия на плоскости Поэтому Аналитическая геометрия на плоскости откуда Аналитическая геометрия на плоскости Если прямая Аналитическая геометрия на плоскости перпендикулярна оси Ох, то Аналитическая геометрия на плоскости и эта формула также, очевидно, верна. Получена первая из формул (5). Вторая формула получается аналогично.

Следствие. Если Аналитическая геометрия на плоскости — две произвольные точки и точка М (х; у) — середина отрезка Аналитическая геометрия на плоскости т. е. Аналитическая геометрия на плоскости, то Аналитическая геометрия на плоскости = 1, и по формулам (5) получаем

Аналитическая геометрия на плоскости

Таким образом, каждая координата середины отрезка равна полусумме соответствующих координат.

Пример:

Даны точки Аналитическая геометрия на плоскости. Найти точку М (х; у), которая в два раза ближе к Аналитическая геометрия на плоскости, чем Аналитическая геометрия на плоскости.

Решение:

Искомая точка М делит отрезок Аналитическая геометрия на плоскости в отношении Аналитическая геометрия на плоскости=12. Применяя формулы (5), находим координаты этой точки: х=3, у=2.

Полярные координаты

Наиболее важной после прямоугольной системы координат является полярная система координат. Она состоит из некоторой точки О, называемой полюсом, и исходящего из нее луча ОЕ — полярной оси. Кроме того, задается единица масштаба для измерения длин отрезков.

Пусть задана полярная система координат и пусть М — произвольная точка плоскости. Пусть р — расстояние точки М от точки О; ф — угол, на который нужно повернуть полярную ось для совмещения с лучом ОМ (рис. 13).

Полярными координатами точки М называются числа р и «р. При этом число р считается первой координатой и называется полярным радиусом, число ф — второй координатой и называется полярным углом.

Аналитическая геометрия на плоскости

Точка М с полярными координатами р и ф обозначается так: М (р; ф). Очевидно, полярный радиус может иметь любое неотрицательное значение: Аналитическая геометрия на плоскости. Обычно считают, что полярный угол изменяется в следующих пределах:Аналитическая геометрия на плоскости. Однако в ряде случаев приходится рассматривать углы, большие 2n, а также отрицательные углы, т. е. углы, отсчитываемые от полярной оси по часовой стрелке.

Установим связь между полярными координатами точки и ее прямоугольными координатами. При этом будем предполагать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью. Пусть точка М имеет прямоугольные координаты х и у и полярные координаты р и ф (рис. 14). Очевидно,

Аналитическая геометрия на плоскости

Формулы (1) выражают прямоугольные координаты через полярные. Выражения полярных координат через прямоугольные следуют из формул (I):

Аналитическая геометрия на плоскости

Заметим, что формула tg ф = у/x определяет два значения полярного угла ф, так как ф изменяется от 0 до 2Аналитическая геометрия на плоскости. Из этих двух значений угла ф выбирают то, при котором удовлетворяются равен-

Пример:

Даны прямоугольные координаты точки: (2; 2). Найти ее полярные координаты, считая, что полюс совмещен с началом прямоугольной системы координат, а полярная ось совпадает с положительной полуосью абсцисс.

Решение:

По формулам (2) имеем

Аналитическая геометрия на плоскости

Согласно второму из этих равенств Аналитическая геометрия на плоскости или Аналитическая геометрия на плоскости. Но так как х=2>0 и х = 2>0, то нужно взять Аналитическая геометрия на плоскости.

Преобразование прямоугольных координат

При решении многих задач аналитической геометрии наряду с данной прямоугольной системой координат приходится вводить и другие прямоугольные системы координат. При этом, естественно, изменяются как координаты точек, так и уравнения кривых. Возникает задача: как, зная координаты точки в одной системе координат, найти координаты этой же точки в другой системе координат. Решить эту задачу позволяют формулы преобразования координат.

Рассмотрим два вида преобразований прямоугольных координат:

1) параллельный сдвиг осей, когда изменяется положение начала координат, а направления осей остаются прежними;

2) поворот осей координат, когда обе оси поворачиваются в одну сторону на один и тот же угол, а начало координат не изменяется.

1.Параллельный сдвиг осей. Пусть точка М плоскости имеет координаты (х; у) в прямоугольной системе координат Оху. Перенесем начало координат в точку О’ (а; b), где а и b — координаты нового начала в старой системе координат Оху. Новые оси координат О’х’ и О’у’ выберем сонаправленными со старыми осями Ох и Оу. Обозначим координаты точки М в системе О’х’у’ (новые координаты) через (х’; у’). Выведем формулы, выражающие связь между новыми и старыми координатами точки М. Для этого проведем перпендикуляры Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости и введем обозначения для точек пересечения прямых Аналитическая геометрия на плоскости соответственно с осями О’х’ и О’у’ (рис. 15). Тогда, используя основное тождество (гл. 1, § 3), получаем

Аналитическая геометрия на плоскости

Итак,

Аналитическая геометрия на плоскости

Это и есть искомые формулы.

2.Поворот осей координат. Повернем систему координат Оху вокруг начала координат О на угол а в положение Ох’у’ (рис. 16).

Пусть точка М имеет координаты (х; у) в старой системе координат Оху и координаты (х’; у’) в новой системе координат Ох’у’. Выведем формулы, устанавливающие связь между старыми и новыми координатами точки М. Для этого обозначим через (р; в) полярные координаты точки М, считая полярной осью положительную полуось Ох, а через (р; 0′) — полярные координаты той же точки М, считая полярной осью положительную полуось Ох’.

Аналитическая геометрия на плоскости

Очевидно, в каждом случае Аналитическая геометрия на плоскости. Далее, согласно формулам (1) из § 3

Аналитическая геометрия на плоскости

и аналогично

Аналитическая геометрия на плоскости

Таким образом,

Аналитическая геометрия на плоскости

Итак,

Аналитическая геометрия на плоскости

Выражая из этих равенств х’ и у’ через х и у, получим

Аналитическая геометрия на плоскости

Пример:

Определить координаты точки М (3; 5) в новой системе координат О’х’у’, начало О’ которой находится в точке ( — 2; 1), а оси параллельны осям старой системы координат Оху.

Решение:

По формуле (2) имеем

Аналитическая геометрия на плоскости

т. е. в новой системе координат точка М имеет координаты (5; 4).

Уравнение линии на плоскости

Рассмотрим соотношение вида

Аналитическая геометрия на плоскости

связывающее переменные величины х и у. Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у.

Примеры уравнений:Аналитическая геометрия на плоскостиАналитическая геометрия на плоскостиАналитическая геометрия на плоскостиАналитическая геометрия на плоскостиАналитическая геометрия на плоскости

Если равенство (1) справедливо для всех пар чисел х и у, то оно называется тождеством.

Примеры тождеств:Аналитическая геометрия на плоскостиАналитическая геометрия на плоскостиАналитическая геометрия на плоскостиАналитическая геометрия на плоскости

Важнейшим понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия L (рис. 17).

Аналитическая геометрия на плоскости

Определение. Уравнение (1) называется уравнением линии L (в заданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Из определения следует, что линия L представляет собой множество всех тех точек плоскости, координаты которых удовлетворяют уравнению (1). Будем говорить, что уравнение (1) определяет (или задает) линию L.

Понятие уравнения линии дает возможность решать геометрические задачи алгебраическими методами. Например, задача нахождения точки пересечения двух линий, определяемых уравнениями х + у = 0 и Аналитическая геометрия на плоскости, сводится к алгебраической задаче решения системы этих уравнений.

Линия L может определяться уравнением вида

Аналитическая геометрия на плоскости

Где Аналитическая геометрия на плоскости — полярные координаты точки.

Рассмотрим примеры уравнений линий.

1) х—у=0. Записав это уравнение в виде у—х, заключаем, что множество точек, координаты которых удовлетворяют данному уравнению, представляет собой биссектрисы I и III координатных углов. Это и есть линия, определенная уравнением х-у=0 (рис. 18).

2) Аналитическая геометрия на плоскости. Представив уравнение в виде Аналитическая геометрия на плоскости= 0, заключаем, что множество точек, координаты которых удовлетворяют данному уравнению, — это две прямые, содержащие биссектрисы четырех координатных углов (рис. 19).

3) Аналитическая геометрия на плоскости Множество точек, координаты которых удовлетворяют этому уравнению, состоит из одной точки (0; 0). В данном случае уравнение определяет, как говорят, вырожденную линию.

4) Аналитическая геометрия на плоскости Так как при любых х н у числа Аналитическая геометрия на плоскости неотрицательны, то Аналитическая геометрия на плоскости Значит, нет ни одной точки, координаты которой удовлетворяют данному уравнению, т. е. никакого геометрического образа на плоскости данное уравнение не определяет.

Аналитическая геометрия на плоскости

5) p = acosф, где a — положительное число, переменные р и ф— полярные координаты. Обозначим через М точку с полярными координатами (р; ф), через А — точку с полярными координатами (а; 0) (рис. 20). Если p = acosф, где Аналитическая геометрия на плоскости, то угол ОМА — прямой, и обратно. Следовательно, множество точек, полярные координаты которых удовлетворяют данному уравнению, это окружность с диаметром OA.

6) p=aф, где а — положительное число; р и ф — полярные координаты. Обозначим через М точку с полярными координатами (р; ф). Если ф=0, то и р = 0. Если ф возрастает, начиная от нуля, то р возрастает пропорционально ф. Точка М (р; ф), таким образом, исходя из полюсу, движется вокруг него с ростом ф, одновременно удаляясь от него. Множество точек, полярные координаты которых удовлетворяют уравнению р = аф,- называется спиралью Архимеда (рис. 21). При этом предполагается, что ф может принимать любые неотрицательные значения.

Если точка М совершает один полный оборот вокруг полюса, то ф возрастает на Аналитическая геометрия на плоскости, а р — на Аналитическая геометрия на плоскости, т. е. спираль рассекает любую прямую, проходящую через полюс, на равные отрезки (не считая отрезка, содержащего полюс), которые имеют длину Аналитическая геометрия на плоскости.

В приведенных примерах по заданному уравнению линии исследованы ее свойства и тем самым установлено, что представляет собой эта линия.

Рассмотрим теперь обратную задачу: для заданного какими-то свойствами множества точек, т. е. для заданной линии L, найти ее уравнение.

Пример:

Вывести уравнение (в заданной прямоугольной системе координат) множества точек, каждая из которых отстоит от точки Аналитическая геометрия на плоскости на расстоянии R. Иными словами, вывести уравнение окружности радиуса R с центром в точке Аналитическая геометрия на плоскости.

Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости

Решение:

Расстояние от произвольной точки М (х; у) до точки С вычисляется по формуле Аналитическая геометрия на плоскости

Если точка М лежит на окружности, то Аналитическая геометрия на плоскости или Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости, т. е. координаты точки М удовлетворяют уравнению

Аналитическая геометрия на плоскости

Если же точка М (х; у) не лежит на данной окружности, то Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости, т. е. координаты точки М не удовлетворяют уравнению (2).

Таким образом, искомое уравнение окружности имеет вид (2). Полагая в (2) Аналитическая геометрия на плоскости получаем уравнение окружности радиуса R с центром в начале координат:Аналитическая геометрия на плоскости

Линии первого порядка

Уравнение прямой с угловым коэффициентом. Пусть дана которая прямая. Назовем углом наклона данной прямой к оси Ох угол а на который нужно повернуть ось Ох, чтобы ее положительное направление совпало с одним из направлений прямой. Угол а может иметь различные значения, которые отличаются друг от друга на величину Аналитическая геометрия на плоскости, где n — натуральное число. Чаще всего в качестве угла наклона берут наименьшее неотрицательное значение угла а, на который нужно повернуть (против часовой стрелки) ось Ох, чтобы ее положительное направление совпало с одним из направлений прямой (рис. 23). В таком случае Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости

Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом этой прямой и обозначается буквой k:

Аналитическая геометрия на плоскости

Из формулы (1), в частности, следует, что если а=0, т. е. прямая параллельна оси Ох, то k = 0. Если Аналитическая геометрия на плоскости, т. е. прямая перпендикулярна оси Ох, то k = tga теряет смысл. В таком случае говорят, что угловой коэффициент «обращается в бесконечность».

Выведем уравнение данной прямой, если известны ее угловой коэффициент k и величина b отрезка ОВ, который она отсекает на оси Оу (рис. 23) (т. е. данная прямая не перпендикулярна оси Ох).

Обозначим через М произвольную точку плоскости с координатами х и у. Если провести прямые BN и NM, параллельные осям, то в случае кАналитическая геометрия на плоскости0 образуется прямоугольный треугольник BNM. Точка М лежит на прямой тогда и только тогда, когда величины NM и BN удовлетворяют условию

Аналитическая геометрия на плоскости

но Аналитическая геометрия на плоскости, BN = x. Отсюда, учитывая формулу (1), получаем, что точка М (х; у) лежит на данной прямой тогда и только тогда, когда ее координаты удовлетворяют уравнению

Аналитическая геометрия на плоскости

Уравнение (2) после преобразования принимает вид

Аналитическая геометрия на плоскости

Уравнение (3) называют уравнением прямой с угловым коэффициентом. Если к = 0, то прямая параллельна оси Ох, и ее уравнение имеет вид у= Ь.

Итак, любая прямая, не перпендикулярная оси Ох, имеет уравнение вида (3). Очевидно, верно и обратное: любое уравнение вида (3) определяет прямую, которая имеет угловой коэффициент k и отсекает на оси Оу отрезок величины b.

Пример:

Построить прямую, заданную уравнением

Аналитическая геометрия на плоскости

Решение:

Отложим на оси Оу отрезок ОВ, величина которого равна 2 (рис. 24); проведем через точку В параллельно оси Ох отрезок, величина которого BN = 4, и через точку N параллельно оси Оу отрезок, величина которого NM = 3. Затем проведем прямую ВМ, которая и является искомой. Она имеет угловой коэффициент k=3/4 и отсекает на оси Оу отрезок величины b=2.

равнение прямой, проходящей через данную точку, с данным угловым коэффициентом. В ряде случаев возникает необходимость составить уравнение прямой, зная одну ее точку Аналитическая геометрия на плоскости и угловой коэффициент к. Запишем уравнение прямой в виде (3), где b — пока неизвестное число. Так как прямая проходит через точку Аналитическая геометрия на плоскости координаты этой точки удовлетворяют уравнению (3): Аналитическая геометрия на плоскости Определяя b из этого равенства и подставляя в уравнение (3), получаем искомое уравнение прямой:
Аналитическая геометрия на плоскости

Замечание:

Если прямая проходит через точку Аналитическая геометрия на плоскости перпендикулярно оси Ох, т. е. ее угловой коэффициент обращается в бесконечность, то уравнение прямой имеет вид Аналитическая геометрия на плоскости Формально это уравнение можно получить из (4), если разделить уравнение (4) на k и затем устремить k к бесконечности.
Аналитическая геометрия на плоскости

Уравнение прямой, проходящей через две данные точки

Пусть даны две точки Аналитическая геометрия на плоскости и Аналитическая геометрия на плоскости (Рис. 25). Запишем уравнение прямой Аналитическая геометрия на плоскости в виде (4), где k — пока неизвестный угловой коэффициент. Так как прямая Аналитическая геометрия на плоскости проходит через точку Аналитическая геометрия на плоскостито координаты этой точки удовлетворяют уравнению (4): Аналитическая геометрия на плоскости

Определяя k из этого равенства (при условии Аналитическая геометрия на плоскости) и подставляя в уравнение (4), получаем искомое уравнение прямой: Аналитическая геометрия на плоскости

Это уравнение, если Аналитическая геометрия на плоскости можно записать в виде Аналитическая геометрия на плоскости

Если Аналитическая геометрия на плоскости то уравнение искомой прямой имеет вид Аналитическая геометрия на плоскости В этом случае прямая параллельна оси Ох. Если Аналитическая геометрия на плоскости то прямая, проходящая через точки Аналитическая геометрия на плоскости параллельна оси Оу, и ее Уравнение имеет вид Аналитическая геометрия на плоскости

Пример:

Составить уравнение прямой, проходящей через точки AАналитическая геометрия на плоскости

Решение:

Подставляя координаты точек Аналитическая геометрия на плоскости в соотношение (5), получаем искомое уравнение прямой: Аналитическая геометрия на плоскости

Угол между двумя прямыми

Рассмотрим две прямые Аналитическая геометрия на плоскости. Пусть уравнение Аналитическая геометрия на плоскости имеет вид Аналитическая геометрия на плоскости уравнение Аналитическая геометрия на плоскости — вид Аналитическая геометрия на плоскости (Рис. 26). Пусть Аналитическая геометрия на плоскости — угол между прямыми Аналитическая геометрия на плоскости

Из геометрических соображений устанавливаем зависимость между углами Аналитическая геометрия на плоскости Отсюда

Аналитическая геометрия на плоскости

Формула (6) определяет один из углов между прямыми. Второй угол равен Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Пример:

Две прямые заданы уравнениями Аналитическая геометрия на плоскостиНайти угол между этими прямыми.

Решение:

Очевидно, Аналитическая геометрия на плоскости поэтому по формуле (6) находим Аналитическая геометрия на плоскости
Таким образом, один из углов между данными прямыми равен Аналитическая геометрия на плоскости другой угол Аналитическая геометрия на плоскости

Условия параллельности и перпендикулярности двух прямых

Если прямые Аналитическая геометрия на плоскости параллельны, то Аналитическая геометрия на плоскости В этом случае числитель в правой части формулы (6) равен нулю: Аналитическая геометрия на плоскости= 0, откуда Аналитическая геометрия на плоскости

Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.

Если прямые Аналитическая геометрия на плоскости перпендикулярны, т. е. Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости

Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку. Это условие можно формально получить из формулы (6), если приравнять нулю знаменатель в правой части (6), что соответствует обращению Аналитическая геометрия на плоскости в бесконечность, т. е. равенству

Общее уравнение прямой

Теорема:

В прямоугольной системе координат любая прямая задается уравнением первой степениАналитическая геометрия на плоскости
и обратно, уравнение (7) при произвольных коэффициентах А, В, С (А и В не равны нулю одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство:

Сначала докажем первое утверждение. Если прямая не перпендикулярна оси Ох, то, как было показано в п. 1, она имеет уравнение y=kx + b, т. е. уравнение вида (7), где A=k, В=-1 и С=b. Если прямая перпендикулярна оси Ох, то все ее точки имеют одинаковые абсциссы, равные величине а отрезка, отсекаемого прямой на оси Ох (рис. 27). Уравнение этой прямой имеет вид х=а, т. е. также является уравнением первой степени вида (7), где А = 1, В = 0, С=—а. Тем самым первое утверждение доказано. Докажем обратное утверждение. Пусть дано уравнение (7), причем хотя бы один из коэффициентов A и В не равен нулю.

Если Аналитическая геометрия на плоскостито (7) можно записать в виде

Аналитическая геометрия на плоскости

Полагая Аналитическая геометрия на плоскостиполучаем уравнение y = kx + b, т- е- уравнение вида (3), которое определяет прямую.

Если В=0, то Аналитическая геометрия на плоскости и (7) принимает вид Аналитическая геометрия на плоскостиОбозначается -С/А через а, получаем х = а, т. е. уравнение прямой, перпендикулярной оси Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка. Таим образом каждая прямая есть линия первого порядка и, обратно, каждая линия первого порядка есть прямая.

Уравнение вида Ах + By + С=0 называется общим уравнением прямой. Оно содержит уравнение любой прямой при соответствующим выборе коэффициентов А, В, С.

Неполное уравнение первой степени. Уравнение прямой «в отрезках»

Рассмотрим три частных случая, когда уравнение Ах + By + С = 0 является неполным, т. е. какой-то из коэффциентов равен нулю.

1) С = 0; уравнение имеет вид Ах+Ву = 0 и определяет прямую, проходящую через начало координат.
2) Аналитическая геометрия на плоскости уравнение имеет вид Ах+С=0 и определяет прямую, параллельную оси Оу. Как было показано в теореме 3.4, это уравнение приводится к виду Аналитическая геометрия на плоскостиа — величина отрезка, который отсекает прямая на оси Ох (рис. 27). В частности, если а = 0, то прямая совпадает с осью Оу. Таким образом, уравнение х=0 определяет ось ординат.
3) Аналитическая геометрия на плоскости уравнение имеет вид Ву+С=0 и определяет прямую, параллельную оси Ох. Этот факт устанавливается аналогично предыдущему случаю. Если положить Аналитическая геометрия на плоскости то уравнение принимает вид Аналитическая геометрия на плоскости — величина отрезка, который отсекает прямая на оси Оу (рис. 28). В частности, если b=0, то прямая совпадает с осью Ох. Таким образом, уравнение у= О определяет ось абсцисс.

Аналитическая геометрия на плоскости

Пусть теперь дано уравнение Ах+By+C=0 при условии, что ни один из коэффициентов А, В, С не равен нулю. Преобразуем его к видуАналитическая геометрия на плоскости

Вводя обозначения Аналитическая геометрия на плоскости получаем
Аналитическая геометрия на плоскости

Уравнение (8) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения прямой удобна для геометрического построения прямой.

Пример:

Прямая задана уравнением Аналитическая геометрия на плоскости Составить для этой прямой уравнение «в отрезках» и построить прямую.

Решение:

Для данной прямой уравнение «в отрезках» имеет
вид
Аналитическая геометрия на плоскости
Чтобы построить эту прямую, отложим на осях координат Ох и Оу отрезки, величины которых соответственно равны а=-5, b=3, и проведем прямую через точки Аналитическая геометрия на плоскости(рис. 29).

Нормальное уравнение прямой. Расстояние от точки до прямой

Пусть дана некоторая прямая L. Проведем через начало координат прямую п, перпендикулярную данной, и назовем ее нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L (рис. 30, а). На нормали введем направление от точки О к точке N. Таким образом, нормаль станет осью. Если точки N и О совпадают, то в качестве направления нормали возьмем любое из двух возможных.

Обозначим через Аналитическая геометрия на плоскости угол, на который нужно повернуть против часовой стрелки ось Ох до совмещения ее положительного направления с направлением нормали, через р— длину отрезка ON.Аналитическая геометрия на плоскости

Тем самым, Аналитическая геометрия на плоскости Выведем уравнение данной прямой, считая известными числа аир. Для этого возьмем на прямой произвольную точку М с полярными координатами Аналитическая геометрия на плоскости где О полюс, Ох — полярная ось. Если точки О и N не совпадают, то из прямоугольного треугольника ONM имеем Аналитическая геометрия на плоскости

Это равенство можно переписать в виде Аналитическая геометрия на плоскости

Так как точки, не лежащие на данной прямой L, не удовлетворению (9), то (9) —уравнение прямой L в полярных координатах. По формулам, связывающим прямоугольные координаты с полярными, имеем: Аналитическая геометрия на плоскости Следовательно, уравнение (9) в прямоугольной системе координат принимает вид
Аналитическая геометрия на плоскости

Если точки О и N совпадают, то прямая L проходит через начало координат (рис. 30, б) и р = 0. В этом случае, очевидно, для любой точки М прямой L выполняется равенство Аналитическая геометрия на плоскости Умножая его на р, получаем Аналитическая геометрия на плоскости откуда
Аналитическая геометрия на плоскости

Таким образом, и в этом случае уравнение прямой можно представить в виде (10).

Уравнение (10) называется нормальным уравнением прямой L.

С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой.

Аналитическая геометрия на плоскости

Пусть L — прямая, заданная нормальным уравнением: Аналитическая геометрия на плоскости и пусть Аналитическая геометрия на плоскости точка, не лежащая на этой прямой. Требуется определить расстояние d от точки Аналитическая геометрия на плоскости до прямой L.

Через точку Аналитическая геометрия на плоскости проведем прямую Аналитическая геометрия на плоскости параллельно прямой L. Пусть Аналитическая геометрия на плоскости — точка пересечения Аналитическая геометрия на плоскости с нормалью, Аналитическая геометрия на плоскости — длина отрезка Аналитическая геометрия на плоскости (рис. 31).

Если же точки Аналитическая геометрия на плоскости лежат по разные стороны от точки О, то нормальное уравнение прямой Аналитическая геометрия на плоскости имеет вид Аналитическая геометрия на плоскости где Аналитическая геометрия на плоскости отличается от Аналитическая геометрия на плоскостиСледовательно, В этом случае

Аналитическая геометрия на плоскости

Таким образом, в каждом из рассмотренных случаев получаем формулу

Аналитическая геометрия на плоскости

Отметим, что формула (11) пригодна и в том случае, когда точка Аналитическая геометрия на плоскости лежит на прямой L, т. е. ее координаты удовлетворяют уравнению прямой L: Аналитическая геометрия на плоскости В этом случае по формуле (11) получаем d=0. Из формулы (11) следует, что для вычисления расстояния d от точки Аналитическая геометрия на плоскости до прямой L нужно левую часть нормального уравнения прямой L поставить вместо (х; у) координаты точки Аналитическая геометрия на плоскости и полученное число взять по модулю.

Теперь покажем, как привести общее уравнение прямой к нормальному виду. Пусть

Аналитическая геометрия на плоскости

— общее уравнение некоторой прямой, а

Аналитическая геометрия на плоскости

— ее нормальное уравнение.

Так как уравнения (12) и (13) определяют одну и ту же прямую, то их коэффициенты пропорциональны. Умножая все члены уравнения (12) на произвольный множитель Аналитическая геометрия на плоскости получаем уравнение

Аналитическая геометрия на плоскости

При соответствущем выборе р полученное уравнение обращается в уравнение (13), т. е. выполняются равенства

Аналитическая геометрия на плоскости

Чтобы найти множитель р., возведем первые два из этих равенств в квадрат и сложим, тогда получаем

Аналитическая геометрия на плоскости

Отсюда

Аналитическая геометрия на плоскости

Число р называется нормирующим множителем. Знак нормирующего множителя определяется с помощью третьего из равенств (14). Согласно этому равенству Аналитическая геометрия на плоскости число отрицательное, если САналитическая геометрия на плоскостиО. Следовательно, в формуле (15) берется знак, противоположный знаку С. Если С=0, то знак нормирующего множителя можно выбрать произвольно.

Итак, для приведения общего уравнения прямой к нормальному виДу надо найти значение нормирующего множителя р, а затем все члены уравнения умножить на р.

Пример. Даны прямая 3х-4у+10=0 и точка М (4; 3). Найти расстояние d от точки М до данной прямой.

Решение. Приведем данное уравнение к нормальному виду. Для этого найдем по формуле (15) нормирующий множитель:

Аналитическая геометрия на плоскости

Умножая данное уравнение на р, получаем нормальное уравнение

Аналитическая геометрия на плоскости

По формуле (11) находим искомое расстояние:

Аналитическая геометрия на плоскости

Линии второго порядка

Рассмотрим три вида линий: эллипс, гиперболу и параболу, уравнения которых в прямоугольной системе координат являются уравнениями второй степени. Такие линии называются линиями второго порядка.

Эллипс

Определение:

Эллипсом называется множество всех точек плоскости, для которых сумма расстояний от двух данных точек, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Аналитическая геометрия на плоскости

Обозначим фокусы эллипса через Аналитическая геометрия на плоскости и Аналитическая геометрия на плоскости расстояние Аналитическая геометрия на плоскости между фокусами через 2с, сумму расстояний от произвольной точки эллипса до фокусов через 2а. По определению, 2а>2с или а>с.

Для вывода уравнения эллипса введем на плоскости прямоугольную систему координат так, чтобы фокусы эллипса лежали на оси абсцисс, а начало координат делило отрезок Аналитическая геометрия на плоскости пополам. Тогда фокусы имеют координаты: Аналитическая геометрия на плоскости (рис. 32). Выведем уравнение эллипса в выбранной системе координат.

Пусть М (х; у) — произвольная точка плоскости. Обозначим через Аналитическая геометрия на плоскости расстояния от точки М до фокусов Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости Числа Аналитическая геометрия на плоскости называются фокальными радиусами точки М. Из определения эллипса следует, что точка М (х; у) будет лежать на данном эллипсе в том и только в том случае, когда

Аналитическая геометрия на плоскости

По формуле (1) из § 2 находим

Аналитическая геометрия на плоскости

Подставляя эти выражения в равенство (1), получаем

Аналитическая геометрия на плоскости

Уравнение (3) и есть искомое уравнение эллипса. Однако для практического использования оно неудобно, поэтому уравнение эллипса обычно приводят к более простому виду. Перенесем второй радикал в правую часть уравнения, а затем возведем обе части в квадрат:

Аналитическая геометрия на плоскости

С нова возведем обе части уравнения в квадрат

Аналитическая геометрия на плоскости

Отсюда

Аналитическая геометрия на плоскости

Введем в рассмотрение новую величину

Аналитическая геометрия на плоскости

геометрический смысл которой раскрыт далее. Так как по условию а>с, то Аналитическая геометрия на плоскости>0 и, следовательно, b — число положительное. Из равенства (6) имеем

Аналитическая геометрия на плоскости

Поэтому уравнение (5) можно переписать в виде

Аналитическая геометрия на плоскости

Разделив обе части на Аналитическая геометрия на плоскости, окончательно получаем

Аналитическая геометрия на плоскости

Так как уравнение (7) получено из уравнения (3), то координаты любой точки эллипса, удовлетворяющие уравнению (3), будут удовлетворять и уравнению (7). Однако при упрощении уравнения (3) обе его части дважды были возведены в квадрат и могли появиться «лишние» корни, вследствие чего уравнение (7) могло оказаться неравносильным уравнению (3). Убедимся в том, что если координаты точки удовлетворяют уравнению (7), то они удовлетворяют и уравнению (3), т. е. уравнения (3) и (7) равносильны. Для этого, очевидно, достаточно показать, что величины г, и г2 для любой точки, координаты которой удовлетворяют уравнению (7), удовлетворяют соотношению (1). Действительно, пусть координаты х и у некоторой точки удовлетворяют уравнению (7). Тогда, подставляя в выражение (2) значение Аналитическая геометрия на плоскости, полученное из (7), после несложных преобразований найдем, что Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости Так как Аналитическая геометрия на плоскости[это следует из (7)J и c/a< 1, то a+сх/а > 0, и поэтому Аналитическая геометрия на плоскости

Аналогично найдем, что Аналитическая геометрия на плоскости Складывая почленно эти равенства, получаем соотношение (1), что и требовалось установить. Таким образом, любая точка, координаты которой удовлетворяют уравнению (7), принадлежит эллипсу, и наоборот, т. е. уравнение (7) есть уравнение эллипса. Уравнение (7) называется бионическим (или простейшим) уравнением эллипса. Таким образом эллипс—линия второго порядка.

Исследуем теперь форму эллипса по его каноническому уравнению (7). Заметим, что уравнение (7) содержит только члены с четными степенями координат х и у, поэтому эллипс симметричен относительно осей Ох и Оу а также относительно начала координат. Таким образом, можно знать форму всего эллипса, если установить вид той его части, которая лежит в I координатном угле. Для этой части Аналитическая геометрия на плоскости, поэтому, разрешая уравнение (7) относительно у, получаем

Аналитическая геометрия на плоскости

Из равенства (8) вытекают следующие утверждения.

1)Если x=0, то у=b. Следовательно, точка (0; b) лежит на эллипсе. Обозначим ее через В.

2)При возрастании х от 0 до а у уменьшается.

3)Если х=а, то у=0. Следовательно, точка (а; 0) лежит на эллипсе. Обозначим ее через А.

4)При х>а получаем мнимые значения у. Следовательно, точек эллипса, у которых х>а, не существует.

Итак, частью эллипса, расположенной в I координатном угле, является дуга ВА (рис. 33).

Произведя симметрию относительно координатных осей, получим весь эллипс.

Замечание. Если а=b, то уравнение (7) принимает вид Аналитическая геометрия на плоскости. Это уравнение окружности радиуса а. Таким образом, окружность — частный случай эллипса. Заметим, что эллипс можно получить из окружности радиуса а, если сжать ее в а/b раз вдоль оси Оу. При таком сжатии точка (х; у) перейдет в точку (х; у,), где Аналитическая геометрия на плоскости. Подставляя Аналитическая геометрия на плоскости в уравнение окружности, получаем уравнение эллипса

Аналитическая геометрия на плоскости

Оси симметрии эллипса называются его осями, а центр симметрии (точка пересечения осей) — центром эллипса. Точки, в которых эллипс пересекает оси, называются его вершинами. Вершины ограничивают на осях отрезки, равные 2а и 2b. Из равенства (6) следует, что Аналитическая геометрия на плоскости. Величины а и b называются соответственно большой и малой полуосями эллипса. В соответствии с этим оси эллипса называются большой и малой осями.

Введем еще одну величину, характеризующую форму эллипса.

Определение:

Эксцентриситетом эллипса называется отношение Аналитическая геометрия на плоскости, где с — половина расстояния между фокусами, а — большая полуось эллипса.

Эксцентриситет обычно обозначают буквой Аналитическая геометрия на плоскости. Так как с < а, то Аналитическая геометрия на плоскости, т. е. эксцентриситет эллипса меньше единицы. Помнимая во внимание, что Аналитическая геометрия на плоскости, найдем

Аналитическая геометрия на плоскости

откуда

Аналитическая геометрия на плоскости

Из последнего равенства легко получается геометрическое истолкование эксцентриситета эллипса. При очень малом е числа а и b почти равны, т. е. эллипс близок к окружности. Если же е близко к единице, то число b весьма мало по сравнению с числом а и эллипс сильно вытянут вдоль большой оси. Таким образом, эксцентриситет эллипса характеризует меру вытянутости эллипса.

Как известно, планеты и некоторые кометы движутся по эллиптическим траекториям. Оказывается, что эксцентриситеты планетных орбит весьма малы, а кометных — велики, т. е. близки к единице. Таким образом, планеты движутся почти по окружностям, а кометы то приближаются к Солнцу (Солнце находится в одном из фокусов), то значительно удаляются от него.

Гипербола

Определение:

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Обозначим фокусы гиперболы через Аналитическая геометрия на плоскости и Аналитическая геометрия на плоскости расстояние Аналитическая геометрия на плоскости. между фокусами через 2с, а модуль разности расстояний от произвольной точки гиперболы до фокусов через 2а. По определению, 2а<2с или а<с.

Для вывода уравнения гиперболы введем на плоскости прямоугольную систему координат так, чтобы фокусы гиперболы лежали на оси абсцисс, а начало координат делило отрезок Аналитическая геометрия на плоскостипополам.

Аналитическая геометрия на плоскости

Тогда фокусы гиперболы имеют координаты Аналитическая геометрия на плоскости (рис. 34). Выведем уравнение гиперболы в выбранной системе координат. Пусть М (х; у) — произвольная точка плоскости. Числа Аналитическая геометрия на плоскости и Аналитическая геометрия на плоскости называются фокальными радиусами точки М и обозначаются через Аналитическая геометрия на плоскости. Из определения гиперболы следует, что точка М (х; у) будет лежать на данной гиперболе в том и только том случае, когда Аналитическая геометрия на плоскости. Отсюда

Аналитическая геометрия на плоскости

По формуле (1) из § 2 находим

Аналитическая геометрия на плоскости

Подставляя эти выражения в равенство (9), получаем

Аналитическая геометрия на плоскости

Уравнение (11) и является искомым уравнением гиперболы. Упростим это уравнение аналогично тому, как было упрощено уравнение (3) для эллипса. Перенесем второй радикал в правую часть уравнения, после чего возведем обе части в квадрат. Получаем

Аналитическая геометрия на плоскости

Снова возведем обе части уравнения в квадрат:

Аналитическая геометрия на плоскости

Отсюда

Аналитическая геометрия на плоскости

Введем в рассмотрение новую величину

Аналитическая геометрия на плоскости

геометрический смысл которой раскрыт далее. Так как с>а, то Аналитическая геометрия на плоскости и b — число положительное. Из равенства (14) имеем

Аналитическая геометрия на плоскости

Уравнение (13) принимает вид

Аналитическая геометрия на плоскости

Как и для эллипса, можно доказать равносильность уравнений (15) и (11). Уравнение (15) называется каноническим уравнением гиперболы.

Исследуем форму гиперболы по ее каноническому уравнению. Так как уравнение (15) содержит члены только с четными степенями координат х и у, то гипербола симметрична относительно осей Ох и Оу, а также относительно начала координат. Поэтому достаточно рассмотреть только часть гиперболы, лежащую в 1 координатном угле. Для этой части уАналитическая геометрия на плоскости0, поэтому, разрешая уравнение (15) относительно у, получаем

Аналитическая геометрия на плоскости

Из равенства (16) вытекают следующие утверждения.

1)Если Аналитическая геометрия на плоскости, то у получает мнимые значения, т. е. точек гиперболы с абсциссами Аналитическая геометрия на плоскости нет.

2)Если х=а, то у= 0, т. е. точка (а; 0) принадлежит гиперболе. Обозначим ее через А.

3)Если х>а, то у>0, причем у возрастает при возрастании х и Аналитическая геометрия на плоскости при Аналитическая геометрия на плоскости. Переменная точка М (х; у) на гиперболе движется с ростом х «вправо» и «вверх», ее начальное положение-точка А (а; 0) (рис. 35). Уточним, как именно точка М уходит в бесконечность.

Для этого кроме уравнения (16) рассмотрим уравнение

Аналитическая геометрия на плоскости

которое определяет прямую с угловым коэффициентом k=b/a, проходящую через начало координат. Часть этой прямой, расположенная в I координатном угле, изображена на рис. 35. Для ее построения можно использовать прямоугольный треугольник OAВ с катетами ОА = а и АВ = b.

Покажем, что точка М, уходя по гиперболе в бесконечность, неограниченно приближается к прямой (17), которая является асимптотой гиперболы.

Аналитическая геометрия на плоскости

Возьмем произвольное значение х(хАналитическая геометрия на плоскостиа) и рассмотрим две точки М (х; у) и N (х; e), где

Аналитическая геометрия на плоскости

Точка М лежит на гиперболе, точка N — на прямой (17). Поскольку обе точки имеют одну и ту же абсциссу х, прямая MN перпендикулярна оси Ох (рис. 36). Найдем длину отрезка MN. Прежде всего заметим, что при хАналитическая геометрия на плоскостиа.

Аналитическая геометрия на плоскости

Это означает, что при одной и той же абсциссе точка гиперболы лежит под соответствующей точкой асимптоты. Таким образом,

Аналитическая геометрия на плоскости

Из полученного выражения следует, что Аналитическая геометрия на плоскости стремится к нулю при Аналитическая геометрия на плоскости, так как знаменатель стремится к Аналитическая геометрия на плоскости а числитель есть постоянная величина ab.

Обозначим через Р основание перпендикуляра, опущенного из точки М на прямую (17). Тогда Аналитическая геометрия на плоскости — расстояние от точки Л) до этой прямой. Очевидно, Аналитическая геометрия на плоскости, а так как Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости0, то и подавно Аналитическая геометрия на плоскости при Аналитическая геометрия на плоскости, т. е. точка М неограниченно приближается к прямой (17), что и требовалось показать.

Вид всей гиперболы теперь можно легко установить, используя симметрию относительно координатных осей (рис. 37). Гипербола состоит из двух ветвей (правой и левой) и имеет две асимптоты: Аналитическая геометрия на плоскости, первая из которых уже рассмотрена, а вторая представляет собой ее симметричное отражение относительно оси Ох (или оси Оу).

Аналитическая геометрия на плоскости

Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) — центром гиперболы. Одна из осей пересекается с гиперболой в двух точках, которые называются ее вершинами (они на рис. 37 обозначены буквами А’ и А). Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник ВВ’С’С со сторонами 2а и 2b (рис. 37) называется основным прямоугольником гиперболы. Величины а и Ь называются соответственно действительной и мнимой полуосями гиперболы.

Уравнение

Аналитическая геометрия на плоскости

также определяет гиперболу. Она изображена на рис. 37 пунктирными линиями; вершины ее лежат на оси Оу. Эта гипербола называется сопряженной по отношению к гиперболе (15). Обе эти гиперболы имеют одни и те же асимптоты.

Гипербола с равными полуосями (а = b) называется равносто-нней и ее каноническое уравнение имеет вид

Аналитическая геометрия на плоскости

Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.

Определение. Эксцентриситетом гиперболы называется отношение Аналитическая геометрия на плоскости, где с — половина расстояния между фокусами, а — действительная полуось гиперболы.

Эксцентриситет гиперболы (как и эллипса) обозначим буквой е. Так как с>а, то е>1, т. е. эксцентриситет гиперболы больше единицы. Заметив, что Аналитическая геометрия на плоскости, найдем

Аналитическая геометрия на плоскости

откуда

Аналитическая геометрия на плоскости

Из последнго равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b/а, а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы.

В случае равносторонней гиперболы Аналитическая геометрия на плоскости

Директрисы эллипса и гиперболы

Определение:

Две прямые, перпендикулярные большой оси эллипса и расположенные симметрично относительно центра на расстоянии а/е от него, называются директрисами эллипса (здесь а — большая полуось, е — эксцентриситет эллипса).

Уравнения директрис эллипса, заданного каноническим уравнением (7), имеют вид

Аналитическая геометрия на плоскости

Так как для эллипса е<1, то а/е>а. Отсюда следует, что правая директриса расположена правее правой вершины эллипса, а левая — левее его левой вершины (рис. 38).

Определение:

Две прямые, перпендикулярные действительной Си гиперболы и расположенные симметрично относительно центра на расстоянии а/е от него, называются директрисами гиперболами (здесь а—действительная полуось, е—эксцентриситет гиперболы).

Уравнения директрис гиперболы, заданной каноническим уравнением (15), имеют вид

Аналитическая геометрия на плоскости

Так как для гиперболы е>1, то а/е<а. Отсюда следует что правая директриса расположена между центром и правой вершиной гиперболы, а левая — между центром и левой вершиной (рис. 39).

С помощью понятий директрисы и эксцентриситета можно сфор. мулировать общее свойство, присущее эллипсу и гиперболе. Имеют место следующие две теоремы.

Теорема:

Если r — расстояние от произвольной точки М эллипса до какого-нибудь фокуса, d — расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение Аналитическая геометрия на плоскости есть постоянная величина, равная эксцентриситету эллипса.

Аналитическая геометрия на плоскости

Доказательство:

Предположим для определенности, что речь идет о правом фокусе Аналитическая геометрия на плоскости и правой директрисе. Пусть M (х; у) — произвольная точка эллипса (см. рис. 38). Расстояние от точки М до правой директрисы выражается равенством

Аналитическая геометрия на плоскости

которое легко устанавливается из рисунка. Из равенств (2) и (4) имеем

Аналитическая геометрия на плоскости

Полагая с/а=е, получаем формулу расстояния от точки М до правого фокуса:

Аналитическая геометрия на плоскости

Из соотношений (18) и (19) имеем

Аналитическая геометрия на плоскости

Теорема:

Если r — расстояние от произвольной точки М гиперболы до какого-нибудь фокуса, d — расстояние от той точки до соответствующей этому фокусу директрисы, то отношение есть величина постоянная, равная эксцентриситету гиперболы.

Доказательство:

Предположим для определенности, что идет о правом фокусе Fi и правой директрисе. Пусть М(х; у) — произвольная точка гиперболы (рис. 39). Рассмотрим два случая.

1) Точка М находится на правой ветви гиперболы. Тогда расстояние от точки М до правой директрисы выражается равенством

Аналитическая геометрия на плоскости

которое легко устанавливается из рисунка. Из равенств (10) и (12) имеем

Аналитическая геометрия на плоскости

Полагая с/а = е, получаем формулу расстояния от точки М до правого фокуса:

Аналитическая геометрия на плоскости

Из соотношений (20) и (21) имеем

Аналитическая геометрия на плоскости

2) Точка М находится на левой ветви гиперболы. Тогда расстояние от точки М до правой директрисы выражается равенством (рис. 39)

Аналитическая геометрия на плоскости

Аналогично (21), можно получить формулу расстояния от точки М До правого фокуса:

Аналитическая геометрия на плоскости

Из соотношений (22) и (23) имеем

Аналитическая геометрия на плоскости

Установленное свойство эллипса и гиперболы можно положить основу общего определения этих линий: множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы является величиной постоянной, равной е, есть эллипс, если е<1, и гипербола, если е>1. Соответственно, возникает вопрос, что представляет собой множество точек, определенное аналогичным образом при условии е = 1. Оказывается это новая линия второго порядка, называемая параболой.

Парабола

Определение:

Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.

Для вывода уравнения параболы введем на плоскости прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус перпендикулярно директрисе, и будем считать ее положительным направлением направление от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой. Выведем уравнение параболы в выбранной системе координат.

Пусть М (х; у) — произвольная точка плоскости. Обозначим через r расстояние от точки М до фокуса Аналитическая геометрия на плоскости, через d- расстояние от точки М до директрисы, а через р — расстояние от фокуса до директрисы (рис. 40). Величину р называют парамет ром параболы, его геометрический смысл раскрыт далее. Точка М будет лежать на данной параболе в. том и только в том случае, когда

Аналитическая геометрия на плоскости

Фокус F имеет координаты (р/2; 0); поэтому по формуле (1) из § 2 находим

Аналитическая геометрия на плоскости

Расстояние d, очевидно, выражается равенством (рис. 40)

Аналитическая геометрия на плоскости

Отметим, что эта формула верна только для хАналитическая геометрия на плоскостиО. Если же х<0, то для точки М(х$ у), очевидно, r>d, и, следовательно, такая точка не лежит на параболе. Заменяя в равенстве (24) г и d их выражениями (25) и (26), найдем

Аналитическая геометрия на плоскости

Это и есть искомое уравнение параболы. Приведем его к более удобному виду, для чего возведем обе части равенства (27) в квадрат. Получаем

Аналитическая геометрия на плоскости

Проверим, что уравнение (28), полученное после возведения в квадрат обеих частей уравнения (27), не приобрело «лишних» корней. Для этого достаточно показать, что для любой точки М (х; у), координаты которой удовлетворяют уравнению (28). выполнено соотношение (24). Действительно, из уравнения (28) вытекает, что хАналитическая геометрия на плоскости0, поэтому для точки М (х; у) с неотрицательной абсциссой d= р/2+х. Подставляя значение Аналитическая геометрия на плоскости из (28) в выражение (25) для r и учитывая, что хАналитическая геометрия на плоскостиО, получаем r=р/2+x, величины r и d равны, что и требовалось показать. Таким образом, уравнению (28) удовлетворяют координаты точек данной параболы и только они, т. е. уравнение (28) является уравнением иной параболы.

Уравнение (28) называется каноническим уравнением параболы. о уравнение второй степени. Таким образом, парабола есть ли-я второго порядка.

Исследуем теперь форму параболы по ее уравнению (28). Так к уравнение (28) содержит у только в четной степени, то пара-ла симметрична относительно оси Ох. Следовательно, достаточно смотреть только ее часть, лежащую в верхней полуплоскости. Для этой части уАналитическая геометрия на плоскости0, поэтому разрешая уравнение (28) относительно у, получаем

Аналитическая геометрия на плоскости

Из равенства (29) вытекают следующие утверждения.

1)Если х<0, то уравнение (29) дает мнимые значения у, следовательно, левее оси Оу ни одной точки параболы нет, что уже отмечалось ранее.

Аналитическая геометрия на плоскости

2)Если х= 0, то у = 0. Таким образом, начало координат жит на параболе и является самой «левой» ее точкой.

3)При возрастании х возрастает и у, причем если Аналитическая геометрия на плоскости, и Аналитическая геометрия на плоскости.

Таким образом, переменная точка М (х; у), перемещающаяся параболе с ростом х, исходит из начала координат и движется право» и «вверх», причем при Аналитическая геометрия на плоскости удаление точки М как оси Оу, так и от оси Ох является бесконечным. Производя симметричное отражение рассмотренной части параболы относительно оси Ох, получим всю параболу (рис. 41), данную уравнением (28).

Точка О называется вершиной параболы, ось симметрии—осью параболы. Число р, т. е. параметр параболы, выражает расстояние от фокуса до директрисы. Выясним, как влияет параметр параболы на ее форму. Для этого возьмем какое-нибудь определенное значение абсциссы, например х=1, и найдем из уравнения (28) соответствующие значения ординаты:Аналитическая геометрия на плоскости. Получаем на параболе две точки Аналитическая геометрия на плоскости симметричные относительно ее оси; расстояние между ними равно Аналитическая геометрия на плоскости Отсюда заключаем, что это расстояние тем больше, чем больше р. Следовательно, параметр р характеризует «ширину» области, ограниченной параболой. В этом и состоит геометрический смысл параметра р.

Парабола, уравнение которой Аналитическая геометрия на плоскости, расположена слева от оси ординат (рис. 42,а). Вершина этой параболы совпадает с началом координат, осью симметрии является ось Ох.

Аналитическая геометрия на плоскости

Уравнение Аналитическая геометрия на плоскости, является уравнением параболы, вершина которой совпадает с началом координат, а осью симметрии является ось Оу (рис. 42,6). Эта парабола лежит выше оси абсцисс. Уравнение Аналитическая геометрия на плоскости, определяет параболу, лежащую ниже оси Ох, с вершиной в начале координат (рис. 42,в).

Общее уравнение линии второго порядка

Важной задачей аналитической геометрии является исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам.

Общее уравнение линии второго порядка имеет следующий вид:

Аналитическая геометрия на плоскости

где коэффициенты А, 2В, С, 2D, 2Е и F — любые числа и, кроме того, числа А, В и С не равны нулю одновременно, т. е. Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости

1.Приведение общего уравнения линии второго порядка к простейшему виду.

Лемма:

Пусть в прямоугольной системе координат Оху задано уравнение (1) и пусть Аналитическая геометрия на плоскости Тогда с помощью параллельного сдвига и последующего поворота осей координат уравнение (1) приводится к виду

Аналитическая геометрия на плоскости

где А’, С’, F’— некоторые числа; (х»; у») — координаты точки в новой системе координат.

Доказательство:

Пусть прямоугольная система координат О’х’у’ получена параллельным сдвигом осей Ох и Оу, причем начало координат перенесено в точку Аналитическая геометрия на плоскости. Тогда старые координаты (х; у) будут связаны с новыми (х’; у’) формулами

Аналитическая геометрия на плоскости

(см. формулы (1), § 4). В новых координатах уравнение (1) принимает вид

Аналитическая геометрия на плоскости

где

Аналитическая геометрия на плоскости

В уравнении (3) коэффициенты D’ и Е’ обращаются в нуль, если подобрать координаты точки Аналитическая геометрия на плоскости так, чтобы выполнялись равенства

Аналитическая геометрия на плоскости

Так как Аналитическая геометрия на плоскости, то система (4) имеет единственное решение относительно Аналитическая геометрия на плоскости

Если пара чисел Аналитическая геометрия на плоскости представляет собой решение системы (4), то уравнение (3) можно записать в виде

Аналитическая геометрия на плоскости

Пусть теперь прямоугольная система координат О’х»у» получена поворотом системы О’х’у’ на угол а. Тогда координаты х’, у’ будут связаны с координатами х», у» формулами

Аналитическая геометрия на плоскости

(см. формулы (3), § 4). В системе координат О’х»у» уравнение (5) принимает вид

Аналитическая геометрия на плоскости

где

Аналитическая геометрия на плоскости

Выберем угол а так, чтобы коэффициент В’ в уравнении (6) обратился в нуль. Это требование приводит к уравнению 2В cos 2а=(А — С) sin 2а относительно а. Если А = С, то cos2a=0, и можно положить Аналитическая геометрия на плоскости. Если же ААналитическая геометрия на плоскостиС, то выбираем а=Аналитическая геометрия на плоскости, и уравнение (6) принимает вид

Аналитическая геометрия на плоскости

т. е. получили уравнение (2).

Замечание. Уравнения (4) называются уравнениями центра линии второго порядка, а точка Аналитическая геометрия на плоскости, где Аналитическая геометрия на плоскости—решение системы (4), называется центром этой линии. Заметим, что необходимым и достаточным условием существования единственного решения системы (4) является отличие от нуля числа Аналитическая геометрия на плоскости, называемого определителем системы (см. гл. 10 § 2).

2.Инвариантность выражения Аналитическая геометрия на плоскости. Классификация линий второго порядка. Коэффициенты А, В и С при старших членах уравнения (1) при параллельном переносе осей координат, как следует из доказательства леммы 3.1, не меняются, но они меняются при повороте осей координат. Однако выражение Аналитическая геометрия на плоскости остается неизменным как при переносе, так и при повороте осей, т. е. не зависит от преобразования координат. Действительно, при параллельном переносе этот факт очевиден [см. формулы (Г) и (5)J; проверим его при повороте осей. Для этого воспользуемся выражениями для коэффициентов А’, В’ и С’ уравнения (6). Имеем

Аналитическая геометрия на плоскости

Раскрыв скобки и приведя подобные члены, получим

Аналитическая геометрия на плоскости

что и требовалось показать.

Величина Аналитическая геометрия на плоскости называется инвариантом общего уравнения линии второго порядка. Она имеет важное значение в исследовании линий второго порядка.

В зависимости от знака величины Аналитическая геометрия на плоскости линии второго порядка разделяются на следующие три типа:

1)эллиптический, если Аналитическая геометрия на плоскости>0;

2)гиперболический, если Аналитическая геометрия на плоскости<0;

3)параболический, если Аналитическая геометрия на плоскости= 0.

Рассмотрим линии различных типов.

1) Эллиптический тип. Поскольку Аналитическая геометрия на плоскости>0, согласно лемме 3.1, общее уравнение линии второго порядка может быть приведено к виду (для удобства записи опускаем штрихи у коэффициентов и координат)

Аналитическая геометрия на плоскости

Возможны следующие случаи:

а) А>0, С>0 (случай А<0, С<0 сводится к случаю А>0, С>0 умножением уравнения на —1) и F<0. Перенесем F в правую часть уравнения и разделим на него. Уравнение принимает вид

Аналитическая геометрия на плоскости

где Аналитическая геометрия на плоскости Сравнивая полученное уравнение с уравнением эллипса [см. формулу (7), § 7], заключаем, что оно является каноническим уравнением эллипса.

б)А>0, С>0 и F>0. Тогда, аналогично предыдущему, уравнение можно привести к виду

Аналитическая геометрия на плоскости

Этому уравнению не удовлетворяют координаты никакой точки плоскости. Оно называется уравнением мнимого эллипса.

в)А>О, С>О, F = 0. Уравнение имеет вид Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Ему удовлетворяют координаты только одной точки х = 0, у = 0. Такое уравнение назовем уравнением пары мнимых пересекающихся прямых.

2)Гиперболический тип. Поскольку Аналитическая геометрия на плоскости<0, согласно лемме 3.1 общее уравнение линии второго порядка приводится к виду

Аналитическая геометрия на плоскости

Возможны следующие случая:

а)а>0, С<0 (случай а<0, С>О сводится к случаю а>0, С<0 умножением уравнения на — 1) и FАналитическая геометрия на плоскости0. Пусть, например, F<0. Перенесем F в правую часть уравнения и разделим на него. Уравнение принимает вид

Аналитическая геометрия на плоскости

где Аналитическая геометрия на плоскости. Сравнивая с уравнением гиперболы [см. формулу (15), §7], заключаем, что полученное уравнение является каноническим уравнением гиперболы.

б)А>0, С<0 и F = 0. Уравнение принимает вид Аналитическая геометрия на плоскостиАналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Последнему уравнению удовлетворяют только координаты точек плоскости, расположенных на прямых (ах-су)=0 и (ах-су)=0 пересекающихся в начале координат, и, таким образом, имеем пару пересекающихся прямых.

3)Параболический тип. Если Аналитическая геометрия на плоскости=0, то поворотом осей координат на такой же угол а, как и в лемме 3.1, общее уравнение линии второго порядка может быть приведено к виду

Аналитическая геометрия на плоскости

Здесь AC=0 и, следовательно, один из коэффициентов А или С равен нулю.

Пусть А=0, САналитическая геометрия на плоскости0. Представим уравнение (7) в виде

Аналитическая геометрия на плоскости

или

Аналитическая геометрия на плоскости

где Аналитическая геометрия на плоскости. Перенесем начало координат параллельно оси Оу в точку (0, —Е/С), т. е. перейдем к новым координатам по формулам х’=х, у’=у+Е/С. Получаем уравнение

Аналитическая геометрия на плоскости

Возможны следующие случаи:

а)DАналитическая геометрия на плоскости0. Запишем уравнение в виде

Аналитическая геометрия на плоскости

Перенесем теперь начало координат параллельно оси Ох’ в точку (-F/(2D); 0), т. е. перейдем к новым координатам по формулам х»=+F/(2D), у» = у’. Получаем уравнение

Аналитическая геометрия на плоскости

где р=-D/C. Сравнивая последнее уравнение с уравнением параболы [см. формулу (28), § 7], заключаем, что оно является каноническим уравнением параболы.

б)D=0. Уравнение имеет вид

Аналитическая геометрия на плоскости

Если С и F имеют разные знаки, то, полагая Аналитическая геометрия на плоскости, уравнение можно записать в виде (у’-а) (у’+а)=0. Это уравнение определяет пару параллельных прямых.

Если С и F имеют одинаковые знаки, то уравнение принимает вид Аналитическая геометрия на плоскости. Этому уравнению не удовлетворяют координаты никакой точки плоскости. Оно называется уравнением пары мнимых параллельных прямых.

Наконец, если F=0, то уравнение принимает вид Аналитическая геометрия на плоскости и определяет ось О’х’. Это уравнение можно рассматривать как предельный случай при FАналитическая геометрия на плоскости0, т. е. как уравнение пары совпавших прямых.

Заканчивая исследование общего уравнения линии второго порядка, сформулируем полученные результаты в виде теоремы.

Теорема:

Пусть в прямоугольной системе координат задано общее уравнение линии второго порядка

Аналитическая геометрия на плоскости

Тогда существует такая прямоугольная система координат, в которой это уравнение принимает один из следующих девяти канонических видов: 1)Аналитическая геометрия на плоскости (эллипс), 2)Аналитическая геометрия на плоскости (мнимый эллипс); 3)Аналитическая геометрия на плоскости (пара мнимых пересекающихся пряных); 4)Аналитическая геометрия на плоскости(гипербола); 5)Аналитическая геометрия на плоскости (пара пересекающихся прямых); 6)Аналитическая геометрия на плоскости (парабола); 7)Аналитическая геометрия на плоскости (пара параллельных прямых); 8) Аналитическая геометрия на плоскости (пара мнимых параллельных прямых); 9)Аналитическая геометрия на плоскости=0 (пара совпавших прямых).

Аналитическая геометрия на плоскости — решение заданий и задач по всем темам с вычислением

Декартовы системы координат. Простейшие задачи

1°. Введение координат позволяет решать многие задачи алгебраическими методами и, обратно, алгебраическим объектам (выражениям, уравнениям, неравенствам) придавать геометрическую интерпретацию, наглядность. Наиболее привычна для нас прямоугольная система координат Оху: две взаимно перпендикулярные оси координат — ось абсцисс Ох и ось ординат Оу — с единой единицей масштаба.

Аналитическая геометрия на плоскости решение задач и примеры

2°. Расстояние между данными точками Аналитическая геометрия на плоскости решение задач и примеры (рис. 2.1) вычисляется по формуле

Аналитическая геометрия на плоскости решение задач и примеры

3°. Будем говорить, что точка Аналитическая геометрия на плоскости решение задач и примерыделит отрезок Аналитическая геометрия на плоскости решение задач и примеры в отношенииАналитическая геометрия на плоскости решение задач и примеры, если Аналитическая геометрия на плоскости решение задач и примеры (рис. 2.2). ЕслиАналитическая геометрия на плоскости решение задач и примеры — данные точки, то координаты точки М определяются по формулам

Аналитическая геометрия на плоскости решение задач и примеры

При Аналитическая геометрия на плоскости решение задач и примеры= 1 точка М делитАналитическая геометрия на плоскости решение задач и примеры пополам и

Аналитическая геометрия на плоскости решение задач и примеры

Примеры с решениями

Пример:

Отрезок АВ делится точкой С(-3,0) в отношении Аналитическая геометрия на плоскости решение задач и примеры Найти длину АВ, если задана точка А(—5, -4).

Решение:

1) Для нахождения искомой длины по формуле п. 2° необходимо знать координаты точки Аналитическая геометрия на плоскости решение задач и примеры, которые определим по формулам п. 3°.

2) Имеем:

Аналитическая геометрия на плоскости решение задач и примеры

откуда Аналитическая геометрия на плоскости решение задач и примеры Итак, B(0,6).

3) Аналитическая геометрия на плоскости решение задач и примеры

Ответ. Аналитическая геометрия на плоскости решение задач и примеры

Полярные координаты

1°. Если прямоугольная система координат задается двумя взаимно перпендикулярными осями координат Ох и Оу , то полярная система задается одним лучом (например, Ох), который обозначается Or и называется полярной осью, а точка Оначалом полярной оси, или полюсом. В полярной системе координат положение точки М на плоскости определяется двумя числами: углом у (в градусах или радианах), который образует луч ОМ с полярной осью, и расстоянием r = ОМ точки М от начала полярной оси. Записываем Аналитическая геометрия на плоскости решение задач и примеры При этом для точки О: r = 0, Аналитическая геометрия на плоскости решение задач и примеры — любое.

Если поворот от оси Or к ОМ совершается против часовой стрелки, то Аналитическая геометрия на плоскости решение задач и примеры считают положительным (рис. 2.3, а), в противном случае — отрицательным.

Аналитическая геометрия на плоскости решение задач и примеры

Переменный луч ОМ описывает всю плоскость, если Аналитическая геометрия на плоскости решение задач и примеры изменять в пределах Аналитическая геометрия на плоскости решение задач и примеры

Иногда есть смысл считать, что Аналитическая геометрия на плоскости решение задач и примеры. В таком случае луч ОМ описывает плоскость бесконечное множество раз (иногда говорят, что ОМ описывает бесконечное множество плоскостей).

2°. Можно совместить ось Or с лучом Ох прямоугольной системы Оху, для того чтобы получить связь полярных координат точки М с прямоугольными (рис. 2.3,6). Имеем очевидные формулы:

Аналитическая геометрия на плоскости решение задач и примеры

Формулы (1) выражают прямоугольные координаты через полярные.

Полярные координаты выражаются через прямоугольные по формулам

Аналитическая геометрия на плоскости решение задач и примеры

Формула Аналитическая геометрия на плоскости решение задач и примерыопределяет два значения полярного угла Аналитическая геометрия на плоскости решение задач и примеры. Из этих двух значений следует брать то, которое удовлетворяет равенствам (1).

3°. Если в системе Оху привычно иметь дело с функцией у = у(х) (хотя можно и х = х(у)), то в полярной системе Аналитическая геометрия на плоскости решение задач и примеры столь же привычна функция Аналитическая геометрия на плоскости решение задач и примеры

4°. Построение кривой Аналитическая геометрия на плоскости решение задач и примерывыполняется по точкам (чем их больше, тем лучше) с учетом правильного анализа функции Аналитическая геометрия на плоскости решение задач и примеры, обоснованных выводов о ее свойствах и точности глазомера при проведении линии.

Примеры с решениями

Пример:

Построить кривуюАналитическая геометрия на плоскости решение задач и примеры (линейная функция).

Решения:

Ясно, что Аналитическая геометрия на плоскости решение задач и примеры измеряется в радианах, или Аналитическая геометрия на плоскости решение задач и примеры — число, иначе Аналитическая геометрия на плоскости решение задач и примеры не имеет смысла. ФункцияАналитическая геометрия на плоскости решение задач и примеры определена только при Аналитическая геометрия на плоскости решение задач и примеры, и Аналитическая геометрия на плоскости решение задач и примеры может изменяться от 0 до Аналитическая геометрия на плоскости решение задач и примеры. Точки с Аналитическая геометрия на плоскости решение задач и примеры полярными координатами Аналитическая геометрия на плоскости решение задач и примеры расположены на одном луче (рис. 2.4).

Аналитическая геометрия на плоскости решение задач и примеры

Таким образом, график линейной функции представляет собой спираль с началом в точке О. Эта спираль — след точки Аналитическая геометрия на плоскости решение задач и примерыпри неограниченном повороте текущего (переменного) отрезка ОМ вокруг точки О против часовой стрелки.

Пример:

Построить кривую Аналитическая геометрия на плоскости решение задач и примеры

Решение:

Проведем анализ данной функции.

1) Эта функция нечетна, поэтому можно ограничиться значениями Аналитическая геометрия на плоскости решение задач и примеры а тогда Аналитическая геометрия на плоскости решение задач и примеры

2) Поскольку

Аналитическая геометрия на плоскости решение задач и примеры

тоАналитическая геометрия на плоскости решение задач и примеры— периодическая функция с периодом Аналитическая геометрия на плоскости решение задач и примеры. Можно предположить, что будет какое-то «повторение» графика (это в самом деле имеет место, но аналогия с графиком Аналитическая геометрия на плоскости решение задач и примеры не совсем адекватная).

Аналитическая геометрия на плоскости решение задач и примеры

3) Функция Аналитическая геометрия на плоскости решение задач и примеры имеет смысл, если Аналитическая геометрия на плоскости решение задач и примеры. Этот сектор
плоскости обозначен на рис. 2.5 знаком «+». Если же Аналитическая геометрия на плоскости решение задач и примеры то Аналитическая геометрия на плоскости решение задач и примеры, а тогда Аналитическая геометрия на плоскости решение задач и примеры, и равенство Аналитическая геометрия на плоскости решение задач и примеры не имеет смысла. На рис. 2.5 этот сектор плоскости заштрихован (изьят из рассмотрения).

4) Далее рассмотрим промежуток Аналитическая геометрия на плоскости решение задач и примеры и составим таблицу значений функции Аналитическая геометрия на плоскости решение задач и примеры, Аналитическая геометрия на плоскости решение задач и примеры . Для того чтобы получить как можно больше точек Аналитическая геометрия на плоскости решение задач и примеры искомой кривой, берем набор табличных значений для Аналитическая геометрия на плоскости решение задач и примеры, т.е. как будто мы заполняем сначала третью строку этой таблицы, а затем первую строку, вторую и четвертую Аналитическая геометрия на плоскости решение задач и примеры.

Аналитическая геометрия на плоскости решение задач и примеры

5) На девяти различных лучах в промежутке Аналитическая геометрия на плоскости решение задач и примерынадо
построить точки на обозначенных в таблице расстояниях. Правда, на первом и последнем лучах соответствующие точки кривой совпадают с началом координат. Конечно, мы делаем это весьма приблизительно, но именно тут точность глазомера даст наиболее эффективный чертеж. Хорошо при этом иметь под рукой транспортир и циркуль.

6) Мы получили «лепесток» (рис. 2.6) — это треть графика. Другие два лепестка расположены внутри углов со знаками «+». Периодичность сводится к повороту нашего рисунка на угол Аналитическая геометрия на плоскости решение задач и примеры, затем повторению этого поворота.

7) Полученная трехлепестковая фигура — результат периодичности. В этом состоит отличие от периодичности функции Аналитическая геометрия на плоскости решение задач и примеры: все точки вида Аналитическая геометрия на плоскости решение задач и примеры различны, а здесь из точек вида Аналитическая геометрия на плоскости решение задач и примеры только три различны (при n = 0, n = 1, n = 2), остальные геометрически совпадают с одной из них (рис. 2.7).

Аналитическая геометрия на плоскости решение задач и примеры

Пример:

Построить кривую Аналитическая геометрия на плоскости решение задач и примеры .

Решение:

1) Для того, чтобы построить график рассматриваемой функции, ограничимся плоскостью Оху, на которой Аналитическая геометрия на плоскости решение задач и примеры
2) Если Аналитическая геометрия на плоскости решение задач и примеры, то Аналитическая геометрия на плоскости решение задач и примеры а если Аналитическая геометрия на плоскости решение задач и примеры, то Аналитическая геометрия на плоскости решение задач и примеры.

3) Остается взять табличные значения для — и построить соответствующую таблицу:

Аналитическая геометрия на плоскости решение задач и примеры

4) Соединяя соответствующие точки, получаем линию (рис. 2.8).
5) Если бы мы изменяли Аналитическая геометрия на плоскости решение задач и примеры в противоположную сторону: Аналитическая геометрия на плоскости решение задач и примеры, то получили бы аналогичную линию; она обозначена пунктиром.

6) Для того чтобы получить полную замкнутую линию — график функции Аналитическая геометрия на плоскости решение задач и примеры , рассуждаем так.

Нам надо иметь для Аналитическая геометрия на плоскости решение задач и примеры промежуток длиною в период Аналитическая геометрия на плоскости решение задач и примеры. Далее,

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

в) От Аналитическая геометрия на плоскости решение задач и примеры имеем как раз один период Аналитическая геометрия на плоскости решение задач и примеры.

г) Этот промежуток делим на две половины Аналитическая геометрия на плоскости решение задач и примерыи Аналитическая геометрия на плоскости решение задач и примеры . На первой его половине реализуется полная линия, Аналитическая геометрия на плоскости решение задач и примеры второй она не определена.

Остается изобразить эту линию на чертеже — это OABCDEO (рис. 2.9). Угловые координаты этих точек таковы:

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Реализована эта линия при полутора полных оборотах текущего радиуса около начала координат, или как бы на двух л истах-плоскостях.

Линии первого порядка

1°. Прямая линия на плоскости отождествляется с множеством всех точек, координаты которых удовлетворяют некоторому линейному уравнению. Различают следующие виды уравнения прямой:

Аналитическая геометрия на плоскости решение задач и примеры

1) Ах + By + С = 0, где А и В не равны одновременно нулю, — общее уравнение прямой;

2) у = kx + b — уравнение прямой с угловым коэффициентом k , при этом Аналитическая геометрия на плоскости решение задач и примеры, где Аналитическая геометрия на плоскости решение задач и примеры— угол наклона прямой k оси Ох (точнее, a — угол, на который надо повернуть ось Ох против часовой стрелки до совпадения с прямой, рис. 2.10); b — величина отрезка, отсекаемого прямой на оси Оу;

Аналитическая геометрия на плоскости решение задач и примеры

3) Аналитическая геометрия на плоскости решение задач и примеры— уравнение прямой в отрезках. Здесь а и b суть отрезки, отсекаемые прямой от осей Ох и Оу соответственно (рис. 2.11);

4) Аналитическая геометрия на плоскости решение задач и примерынормальное уравнение прямой. Здесь Аналитическая геометрия на плоскости решение задач и примеры — угол между положительным направлением оси Ох и перпендикуляром ОР, |р| — длина перпендикуляра ОР (рис. 2.12).

Аналитическая геометрия на плоскости решение задач и примеры

Примечание:

Заметим, что одна прямая (один геометрический объект) может быть задана формально разными уравнениями. Это означает, что соответствующие уравнения для одной прямой должны быть равносильными, а тогда каждое из них можно привести (преобразовать) к любому другому (кроме некоторых исключительных случаев). В связи с этим отметим соотношения между параметрами различных уравнений:

Аналитическая геометрия на плоскости решение задач и примеры

2°. Уравнения конкретных прямых l.

1) Аналитическая геометрия на плоскости решение задач и примерыl проходит через данную точку Аналитическая геометрия на плоскости решение задач и примеры и имеет данный угловой коэффициент k (или данное направление Аналитическая геометрия на плоскости решение задач и примеры: Аналитическая геометрия на плоскости решение задач и примеры) при условии, что Аналитическая геометрия на плоскости решение задач и примеры (рис. 2.13);

2) Аналитическая геометрия на плоскости решение задач и примеры при условии, что Аналитическая геометрия на плоскости решение задач и примеры;

3) Аналитическая геометрия на плоскости решение задач и примерыl проходит через две данные точки
Аналитическая геометрия на плоскости решение задач и примеры при условии, что Аналитическая геометрия на плоскости решение задач и примеры(рис. 2.14, а); 4) Аналитическая геометрия на плоскости решение задач и примеры при условии, что Аналитическая геометрия на плоскости решение задач и примеры(рис. 2.14,б).

Аналитическая геометрия на плоскости решение задач и примеры

3°. Угол в между прямыми Аналитическая геометрия на плоскости решение задач и примеры
определяется через тангенс: Аналитическая геометрия на плоскости решение задач и примеры; стрелка означает, что угол Аналитическая геометрия на плоскости решение задач и примеры определяется как угол поворота от прямой Аналитическая геометрия на плоскости решение задач и примеры к прямой Аналитическая геометрия на плоскости решение задач и примеры.

Отсюда, в частности, следуют признаки параллельности и перпендикулярности прямых:

Аналитическая геометрия на плоскости решение задач и примеры

4°. Точка пересечения двух прямыхАналитическая геометрия на плоскости решение задач и примеры определяется решением системы, составленной из уравнений этих прямых:

Аналитическая геометрия на плоскости решение задач и примеры

5°. Расстояние от данной точки Аналитическая геометрия на плоскости решение задач и примеры до данной прямой l : Аналитическая геометрия на плоскости решение задач и примеры определяется по формуле

Аналитическая геометрия на плоскости решение задач и примеры

В частности,Аналитическая геометрия на плоскости решение задач и примеры — расстояние от начала координат до прямой l .

6°. Пересекающиеся прямые Аналитическая геометрия на плоскости решение задач и примеры определяют два смежных угла. Уравнения биссектрис этих углов имеют вид

Аналитическая геометрия на плоскости решение задач и примеры

Эти биссектрисы взаимно перпендикулярны (предлагаем доказать это).

7°. Множество всех прямых, проходящих через точку Аналитическая геометрия на плоскости решение задач и примеры, называется пучком прямых. Уравнение пучка имеет вид Аналитическая геометрия на плоскости решение задач и примеры или Аналитическая геометрия на плоскости решение задач и примеры произвольные числа, Аналитическая геометрия на плоскости решение задач и примеры — точка пересечения Аналитическая геометрия на плоскости решение задач и примеры).

8°. Неравенство Аналитическая геометрия на плоскости решение задач и примеры определяет полуплоскость с ограничивающей ее прямой Ах + By + С = 0. Полуплоскости принадлежит точка Аналитическая геометрия на плоскости решение задач и примеры, в которой Аналитическая геометрия на плоскости решение задач и примеры

Примеры с решениями

Пример:

По данному уравнению прямой Аналитическая геометрия на плоскости решение задач и примеры

найти ее

  1. общее уравнение;
  2. уравнение с угловым коэффициентом;
  3. уравнение в отрезках;
  4. нормальное уравнение.

Решение:

1) Приведя к общему знаменателю, получим общее уравнение прямой (п. 1°) Зх — 4у — 4 = 0.

2) Отсюда легко получить уравнение прямой с угловым коэффициентом Аналитическая геометрия на плоскости решение задач и примеры

3) Уравнение в отрезках получим из общего уравнения Зх — 4у = 4 почленным делением на свободный член: Аналитическая геометрия на плоскости решение задач и примеры

4) Для получения нормального уравнения найдем

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

и Аналитическая геометрия на плоскости решение задач и примерыТаким образом, Аналитическая геометрия на плоскости решение задач и примеры— нормальное уравнение.

Пример:

Составить уравнение прямой, проходящей через точку пересечения прямых х + у — 2 = 0 и Зх + 2у — 5 = 0 перпендикулярно к прямой Зх + 4у — 12 = 0.

Решение:

1) Координаты точки Аналитическая геометрия на плоскости решение задач и примеры пересечения прямых найдем, решив систему

Аналитическая геометрия на плоскости решение задач и примеры

2) Угловые коэффициенты перпендикулярных прямых связаны (п. 3°) так: Аналитическая геометрия на плоскости решение задач и примеры. Угловой коэффициент данной прямой равен

Аналитическая геометрия на плоскости решение задач и примеры (п. 1°). Значит, Аналитическая геометрия на плоскости решение задач и примеры

3) Искомое уравнение прямой, проходящей через точку Аналитическая геометрия на плоскости решение задач и примеры и имеющей угловой коэффициент Аналитическая геометрия на плоскости решение задач и примеры (п. 2°), запишем в виде Аналитическая геометрия на плоскости решение задач и примерыПриведем его к общему виду: 4х — Зу — 1 = 0.

Пример:

Дан треугольник с вершинами А(1,-1), B(—2,1), С(3, —5). Написать уравнение перпендикуляр

Аналитическая геометрия на плоскости решение задач и примеры

Решение:

1) Сделаем схематический чертеж (рис. 2.15). 2) Медиана ВМ точкой М делит отрезок АС пополам, значит (п. 3°),

Аналитическая геометрия на плоскости решение задач и примеры

т.е. М(2, -3).

3) Уравнение ВМ запишем (п. 2°) в видеАналитическая геометрия на плоскости решение задач и примерыили Аналитическая геометрия на плоскости решение задач и примеры

4) Из условия Аналитическая геометрия на плоскости решение задач и примерыследует, что Аналитическая геометрия на плоскости решение задач и примеры(п. 3°).

5) Искомое уравнение имеет вид: Аналитическая геометрия на плоскости решение задач и примеры или Аналитическая геометрия на плоскости решение задач и примеры

Ответ, х у — 2 = 0.

Пример:

Дан треугольник с вершинами А(7,0), В(3,4), С(2, —3). Найти уравнения стороны АВ, высоты CD, биссектрисы BE, их длины и угол А. Определить вид треугольника по углам. Описать треугольник системой неравенств. Сделать чертеж.

Решение:

Чертеж построен (рис. 2.16).

Аналитическая геометрия на плоскости решение задач и примеры

5) Для составления уравнения биссектрисы BE (п. 6°) нужно знать уравнения ВС и АВ. Найдем уравнение (ВС):

Аналитическая геометрия на плоскости решение задач и примеры

Теперь

Аналитическая геометрия на плоскости решение задач и примеры

6) Для нахождения высоты CD используем формулу п. 5°:

Аналитическая геометрия на плоскости решение задач и примеры

7) Длину биссектрисы BE найдем так. Точка Е есть точка пересечения двух прямых BE и АС. Найдем уравнение АС:

Аналитическая геометрия на плоскости решение задач и примеры

Координаты точки Е найдем как решение системы

Аналитическая геометрия на плоскости решение задач и примеры

Итак,Аналитическая геометрия на плоскости решение задач и примеры. Теперь определим расстояние BE:

Аналитическая геометрия на плоскости решение задач и примеры

8) Угол A находим по формуле Аналитическая геометрия на плоскости решение задач и примеры, где Аналитическая геометрия на плоскости решение задач и примерыАналитическая геометрия на плоскости решение задач и примеры Имеем: Аналитическая геометрия на плоскости решение задач и примеры , а тогдаАналитическая геометрия на плоскости решение задач и примеры

9) Пусть a, b, c — стороны треугольника, с — большая из них. Если Аналитическая геометрия на плоскости решение задач и примеры, то треугольник прямоугольный, если Аналитическая геометрия на плоскости решение задач и примеры — тупоугольный, если Аналитическая геометрия на плоскости решение задач и примеры — остроугольный, Квадраты сторон нашего треугольника равны: Аналитическая геометрия на плоскости решение задач и примерыАналитическая геометрия на плоскости решение задач и примерыПоскольку DC — большая сторона и Аналитическая геометрия на плоскости решение задач и примеры, то треугольник остроугольный.

10) Уравнение (АВ): х + у — 7 = 0. Треугольник AВС находится по отношению к этой прямой в полуплоскости, содержащей точку С(2,-3). В этой точке левая часть уравнения равна 2-3-7 = -8 <0. Все внутренние точки треугольника лежат в полуплоскости х + у — 7 < 0.

Уравнение (АС): Зх — 5у — 21 =0. Подставим в левую часть координаты точки В(3,4): 9-20 — 21 <0. Внутренние точки треугольника ABC лежат в полуплоскости Зх — 5у — 21 <0.

Составим уравнение (ВС): 7х у — 17 = 0. Внутренние точки треугольника принадлежат полуплоскости 7х — у — 17 > 0 (ибо в точке А(7,0) имеем неравенство 7 • 7 — 0 — 17 > 0).

Под треугольником подразумевается множество точек, лежащих внутри треугольника и на его сторонах, поэтому мы записываем нестрогие неравенства:

Аналитическая геометрия на плоскости решение задач и примеры

Пример:

Полярное уравнение Аналитическая геометрия на плоскости решение задач и примерызаписать прямоугольных координатах.

Решение:

Перепишем сначала данное уравнение в виде Аналитическая геометрия на плоскости решение задач и примеры и используем формулы:Аналитическая геометрия на плоскости решение задач и примерыПолучаем уравнение прямой: 2х — 5у = 7.

Линии второго порядка

К кривым второго порядка относятся следующие четыре линии: окружность, эллипс, гипербола, парабола. Координаты х, у точек каждой из этих линий удовлетворяют соответствующему уравнению второй степени относительно переменных х и у.

Ниже под геометрическим местом точек (сокращенно ГМТ) подразумевается некоторое множество точек плоскости, координаты которых удовлетворяют определенному условию. Определения кривых второго порядка дадим через ГМТ, указывая свойства этих точек.

Окружность

Окружностью радиуса R с центром в точке Аналитическая геометрия на плоскости решение задач и примерыназывается ГМТ, равноудаленных от точки Аналитическая геометрия на плоскости решение задач и примеры на расстоянии R.

Каноническое уравнение окружности имеет вид Аналитическая геометрия на плоскости решение задач и примеры

Примеры с решениями

Пример:

Составить уравнение окружности, диаметром которой является отрезок, отсекаемый координатными осями от прямой Зх -2у + 12 = 0.

Решение:

На рис. 2.17 изображена прямая Зх — 2у + 12 = 0. Она пересекает координатные оси в точках A(-4,0), В(0,6).

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

1) Центром окружности является точка Аналитическая геометрия на плоскости решение задач и примеры — середина отрезка АВ. Координаты этой точки определим по формулам
:

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

2) Радиус R окружности, равный Аналитическая геометрия на плоскости решение задач и примеры, вычисляем, например, по формуле :

Аналитическая геометрия на плоскости решение задач и примеры

3) Каноническое уравнение искомой окружности имеет вид
Примечание. Если в последнем уравнении выполнить обозначенные действия, то получаем уравнение Аналитическая геометрия на плоскости решение задач и примеры Оно называется общим уравнением окружности. Это неполное уравнение второй степени относительно переменных х и у.

Эллипс

Эллипсом называется ГМТ, для которых сумма расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная. (Данная величина больше расстояния между фокусами.)

Если предположить, что фокусы эллипса расположены в точках Аналитическая геометрия на плоскости решение задач и примеры а данная величина равна 2а, то из его определения можно получить каноническое уравнение эллипса

Аналитическая геометрия на плоскости решение задач и примеры

При этом а > 0 — большая полуось, b > 0 — малая полуось, с — фокусное расстояние и Аналитическая геометрия на плоскости решение задач и примеры Точки (а,0) и (-а,0) называют вершинами эллипса.

Сам эллипс изображен на рис. 2.18. Важными характеристиками эллипса являются:

— эксцентриситет Аналитическая геометрия на плоскости решение задач и примеры; если Аналитическая геометрия на плоскости решение задач и примеры то эллипс почти круглый, т.е. близок к окружности, а если Аналитическая геометрия на плоскости решение задач и примеры то эллипс сплющенный, близок к отрезку [-а; а];

— директрисы эллипса — прямые с уравнениями Аналитическая геометрия на плоскости решение задач и примеры;

— расстояния точки М(х,у) эллипса до его фокусов (Аналитическая геометрия на плоскости решение задач и примеры до левого, Аналитическая геометрия на плоскости решение задач и примеры до правого), вычисляющиеся по формулам:

Аналитическая геометрия на плоскости решение задач и примеры

Примеры с решениями

Пример:

Составить уравнение эллипса, симметричного относительно координатных осей и проходящего через точки Аналитическая геометрия на плоскости решение задач и примеры и Аналитическая геометрия на плоскости решение задач и примеры.Найти расстояния от точки А до фокусов. Найти эксцентриситет эллипса. Составить уравнения его директрис. Построить чертеж.

Решение:

1) Параметры а и b эллипса Аналитическая геометрия на плоскости решение задач и примерынайдем, подставив в это уравнение координаты точек А и В. Это приводит к системе

Аналитическая геометрия на плоскости решение задач и примеры

После умножения первого уравнения на 16, а второго на -9 и сложения полученных результатов имеем

Аналитическая геометрия на плоскости решение задач и примеры

Отсюда с учетом b > 0 находим b = 4, а тогда а = 5.

Каноническое уравнение эллипса найдено:Аналитическая геометрия на плоскости решение задач и примеры

2) Фокусное расстояние Аналитическая геометрия на плоскости решение задач и примеры

3) Эксцентриситет равен Аналитическая геометрия на плоскости решение задач и примеры

4) Расстояние от А до фокусов: Аналитическая геометрия на плоскости решение задач и примерыАналитическая геометрия на плоскости решение задач и примеры

5) Уравнения директрис: Аналитическая геометрия на плоскости решение задач и примеры(левая), Аналитическая геометрия на плоскости решение задач и примеры(правая).

Чертеж построен (рис. 2.19).

Аналитическая геометрия на плоскости решение задач и примеры

Пример:

Составить уравнение эллипса, симметричного относительно координатных осей, проходящего через точку А(—3, 1,75) и имеющего эксцентриситетАналитическая геометрия на плоскости решение задач и примеры= 0,75.

Решение:

Имеем систему уравнений относительно параметров а, b, с =

Аналитическая геометрия на плоскости решение задач и примеры

(эллипс проходит через точку А),

или Аналитическая геометрия на плоскости решение задач и примеры (дан эксцентриситет).

Из второго уравнения находим:

Аналитическая геометрия на плоскости решение задач и примеры

Подставляя это в первое уравнение, получим Аналитическая геометрия на плоскости решение задач и примеры а тогда Аналитическая геометрия на плоскости решение задач и примеры
Уравнение эллипса Аналитическая геометрия на плоскости решение задач и примеры

Пример:

Составить уравнение эллипса с центром в начале координат и фокусами на оси Ох, если его эксцентриситет равен Аналитическая геометрия на плоскости решение задач и примеры, а прямая, проходящая через его левый фокус и точку Аналитическая геометрия на плоскости решение задач и примеры, образует с осью Ох угол Аналитическая геометрия на плоскости решение задач и примеры.

Решение:

1) Сделаем чертеж (рис. 2.20).

2) Каноническое уравнение искомого эллипса есть Аналитическая геометрия на плоскости решение задач и примерыи

задача сводится к нахождению параметров а и b.

3) Вспомним, чтоАналитическая геометрия на плоскости решение задач и примеры

Как видно, достаточно найти с. Составим уравнение прямой Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

С другой стороны, по определению, угловой коэффициент прямой есть тангенс угла наклона прямой к оси Ox,Аналитическая геометрия на плоскости решение задач и примеры Значит,

Аналитическая геометрия на плоскости решение задач и примеры

По найденному значению с определим Аналитическая геометрия на плоскости решение задач и примеры

Пример:

Записать в прямоугольных координатах полярное

Аналитическая геометрия на плоскости решение задач и примеры

Решение:

Сначала перепишем данное уравнение в виде Аналитическая геометрия на плоскости решение задач и примеры и воспользуемся формулами (заменами)Аналитическая геометрия на плоскости решение задач и примерыАналитическая геометрия на плоскости решение задач и примерыПолучаем: Аналитическая геометрия на плоскости решение задач и примерыДалее, возведя сначала это равенство в квадрат, после преобразований и выделения полного квадрата получаем:

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Получили каноническое уравнение эллипса с центром в точкеАналитическая геометрия на плоскости решение задач и примерыи полуосями Аналитическая геометрия на плоскости решение задач и примеры

Гипербола

1°. Гиперболой называется ГМТ, для которых модуль разности расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная. (Данная величина меньше расстояния между фокусами.)

2°. Если фокусы гиперболы расположены в точках Аналитическая геометрия на плоскости решение задач и примерыАналитическая геометрия на плоскости решение задач и примерыа данная величина равна 2а, то такая гипербола имеет каноническое уравнение

Аналитическая геометрия на плоскости решение задач и примеры

где Аналитическая геометрия на плоскости решение задач и примеры

При этом а — действительная полуось, b — мнимая полуось Аналитическая геометрия на плоскости решение задач и примеры — фокусное расстояние Аналитическая геометрия на плоскости решение задач и примеры(рис. 2.21).

Аналитическая геометрия на плоскости решение задач и примеры

3°. Прямые с уравнениями , Аналитическая геометрия на плоскости решение задач и примерыназываются асимптотами гиперболы. Величина Аналитическая геометрия на плоскости решение задач и примерыназывается эксцентриситетом гиперболы (при больших Аналитическая геометрия на плоскости решение задач и примеры ветви гиперболы широкие, почти вертикальные, а при Аналитическая геометрия на плоскости решение задач и примеры ветви гиперболы узкие, гипербола приближается к оси Ox).

Расстояния от точки М(х, у) гиперболы до ее фокусов (Аналитическая геометрия на плоскости решение задач и примеры от левого, Аналитическая геометрия на плоскости решение задач и примеры от правого) равны: Аналитическая геометрия на плоскости решение задач и примеры

Прямые с уравнениями Аналитическая геометрия на плоскости решение задач и примерыназываются директрисами гиперболы.

Примеры с решениями

Пример:

На гиперболе с уравнением Аналитическая геометрия на плоскости решение задач и примерынайти

точку М, такую, что Аналитическая геометрия на плоскости решение задач и примеры. Составить уравнения асимптот и директрис гиперболы. Найти ее эксцентриситет. Сделать чертеж.

Решение:

1) Имеем а = 4, b = 3, Аналитическая геометрия на плоскости решение задач и примерыс = 5. Гиперболу строим так (рис. 2.22): в прямоугольнике со сторонами Аналитическая геометрия на плоскости решение задач и примеры (т.е. Аналитическая геометрия на плоскости решение задач и примеры) проводим диагонали (это асимптоты гиперболы, т.е. прямые Аналитическая геометрия на плоскости решение задач и примеры у нас Аналитическая геометрия на плоскости решение задач и примеры).

Ветви гиперболы проходят через точки (4,0), (-4,0), приближаясь к асимптотам, создавая впечатление почти параллельных линий. Фокусы Аналитическая геометрия на плоскости решение задач и примерысчитаются лежащими внутри гиперболы.

Аналитическая геометрия на плоскости решение задач и примеры

2) Имеем Аналитическая геометрия на плоскости решение задач и примерыИскомую точку М(х, у) определим при помощи формулы Аналитическая геометрия на плоскости решение задач и примерыили

Аналитическая геометрия на плоскости решение задач и примеры

Находим Аналитическая геометрия на плоскости решение задач и примеры

Поскольку М{х, у) лежит на гиперболе Аналитическая геометрия на плоскости решение задач и примерыординаты соответствующих точек найдем из этого уравнения при найденных значениях x: Аналитическая геометрия на плоскости решение задач и примеры и если Аналитическая геометрия на плоскости решение задач и примерыто у

Аналитическая геометрия на плоскости решение задач и примеры

a если Аналитическая геометрия на плоскости решение задач и примерыто

Аналитическая геометрия на плоскости решение задач и примеры

(это число не существует в нужном нам смысле)

Получили две точки, удовлетворяющие данным условиям,

Аналитическая геометрия на плоскости решение задач и примеры

3) Уравнения директрис данной гиперболы: Аналитическая геометрия на плоскости решение задач и примеры

Пример:

На гиперболе Аналитическая геометрия на плоскости решение задач и примерынайти точку М(х, у), такую, что ее расстояние до одной асимптоты в три раза больше, чем расстояние до другой асимптоты.

Решение:

1) Сделаем символический чертеж гиперболы (рис. 2.22) и ее асимптот. На нем изображены две различные возможные ситуации, удовлетворяющие условиям задачи: расстояние от точки М до асимптоты Аналитическая геометрия на плоскости решение задач и примеры в три раза больше, чем расстояние до асимптоты Аналитическая геометрия на плоскости решение задач и примеры для точки Аналитическая геометрия на плоскости решение задач и примеры— наоборот.

2) Уравнения асимптот:

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

3) Для точки Аналитическая геометрия на плоскости решение задач и примерыимеем Аналитическая геометрия на плоскости решение задач и примерыПо соответствующим формулам это равенство можно переписать в виде

Аналитическая геометрия на плоскости решение задач и примеры

4) Так как Аналитическая геометрия на плоскости решение задач и примеры лежит на гиперболе, то нам надо решить еще
системы

Аналитическая геометрия на плоскости решение задач и примеры

Из первой находим Аналитическая геометрия на плоскости решение задач и примеры что соответствует двум точкам Аналитическая геометрия на плоскости решение задач и примеры

Вторая система решений не имеет.

5) Что касается координат точки М, то предлагаем убедиться самостоятельно в том, что Аналитическая геометрия на плоскости решение задач и примеры

Пример:

Определить координаты точки пересечения двух взаимно перпендикулярных прямых, проходящих через фокусы гиперболы Аналитическая геометрия на плоскости решение задач и примерыесли известно, что точка A(6,-2) лежит на прямой, проходящей через ее правый фокус.

Решение:

1) Сделаем чертеж (рис. 2.24) и выпишем параметры гиперболы. Имеем а = 4, b = 3, с = 5, Аналитическая геометрия на плоскости решение задач и примеры Переходим к вычислениям.

Аналитическая геометрия на плоскости решение задач и примеры

2) Составим уравнение Аналитическая геометрия на плоскости решение задач и примерыпо двум точкам:

Аналитическая геометрия на плоскости решение задач и примеры

3) Составим уравнение прямой Аналитическая геометрия на плоскости решение задач и примерыпроходящей через Аналитическая геометрия на плоскости решение задач и примерыперпендикулярно прямой Аналитическая геометрия на плоскости решение задач и примеры Имеем Аналитическая геометрия на плоскости решение задач и примеры а тогда Аналитическая геометрия на плоскости решение задач и примерыПолучаем

Аналитическая геометрия на плоскости решение задач и примеры

4) Координаты точки М получаются как решение системы

Аналитическая геометрия на плоскости решение задач и примеры

Парабола

Параболой называется ГМТ, для которых расстояние до фиксированной точки, называемой фокусом, равно расстоянию до фиксированной прямой, называемой директрисой. Если фокус параболы расположен в точке Аналитическая геометрия на плоскости решение задач и примерыа директриса имеет уравнение Аналитическая геометрия на плоскости решение задач и примерыто такая парабола имеет каноническое уравнение Аналитическая геометрия на плоскости решение задач и примерыПри этом р называется параметром параболы. Расстояние от точки М(х, у) параболы до фокуса F равно Аналитическая геометрия на плоскости решение задач и примеры (рис. 2.25).

Примеры с решениями

Пример:

Составить уравнение параболы, симметричной относительно оси Оу, если она проходит через точки пересечения прямой ху = 0 и окружности Аналитическая геометрия на плоскости решение задач и примеры

Решение:

Уравнение искомой параболы должно иметь вид Аналитическая геометрия на плоскости решение задач и примерыона изображена на рис. 2.26. Найдем точки пересечения данных прямой и окружности:

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Получили Аналитическая геометрия на плоскости решение задач и примеры.Так как точка Аналитическая геометрия на плоскости решение задач и примерылежит на параболе, то справедливо равенство Аналитическая геометрия на плоскости решение задач и примеры и искомое уравнение параболы есть х2 = 3у.

Аналитическая геометрия на плоскости решение задач и примеры

Пример:

Составить уравнение параболы, симметричной относительно оси Ох, с вершиной в начале координат, если известно, что парабола проходит через точку А(2,2).

Найти длину хорды, проходящей через точку М(8,0) и наклоненной к оси Ох под углом 60°.

Решение:

1) Сделаем чертеж (рис. 2.27).

2) Каноническое уравнение такой параболы имеет вид Аналитическая геометрия на плоскости решение задач и примеры. Неизвестный параметр р определим из условия прохождения параболы через точку A(2,2):

Аналитическая геометрия на плоскости решение задач и примеры

Итак, уравнение параболы Аналитическая геометрия на плоскости решение задач и примеры

3) Найдем координаты точек Аналитическая геометрия на плоскости решение задач и примерыточки Аналитическая геометрия на плоскости решение задач и примерылежат на параболе, поэтому Аналитическая геометрия на плоскости решение задач и примеры Из прямоугольных треугольников Аналитическая геометрия на плоскости решение задач и примеры имеем соответственно:Аналитическая геометрия на плоскости решение задач и примерыИтак, неизвестные координаты точек Аналитическая геометрия на плоскости решение задач и примеры удовлетворяют системам

Аналитическая геометрия на плоскости решение задач и примеры

решив которые, найдем Аналитическая геометрия на плоскости решение задач и примерыИскомая длина хорды

Аналитическая геометрия на плоскости решение задач и примеры

Ответ. Аналитическая геометрия на плоскости решение задач и примеры

Пример:

Уравнение параболы Аналитическая геометрия на плоскости решение задач и примеры записать в полярных координатах.

Решение:

Подставляем в данное уравнение Аналитическая геометрия на плоскости решение задач и примеры

При Аналитическая геометрия на плоскости решение задач и примерыполучаем Аналитическая геометрия на плоскости решение задач и примеры или Аналитическая геометрия на плоскости решение задач и примеры

Приведение общего уравнения кривой второго порядка к каноническому виду

1°. Даны две прямоугольные системы координат Аналитическая геометрия на плоскости решение задач и примеры со свойствами (рис. 2.28): оси Ох и Аналитическая геометрия на плоскости решение задач и примеры, а также Оу и Аналитическая геометрия на плоскости решение задач и примеры параллельны и одинаково направлены, а начало Аналитическая геометрия на плоскости решение задач и примеры системы Аналитическая геометрия на плоскости решение задач и примеры имеет известные координаты Аналитическая геометрия на плоскости решение задач и примеры относительно системы Оху.

Тогда координаты (х,у) и Аналитическая геометрия на плоскости решение задач и примеры произвольной точки М плоскости связаны соотношениями:

Аналитическая геометрия на плоскости решение задач и примеры

Формулы (3) называются формулами преобразования координат при параллельном переносе осей координат.

2°. Предположим, что прямоугольные системы координат Аналитическая геометрия на плоскости решение задач и примерыимеют общее начало, а ось Аналитическая геометрия на плоскости решение задач и примеры составляет с осью Ох угол Аналитическая геометрия на плоскости решение задач и примеры (подАналитическая геометрия на плоскости решение задач и примеры понимается угол поворота оси Аналитическая геометрия на плоскости решение задач и примеры относительно Ох). Тогда

Аналитическая геометрия на плоскости решение задач и примеры

координаты (х, у) и Аналитическая геометрия на плоскости решение задач и примерыпроизвольной точки М плоскости связаны соотношениями (рис. 2.29):

Аналитическая геометрия на плоскости решение задач и примеры

Формулы (4) называются формулами преобразования координат при повороте осей координат.

3°. Общее уравнение второго порядка относительно переменных х и у имеет вид

Аналитическая геометрия на плоскости решение задач и примеры

Существует угол Аналитическая геометрия на плоскости решение задач и примеры, такой что формулами поворота осей на уголАналитическая геометрия на плоскости решение задач и примерыуравнение (5) можно привести к виду (в нем коэффициент Аналитическая геометрия на плоскости решение задач и примеры при Аналитическая геометрия на плоскости решение задач и примерыравен нулю)

Аналитическая геометрия на плоскости решение задач и примеры

При этом

Аналитическая геометрия на плоскости решение задач и примеры

Соответствующий угол Аналитическая геометрия на плоскости решение задач и примеры можно найти из уравнения

Аналитическая геометрия на плоскости решение задач и примеры

4°. Уравнение (6) приводится к каноническому виду при помощи формул параллельного переноса.

Заметим, что окончательное уравнение может и не иметь геометрического изображения, что подтверждает, например, уравнение х2 + у2 + 1 = 0.

Аналитическая геометрия на плоскости решение задач и примеры

Примеры с решениями

Пример:

Привести к каноническому виду следующие уравнения второго порядка:

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Построить геометрическое изображение каждого уравнения. Решение. 1) Этот пример решим достаточно подробно, не прибегая к формулам (7) и (8).

а) Выполним поворот осей координат на угол Аналитическая геометрия на плоскости решение задач и примеры при помощи первых формул (4). Имеем последовательно

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

б) Выделим отдельно слагаемые, содержащие произведение Аналитическая геометрия на плоскости решение задач и примеры:

Аналитическая геометрия на плоскости решение задач и примеры

Ставим условие, чтобы это выражение было тождественно равно нулю. Это возможно при условии

Аналитическая геометрия на плоскости решение задач и примеры

находим Аналитическая геометрия на плоскости решение задач и примеры. Выберем угол Аналитическая геометрия на плоскости решение задач и примеры так, что Аналитическая геометрия на плоскости решение задач и примеры. Это соответствует тому, что ось Аналитическая геометрия на плоскости решение задач и примерысоставляет с осью Ох положительный угол Аналитическая геометрия на плоскости решение задач и примеры. Из равенства Аналитическая геометрия на плоскости решение задач и примеры находим:

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

в) Подставим полученные выражения в последнее уравнение из п. а). Получаем последовательно (слагаемые, содержащиеАналитическая геометрия на плоскости решение задач и примеры, опускаем — их вклад в уравнение равен нулю, чего добились в п. б):

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

г) В круглые скобки добавим надлежащие числа для получения полных квадратов. После вычитания соответствующих слагаемых приходим к равносильному уравнению

Аналитическая геометрия на плоскости решение задач и примеры

д) Для приведения этого уравнения к каноническому виду воспользуемся формулами параллельного сдвига, полагая

Аналитическая геометрия на плоскости решение задач и примеры

и последующего почленного деления уравнения на 36. Получаем каноническое уравнение эллипса Аналитическая геометрия на плоскости решение задач и примеры в системе координат Аналитическая геометрия на плоскости решение задач и примеры(рис. 2.30).

2) Этот пример решим, используя формулы (7) и уравнение (8). Имеем: А = 3, В = 5, С = 3, D = -2, Е = -14, F = -13. Уравнение (8)принимает вид Аналитическая геометрия на плоскости решение задач и примеры откуда а = 45°, Аналитическая геометрия на плоскости решение задач и примеры

По формулам (7) последовательно находим: Аналитическая геометрия на плоскости решение задач и примерыАналитическая геометрия на плоскости решение задач и примеры

В системе координат Аналитическая геометрия на плоскости решение задач и примеры исходное уравнение принимает вид

Аналитическая геометрия на плоскости решение задач и примеры

После выделения полных квадратов получаем

Аналитическая геометрия на плоскости решение задач и примеры

Положим

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

Аналитическая геометрия на плоскости решение задач и примеры

и почленно разделим на 4. Получаем каноническое уравнение гиперболыАналитическая геометрия на плоскости решение задач и примеры, изображенной на рис. 2.31.

3) Уравнение (8) в данном случае приводится к виду Аналитическая геометрия на плоскости решение задач и примеры Принимаем Аналитическая геометрия на плоскости решение задач и примеры По формулам (7) приходим к новому уравнению Аналитическая геометрия на плоскости решение задач и примеры или Аналитическая геометрия на плоскости решение задач и примерыФормулы параллельного переноса Аналитическая геометрия на плоскости решение задач и примеры приводят к каноническому уравнению параболы Аналитическая геометрия на плоскости решение задач и примеры (рис. 2.32). 15

4) Для приведения этого уравнения к каноническому виду достаточно составить полные квадраты:

Аналитическая геометрия на плоскости решение задач и примеры

Получили уравнение окружности радиуса Аналитическая геометрия на плоскости решение задач и примерыс центром в точке Аналитическая геометрия на плоскости решение задач и примеры (рис. 2.33).
5) Соответствующее уравнение (8) имеет вид Аналитическая геометрия на плоскости решение задач и примерытогда

Аналитическая геометрия на плоскости решение задач и примеры

Коэффициенты нового уравнения равны: Аналитическая геометрия на плоскости решение задач и примерыСамо уравнение имеет вид Аналитическая геометрия на плоскости решение задач и примеры и геометрического изображения не имеет. Оно выражает мнимый эллипс Аналитическая геометрия на плоскости решение задач и примеры

Система координат на плоскости

Под системой координат на плоскости понимают способ, позволяющий численно описать положение точки плоскости. Одной из таких систем является прямоугольная (декартова) система координат.

Прямоугольная система координат задается двумя взаимно перпендикулярными прямыми — осями, на каждой из которых выбрано положительное направление и задан единичный (масштабный) отрезок. Единицу масштаба обычно берут одинаковой для обеих осей. Эти оси называют осями координат, точку их пересечения О — началом координат. Одну из осей называют осью абсцисс (осью Ох), другую — осью ординат (осью Оу) (рис. 23).

Аналитическая геометрия на плоскости

На рисунках ось абсцисс обычно располагают горизонтально и направленной слева направо, а ось ординат — вертикально и направленной снизу вверх. Оси координат делят плоскость на четыре области — четверти (или квадранты).

Единичные векторы осей обозначают Аналитическая геометрия на плоскости

Систему координат обозначают Аналитическая геометрия на плоскости, а плоскость, в которой расположена система координат, называют координатной плоскостью.

Рассмотрим произвольную точку М плоскости Оху. ВекторАналитическая геометрия на плоскостиназывается радиусом-вектором точки М.

Координатами точки М в системе координат Аналитическая геометрия на плоскости называются координаты радиуса-вектора Аналитическая геометрия на плоскости. Если Аналитическая геометрия на плоскости, то координаты точки М записывают так: М(х ,у), число х называется абсциссой точки М, уординатой точки М.

Эти два числа х к у полностью определяют положение точки на плоскости, а именно: каждой паре чисел x и у соответствует единственная точка М плоскости, и наоборот.

Способ определения положения точек с помощью чисел (координат) называется методом координат. Сущность метода координат на плоскости состоит в том, что всякой линии на ней, как правило, сопоставляется ее уравнение. Свойства этой линии изучаются путем исследования уравнения линии.

Другой практически важной системой координат является полярная система координат. Полярная система координат задается точкой О, называемой полюсом, лучом Ор, называемым полярной осью, и единичным вектором Аналитическая геометрия на плоскости того же направления, что и луч Ор.

Возьмем на плоскости точку М, не совпадающую с О. Положение точки М определяется двумя числами: ее расстоянием r от полюса О и углом Аналитическая геометрия на плоскости, образованным отрезком ОМ с полярной осью (отсчет углов ведется в направлении, противоположном движению часовой стрелки) (см. рис. 24).

Аналитическая геометрия на плоскости

Числа r иАналитическая геометрия на плоскости называются полярными координатами точки М, пишут Аналитическая геометрия на плоскости, при этом г называют полярным радиусом, Аналитическая геометрия на плоскостиполярным углом.

Для получения всех точек плоскости достаточно полярный угол Аналитическая геометрия на плоскости ограничить промежутком Аналитическая геометрия на плоскости, а полярный радиус — Аналитическая геометрия на плоскости. В этом случае каждой точке плоскости (кроме О) соответствует единственная пара чисел r и Аналитическая геометрия на плоскости, и обратно.

Установим связь между прямоугольными и полярными координатами. Для этого совместим полюс О с началом координат системы Оху, а полярную ось — с положительной полуосью Ох. Пусть х и у — прямоугольные координаты точки М, а r и Аналитическая геометрия на плоскости — ее полярные координаты.

Из рисунка 25 видно, что прямоугольные и полярные координаты точки М выражаются следующим образом:

Аналитическая геометрия на плоскости

Определяя величину Аналитическая геометрия на плоскости, следует установить (по знакам х и у) четверть, в которой лежит искомый угол, и учитывать , что Аналитическая геометрия на плоскости

Пример:

Дана точка Аналитическая геометрия на плоскости. Найти полярные координаты точки М.

Решение:

Находим Аналитическая геометрия на плоскости:

Аналитическая геометрия на плоскости

Отсюда Аналитическая геометрия на плоскости. Но так кале точка М лежит в 3-й четверти, то Аналитическая геометрия на плоскости Итак, полярные координаты точки есть Аналитическая геометрия на плоскости

Основные приложения метода координат на плоскости

Расстояние между двумя точками

Требуется найти расстояние d между точками Аналитическая геометрия на плоскости плоскости Оху.

Решение:

Искомое расстояние d равно длине вектора Аналитическая геометрия на плоскости . Т. е.

Аналитическая геометрия на плоскости

Деление отрезка в данном отношении

Требуется разделить отрезок АВ, соединяющий точки Аналитическая геометрия на плоскости в заданном отношении Аналитическая геометрия на плоскости, т. е. найти координаты точки М(х ; у) отрезка АВ такой, что Аналитическая геометрия на плоскости (СМ. рис. 26).

Аналитическая геометрия на плоскости

Решение:

Введем в рассмотрение векторы Аналитическая геометрия на плоскости. Точка М делит отрезок АВ в отношении Аналитическая геометрия на плоскости, если

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Уравнение (9.1) принимает вид

Аналитическая геометрия на плоскости

Учитывая, что равные векторы имеют равные координаты, получаем

Аналитическая геометрия на плоскости

и

Аналитическая геометрия на плоскости

Формулы (9.2) и (9.3) называются формулами деления отрезка в данном отношении. В частности, при Аналитическая геометрия на плоскости, т. е. если AM = MB, то они примут вид Аналитическая геометрия на плоскости. В этом случае точка М(х;у) является серединой отрезка АВ.

Замечание:

Если Аналитическая геометрия на плоскости, то это означает, что точки А и М совпадают, если Аналитическая геометрия на плоскости, то точка М лежит вне отрезка АВ— говорят, что точка М делит отрезок АВ внешним образом (Аналитическая геометрия на плоскости, т. к. в противном случае Аналитическая геометрия на плоскости , т. е. AM + MB = 0, т. е. АВ = 0).

Площадь треугольника

Требуется найти площадь треугольника ABC с вершинами Аналитическая геометрия на плоскости

Решение:

Опустим из вершин А, В, С перпендикуляры Аналитическая геометрия на плоскости на ось Ох (см. рис. 27). Очевидно, что

Аналитическая геометрия на плоскости

Поэтому

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Замечание: Если при вычислении площади треугольника получим S = 0, то это означает, что точки А, В, С лежат на одной прямой, если же получим отрицательное число, то следует взять его модуль.

Преобразование системы координат

Переход от одной системы координат в какую-либо другую называется преобразованием системы координат.

Рассмотрим два случая преобразования одной прямоугольной системы координат в другую. Полученные формулы устанавливают зависимость между координатами произвольной точки плоскости в разных системах координат.

Параллельный перенос осей координат

Пусть на плоскости задана прямоугольная система координат Оху. Под параллельным переносом осей координат понимают переход от системы координат Оху к новой системе Аналитическая геометрия на плоскости, при котором меняется положение начала координат, а направление осей и масштаб остаются неизменными.

Аналитическая геометрия на плоскости

Пусть начало новой системы координат точка Аналитическая геометрия на плоскости имеет координаты Аналитическая геометрия на плоскости) в старой системе координат Оху, т. е.Аналитическая геометрия на плоскости— Обозначим координаты произвольной точки М плоскости в системе Оху через (х; у), а в новой системе Аналитическая геометрия на плоскостичерез Аналитическая геометрия на плоскости (см. рис. 28).

Рассмотрим векторы

Аналитическая геометрия на плоскости

Так как Аналитическая геометрия на плоскости т. е.

Аналитическая геометрия на плоскости

Следовательно,

Аналитическая геометрия на плоскости

Полученные формулы позволяют находить старые координаты х и у по известным новым х’ и у‘ и наоборот.

Поворот осей координат

Под поворотом осей координат понимают такое преобразование координат, при котором обе оси поворачиваются на один и тот же угол, а начало координат и масштаб остаются неизменными.

Пусть новая система Аналитическая геометрия на плоскости получена поворотом системы Оху на угол Аналитическая геометрия на плоскости (см. рис. 29).

Пусть М — произвольная точка плоскости, (х; у) — ее координаты в старой системе и (х’; у’) — в новой системе.

Введем две полярные системы координат с общим полюсом О и полярными осями Аналитическая геометрия на плоскости (масштаб одинаков). Полярный радиус r в обеих системах одинаков, а полярные углы соответственно равны Аналитическая геометрия на плоскости, где Аналитическая геометрия на плоскости— полярный угол в новой полярной системе.

По формулам перехода от полярных координат к прямоугольным имеем

Аналитическая геометрия на плоскости

Но Аналитическая геометрия на плоскости. Поэтому

Аналитическая геометрия на плоскости

Полученные формулы называются формулами поворота осей. Они позволяют определять старые координаты (x; у) произвольной точки М через новые координаты (х’;у’) этой же точки М, и наоборот.

Аналитическая геометрия на плоскости

Если новая система координат Аналитическая геометрия на плоскости получена из старой Оху путем параллельного переноса осей координат и последующим поворотом осей на угол Аналитическая геометрия на плоскости (см. рис. 30), то путем введения вспомогательной системыАналитическая геометрия на плоскости легко получить формулы

Аналитическая геометрия на плоскости

выражающие старые координаты х и у произвольной точки через ее новые координаты х’ и у’.

Линии на плоскости

Линия на плоскости часто задается как множество точек, обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние R от некоторой фиксированной точки О (центра окружности).

Введение на плоскости системы координат позволяет определять положение точки плоскости заданием двух чисел — ее координат, а положение линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).

Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(x; у) = 0 с двумя переменными, которому удовлетворяют координаты х и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. Переменные х и у в уравнении линии называются текущими координатами точек линии.

Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.

Так, для того чтобы установить лежит ли точка Аналитическая геометрия на плоскости на данной линии, достаточно проверить (не прибегая к геометрическим построениям), удовлетворяют ли координаты точки А уравнению этой линии в выбранной системе координат.

Пример:

Лежат ли точки К(-2;1) и L(1; 1) на линии 2х + у + 3 = 0?

Решение:

Подставив в уравнение вместо х и у координаты точки К, получим 2 • (-2) + 1 + 3 = 0. Следовательно, точка К лежит на данной линии. Точка L не лежит на данной линии, т. к. Аналитическая геометрия на плоскости

Задача о нахождении точек пересечения двух линий, заданных уравнениями Аналитическая геометрия на плоскости, сводится к отысканию точек, координаты которых удовлетворяют уравнениям обеих линий, т. е. сводится к решению системы двух уравнений с двумя неизвестными:

Аналитическая геометрия на плоскости

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогичным образом вводится понятие уравнения линии в полярной системе координат.

Уравнение Аналитическая геометрия на плоскости называется уравнением данной линии в полярной системе координат, если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать при помощи двух уравнений:

Аналитическая геометрия на плоскости

где х и у — координаты произвольной точки М(х; у), лежащей на данной линии, a t — переменная, называемая параметром; параметр t определяет положение точки (х; у) на плоскости.

Например, если Аналитическая геометрия на плоскости, то значению параметра t = 2 соответствует на плоскости точка (3; 4), т. к.Аналитическая геометрия на плоскости

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим, а уравнения (10.1) — параметрическими уравнениями линии.

Чтобы перейти от параметрических уравнений линии к уравнению вида F(x; у) = 0, надо каким-либо способом из двух уравнений исключить параметр t. Например, от уравнений Аналитическая геометрия на плоскостипутем подстановки t = х во второе уравнение, легко получить уравнение Аналитическая геометрия на плоскости; или Аналитическая геометрия на плоскости, т. е. вида F(x; у) = 0. Однако, заметим, такой переход не всегда целесообразен и не всегда возможен.

Линию на плоскости можно задать векторным уравнением Аналитическая геометрия на плоскости, где t — скалярный переменный параметр. Каждому значению Аналитическая геометрия на плоскости соответствует определенный вектор Аналитическая геометрия на плоскости плоскости. При изменении параметра t конец вектора Аналитическая геометрия на плоскости опишет некоторую линию (см. рис. 31).

Аналитическая геометрия на плоскости

Векторному уравнению линии Аналитическая геометрия на плоскости в системе координат Оху соответствуют два скалярных уравнения (10.1), т. е. уравнения проекций на оси координат векторного уравнения линии есть ее параметрические уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемешается на плоскости, то указанные уравнения называются уравнениями движения, а линия — траекторией точки, параметр t при этом есть время.

Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(x; у) = 0.

Всякому уравнению вида F(x; у) = 0 соответствует, вообще говоря, некоторая линия, свойства которой определяются данным уравнением (выражение «вообще говоря» означает, что сказанное допускает исключения. Так, уравнению Аналитическая геометрия на плоскостисоответствует не линия, а точка (2; 3); уравнению Аналитическая геометрия на плоскости на плоскости не соответствует никакой геометрический образ).

В аналитической геометрии на плоскости возникают две основные задачи. Первая: зная геометрические свойства кривой, найти ее уравнение; вторая: зная уравнение кривой, изучить ее форму и свойства.

На рисунках 32-40 приведены примеры некоторых кривых и указаны их уравнения.

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Параметрические уравнения циклоиды имеют вид Аналитическая геометрия на плоскости Циклоида — это кривая, которую описывает фиксированная точка окружности, катящаяся без скольжения по неподвижной прямой.

Уравнения прямой на плоскости

Простейшей из линий является прямая. Разным способам задания прямой соответствуют в прямоугольной системе координат разные виды ее уравнений.

Уравнение прямой с угловым коэффициентом

Пусть на плоскости Оху задана произвольная прямая, не параллельная оси Оу. Ее положение вполне определяется ординатой b точки Аналитическая геометрия на плоскости пересечения с осью Оу и углом а между осью Ох и прямой (см. рис. 41).

Аналитическая геометрия на плоскости

Под углом Аналитическая геометрия на плоскостинаклона прямой понимается наименьший угол, на который нужно повернуть вокруг точки пересечения прямой и оси Ох против часовой стрелки ось Ох до ее совпадения с прямой.

Возьмем на прямой произвольную точку М(х;у) (см. рис. 41). Проведем через точку N ось Nx’, параллельную оси Ох и одинаково с ней направленную. Угол между осью Nx’ и прямой равен а. В системе Nx’y точка М имеет координаты х и у b. Из определения тангенса угла следует равенство Аналитическая геометрия на плоскостиВведем обозначениеАналитическая геометрия на плоскости получаем уравнение

Аналитическая геометрия на плоскости

которому удовлетворяют координаты любой точки М(х ; у) прямой. Можно убедиться, что координаты любой точки Р{х; у), лежащей вне данной прямой, уравнению (10.2) не удовлетворяют.

Число Аналитическая геометрия на плоскостиназывается угловым коэффициентом прямой, а уравнение (10.2) — уравнением прямой с угловым коэффициентом.

Если прямая проходит через начало координат, то b=0 и, следовательно, уравнение этой прямой будет иметь вид у =kх.

Если прямая параллельна оси Ох, то Аналитическая геометрия на плоскости, следовательно, Аналитическая геометрия на плоскости и уравнение (10.2) примет вид у = b.

Если прямая параллельна оси Оу, то Аналитическая геометрия на плоскости уравнение (10.2) теряет смысл, т.к. для нее угловой коэффициент Аналитическая геометрия на плоскости не существует. В этом случае уравнение прямой будет иметь вид

Аналитическая геометрия на плоскости

где а — абсцисса точки пересечения прямой с осью Ох. Отметим, что уравнения (10.2) и (10.3) есть уравнения первой степени.

Общее уравнение прямой

Рассмотрим уравнение первой степени относительно х и у в общем виде

Аналитическая геометрия на плоскости

где А, В, С — произвольные числа, причем А и В не равны нулю одновременно.

Покажем, что уравнение (10.4) есть уравнение прямой линии. Возможны два случая.

Если В = 0, то уравнение (10.4) имеет вид Ах + С = 0, причем Аналитическая геометрия на плоскости Это есть уравнение прямой, параллельной оси Оу и проходящей через точку Аналитическая геометрия на плоскости.

Если Аналитическая геометрия на плоскости, то из уравнения (10.4) получаем Аналитическая геометрия на плоскости. Это есть уравнение прямой с угловым коэффициентом Аналитическая геометрия на плоскости

Итак, уравнение (10.4) есть уравнение прямой линии, оно называется общим уравнением прямой.

Некоторые частные случаи общего уравнения прямой:

1) если А = 0, то уравнение приводится к виду Аналитическая геометрия на плоскости Это есть уравнение прямой, параллельной оси Ох;

2) если В = 0, то прямая параллельна оси Оу;

3) если С = 0, то получаем Ах+By = 0. Уравнению удовлетворяют координаты точки O(0; 0), прямая проходит через начало координат.

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая проходит через точку Аналитическая геометрия на плоскости и ее направление характеризуется угловым коэффициентом k. Уравнение этой прямой можно записать в виде у = kх + b, где b — пока неизвестная величина. Так как прямая проходит через точку Аналитическая геометрия на плоскости, то координаты точки удовлетворяют уравнению прямой: Аналитическая геометрия на плоскости. Отсюда .Аналитическая геометрия на плоскости.

Подставляя значение b в уравнение у = kх + b, получим искомое уравнение прямой Аналитическая геометрия на плоскости, т. е.

Аналитическая геометрия на плоскости

Уравнение (10.5) с различными значениями к называют также уравнениями пучка прямых с центром в точке Аналитическая геометрия на плоскости. Из этого пучка нельзя определить лишь прямую, параллельную оси Оу.

Уравнение прямой, проходящей через две точки

Пусть прямая проходит через точки Аналитическая геометрия на плоскости Уравнение прямой, проходящей через точку Аналитическая геометрия на плоскости, имеет вид
где k — пока неизвестный коэффициент.

Так как прямая проходит через точку Аналитическая геометрия на плоскости то координаты этой точки должны удовлетворять уравнению (10.6): Аналитическая геометрия на плоскости

Отсюда находим Аналитическая геометрия на плоскости. Подставляя найденное значение k в уравнение (10.6), получим уравнение прямой, проходящей через точки Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Предполагается, что в этом уравнении Аналитическая геометрия на плоскости Если Аналитическая геометрия на плоскости, то прямая, проходящая через точки Аналитическая геометрия на плоскости,параллельна оси ординат. Ее уравнение имеет вид Аналитическая геометрия на плоскости.

Если Аналитическая геометрия на плоскости, то уравнение прямой может быть записано в виде Аналитическая геометрия на плоскости, прямая Аналитическая геометрия на плоскостипараллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке Аналитическая геометрия на плоскости, а ось Оу — в точке Аналитическая геометрия на плоскости (см. рис. 42). В этом случае уравнение (10.7) примет вид

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Это уравнение называется уравнением прямой в отрезках, так как числа а и b указывают, какие отрезки отсекает прямая на осях координат.

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку Аналитическая геометрия на плоскости перпендикулярно данному ненулевому вектору Аналитическая геометрия на плоскости.

Возьмем на прямой произвольную точку М(х ;у) и рассмотрим вектор Аналитическая геометрия на плоскости (см. рис. 43). Поскольку векторы Аналитическая геометрия на плоскости и Аналитическая геометрия на плоскости перпендикулярны, то их скалярное произведение равно нулю: Аналитическая геометрия на плоскости, то есть

Аналитическая геометрия на плоскости

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору.

Вектор Аналитическая геометрия на плоскости, перпендикулярный прямой, называется нормальным вектором этой прямой.

Уравнение (10.8) можно переписать в виде

Аналитическая геометрия на плоскости

где А и В — координаты нормального вектора, Аналитическая геометрия на плоскости— свободный член. Уравнение (10.9) есть общее уравнение прямой (см. (10.4)).

Аналитическая геометрия на плоскости

Полярное уравнение прямой

Найдем уравнение прямой в полярных координатах. Ее положение можно определить, указав расстояние р от полюса О до данной прямой и угол Аналитическая геометрия на плоскости между полярной осью ОР и осью l, проходящей через полюс О перпендикулярно данной прямой (см. рис. 44).

Для любой точки Аналитическая геометрия на плоскости на данной прямой имеем:

Аналитическая геометрия на плоскости

С другой стороны,

Аналитическая геометрия на плоскости

Следовательно,

Аналитическая геометрия на плоскости

Полученное уравнение (10.10) и есть уравнение прямой в полярных координатах.

Нормальное уравнение прямой

Пусть прямая определяется заданием р к Аналитическая геометрия на плоскости (см. рис. 45). Рассмотрим прямоугольную систему координат Оху. Введем полярную систему, взяв О за полюс и Ох за полярную ось. Уравнение прямой можно записать в виде

Аналитическая геометрия на плоскости

Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: Аналитическая геометрия на плоскости Следовательно, уравнение (10.10) прямой в прямоугольной системе координат примет вид

Аналитическая геометрия на плоскости

Уравнение (10.11) называется нормальным уравнением прямой.

Аналитическая геометрия на плоскости

Покажем, как привести уравнение (10.4) прямой к виду (10.11).

Умножим все члены уравнения (10.4) на некоторый множитель Аналитическая геометрия на плоскости Получим Аналитическая геометрия на плоскости Это уравнение должно обратиться в уравнение (10.11). Следовательно, должны выполняться равенства:

Аналитическая геометрия на плоскости

Из первых двух равенств находим

Аналитическая геометрия на плоскости

Множитель Аналитическая геометрия на плоскости называется нормирующим множителем. Согласно третьему равенству Аналитическая геометрия на плоскостизнак нормирующего множителя противоположен знаку свободного члена С общего уравнения прямой.

Пример:

Привести уравнение -За; + 4у + 15 = 0 к нормальному виду.

Решение:

Находим нормирующий множитель Аналитическая геометрия на плоскости.Умножая данное уравнение на Аналитическая геометрия на плоскости, получим искомое нормальное уравнение прямой: Аналитическая геометрия на плоскости

Прямая линия на плоскости. Основные задачи

Угол между двумя прямыми и условия параллельности и перпендикулярности двух прямых

Пусть прямые Аналитическая геометрия на плоскости заданы уравнениями с угловыми коэффициентами Аналитическая геометрия на плоскости(см. рис. 46).

Аналитическая геометрия на плоскости

Требуется найти угол Аналитическая геометрия на плоскости, на который надо повернуть в положительном направлении прямую Аналитическая геометрия на плоскости вокруг точки их пересечения до совпадения с прямой Аналитическая геометрия на плоскости.

Решение: Имеем Аналитическая геометрия на плоскости (теорема о внешнем угле треугольника) или Аналитическая геометрия на плоскости. Если Аналитическая геометрия на плоскости то

Аналитическая геометрия на плоскости

Ho Аналитическая геометрия на плоскости поэтому

Аналитическая геометрия на плоскости

откуда легко получим величину искомого угла.

Если требуется вычислить острый угол между прямыми, не учитывая, какая прямая является первой, какая — второй, то правая часть формулы (10.12) берется по модулю, т. е. Аналитическая геометрия на плоскости

Если прямые Аналитическая геометрия на плоскости параллельны, то Аналитическая геометрия на плоскости Из формулы (10.12) следует Аналитическая геометрия на плоскости. И обратно, если прямые Аналитическая геометрия на плоскости таковы, что Аналитическая геометрия на плоскости т. е. прямые параллельны. Следовательно, условием параллельности двух прямых является равенство их угловых коэффициентов: Аналитическая геометрия на плоскости

Если прямые Аналитическая геометрия на плоскости перпендикулярны, то Аналитическая геометрия на плоскости Следовательно, Аналитическая геометрия на плоскости Отсюда Аналитическая геометрия на плоскости (или Аналитическая геометрия на плоскости). Справедливо и обратное утверждение. Таким образом, условием перпендикулярности прямых является равенство Аналитическая геометрия на плоскости.

Расстояние от точки до прямой

Пусть заданы прямая L уравнением Ах + By + С = 0 и точка Аналитическая геометрия на плоскости (см. рис. 47). Требуется найти расстояние от точки Аналитическая геометрия на плоскости до прямой L.

Решение:

Расстояние d от точки Аналитическая геометрия на плоскости до прямой L равно модулю проекции вектора Аналитическая геометрия на плоскости, где Аналитическая геометрия на плоскости — произвольная точка прямой L, на направление нормального вектора Аналитическая геометрия на плоскости. Следовательно,

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Так как точка Аналитическая геометрия на плоскостипринадлежит прямой L, то Аналитическая геометрия на плоскости, т. е. Аналитическая геометрия на плоскости. Поэтому

Аналитическая геометрия на плоскости

что и требовалось получить.
Пример:

Найти расстояние от точки Аналитическая геометрия на плоскостидо прямой Зх + 4у — 22 = 0.

Решение:

По формуле (10.13) получаем

Аналитическая геометрия на плоскости

Линии второго порядка на плоскости

Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат

Аналитическая геометрия на плоскости

Коэффициенты уравнения — действительные числа, но по крайней мере одно из чисел А, В или С отлично от нуля. Такие линии называются линиями (кривыми) второго порядка. Ниже будет установлено, что уравнение (11.1) определяет на плоскости окружность, эллипс, гиперболу или параболу. Прежде, чем переходить к этому утверждению, изучим свойства перечисленных кривых.

Окружность

Простейшей кривой второго порядка является окружность. Напомним, что окружностью радиуса R с центром в точке Аналитическая геометрия на плоскости называется множество всех точек М плоскости, удовлетворяющих условию Аналитическая геометрия на плоскости Пусть точка Аналитическая геометрия на плоскости в прямоугольной системе координат Оху имеет координаты Аналитическая геометрия на плоскости, а М(х ;у) — произвольная точка окружности (см. рис. 48).

Аналитическая геометрия на плоскости

Тогда из условия Аналитическая геометрия на плоскости получаем уравнение

Аналитическая геометрия на плоскости

то есть

Аналитическая геометрия на плоскости

Уравнению (11.2) удовлетворяют координаты любой точки

М(х;у) данной окружности и не удовлетворяют координаты никакой точки, не лежащей на окружности.

Уравнение (11.2) называется каноническим уравнением окружности. В частности, полагая Аналитическая геометрия на плоскости, получим уравнение окружности с центром в начале координат Аналитическая геометрия на плоскости.

Уравнение окружности (11.2) после несложных преобразований примет вид Аналитическая геометрия на плоскости. При сравнении этого уравнения с общим уравнением (11.1) кривой второго порядка легко заметить, что для уравнения окружности выполнены два условия:

  1. коэффициенты при Аналитическая геометрия на плоскости равны между собой;
  2. отсутствует член, содержащий произведение ху текущих координат.

Рассмотрим обратную задачу. Положив в уравнении (11.1) значения Аналитическая геометрия на плоскости, получим

Аналитическая геометрия на плоскости

Преобразуем это уравнение:

Аналитическая геометрия на плоскости

т.е.

Аналитическая геометрия на плоскости

т.е.

Аналитическая геометрия на плоскости

Отсюда следует, что уравнение (11.3) определяет окружность при условии Аналитическая геометрия на плоскости Ее центр находится в точке Аналитическая геометрия на плоскости, радиус

Аналитическая геометрия на плоскости

Если же Аналитическая геометрия на плоскости то уравнение (11-3) имеет вид

Аналитическая геометрия на плоскости

Ему удовлетворяют координаты единственной точки Аналитическая геометрия на плоскости. В этом случав говорят: «окружность выродилась в точку» (имеет нулевой радиус).

Если Аналитическая геометрия на плоскости, то уравнение (11-4), а следовательно, и равносильное уравнение (11.3), не определяет никакой линии, так как правая часть уравнения (11.4) отрицательна, а левая часть — не отрицательна (говорят: «окружность мнимая»).

Эллипс

Каноническое уравнение эллипса

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Обозначим фокусы через Аналитическая геометрия на плоскости, расстояние между ними через , а сумму расстояний от произвольной точки эллипса до фокусов — через (см. рис. 49). По определению 2а > 2с, т. е. а > с.

Аналитическая геометрия на плоскости

Для вывода уравнения эллипса выберем систему координат Оху так, чтобы фокусы Аналитическая геометрия на плоскости лежали на оси Ох, а начало координат совпадало с серединой отрезка Аналитическая геометрия на плоскости. Тогда фокусы будут иметь следующие координаты: Аналитическая геометрия на плоскости.

Пусть М(х ;у) — произвольная точка эллипса. Тогда, согласно определению эллипса, Аналитическая геометрия на плоскости, т. е.

Аналитическая геометрия на плоскости

Это, по сути, и есть уравнение эллипса.

Преобразуем уравнение (11.5) к более простому виду следующим образом:

Аналитическая геометрия на плоскости

Так как а > с, то Аналитическая геометрия на плоскости. Положим

Аналитическая геометрия на плоскости

Тогда последнее уравнение примет вид Аналитическая геометрия на плоскости или

Аналитическая геометрия на плоскости

Можно доказать, что уравнение (11.7) равносильно исходному уравнению. Оно называется каноническим уравнением эллипса.

Эллипс — кривая второго порядка.

Исследование формы эллипса по его уравнению

Установим форму эллипса, пользуясь его каноническим уравнением. 1. Уравнение (11.7) содержит х и у только в четных степенях, поэтому если точка (х; у) принадлежит эллипсу, то ему также принадлежат точки Аналитическая геометрия на плоскости. Отсюда следует, что эллипс симметричен относительно осей Ох и Оу, а также относительно точки 0(0; 0), которую называют центром эллипса.

2.Найдем точки пересечения эллипса с осями координат. Положив у = 0, находим две точки Аналитическая геометрия на плоскости, в которых ось Ох пересекает эллипс (см. рис. 50). Положив в уравнении (11.7) х = 0, находим точки пересечения эллипса с осью Оу: Аналитическая геометрия на плоскости. Точки Аналитическая геометрия на плоскости называются вершинами эллипса. Отрезки Аналитическая геометрия на плоскости и

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости, а также их длины и 2b называются соответственно большой и малой осями эллипса. Числа а и b называются соответственно большой и малой полуосями эллипса.

3. Из уравнения (11.7) следует, что каждое слагаемое в левой части не превосходит единицы, т. е. имеют место неравенства Аналитическая геометрия на плоскостиили Аналитическая геометрия на плоскости. Следовательно, все точки эллипса лежат внутри прямоугольника, образованного прямыми Аналитическая геометрия на плоскости

4. В уравнении (11.7) сумма неотрицательных слагаемых Аналитическая геометрия на плоскости равна единице. Следовательно, при возрастании одного слагаемого другое будет уменьшаться, т. е. если |х| возрастает, то |у| уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму, изображенную на рис. 50 (овальная замкнутая кривая).

Дополнительные сведения об эллипсе

Форма эллипса зависит от отношения Аналитическая геометрия на плоскости. При b = а эллипс превращается в окружность, уравнение эллипса (11.7) принимает вид Аналитическая геометрия на плоскости. В качестве характеристики формы эллипса чаще пользуются отношением Аналитическая геометрия на плоскости.

Отношение Аналитическая геометрия на плоскости половины расстояния между фокусами к большой полуоси эллипса называется эксцентриситетом эллипса и обозначается буквой Аналитическая геометрия на плоскости («эпсилон»):

Аналитическая геометрия на плоскости

причем Аналитическая геометрия на плоскости, так как 0 < с < а. С учетом равенства (11.6) формулу (11.8) можно переписать в виде

Аналитическая геометрия на плоскости

т. е.

Аналитическая геометрия на плоскости

Отсюда видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным; если положить Аналитическая геометрия на плоскости, то эллипс превращается в окружность.

Пусть М(х , у) — произвольная точка эллипса с фокусами Аналитическая геометрия на плоскости (см. рис. 51). Длины отрезков Аналитическая геометрия на плоскости называются фокальными радиусами точки М. Очевидно,

Аналитическая геометрия на плоскости

Имеют место формулы

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Прямые Аналитическая геометрия на плоскости называются директрисами эллипса. Значение директрисы эллипса выявляется следующим утверждением.

Теорема:

Если r — расстояние от произвольной точки эллипса до какого-нибудь фокуса, d — расстояние от этой же точки до соответствующей этому фокусу директрисы, то отношение Аналитическая геометрия на плоскостиесть постоянная величина, равная эксцентриситету эллипса: Аналитическая геометрия на плоскости.

Аналитическая геометрия на плоскости

Из равенства (11.6) следует, что а > b. Если же а < b, то уравнение (11.7) определяет эллипс, большая ось которого 2b лежит на оси Оу, а малая ось — на оси Ох (см. рис. 52). Фокусы такого эллипса находятся в точках Аналитическая геометрия на плоскости, где Аналитическая геометрия на плоскости.

Гипербола

Каноническое уравнение гиперболы

Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Аналитическая геометрия на плоскости

Обозначим фокусы через Аналитическая геометрия на плоскости, расстояние между ними через , а модуль разности расстояний от каждой точки гиперболы до фокусов через . По определению 2а < 2с, т. е. а < с.

Для вывода уравнения гиперболы выберем систему координат Оху так, чтобы фокусы Аналитическая геометрия на плоскости лежали на оси Ох, а начало координат совпало с серединой отрезка Аналитическая геометрия на плоскости (см. рис. 53). Тогда фокусы будут иметь координаты Аналитическая геометрия на плоскости

Пусть М(х; у) — произвольная точка гиперболы. Тогда согласно определению гиперболы Аналитическая геометрия на плоскости или Аналитическая геометрия на плоскости т. е. Аналитическая геометрия на плоскости. После упрощений, как это было сделано при выводе уравнения эллипса, получим каноническое уравнение гиперболы

Аналитическая геометрия на плоскости

где

Аналитическая геометрия на плоскости

Гипербола есть линия второго порядка.

Исследование формы гиперболы по ее уравнению

Установим форму гиперболы, пользуясь ее каконическим уравнением. 1. Уравнение (11.9) содержит х и у только в четных степенях. Следовательно, гипербола симметрична относительно осей Ох и Оу, а также относительно точки 0(0;0), которую называют центром гиперболы.

2.Найдем точки пересечения гиперболы с осями координат. Положив у = 0 в уравнении (11.9), находим две точки пересечения гиперболы с осью Ox:Аналитическая геометрия на плоскости. Положив х = 0 в (11.9), получаем Аналитическая геометрия на плоскости, чего быть не может. Следовательно, гипербола ось Оу не пересекает.

Точки Аналитическая геометрия на плоскости называются вершинами гиперболы, а отрезок Аналитическая геометрия на плоскостидействительной осью, отрезок Аналитическая геометрия на плоскостидействительной полуосью гиперболы.

Отрезок Аналитическая геометрия на плоскости, соединяющий точки Аналитическая геометрия на плоскости называется мнимой осью, число bмнимой полуосью. Прямоугольник со сторонами 2а и 2b называется основным прямоугольником гиперболы.

3.Из уравнения (11.9) следует, что уменьшаемое Аналитическая геометрия на плоскости не меньше eдиницы, т. е. что Аналитическая геометрия на плоскости. Это означает, что точки гиперболы расположены справа от прямой х = а (правая ветвь гиперболы) и слева от прямой х = -а (левая ветвь гиперболы).

Аналитическая геометрия на плоскости

4. Из уравнения (11.9) гиперболы видно, что когда |x| возрастает, то и |y| возрастает. Это следует из того, что разность Аналитическая геометрия на плоскости сохраняет постоянное значение, равное единице.

Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).

Асимптоты гиперболы

Прямая L называется асимптотой неограниченной кривой К, если расстояние d от точки М кривой К до этой прямой стремится к нулю при неограниченном удалении точки М вдоль кривой К от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой К.

Покажем, что гипербола Аналитическая геометрия на плоскости имеет две асимптоты:

Аналитическая геометрия на плоскости

Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти.

Возьмем на прямой Аналитическая геометрия на плоскости точку N имеющей ту же абсциссу х, что и точка М(х ;у) на гиперболе Аналитическая геометрия на плоскости (см. рис. 56), и найдем разность MN между ординатами прямой и ветви гиперболы:

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель — есть постоянная величина. Стало быть, длина отрезка MN стремится к нулю. Так как МN больше расстояния d от точки М до прямой, то d и подавно стремится к нулю. Итак, прямые Аналитическая геометрия на плоскостиявляется асимптотами гиперболы (11.9).

Аналитическая геометрия на плоскости

При построении гиперболы (11.9) целесообразно сначала построить основной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, — асимптоты гиперболы и отметить вершиныАналитическая геометрия на плоскости гиперболы.

Уравнение равносторонней гиперболы, асимптотами которой служат оси координат

Гипербола (11.9) называется равносторонней, если ее полуоси равны (а = b ). Ее каноническое уравнение

Аналитическая геометрия на плоскости

Асимптоты равносторонней гиперболы имеют уравнения у = х и у = -х и, следовательно, являются биссектрисами координатных углов. Рассмотрим уравнение этой гиперболы в новой системе координат Аналитическая геометрия на плоскости (см. рис. 58), полученной из старой поворотом осей координат

на угол Аналитическая геометрия на плоскости . Используем формулы поворота осей координат (их вывод показан на с. 63):

Аналитическая геометрия на плоскости

Подставляем значения х и у в уравнение (11.12):

Аналитическая геометрия на плоскости

где Аналитическая геометрия на плоскости

Уравнение равносторонней гиперболы, для которой оси Ох и Оу являются асимптотами, будет иметь вид Аналитическая геометрия на плоскости.

Дополнительные сведения о гиперболе

Эксцентриситетом гиперболы (119) называется отношение расстояния между фокусами к величине действительной оси гиперболы, обозначаетсяАналитическая геометрия на плоскости:

Аналитическая геометрия на плоскости

Так как для гиперболы с > а, то эксцентриситет гиперболы больше единицы: Аналитическая геометрия на плоскости. Эксцентриситет характеризует форму гиперболы. Действительно, из равенства (11.10) следует, что Аналитическая геометрия на плоскости, т. е.

Аналитическая геометрия на плоскости

Отсюда видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение Аналитическая геометрия на плоскости ее полуосей, а значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет равносторонней гиперболы равен Аналитическая геометрия на плоскости. Действительно,

Аналитическая геометрия на плоскости

Фокальные радиусы Аналитическая геометрия на плоскости для точек правой ветви гиперболы имеют вид Аналитическая геометрия на плоскости, а для левой — Аналитическая геометрия на плоскости.

Прямые Аналитическая геометрия на плоскости называются директрисами гиперболы. Так как для гиперболы Аналитическая геометрия на плоскости. Это значит, что правая директриса расположена между центром и правой вершиной гиперболы, левая — между центром и левой вершиной.

Директрисы гиперболы имеют то же свойство Аналитическая геометрия на плоскости, что и директрисы эллипса.

Кривая, определяемая уравнением Аналитическая геометрия на плоскости, также есть гипербола, действительная ось 2b которой расположена на оси Оу, а мнимая ось — на оси Оx. На рисунке 59 она изображена пунктиром.

Аналитическая геометрия на плоскости

Очевидно, что гиперболы От Аналитическая геометрия на плоскости имеют общие асимптоты. Такие гиперболы называются сопряженными.

Парабола

Каноническое уравнение параболы

Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой. Расстояние от фокуса F до директрисы называется параметром параболы и обозначается через р (p > 0).

Для вывода уравнения параболы выберем систему координат Оху так, чтобы ось Ох проходила через фокус F перпендикулярно директрисе в направлении от директрисы к F, а начало координат О расположим посередине между фокусом и директрисой (см. рис. 60). В выбранной системе фокус F имеет координаты Аналитическая геометрия на плоскости, а уравнение директрисы имеет вид Аналитическая геометрия на плоскости, илиАналитическая геометрия на плоскости.

Пусть М(х;у) — произвольная точка параболы. Соединим точку М с F. Проведем отрезок MN перпендикулярно директрисе. Согласно определению параболы MF = MN. По формуле расстояния между двумя точками находим:

Аналитическая геометрия на плоскости

Следовательно,

Аналитическая геометрия на плоскости

Возведя обе части уравнения в квадрат, получим

Аналитическая геометрия на плоскости

т. е.

Аналитическая геометрия на плоскости

Уравнение (11.13) называется каноническим уравнением параболы. Парабола есть линия второго порядка.

Аналитическая геометрия на плоскости

Исследование форм параболы по ее уравнению

  1. В уравнении (11.13) переменная у входит в четной степени, значит, парабола симметрична относительно оси Ох; ось Ох является осью симметрии параболы.
  2. Так как р > 0, то из (11.13) следует, что Аналитическая геометрия на плоскости. Следовательно, парабола расположена справа от оси Оу.
  3. При х = 0 имеем у = 0. Следовательно, парабола проходит через начало координат.
  4. При неограниченном возрастании х модуль у также неограниченно возрастает. Парабола Аналитическая геометрия на плоскости имеет вид (форму), изображенный на рисунке 61. Точка 0(0; 0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.

Уравнения Аналитическая геометрия на плоскости также определяют параболы, они изображены на рисунке 62.

Аналитическая геометрия на плоскости

Нетрудно показать, что график квадратного трехчлена Аналитическая геометрия на плоскости, где Аналитическая геометрия на плоскости любые действительные числа, представляет собой параболу в смысле приведенного выше ее определения.

Общее уравнение линий второго порядка

Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям

Найдем сначала уравнение эллипса с центром в точке Аналитическая геометрия на плоскости оси симметрии которого параллельны координатным осям Ох и Оу и полуоси соответственно равны а и b. Поместим в центре эллипса Оу начало новой системы координат Аналитическая геометрия на плоскости, оси которой Аналитическая геометрия на плоскостипараллельны соответствующим осям Ох и Оу и одинаково с ними направленны (см. рис. 63).

В этой системе координат уравнение эллипса имеет вид

Аналитическая геометрия на плоскости

Так как Аналитическая геометрия на плоскости (формулы параллельного переноса, см. с. 62), то в старой системе координат уравнение эллипса запишется в виде

Аналитическая геометрия на плоскости

Аналогично рассуждая, получим уравнение гиперболы с центром в точке Аналитическая геометрия на плоскостии полуосями а и b (см. рис. 64):

Аналитическая геометрия на плоскости

И, наконец, параболы, изображенные на рисунке 65, имеют соответствующие уравнения.

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Аналитическая геометрия на плоскости

Уравнение Аналитическая геометрия на плоскости

Уравнения эллипса, гиперболы, параболы и уравнение окружности Аналитическая геометрия на плоскости после преобразований (раскрыть скобки, перенести все члены уравнения в одну сторону, привести подобные члены, ввести новые обозначения для коэффициентов) можно записать с помощью единого уравнения вида

Аналитическая геометрия на плоскости

где коэффициенты А и С не равны нулю одновременно.

Возникает вопрос: всякое ли уравнение вида (11.14) определяет одну из кривых (окружность, эллипс, гипербола, парабола) второго порядка? Ответ дает следующая теорема.

Теорема:

Уравнение (11.14) всегда определяет: либо окружность (при А = С), либо эллипс (при Аналитическая геометрия на плоскости), либо гиперболу (при Аналитическая геометрия на плоскости), либо параболу (при Аналитическая геометрия на плоскости). При этом возможны случаи вырождения: для эллипса (окружности) — в точку или мнимый эллипс (окружность), для гиперболы — в пару пересекающихся прямых, для параболы — в пару параллельных прямых.

Пример:

Установить вид кривой второго порядка, заданной уравнением Аналитическая геометрия на плоскости

Решение:

Предложенное уравнение определяет эллипс Аналитическая геометрия на плоскости. Действительно, проделаем следующие преобразования:

Аналитическая геометрия на плоскости

Получилось каноническое уравнение эллипса с центром в Аналитическая геометрия на плоскости и полуосями Аналитическая геометрия на плоскости

Пример:

Установить вид кривой второго порядка, заданной уравнением Аналитическая геометрия на плоскости

Решение:

Указанное уравнение определяет параболу (С = 0). Действительно,

Аналитическая геометрия на плоскости

Получилось каноническое уравнение параболы с вершиной в точке Аналитическая геометрия на плоскости

Пример:

Установить вид кривой второго порядка, заданной уравнением

Аналитическая геометрия на плоскости

Решение:

Преобразуем уравнение:

Аналитическая геометрия на плоскости

Это уравнение определяет две пересекающиеся прямые 2х + у + 6 = 0 и 2х-у-2 = 0.

Общее уравнение второго порядка

Рассмотрим теперь общее уравнение второй степени с двумя неизвестными:

Аналитическая геометрия на плоскости

Оно отличается от уравнения (11.14) наличием члена с произведением координат Аналитическая геометрия на плоскости. Можно, путем поворота координатных осей на угол а, преобразовать это уравнение, чтобы в нем член с произведением координат отсутствовал.

Используя формулы поворота осей (с. 63)

Аналитическая геометрия на плоскости

выразим старые координаты через новые:

Аналитическая геометрия на плоскости

Выберем угол а так, чтобы коэффициент при Аналитическая геометрия на плоскости обратился в нуль, т. е. чтобы выполнялось равенство

Аналитическая геометрия на плоскости

т. e.

Аналитическая геометрия на плоскости

т. e.

Аналитическая геометрия на плоскости

Отсюда

Аналитическая геометрия на плоскости

Таким образом, при повороте осей на угол а, удовлетворяющий условию (11.17), уравнение (11.15) сводится к уравнению (11.14).

Вывод: общее уравнение второго порядка (11.15) определяет на плоскости (если не считать случаев вырождения и распадения) следующие кривые: окружность, эллипс, гиперболу, параболу.

Замечание:

Если А = С, то уравнение (11.17) теряет смысл. В этом случае Аналитическая геометрия на плоскости (см. (11.16)), тогда Аналитическая геометрия на плоскости, т. е. Аналитическая геометрия на плоскости. Итак, при А = С систему координат следует повернуть на 45°.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Понравилась статья? Поделить с друзьями:
  • Как найти форум без регистрации
  • Трамадол как может найти
  • Как найти семью моего отца
  • Как на айфоне найти удаленные сообщения смс
  • Как найти плотность по формуле силы архимеда