1.5.1. Как найти вектор по двум точкам?
Задача 1
Даны две точки плоскости и . Найти координаты вектора
Решение: по соответствующей формуле:
Как вариант, можно использовать следующую запись:
Эстеты решат и так:
Лично я привык к первой версии записи.
Ответ:
По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения
важного момента, не поленюсь:
И момент здесь таков:
в чём различие между координатами точек и координатами векторов?
Координаты точек – это обычные координаты в прямоугольной системе координат (единичные векторы тут
вообще ни при чём). Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает
строгим местом на плоскости, и перемещать их куда-либо нельзя.
Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании мы легко можем переобозначить
его через и отложить от какой-нибудь другой точки
плоскости. Следует отметить, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис,
в данном случае ортонормированный базис плоскости .
Записи координат точек и координат
вектора формально одинаковы, но смысл
координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и
для пространства.
Дамы и господа, набиваем руку:
Задача 2
а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .
Пожалуй, достаточно…. Не пропускаем! Решаем письменно и «от руки»! Чертежи делать не нужно (коль скоро, не требовалось).
Решения и ответы в конце книги.
Для проверки вычислений удобно использовать Геометрический калькулятор, приложенные к данному
курсу. Дабы избежать нелепых ошибок а-ля «2 + 2 = 5». А подобные «затмения» бывают. Даже у профессоров. Отвлёкся – и
студентка сбежала
1.5.2. Как найти длину отрезка?
1.4. Координаты вектора на плоскости и в пространстве
| Оглавление |
Автор: Aлeксaндр Eмeлин
Координаты вектора по двум точкам
Чтобы найти координаты вектора по двум точкам нужно найти разность между координатами конца и начала вектора. Пусть даны две точки $ A(x_1;y_1) $ и $ B(x_2;y_2) $Вектор $ overline{AB} $ для плоской задачи можно найти по формуле: $$ overline{AB} = (x_2-x_1; y_2-y_1) $$
В случае, если точки расположены в пространстве $ A(x_1;y_1;z_1) $ и $ B(x_2;y_2;z_2) $, то координаты вектора $ overline{AB} $ расчитываются по формуле: $$ overline{AB} = (x_2-x_1; y_2-y_1; z_2-z_1) $$
Следует обратить внимание, что координаты вычисляются именно с помощью вычитания начальной точки из конечной, но не наоборот. То есть векторы $ overline{AB} $ и $ overline{BA} $ имеют разные координаты: $$ overline{AB} neq overline{BA} $$
Пример 1 |
Даны точки $ A(2;1;-3) $ и $ B(1;0;2) $. Найти координаты векторов $ overline{AB} $ и $ overline{BA} $ |
Решение |
Как найти координаты вектора по двум точкам? Согласну правилу нужно из конечной точки вычесть начальную. Так как вектор $ overline{AB} $ имеет начало в точке $ A $, а конец в $ B $, то получаем: $$ overline{AB} = (1-2;0-1;2-(-3)) = (-1; -1; 5) $$ Теперь посмотрим на вектор $ overline{BA} $, в котором начало в точке $ B $, а конец в $ A $. Поэтому имеем: $$ overline{BA} = (2-1;1-0;-3-2)=(1;1;-5) $$ Как видим, векторые разные, и координаты их тоже отличаются. Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ overline{AB} = (-1;-1;5) $$ $$ overline{BA} = (1;1;-5) $$ |
Марина Николаевна Ковальчук
Эксперт по предмету «Геометрия»
Задать вопрос автору статьи
Прямоугольная система координат
Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.
Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)
Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ
Координаты точки
Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).
Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ
Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).
Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ
«Координаты точки и координаты вектора. Как найти координаты вектора» 👇
Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.
Пример 1
Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.
Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ
Решение.
Точка $O$ начало координат, следовательно, $O=(0,0,0)$.
Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит
$Q=(2,0,0)$, $N=(0,0,1.5)$, $R=(0,2.5,0)$
Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит
$S=(2,0,1.5)$, $L=(2,2.5,0)$, $R=(0,2.5,1.5)$
Точка $P$ имеет координаты $P=(2,2.5,1.5)$
Координаты вектора по двум точкам и формула нахождения
Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $overline{i}$, по направлению оси $Oy$ — единичный вектор $overline{j}$, а единичный вектор $overline{k}$ нужно направлять по оси $Oz$.
Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).
Теорема 1
Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.
Математически это выглядит следующим образом:
$overline{δ}=moverline{α}+noverline{β}+loverline{γ}$
Так как векторы $overline{i}$, $overline{j}$ и $overline{k}$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $overline{δ}$ в этой системе координат, по теореме 1, может принимать следующий вид
$overline{δ}=moverline{i}+noverline{j}+loverline{k}$ (1)
где $n,m,l∈R$.
Определение 1
Три вектора $overline{i}$, $overline{j}$ и $overline{k}$ будут называться координатными векторами.
Определение 2
Коэффициенты перед векторами $overline{i}$, $overline{j}$ и $overline{k}$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть
$overline{δ}=(m,n,l)$
Линейные операции над векторами
Теорема 2
Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.
Доказательство.
Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $overline{α}=(α_1,α_2,α_3)$, $overline{β}=(β_1,β_2 ,β_3)$.
Эти вектора можно записать следующим образом
$overline{α}=α_1overline{i}+ α_2overline{j}+α_3overline{k}$, $overline{β}=β_1overline{i}+ β_2overline{j}+β_3overline{k}$
$overline{α}+overline{β}=α_1overline{i}+α_2overline{j}+α_3overline{k}+β_1overline{i}+ β_2overline{j}+β_3overline{k}=(α_1+β_1 )overline{i}+(α_2+β_2 )overline{j}+(α_3+β_3)overline{k}$
Следовательно
$overline{α}+overline{β}=(α_1+β_1,α_2+β_2,α_3+β_3)$
Теорема доказана.
Замечание 1
Замечание: Аналогично, находится решение разности нескольких векторов.
Теорема 3
Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.
Доказательство.
Возьмем $overline{α}=(α_1,α_2,α_3)$, тогда $overline{α}=α_1overline{i}+α_2overline{j}+α_3overline{k}$, а
$loverline{α}=l(α_1overline{i}+ α_2overline{j}+α_3overline{k})=lα_1overline{i}+ lα_2overline{j}+lα_3overline{k}$
Значит
$koverline{α}=(lα_1,lα_2,lα_3)$
Теорема доказана.
Пример 2
Пусть $overline{α}=(3,0,4)$, $overline{β}=(2,-1,1)$. Найти $overline{α}+overline{β}$, $overline{α}-overline{β}$ и $3overline{α}$.
Решение.
$overline{α}+overline{β}=(3+2,0+(-1),4+1)=(5,-1,5)$
$overline{α}-overline{β}=(3-2,0-(-1),4-1)=(1,1,3)$
$3overline{α}=(3cdot 3,3cdot 0,3cdot 4)=(9,0,12)$
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Простейшие задачи Как найти вектор по двум точкам?
Если
даны две точки плоскости
и
,
то вектор
имеет
следующие координаты:
Если
даны две точки пространства
и
,
то вектор
имеет
следующие координаты:
То
есть, из
координат конца вектора нужно
вычесть соответствующие координаты начала
вектора.
Пример
Даны
две точки плоскости
и
.
Найти координаты вектора
Решение: по
соответствующей формуле:
Как
вариант, можно было использовать
следующую запись:
Можно
и так:
Обязательно
нужно понимать различие
между координатами точек и координатами
векторов:
Координаты
точек –
это обычные координаты в прямоугольной
системе координат. Каждая точка обладает
строгим местом на плоскости, и перемещать
их куда-либо нельзя.
Координаты
же вектора –
это его разложение по базису
,
в данном случае
.
Любой вектор является свободным, поэтому
при необходимости мы легко можем отложить
его от какой-нибудь другой точки
плоскости. Интересно, что для векторов
можно вообще не строить оси, прямоугольную
систему координат, нужен лишь базис, в
данном случае ортонормированный базис
плоскости
.
Записи
координат точек и координат векторов
вроде бы схожи:
,
а смысл
координат абсолютно разный,
и следует хорошо понимать эту разницу.
Пример
Даны
точки
.
Найти векторы
.
Как найти длину отрезка?
Если
даны две точки плоскости
и
,
то длину отрезка
можно
вычислить по формуле
Если
даны две точки пространства
и
,
то длину отрезка
можно
вычислить по формуле
Примечание: Формулы
останутся корректными, если переставить
местами соответствующие координаты:
и
,
но более стандартен первый вариант
Пример
Даны
точки
и
.
Найти длину отрезка
.
Ответ:
Если
дан вектор плоскости
,
то его длина вычисляется по формуле
.
Если
дан вектор пространства
,
то его длина вычисляется по формуле
.
Пример
Даны
точки
и
.
Найти длину вектора
.
Решение: Сначала
найдём вектор
:
По
формуле
вычислим
длину вектора:
Ответ:
Пример
а)
Даны точки
и
.
Найти длину вектора
.
б)
Даны векторы
,
,
и
.
Найти их длины.
а) Решение: найдём
вектор
:
Вычислим
длину вектора:
Ответ:
б) Решение:
Вычислим
длины векторов:
Действия с векторами в координатах
1) Правило
сложения векторов.
Рассмотрим два вектора плоскости
и
.
Для того, чтобы сложить векторы,
необходимо сложить
их соответствующие координаты:
.
Частный
случай – формула разности векторов:
.
Аналогичное
правило справедливо для суммы любого
количества векторов, например, найдём
сумму трёх векторов:
Если
речь идёт о векторах в пространстве, то
всё точно так же, только добавится
дополнительная координата. Если даны
векторы
,
то их суммой является вектор
.
2) Правило
умножения вектора на число.
Для того чтобы вектор
умножить
на число
,
необходимо каждую координату данного
вектора умножить на число
:
.
Для
пространственного вектора
правило
такое же:
Пример
Даны
векторы
и
.
Найти
и
Решение: Для
действий с векторами справедлив обычный
алгебраический приоритет: сначала
умножаем, потом складываем:
Ответ:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Онлайн калькулятор. Координаты вектора по двум точкам.
Этот онлайн калькулятор позволит вам очень просто найти значение координат вектора по двум точкам (зная его начальную и конечную точку) для плоских и пространственных задач.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на определение координат вектора по двум точкам и закрепить пройденый материал.
Калькулятор для вычисления координат вектора по двум точкам
Инструкция использования калькулятора для вычисления координат вектора по двум точкам
Ввод даных в калькулятор для вычисления координат вектора по двум точкам
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления координат вектора по двум точкам
- Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.
Теория. Координаты вектора по двум точкам
Например, вектор AB , заданный в пространстве координатами точек A(A x , A y , A z ) и B(B x , B y , B z ) можно найти использовав формулу:
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Нахождение координат вектора через координаты точек
Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .
Векторы i → и j → называют координатными векторами.
Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.
Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; — 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .
Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .
Таким образом, координаты равных векторов соответственно равны.
Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.
Изобразим координатную ось.
Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → — O A → .
O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .
По правилу операций над векторами найдем A B → = O B → — O A → = x b — x a , y b — y a .
Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.
Для нахождения координат вектора, необходимо найти разность его точек конца и начала.
Найти координаты O A → и A B → при значении координат точек A ( 2 , — 3 ) , B ( — 4 , — 1 ) .
Для начала определяется радиус-вектор точки A . O A → = ( 2 , — 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.
Получаем: A B → = ( — 4 — 2 , — 1 — ( — 3 ) ) = ( — 6 , 2 ) .
Ответ: O A → = ( 2 , — 3 ) , A B → = ( — 6 , — 2 ) .
Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , — 2 ) . Найти координаты конца A B → .
Подставляем координаты точки A : A B → = ( x b — 3 , y b — 5 , z b — 7 ) .
По условию известно, что A B → = ( 2 , 0 , — 2 ) .
Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b — 3 = 2 y b — 5 = 0 z b — 7 = — 2
Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5
Ответ: B ( 5 , 5 , 5 ) .
Нахождение координат вектора
В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.
Нахождение координат вектора
Для того, чтобы найти координаты вектора AB , нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).
Формулы для определения координат вектора
» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
Для плоских задач | AB = x — Ax; By — Ay> |
Для трехмерных задач | AB = x — Ax; By — Ay; Bz — Az> |
Для n-мерных векторов | AB = 1 — A1; B2 — A2; . Bn — An> |
Примеры задач
Задание 1
Найдем координаты вектора AB , если у его точек следующие координаты: , .
Задание 2
Определим координаты точки B вектора , если координаты точки .
Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = AB x + Ax = 6 + 2 = 8.
By = AB y + Ay = 14 + 5 = 19.
http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie_kordinat_vectora/