Как найти координаты вектора перпендикулярного плоскости



5.2.3. Вектор нормали плоскости (нормальный вектор)

Вектор нормали плоскости – это вектор, который перпендикулярен данной плоскости. Очевидно, что у любой плоскости бесконечно много нормальных векторов.

Но для решения задач нам будет хватать и одного: если плоскость задана общим уравнением  в прямоугольной (!) системе координат, то вектор  является нормальным вектором данной плоскости.

Просто до безобразия! – всё, что нужно сделать – это «снять» коэффициенты из уравнения плоскости. И чтобы хоть как-то усложнить практику рассмотрим тоже простую, но очень важную задачу, которая часто встречается, причём, не только в геометрии:

Задача 134

Найти единичный нормальный вектор плоскости .

Решение: принципиально ситуация выглядит так:

Сначала из уравнения плоскости «снимем» вектор нормали: .

И эту задачку мы уже решали: для того чтобы найти единичный вектор , нужно каждую координату вектора  разделить на длину вектора .

Вычислим длину вектора нормали:

Таким образом:

Контроль:, ОК

Ответ:

Вспоминаем, что координаты этого вектора  – есть в точности направляющие косинусы вектора : .

И, как говорится, обещанного три страницы ждут :)   – вернёмся к Задаче 130, чтобы выполнить её проверку. Напоминаю, что там требовалось построить уравнение плоскости по точке  и двум векторам , и в результате решения мы получили уравнение .

Проверяем:

Во-первых, подставим координаты точки  в полученное уравнение:

 – получено верное равенство, значит, точка  лежит в данной плоскости.

На втором шаге из уравнения плоскости «снимаем» вектор нормали: . Поскольку векторы  параллельны плоскости, а вектор  ей перпендикулярен, то должны иметь место следующие факты: . Ортогональность векторов элементарно проверяется с помощью скалярного произведения:

Вывод: уравнение плоскости найдено правильно.

В ходе проверки я фактически процитировал следующее утверждение теории: вектор  параллелен плоскости  в том и только том случае, когда .

Итак, с «выуживанием» нормального вектора разобрались, теперь ответим на противоположный вопрос:

5.2.4. Как составить уравнение плоскости по точке и вектору нормали?

5.2.2. Как составить уравнение плоскости по трём точкам?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Метод координат в пространстве

30 мая 2011

Для того, чтобы использовать метод координат, надо хорошо знать формулы. Их три:

  1. Главная формула — косинус угла φ между векторами a = (x1; y1; z1) и b = (x2; y2; z2):

    Косинус угла между векторами

  2. Уравнение плоскости в трехмерном пространстве: Ax + By + Cz + D = 0, где A, B, C и D — действительные числа, причем, если плоскость проходит через начало координат, D = 0. А если не проходит, то D = 1.
  3. Вектор, перпендикулярный к плоскости Ax + By + Cz + D = 0, имеет координаты: n = (A; B; C).

На первый взгляд, выглядит угрожающе, но достаточно немного практики — и все будет работать великолепно.

Задача. Найти косинус угла между векторами a = (4; 3; 0) и b = (0; 12; 5).

Решение. Поскольку координаты векторов нам даны, подставляем их в первую формулу:

Косинус угла - пример вычисления

Задача. Составить уравнение плоскости, проходящей через точки M = (2; 0; 1), N = (0; 1; 1) и K = (2; 1; 0), если известно, что она не проходит через начало координат.

Решение. Общее уравнение плоскости: Ax + By + Cz + D = 0, но, поскольку искомая плоскость не проходит через начало координат — точку (0; 0; 0) — то положим D = 1. Поскольку эта плоскость проходит через точки M, N и K, то координаты этих точек должны обращать уравнение в верное числовое равенство.

Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;

Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;

Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:

Система уравнений

Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.

Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.

Решение. Используя третью формулу, получаем n = (7; − 2; 4) — вот и все!

Вычисление координат векторов

А что, если в задаче нет векторов — есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек — начала и конца вектора — можно вычислить координаты самого вектора.

Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.

Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:

Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.

Рассмотрим вектор AB: его начало находится в точке A, а конец — в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).

Аналогично, начало вектора AC — все та же точка A, зато конец — точка C. Поэтому имеем:
AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).

Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).

Ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)

Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!

Вычисление направляющих векторов для прямых

Если вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.

Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую…

Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый направляющий вектор для прямой:

Направляющие векторы для прямых

Зачем нужен этот вектор? Дело в том, что угол между двумя прямыми — это угол между их направляющими векторами. Таким образом, мы переходим от непонятных прямых к конкретным векторам, координаты которых легко считаются. Насколько легко? Взгляните на примеры:

Задача. В кубе ABCDA1B1C1D1 проведены прямые AC и BD1. Найдите координаты направляющих векторов этих прямых.

Отрезки в кубе

Поскольку длина ребер куба в условии не указана, положим AB = 1. Введем систему координат с началом в точке A и осями x, y, z, направленными вдоль прямых AB, AD и AA1 соответственно. Единичный отрезок равен AB = 1.

Теперь найдем координаты направляющего вектора для прямой AC. Нам потребуются две точки: A = (0; 0; 0) и C = (1; 1; 0). Отсюда получаем координаты вектора AC = (1 − 0; 1 − 0; 0 − 0) = (1; 1; 0) — это и есть направляющий вектор.

Теперь разберемся с прямой BD1. На ней также есть две точки: B = (1; 0; 0) и D1 = (0; 1; 1). Получаем направляющий вектор BD1 = (0 − 1; 1 − 0; 1 − 0) = (− 1; 1; 1).

Ответ: AC = (1; 1; 0); BD1 = (− 1; 1; 1)

Задача. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, проведены прямые AB1 и AC1. Найдите координаты направляющих векторов этих прямых.

Отрезки в треугольной призме

Введем систему координат: начало в точке A, ось x совпадает с AB, ось z совпадает с AA1, ось y образует с осью x плоскость OXY, которая совпадает с плоскостью ABC.

Для начала разберемся с прямой AB1. Тут все просто: у нас есть точки A = (0; 0; 0) и B1 = (1; 0; 1). Получаем направляющий вектор AB1 = (1 − 0; 0 − 0; 1 − 0) = (1; 0; 1).

Теперь найдем направляющий вектор для AC1. Все то же самое — единственное отличие в том, что у точки C1 иррациональные координаты. Итак, A = (0; 0; 0), поэтому имеем:

Точка с иррациональными координатами

Ответ: AB1 = (1; 0; 1);

Координаты вектора AC1

Небольшое, но очень важное замечание насчет последнего примера. Если начало вектора совпадает с началом координат, вычисления резко упрощаются: координаты вектора просто равны координатам конца. К сожалению, это верно лишь для векторов. Например, при работе с плоскостями присутствие на них начала координат только усложняет выкладки.

Вычисление нормальных векторов для плоскостей

Нормальные векторы — это не те векторы, у которых все в порядке, или которые чувствуют себя хорошо. По определению, нормальный вектор (нормаль) к плоскости — это вектор, перпендикулярный данной плоскости.

Другими словами, нормаль — это вектор, перпендикулярный любому вектору в данной плоскости. Наверняка вы встречали такое определение — правда, вместо векторов речь шла о прямых. Однако чуть выше было показано, что в задаче C2 можно оперировать любым удобным объектом — хоть прямой, хоть вектором.

Еще раз напомню, что всякая плоскость задается в пространстве уравнением Ax + By + Cz + D = 0, где A, B, C и D — некоторые коэффициенты. Не умаляя общности решения, можно полагать D = 1, если плоскость не проходит через начало координат, или D = 0, если все-таки проходит. В любом случае, координаты нормального вектора к этой плоскости равны n = (A; B; C).

Итак, плоскость тоже можно успешно заменить вектором — той самой нормалью. Всякая плоскость задается в пространстве тремя точками. Как найти уравнение плоскости (а следовательно — и нормали), мы уже обсуждали в самом начале статьи. Однако этот процесс у многих вызывает проблемы, поэтому приведу еще парочку примеров:

Задача. В кубе ABCDA1B1C1D1 проведено сечение A1BC1. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA1 соответственно.

Плоскость в кубе

Поскольку плоскость не проходит через начало координат, ее уравнение выглядит так: Ax + By + Cz + 1 = 0, т.е. коэффициент D = 1. Поскольку эта плоскость проходит через точки A1, B и C1, то координаты этих точек обращают уравнение плоскости в верное числовое равенство.

Подставим вместо x, y и z координаты точки A1 = (0; 0; 1). Имеем:
A · 0 + B · 0 + C · 1 + 1 = 0 ⇒ C + 1 = 0 ⇒ C = − 1;

Аналогично, для точек B = (1; 0; 0) и C1 = (1; 1; 1) получим уравнения:
A · 1 + B · 0 + C · 0 + 1 = 0 ⇒ A + 1 = 0 ⇒ A = − 1;
A · 1 + B · 1 + C · 1 + 1 = 0 ⇒ A + B + C + 1 = 0;

Но коэффициенты A = − 1 и C = − 1 нам уже известны, поэтому остается найти коэффициент B:
B = − 1 − A − C = − 1 + 1 + 1 = 1.

Получаем уравнение плоскости: − A + B − C + 1 = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; − 1).

Задача. В кубе ABCDA1B1C1D1 проведено сечение AA1C1C. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA1 соответственно.

Плоскость в кубе, содержащая начало координат

В данном случае плоскость проходит через начало координат, поэтому коэффициент D = 0, а уравнение плоскости выглядит так: Ax + By + Cz = 0. Поскольку плоскость проходит через точки A1 и C, координаты этих точек обращают уравнение плоскости в верное числовое равенство.

Подставим вместо x, y и z координаты точки A1 = (0; 0; 1). Имеем:
A · 0 + B · 0 + C · 1 = 0 ⇒ C = 0;

Аналогично, для точки C = (1; 1; 0) получим уравнение:
A · 1 + B · 1 + C · 0 = 0 ⇒ A + B = 0 ⇒ A = − B;

Положим B = 1. Тогда A = − B = − 1, и уравнение всей плоскости имеет вид: − A + B = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; 0).

Вообще говоря, в приведенных задачах надо составлять систему уравнений и решать ее. Получится три уравнения и три переменных, но во втором случае одна из них будет свободной, т.е. принимать произвольные значения. Именно поэтому мы вправе положить B = 1 — без ущерба для общности решения и правильности ответа.

Координаты середины отрезка

Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

Итак, пусть отрезок задан своими концами — точками A = (xa; ya; za) и B = (xb; yb; zb). Тогда координаты середины отрезка — обозначим ее точкой H — можно найти по формуле:

Координаты середины отрезка

Другими словами, координаты середины отрезка — это среднее арифметическое координат его концов.

Задача. Единичный куб ABCDA1B1C1D1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA1 соответственно, а начало координат совпадает с точкой A. Точка K — середина ребра A1B1. Найдите координаты этой точки.

Единичный куб и точка K

Поскольку точка K — середина отрезка A1B1, ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A1 = (0; 0; 1) и B1 = (1; 0; 1). Теперь найдем координаты точки K:

Координаты точки K

Задача. Единичный куб ABCDA1B1C1D1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A1B1C1D1.

Единичный куб и точка L

Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A1L = C1L, т.е. точка L — это середина отрезка A1C1. Но A1 = (0; 0; 1), C1 = (1; 1; 1), поэтому имеем:

Координаты точки L

Ответ: L = (0,5; 0,5; 1)

Смотрите также:

  1. Введение системы координат
  2. Четырехугольная пирамида в задаче C2
  3. В 2012 году ЕГЭ по математике станет двухуровневым?
  4. Сводный тест по задачам B12 (1 вариант)
  5. Симметрия корней и оптимизация ответов в тригонометрии
  6. ЕГЭ 2022, задание 6. Касательная и уравнение с параметром

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора:

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Сумма векторов:

Разность векторов:

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1.  В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2.  В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и :

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму.

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

Для точки M:

То есть A + C + D = 0.

Для точки N:

Аналогично для точки K:

Получили систему из трех уравнений:

.

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

;

.

Выразим C и B через A и подставим в третье уравнение:

.

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Упростим систему:

.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» :-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Итак, AA1 = √3

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор  или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

  

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Векторы в пространстве и метод координат» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Как найти нормальный вектор к плоскости

Нормальным вектором плоскости (или нормалью плоскости) называют вектор, перпендикулярный данной плоскости. Одним из способов задать плоскость является указание координат ее нормали и точки, лежащей на плоскости. Если плоскость задана уравнением Ax+By+Cz+D=0, то нормальным к ней является вектор с координатами (A;B;C). В других случаях для вычисления нормального вектора придется потрудиться.

Как найти нормальный вектор к плоскости

Инструкция

Пусть плоскость задана тремя принадлежащими ей точками K(xk;yk;zk), M(xm;ym;zm), P(xp;yp;zp). Чтобы найти нормальный вектор, составим уравнение этой плоскости. Обозначьте произвольную точку, лежащую на плоскости, буквой L, пусть у нее будут координаты (x;y;z). Теперь рассмотрите три вектора PK, PM и PL, они лежат на одной плоскости (компланарны), поэтому их смешанное произведение равно нулю.

Найдите координаты векторов PK, PM и PL:
PK = (xk-xp;yk-yp;zk-zp)
PM = (xm-xp;ym-yp;zm-zp)
PL = (x-xp;y-yp;z-zp)
Смешанное произведение этих векторов будет равно определителю, представленному на рисунке. Этот определитель следует вычислить, чтобы найти уравнение для плоскости. Вычисление смешанного произведения для конкретного случая смотрите в примере.

Пример
Пусть плоскость задана тремя точками K(2;1;-2), M(0;0;-1) и P(1;8;1). Требуется найти нормальный вектор плоскости.
Возьмите произвольную точку L с координатами (x;y;z). Вычислите векторы PK, PM и PL:
PK = (2-1;1-8;-2-1) = (1;-7;-3)
PM = (0-1;0-8;-1-1) = (-1;-8;-2)
PL = (x-1;y-8;z-1)
Составьте определитель для смешанного произведения векторов (он на рисунке).

Теперь разложите определитель по первой строке, а затем подсчитайте значения определителей размера 2 на 2.
Таким образом уравнение плоскости -10x + 5y — 15z — 15 = 0 или, что то же, -2x + y — 3z — 3 = 0. Отсюда легко определить вектор нормали к плоскости: n = (-2;1;-3).

Источники:

  • Уравнение плоскости, проходящей через три точки

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

6.2. Найти единичный вектор того же направления что и .

Единичный вектор
находится:
,
где– модуль вектора.

Находим

тогда

Ответ:
.

Примечание.
Координаты единичного вектора должны
быть не больше единицы.

6.3. Найти длину
и направляющие косинусы вектора
.
Сравните с ответом в предыдущем пункте.
Сделайте выводы.

Длина вектора –
это есть его модуль:

,
а направляющие косинусы мы можем найти
по формуле одного из способов задания
векторов:

Из полученного мы
видим, что направляющие косинусы это и
есть координаты единичного вектора.

Ответ:
,,,.

6.4. Найти
.

Необходимо выполнить
действия умножения вектора на число,
сложения и модуль.

Почленно перемножаем
координаты векторов на число.

Почленно складываем
координаты векторов.

Находим модуль
вектора.

Ответ:

6.5. Определить
координаты вектора
,
коллинеарного вектору,
зная, чтои он направлен в сторону, противоположную
вектору.

Вектор
коллинеарен вектору,
значит, его единичный вектор равен
единичному векторутолько со знаком минус, т.к. направлен
в противоположную сторону.

Единичный вектор
имеет длину равную 1, значит, если его
умножить на 5, то его длинна будет равна
пяти.

Находим

Ответ:

6.6. Вычислить
скалярные произведения
и.
Перпендикулярны ли векторыи,имежду собой?

Выполним скалярное
произведение векторов.

Если вектора
перпендикулярны, их скалярное произведение
равно нулю.

Мы
видим, что в нашем случае вектораиперпендикулярны.

Ответ:
,,
векторы не перпендикулярны.

Примечание.
Геометрический смысл скалярного
произведения малоприменим на практике,
но все-таки существует.

Результат такого
действия можно изобразить и вычислить
геометрически.

6.7. Найти работу,
совершённую материальной точкой к
которой приложена сила
,
при перемещении её из точки B в точку С.

Физический смысл
скалярного произведения – это работа.
Вектор силы здесь
,
вектор перемещения – это.
А произведение этих векторов и будет
искомой работой.

Находим работу

Ответ: -3.

6.8. Найти
внутренний угол при вершине
A
и внешний угол при вершине
C
треугольника
ABC.

Из определения,
скалярного произведения векторов
получим формулу нахождения угла:
.

Далее, нам нужно
определить вектора, между которыми
будем искать угол.

Внутренний
угол будем искать как угол между
векторами, выходящими из одной точки.

Для нахождения
внешнего угла нужно совмещать вектора,
таким образом, чтоб они выходили из
одной точки. Рисунок это поясняет.

Стоит заметить,
что
,
только имеют разные начальные координаты.

Находим необходимые
вектора и углы

Ответ: внутренний
угол при вершине А =
,
внешний угол при вершине В =.

Вспомним вектора-орты:
,,.

Проекция находится
также из скалярного произведения

–проекция b
на a.

Ранее полученные
нами вектора

,
,

Находим проекцию

Находим вторую
проекцию

Ответ:
,


Примечание.

Знак минуса при нахождении проекции
означает то, что проекция опускается
не на сам вектор, а в противоположную
сторону, на линию на которой лежит этот
вектор.

6.10. Вычислить
.

Выполним векторное
произведение векторов

Найдем модуль

Синус угла между
векторами найдём из определения
векторного произведения векторов

Ответ:
,,.

6.11. Найти площадь
треугольника
ABC
и длину высоты, опушенной из точки С.

Геометрический
смысл модуля векторного произведения
состоит в том, что это площадь
параллелограмма, образованного этими
векторами. А площадь треугольника равна
половине площади параллелограмма.

Площадь треугольника
также можно найти как произведение
высоты, на основание, делённое на два,
из этого можно вывести формулу нахождения
высоты.

Таким образом,
найдём высоту

Ответ:
,.

6.12. Найти
единичный вектор, перпендикулярный
векторам
и.

Результатом
скалярного произведения есть вектор,
который перпендикулярный двум исходным.
А единичный вектор – это вектор, делённый
на его длину.

Ранее, нами было
найдено:

,

Ответ:
.

6.13. Определить
величину и направляющие косинусы момента
силы
,
приложенной к А относительно точки С.

Физический смысл
векторного произведения – это момент
силы. Приведём иллюстрацию к данному
заданию.

Находим момент
силы

Ответ:
.

6.14. Лежат ли
векторы
,ив одной плоскости? Могут ли эти векторы
образовывать базис пространства? Почему?
Если могут, разложите по этому базису
вектор.

Чтобы проверить
лежат ли вектора в одной плоскости
необходимо выполнить смешанное
произведение этих векторов.

Смешанное
произведение не равно нулю, следовательно,
вектора не лежат в одной плоскости (не
компланарные) и могут образовывать
базис. Разложим
по этому базису.

Разложим по базису,
решив уравнение

Ответ: Векторы
,ине лежат в одной плоскости..

6.15. Найти
.
Чему равен объём пирамиды с вершинами
A, B, C, D и её высота, опущенная из точки A
на основание BCD.

Геометрический
смысл смешанного произведения в том,
что это объём параллелепипеда образованного
этими векторами.

Объём же пирамиды
в шесть раз меньше объёма параллелепипеда.

Объём пирамиды,
ещё можно найти так:

Получим формулу
нахождения высоты

Находим

Находим высоту

Ответ: объём = 2.5,
высота =.

6.16. Вычислить
и.

–над этим заданием
предлагаем вам подумать самим.

–выполним
произведение.

Ранее было получено

Ответ:
.

6.17. Вычислить

Выполним действия
по частям

1)

2)

3)

4)

5)

Суммируем полученные
значения

Ответ:
.

6.18. Найти вектор
,
зная, что он перпендикулярен векторами,
а его проекция на векторравна 5.

Разобьем данную
задачу на две подзадачи

1) Найдём вектор,
перпендикулярный векторам
ипроизвольной длинны.

Перпендикулярный
вектор мы получим в результате векторного
произведения

Ранее, нами было
найдено:

Искомый вектор
отличается лишь длинной, от полученного

2) Найдем
через уравнение

Ответ:

6. 19. Найти вектор
,
удовлетворяющий условиям,,.

Рассмотрим более
детально данные условия.

Это система линейных
уравнений. Составим и решим данную
систему.

Ответ:

6.20. Определить
координаты какого-либо вектора
,
компланарного с векторамии,
и перпендикулярного вектору.

В данном задании
два условия: компланарность векторов
и перпендикулярность, выполним сначала
первое условие, а потом второе.

1) Если вектора
компланарны, значит их смешанное
произведение равно нулю.

Отсюда
получим некоторую зависимость координат
вектора

Найдем вектор
.

2) Если вектора
перпендикулярны, значит их скалярное
произведение равно нулю

Мы получили вторую
зависимость координат искомого вектора

Для любого значения
вектор будет удовлетворять условиям.
Подставим.

Ответ:
.

Аналитическая
геометрия

Алгебра векторов, страница 21

Математика
Аналитическая геометрия и линейная алгебра

Задачи
для самостоятельной работы.

1. Упростить выражение (ab)xc – (a
+ с)xb – (b + с)xa.

2. Найти площадь треугольника,
построенного на векторах 2m + n  и
3mn,
если |m


| = 4, , .

3. Вычислить длины диагоналей и
площадь параллелограмма, построенного на векторах

a =
i – 2j
+ 2k и b = i – 3j + k.

4. Точки A(-2,
1, 3), B(-1, 3, 0), C(-4,
2, -1) являются вершинами ΔABC. Вычислить
площадь треугольника и длину его высоты, опущенной из вершины С на сторону
АВ.

5. Вектор a
ортогонален оси Oz и вектору c = 2i
j + 3k,
образует с осью Oy острый угол и . Найти координаты вектора a.

6. Найти координаты вектора p, который ортогонален векторам a  = (5, -2, 3) и c  = (-1, 4, -3) и
удовлетворяет условию , где b = 2


i + j
k.

6. Сила F = 2i +
j – 3k  приложена к точке N(2, -5, 3). Найти момент этой силы относительно точки P(1, -3, -1).

7. Векторы a, b, c удовлетворяют условию a
+ b + c = 0. Доказать, что axb = bxc = cxa.

8. Найти координаты единичных
векторов, перпендикулярных к плоскости ΔABC,
построенного на векторах  и .

9. Найти |(a – 3c)x(2a + c)|, если
векторы a и c
ортогональны и |a| = 4, |c| = 3.

10. Найти площадь
параллелограмма, диагоналями которого являются векторы 3m + 2n  и

-5m +
4n, если , |n| = 2, .

11. Найти координаты единичного
вектора p, перпендикулярного векторам a = i
– 2j  и

c =
2j + 3k  и образующего с осью Oz тупой угол.

12. Даны
векторы a = 2i +
6j – 3k, b = i + 5j
kc = –i – 3j +
2k. Найти координаты вектора p,
ортогонального векторам b и c, если .

13. Вычислить площадь
треугольника с вершинами в точках  A(2, -2, 3), B(3, -3, 4), C(1, 0, 1) и
длину его высоты, опущенной из вершины B на сторону
AC.

14. Найти площадь
параллелограмма, построенного на векторах m = 2a
c  и

n =
a + 3c, если .

15. Сила  f = (1, -2, 3) приложена к
точке P(3, 1, 1). Найти момент этой силы
относительно точки A(2, 0, 2).

Скачать файл

Выбери свой ВУЗ

Полный список ВУЗов

Найдите единичный вектор, перпендикулярный плоскости треугольника ABC, где координаты его вершин равны A(3, –1,2), B(1, –1, –3) и C(4, –3, 1) . — Sarthaks eConnect

← Предыдущий вопрос
Следующий вопрос →

спросил
15 марта 2021 г.
в векторах
по
Рупа01
(32,5 тыс. баллов)

закрыто
15 марта 2021 г.
от Rupa01

Найдите единичный вектор, перпендикулярный плоскости треугольника ABC, где координаты его вершин равны A(3, –1, 2), B(1, –1, –3) и C(4, –3, 1) .

  • векторная алгебра
  • класс-12

1 ответ

+1 голос

← Предыдущий вопрос
Следующий вопрос →


Похожие вопросы

Если вектор a, вектор b, вектор c являются векторами положения вершин A, B и C соответственно треугольника ABC, запишите значение вектора (AB)

спросил
16 мая 2021 г.
в векторах
по
Лакхи
(29,5 тыс. баллов)

  • векторная алгебра
  • класс-12

Вершины A, B, C треугольника ABC имеют соответственно векторы положения вектор a, вектор b, вектор c относительно данного начала координат O.

спросил
13 мая 2021 г.
в векторах
по
Каина
(30,5 тыс. баллов)

  • векторная алгебра
  • класс-12

Если вершины A, B, C треугольника ABC являются точками с векторами положения a1 i+a2 j + a3 k, b1i + b2 j + b3k, c2j +c3k

спросил
14 мая 2021 г.
в векторах
по
Лакхи
(29,5 тыс. баллов)

  • векторная алгебра
  • класс-12

Если вершины A, B, C треугольника ABC равны (1, 2, 3), (-1, 0, 0), (0, 1, 2) соответственно,

спросил
26 февр. 2020 г.
в векторах
по
Звуковой сигнал
(59,1 тыс. баллов)

  • векторная алгебра
  • класс-12

Напишите единичный вектор, образующий равные острые углы с осями координат.

спросил
16 мая 2021 г.
в векторах
по
Лакхи
(29,5 тыс. баллов)

  • векторная алгебра
  • класс-12

Категории

  • Все категории
  • JEE
    (28,1к)
  • NEET
    (8,5к)
  • Наука
    (748к)
  • Математика
    (242к)

    • Система счисления
      (9,8к)
    • Множества, отношения и функции
      (5,5к)
    • Алгебра
      (35,9к)
    • Коммерческая математика
      (7,4к)
    • Координатная геометрия
      (10,4к)
    • Геометрия
      (11,7к)
    • Тригонометрия
      (11,0 к)
    • Измерение
      (6,8к)
    • Статистика
      (4,9к)
    • Вероятность
      (5,3к)
    • Векторы
      (2,8к)
    • Исчисление
      (19,7к)
    • Линейное программирование
      (909)
  • Статистика
    (2,8к)
  • Наука об окружающей среде
    (3,8к)
  • Биотехнология
    (579)
  • коммерция
    (62,4к)
  • Электроника
    (3,7к)
  • Компьютер
    (16,3к)
  • Искусственный интеллект (ИИ)
    (1,4к)
  • Информационные технологии
    (13,2к)
  • Программирование
    (8. 7к)
  • Политическая наука
    (6,5к)
  • Домашняя наука
    (4,9к)
  • Психология
    (3,4к)
  • Социология
    (5,6к)
  • Английский
    (58,3к)
  • хинди
    (23,6к)
  • Способность
    (23,7к)
  • Рассуждение
    (14,6к)
  • ГК
    (25,7к)
  • Олимпиада
    (527)
  • Советы по навыкам
    (75)
  • CBSE
    (722)
  • РБСЭ
    (49,1к)
  • Общий
    (58,5к)
  • МСБШСЭ
    (1,8к)
  • Совет Тамилнаду
    (59,3к)
  • Совет Кералы
    (24,5к)

математика — Как найти координаты трехмерных точек в плоскости, перпендикулярной заданному вектору

спросил
3 года 10 месяцев назад

Изменено
3 года, 10 месяцев назад

Просмотрено
531 раз

У меня есть две точки в трехмерном пространстве, одна точка (x,0,z), а другая — начало координат (0,0,0), через эти точки проходит линия длиной L, которая начинается от первой точки и продолжая за исходной точкой, в конце этой линии находится перпендикулярная (к линии) плоская доска размерами Ш х В, линия заканчивается посередине этой доски.

Предположим, что x, z, L, H, W заданы. Мне нужен способ найти все координаты трехмерных точек, где эти точки образуют изображение в пикселях на доске (это означает, что каждая точка имеет расстояние 1 слева от нее, правая, верхняя, нижняя соседние точки).

Прикрепил довольно некрасивый рисунок 🙂 Сделал, пытаясь проиллюстрировать проблему (точки пикселей отметил двумя вопросительными знаками, а мне нужны они все).

Спасибо.

  • математика
  • вектор
  • геометрия
  • вычислительная геометрия
  • векторная графика

0

Можно определить эту плоскость. Но нет выбранного направления для однозначного построения сетки.

В качестве основы выберем направление OY (потому что нормаль имеет нулевую Y-компоненту).

Итак, мы имеем:

Вектор нормали N = (xx, 0, zz) //Я переименовал значения, чтобы не путать с координатой
переменные

Единичный вектор нормали n = (nx, 0, nz) , где

 nx = xx / Sqrt(xx*xx+zz*zz)
 nz = zz / Sqrt(xx*xx+zz*zz)
 

Базовая точка

 B = (bx, 0, bz) = (xx - nx * L, 0, zz - nz * L)
 

Базовый вектор единицы измерения в плоскости

 dy = (0, 1, 0)
 

Другой базовый вектор

 dc = dy x n // векторное произведение
   = (-бз, 0, бх)
 

Теперь можно генерировать сетку, используя целочисленные индексы i, j в диапазонах (-W/2.

Понравилась статья? Поделить с друзьями:
  • Как составить проект по математике в школе
  • Как найти людей в костанае
  • Как найти слив девушки в интернете бесплатно
  • Стейк не жуется как исправить
  • Веб камера ноутбука как найти