Как найти координаты вектора если известен модуль

В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.

  • Нахождение координат вектора

  • Примеры задач

Нахождение координат вектора

Для того, чтобы найти координаты вектора AB, нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).

Вектор AB

Формулы для определения координат вектора

Для плоских задач AB = {Bx — Ax; By — Ay}
Для трехмерных задач AB = {Bx — Ax; By — Ay; Bz — Az}
Для n-мерных векторов AB = {B1 — A1; B2 — A2; … Bn — An}

Примеры задач

Задание 1
Найдем координаты вектора AB, если у его точек следующие координаты: A = (2; 8), B = (5; 12).

Решение:
AB = {5 – 2; 12 – 8} = {3; 4}.

Задание 2
Определим координаты точки B вектора AB = {6; 14}, если координаты точки A = (2; 5).

Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = ABx + Ax = 6 + 2 = 8.
By = ABy + Ay = 14 + 5 = 19.

Таким образом, B = (8; 19).

10.Разложение вектора по ортам.
Из прямоугольного параллелепипеда
(рис. 4.1) следует:

.

Но
,,,,
Следовательно,

(4.3)

Равенство (4.3) и есть формула разложения
вектора
по ортам координатных осей.

Таким образом, координатная запись
вектора может быть осуществлена двумя
способами
:

20.Модуль вектора. Векторявляется диагональю прямоугольного
параллелепипеда (рис. 4.1). Квадрат длины
диагонали равен сумме квадратов трех
его измерений:

,

отсюда следует:
,
и наконец, получаем искомую формулу:

(4.4)

Модуль вектора равен корню квадратному
из суммы квадратов его координат.

4.3. Линейные операции над векторами.

Сформулируем правила действийнад векторами в координатной форме.

.Координаты суммы (разности) векторов
равны суммам (разностям) соответствующих
координат этих векторов.

Пусть
тогда

(4.5)

При умножении вектора на скаляр его
координаты умножаются на этот скаляр.

Если
и– скалярная величина, то

(4.6)

Покажем применение рассмотренного в
этой главе материала к решению практической
задачи.

Задача 4.1. Даны векторы:

Найти: координаты и модуль вектора

Решение.Используем координатную
запись векторов и правила линейных
операций над ними:

Модуль вектора
вычислим по формуле (4.4):

Ответ.

4.4. Направляющие косинусы вектора

Определение
4.2.
Направляющими косинусами
ненулевого вектора называются косинусы
углов, которые этот вектор образуют с
осями координат
(рис. 4.2).

Выразим координаты вектора
через его модуль и углы:

С помощью данных равенств найдем
выражения направляющих косинусов через
координаты вектора
и его модуль:

(4.7)

Вычислим сумму квадратов направляющих
косинусов вектора
:

Полученный результат в векторной алгебре
сформулирован в виде следующего
утверждения:

Сумма квадратов направляющих
косинусов ненулевого вектора равна
единице
:

(4.8)

Задача 4.2.Определить направляющие
косинусы вектора
а также убедиться в справедливости
тождества
(4.8).

Решение.10. Определим координаты
и модуль вектора:

20. Вычислим направляющие косинусы
вектора

30. Проверим справедливость
тождества (4.8):

Ответ.

4.5. Координаты точки в пространстве. Вычисление координат вектора и его модуля по координатам его начала и конца.

Введем
понятие координат точки в пространстве
через понятие радиус-вектора.

Определение 4.3. Радиус-вектором
точки М называется вектор
с началом в начале координат и концом
в точке М, то есть вектор
(рис. 4.3).

В качестве координат точки М примем
координаты радиус-вектора.

Определение 4.4. Координатами
точки в пространстве называются
координаты ее радиус-вектора.

Координаты точки М (рис. 4.3) обозначаются
символом:,
или.
Таким образом,

Поставим задачу:найти координаты
и модуль вектора
,
если известны координаты его начала и
конца
:
(рис. 4.4).

Решение.Проведем в точкиАиВ радиус-векторыи,
выразим координаты векторачерез координаты векторови(см. определение 4.4), получим:

(4.9)

Координаты вектора равны соответствующим
разностям координат конца и начала
этого вектора.

Задача 4.3.Даны две точки:
Найти координаты, разложение по ортам
координатных осей, модуль и направляющие
косинусы вектора

Решение.Для определения координат
векторавоспользуемся
формулой (4.9):

По формуле (4.4) вычислим модуль вектора
:

Найдем направляющие косинусы вектора
:

Вычислим сумму квадратов направляющих
косинусов:

Ответ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #

    31.03.2015657.07 Кб9укр 1.docx

  • #
  • #
  • #
  • #
  • #
  • #

Нахождение координат вектора

В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.

Нахождение координат вектора

Для того, чтобы найти координаты вектора AB , нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).

Формулы для определения координат вектора

» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач AB = x — Ax; By — Ay>
Для трехмерных задач AB = x — Ax; By — Ay; Bz — Az>
Для n-мерных векторов AB = 1 — A1; B2 — A2; . Bn — An>

Примеры задач

Задание 1
Найдем координаты вектора AB , если у его точек следующие координаты: , .

Задание 2
Определим координаты точки B вектора , если координаты точки .

Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = AB x + Ax = 6 + 2 = 8.
By = AB y + Ay = 14 + 5 = 19.

Вектор. Скалярное произведение векторов. Угол между векторами.

Скалярным произведением (или внутренним произведением) 2 векторов есть операция с двумя

векторами, итогом чего является число (скаляр), которое не зависит от системы координат и которое

характеризует длины векторов-сомножителей и угол между векторами.

Также скалярным произведением двух векторов называется число, которое

равно произведению модулей 2 векторов на косинус угла между векторами.

Скалярное произведение векторов формула:

Этой операции соответствует умножение длины вектора x на проекцию вектора y на вектор x. Эта

операция зачастую рассматривается как коммутативная и линейная по каждому из сомножителей.

Скалярное произведение векторов ,, обозначается так: (порядок записи сомножителей не имеет

значения, т.е. ).

Еще используются такие обозначения: , , .

В основном имеется ввиду, что скалярное произведение определено положительно, т.е.

при каждом . Если этого не иметь ввиду, то произведение зовется индефинитным

(неопределенным).

Если хотя бы один из 2 векторов или равен нулевому вектору (равен нулю), то .

Свойства скалярного произведения векторов.

1. — симметричность.

2. обозначается и зовется скалярный квадрат.

3. Если , то

4. Если и и и , то . Обратное утверждение тоже соответствует

5.

6.

7.

Если же векторы и заданы своими координатами: , , то: скалярное

произведение векторов, формула:

Формула для определения длины вектора:

Длина (модуль) вектора, с известными координатами, равен квадратному корню из суммы квадратов

Длина вектора , заданного своими координатами, равна:

Как определить угол между 2 векторами:

Как найти угол между двумя векторами , , формула:

Ежели угол меж двумя векторами острый, то их скалярное произведение имеет положительный знак; если

же угол между двумя векторами тупой, то их скалярное произведение имеет отрицательный знак.

Скалярное произведение двух ненулевых векторов равно нулю, тогда и только тогда, когда эти векторы

ортогональны.

Альтернативное определение скалярного произведения векторов (вычисление скалярного

произведения двух векторов, заданных своими координатами).

Вычислить координаты вектора, если заданы координаты его начала и его конца очень просто. Давайте

рассмотрим этот вопрос:

Пусть есть вектор AB, точка А – это начало вектора, а В — конец, и координаты этих точек приведены ниже:

Исходя из этого, координаты вектора АВ:

Точно так же и в двухмерном пространстве – разница в отсутствии третьих координат.

Итак, предположим, даны два вектора, которые заданы набором координат своих точек:

а) В двухмерном пространстве (плоскость):

Значит, скалярное произведение этих векторов вычислим по формуле:

б) В трехмерном пространстве:

Как и в двухмерном случае, скалярное произведение двух векторов вычисляем по формуле:

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

То есть A + C + D = 0.

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» :-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

источники:

http://www.calc.ru/Vektor-Skalyarnoye-Proizvedeniye-Vektorov-Ugol-Mezhdu-Vektor.html

http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/

Содержание:

  • Формула
  • Примеры вычисления модуля вектора

Формула

Чтобы найти модуль вектора, заданного своими координатами, нужно найти его длину, то есть извлечь корень из суммы
квадратов его координат. Если вектор задан на плоскости и имеет координаты $bar{a}=left(a_{x} ; a_{y}right)$, то его модуль вычисляется по формуле

$$|bar{a}|=sqrt{a_{x}^{2}+a_{y}^{2}}$$

То есть модуль вектора равен корню квадратному из суммы квадратов координат.

Если вектор задан в пространстве координатами
, то его модуль вычисляется по формуле

$$bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$$

Примеры вычисления модуля вектора

Пример

Задание. Найти модуль вектора $bar{a}=(-1 ; 1)$

Решение. Для нахождения модуля вектора, заданного на плоскости воспользуемся формулой:

$$|bar{a}|=sqrt{a_{x}^{2}+a_{y}^{2}}$$

Подставляя в неё координаты заданного вектора, будем иметь:

$$|bar{a}|=sqrt{(-1)^{2}+1^{2}}=sqrt{1+1}=sqrt{2}$$

Ответ. $|bar{a}|=sqrt{2}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. В пространстве заданны точки
$A(2 ;-4 ; 1)$ и $B(-2 ; 0 ; 3)$. Найти модуль вектора
$overline{A B}$

Решение. Найдем координаты вектора $overline{A B}$. Для этого из координат конца
(точки $B$ ) вычтем соответствующие координаты начала (точки
$A$ ):

$$overline{A B}=(-2-2 ; 0-(-4) ; 3-1)=(-4 ; 4 ; 2)$$

Далее для нахождения модуля вектора $overline{A B}$ воспользуемся формулой:

$|overline{a}|=sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$

Подставляя координаты вектора $overline{A B}$, получим:

$$|overrightarrow{A B}|=sqrt{(-4)^{2}+4^{2}+2^{2}}=sqrt{16+16+4}=sqrt{36}=6$$

Ответ. $|overrightarrow{A B}|=6$

Читать дальше: как найти координаты вектора.

Основное соотношение.Чтобы найти координаты вектора AB, зная координаты его начальной точек А и конечной точки В, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.

Вектор по двум точкам

Формулы определения координат вектора заданного координатами его начальной и конечной точки

Формула определения координат вектора для плоских задач

В случае плоской задачи вектор AB заданный координатами точек A(Ax ; Ay) и B(Bx ; By) можно найти воспользовавшись следующей формулой

AB = {Bx — Ax ; By — Ay}

Формула определения координат вектора для пространственных задач

В случае пространственной задачи вектор AB заданный координатами точек A(Ax ; Ay ; Az) и B(Bx ; By ; Bz) можно найти воспользовавшись следующей формулой

AB = {Bx — Ax ; By — Ay ; Bz — Az}

Формула определения координат вектора для n -мерного пространства

В случае n-мерного пространства вектор AB заданный координатами точек A(A1 ; A2 ; … ; An) и B(B1 ; B2 ; … ; Bn) можно найти воспользовавшись следующей формулой

AB = {B1 — A1 ; B2 — A2 ; … ; Bn — An}

Примеры задач связанных с определением координат вектора по двум точкам

Примеры для плоских задач

Пример 1. Найти координаты вектора AB, если A(1; 4), B(3; 1).

Решение: AB = {3 — 1; 1 — 4} = {2; -3}.

Пример 2. Найти координаты точки B вектора AB = {5; 1}, если координаты точки A(3; -4).

Решение:

ABx = Bx — Ax   =>   Bx = ABx + Ax   =>   Bx = 5 + 3 = 8
ABy = By — Ay   =>   By = ABy + Ay   =>   By = 1 + (-4) = -3

Ответ: B(8; -3).

Пример 3. Найти координаты точки A вектора AB = {5; 1}, если координаты точки B(3; -4).

Решение:

ABx = Bx — Ax   =>   Ax = Bx — ABx   =>   Ax = 3 — 5 = -2
ABy = By — Ay   =>   Ay = By — ABy   =>   Ay = -4 — 1 = -5

Ответ: A(-2; -5).

Примеры для пространственных задач

Пример 4. Найти координаты вектора AB, если A(1; 4; 5), B(3; 1; 1).

Решение: AB = {3 — 1; 1 — 4; 1 — 5} = {2; -3; -4}.

Пример 5. Найти координаты точки B вектора AB = {5; 1; 2}, если координаты точки A(3; -4; 3).

Решение:

ABx = Bx — Ax   =>   Bx = ABx + Ax   =>   Bx = 5 + 3 = 8
ABy = By — Ay   =>   By = ABy + Ay   =>   By = 1 + (-4) = -3
ABz = Bz — Az   =>   Bz = ABz + Az   =>   Bz = 2 + 3 = 5

Ответ: B(8; -3; 5).

Пример 6. Найти координаты точки A вектора AB = {5; 1; 4}, если координаты точки B(3; -4; 1).

Решение:

ABx = Bx — Ax   =>   Ax = Bx — ABx   =>   Ax = 3 — 5 = -2
ABy = By — Ay   =>   Ay = By — ABy   =>   Ay = -4 — 1 = -5
ABz = Bz — Az   =>   Az = Bz — ABz   =>   Az = 1 — 4 = -3

Ответ: A(-2; -5; -3).

Примеры для n -мерного пространства

Пример 7. Найти координаты вектора AB, если A(1; 4; 5; 5; -3), B(3; 0; 1; -2; 5).

Решение: AB = {3 — 1; 0 — 4; 1 — 5; -2 — 5; 5 — (-3)} = {2; -4; -4; -7; 8}.

Пример 8. Найти координаты точки B вектора AB = {5; 1; 2; 1}, если координаты точки A(3; -4; 3; 2).

Решение:

AB1 = B1 — A1   =>   B1 = AB1 + A1   =>   B1 = 5 + 3 = 8
AB2 = B2 — A2   =>   B2 = AB2 + A2   =>   B2 = 1 + (-4) = -3
AB3 = B3 — A3   =>   B3 = AB3 + A3   =>   B3 = 2 + 3 = 5
AB4 = B4 — A4   =>   B4 = AB4 + A4   =>   B4 = 1 + 2 = 3

Ответ: B(8; -3; 5; 3).

Пример 9. Найти координаты точки A вектора AB = {5; 1; 4; 5}, если координаты точки B(3; -4; 1; 8).

Решение:

AB1 = B1 — A1   =>   A1 = B1 — AB1   =>   A1 = 3 — 5 = -2
AB2 = B2 — A2   =>   A2 = B2 — AB2   =>   A2 = -4 — 1 = -5
AB3 = B3 — A3   =>   A3 = B3 — AB3   =>   A3 = 1 — 4 = -3
AB4 = B4 — A4   =>   A4 = B4 — AB4   =>   A4 = 8 — 5 = 3

Ответ: A(-2; -5; -3; 3).

Понравилась статья? Поделить с друзьями:
  • Ошибка р0504 гранта 8 клапанная как исправить
  • Скайрим каирн душ жнец как найти
  • Найти предка вов как воевавшего
  • Древние сосуды horizon zero dawn как найти
  • Как найти линейную скорость формулы