Математика
Тема 5: Метод координат
Урок 4: Координаты вектора. Разложение вектора по двум неколлинеарным векторам
- Видео
- Тренажер
- Теория
Заметили ошибку?
Координаты вектора. Разложение вектора по двум неколлинеарным векторам.
Если векторы a⃗ и b⃗ коллинеарны и a⃗≠0⃗, то существует такое число k, что b⃗=ka⃗.
Пусть a⃗ и b⃗ – два данных вектора. Если вектор p представлен в виде p⃗=xa⃗+yb⃗, где x и y – некоторые числа, то говорят, что вектор p⃗ разложен по векторам a⃗ и b⃗. Числа x и y называются коэффициентами разложения.
Теорема
На плоскости любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом.
Напомню, что для задания прямоугольной системы координат нужно провести две взаимно перпендикулярные прямые, на каждой из них выбрать направление (оно обозначается стрелкой) и выбрать единицу измерения отрезков. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом.
В дальнейшем под длиной отрезка мы будем понимать это число.
Отложим от начала координат O единичные векторы (т.е. векторы, длины которых равны единице) i⃗ и j⃗ так, чтобы направление вектора i⃗совпало с напралением оси Ox, а направление вектора j⃗ – с направлением оси Oy. Векторы i⃗ и j⃗ назовем координатными векторами.
Координатные векторы не коллинеарны, поэтому любой вектор p⃗ можно разложить по координатным векторам, т.е. представить в виде p⃗=xi⃗+yj⃗, причем коэффициенты разложения (числа x и y) определяются единственным образом. Коэффициенты разложения вектора p⃗ по координатным векторамназываются координатными векторамиp⃗ в данной системе координат. Координаты вектора будем записывать в фигурных скобках после обозначения вектора: p⃗{x;y}.
Так как нулевой вектор можно представить в виде 0⃗=0.i⃗+0.j⃗, то его координаты равны нулю: 0⃗{0;0}. Если векторы a⃗=x1i⃗+y1j⃗ и b⃗=x2i⃗+y2j⃗ равны, то x1 = x2 и y1 = y3. Таким образом, координаты равных векторов соответственно равны.
Рассмотрим правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число.
-
Каждая координата суммы двух или более векторов равна сумме соответствующих координат этих векторов.
Докажем это утверждение для двух векторов. Рассмотрим векторы a{x1;y1} и b{x2;y2}. Так как a⃗=x1i⃗+y1j⃗ и b ⃗=x2i⃗ +y2j⃗ ,то, пользуясь свойствами сложения векторов и умножения вектора на число, получим:
a⃗+b⃗=x1i⃗+y1j⃗+x2i⃗+y2j⃗=(x1+x2)i⃗+(y1+y2)j⃗ .
Следовательно, что координаты вектора a⃗+b⃗ равны {x1+x2; y1+y2}.
Аналогично доказывается следующее утверждение:
-
Каждая координата разности двух или более векторов равна разности соответствующих координат этих векторов.
Иными словами, если a⃗{x1;y1} и b⃗{x2;y2} – данные векторы, то вектор a⃗–b⃗ имеет координаты {x1-x2;y1-y2}.
-
Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
В самом деле, пусть вектор a⃗ имеет координаты {x;y}. Найдем координаты вектора ka⃗, гдеk – произвольное число. Так как a⃗=xi⃗+yj⃗, то kxi⃗+kyj⃗. Отсюда следует, что координаты вектора ka⃗ равны {kx;ky}.
Рассмотренные правила позволяют определить координаты любого вектора, представленного в виде алгебраической суммы данных векторов с известными координатами.
Найти координаты вектора a⃗+b⃗,если a⃗{3;2},b⃗{2;5}
Чтобы найти координаты вектора суммы, надо сложить соответствующие координаты данных векторов, получим:
a⃗+b⃗ имеет координаты {3 + 2; 2 + 5}, то есть {5; 7}
Найти координаты вектора 2a⃗, если a⃗{3;2}
Значит, вектор 2a⃗ имеет координаты {2 ⋅ 3; 2 ⋅ 2}, то есть {6;4}
Итак, сегодня мы узнали, что любой вектор можно разложить по двум неколлинеарным векторам, ввели понятие координат вектора и рассмотрели правила, позволяющие находить координаты суммы, разности векторов, и произведения вектора на число. А в следующий раз мы найдем связь между координатами вектора и координатами его начала и конца.
Заметили ошибку?
Расскажите нам об ошибке, и мы ее исправим.
На чтение 6 мин. Просмотров 1.4k.
Вы узнаете в этой статье что значит разложить вектор по двум неколлинеарным векторам.
Представление вектора vec{c} в виде vec{c}=x vec{a}+y vec{b}, где векторы vec{a} и vec{b} являются неколлинеарными векторами, называется разложением вектора по двум неколлинеарным векторам.
Теорема (о разложении вектора по двум неколлинеарным векторам)
Теорема. Любой вектор с можно единственным образом представить в виде vec{c}=x vec{a}+y vec{b}, где vec{a} и vec{b} — неколлинеарные векторы, х и у — числа.
Коллинеарные вектора vec{m} и vec{n} — это такие вектора, где один из векторов параллелен другому и связан с ним соотношением
vec{m}=kvec{n}
Доказательство:
Пусть даны векторы vec{c}=overrightarrow{AB}, vec{a} и vec{b}. Проведем через точки A и B прямые, параллельные векторам vec{a} и vec{b}, и обозначим точку C их пересечения. Тогда overrightarrow{AB}=overrightarrow{AC}+overrightarrow{CB}.
Так как векторы vec{a} и overrightarrow{AC} коллинеарные, то существует такое число х, что overrightarrow{AC} =хvec{a}. Векторы vec{b} и overrightarrow{CB} тоже коллинеарные, следовательно, существует такое число у, что overrightarrow{CB} =yvec{b}.
Таким образом, vec{c}=x vec{a}+y vec{b}.
Докажем единственность такого представления вектора с способом от противного. Допустим, что имеется другое разложение вектора, например, такое:
vec{c}=n vec{a}+m vec{b}, тогда два разложения вектора vec{c} можно приравнять:
n vec{a}+m vec{b}=x vec{a}+y vec{b} (если равны левые части равенств, то равны и правые).
Перенесем все в левую часть равенства:
n vec{a}+m vec{b}-x vec{a}-y vec{b}=0
(n-x)vec{a}+(m-y) vec{b}=0
displaystyle vec{a}=frac{y-m}{n-x} vec{b}
То есть векторы vec{a} и vec{b} получаются коллинеарными. А у нас условие — векторы vec{a} и vec{b} — неколлинеарные вектора.
Таким образом, возможно только единственно возможное представление вектора vec{c} в виде vec{c}=x vec{a}+y vec{b}, где векторы vec{a} и vec{b} являются неколлинеарными векторами.
Теорема доказана.
Если вектор vec{c} коллинеарен какому-либо из векторов vec{a} и vec{b}, то либо число x, либо число y равно нулю.
Базис векторов и разложение вектора по базису
В декартовой системе координат Oxy вектор с координатами (x, y) можно разложить по единичным векторам vec{e_1}(1;0) и vec{e_2}(0;1).
Тогда, например, вектор vec{c}(3; -1) можно представить в виде разложения:
vec{c}=x vec{e_1}+y vec{e_2}=3 vec{e_1}-1 vec{e_2}
Действительно:
begin{cases} 3=3 cdot 1+(-1)cdot 0, \ — 1=3 cdot 0+(-1)cdot 1. end{cases}
Система векторов, по которым можно разложить вектор с коэффициентами разложения равными его координатам, называется базисом вектора. Вектора базиса всегда не коллинеарные. Координаты вектора будут верны только в отношении данного базиса.
Однако, это не отменяет тот факт, что вектор можно разложить и по другим векторам, то есть по новому базису. Тогда говорят о переходе к новому базису векторов.
Обычно в декартовой системе координат базисные векторы на плоскости обозначают так: vec{i}(1;0) и vec{j}(0;1).
В пространственной декартовой системе координат базис векторов будет: vec{i}(1; 0; 0), vec{j}(0;1; 0), vec{k}(0;0;1)
В то же время на любых векторах можно построить свою систему отсчета, тогда данные вектора будут считаться базисом этой системы и в этой системе можно найти координаты любого вектора. То есть любой вектор можно разложить по базису, конечно, если при этом базисные вектора не являются коллинеарными.
Примеры разложения вектора
Пример 1. Разложить вектор vec{c}(0; 1) по двум векторам vec{a}(3; 6) и vec{b}(4; 9).
Решение:
Для разложения вектора vec{c} запишем:
vec{c}=x vec{a}+y vec{b}
Нам нужно найти коэффициенты разложения x и y, для этого разложим каждую координату вектора vec{c}:
- Для абсциссы: 0=x cdot 3+y cdot 4
- Для ординаты: 1=x cdot 6+y cdot 9
Получаем систему из двух уравнений с двумя неизвестными, которую решаем:
begin{cases} 3x+4y=0, \ 6x+9y=1. end{cases}
Решая, получаем: displaystyle x=frac{-4}{3} и y=1
И разложение вектора vec{c} будет иметь вид: displaystyle vec{c}=-frac{4}{3} vec{a}+vec{b}
Пример 2. Найти координаты вектора vec{a} в базисе, если известно разложение вектора по базису vec{e_1} и vec{e_2}:
vec{a}=7 vec{e_1}+5 vec{e_2}
Решение: Координаты вектора в базисе векторов vec{e_1} и vec{e_2} будут равны коэффициентам разложения, то есть vec{a}(7; 5)
Ответ: vec{a}(7; 5)
Пример 3. Разложить вектор vec{b}(1; 2) по базису vec{e_1}(2; 3) и vec{e_2}(2; 5).
Решение:
Запишем разложение вектора по базису:
vec{b}=b_1 vec{e_1}+b_2 vec{e_2}
Получим систему уравнений:
begin{cases} 1=2b_1+4b_2, \ 2=2b_1+5b_2. end{cases}
От второго уравнения системы отнимем первое, получим:
begin{cases} 1=b_2, \ 2=2b_1+5b_2. end{cases}
Тогда:
begin{cases} b_2=1, \ b_1=-1,5. end{cases}
И разложение вектора будет иметь вид: vec{b}=-1,5 vec{e_1}+vec{e_2}
Нахождение координат вектора через координаты точек
Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .
Векторы i → и j → называют координатными векторами.
Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.
Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; — 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .
Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .
Таким образом, координаты равных векторов соответственно равны.
Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.
Изобразим координатную ось.
Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → — O A → .
O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .
По правилу операций над векторами найдем A B → = O B → — O A → = x b — x a , y b — y a .
Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.
Для нахождения координат вектора, необходимо найти разность его точек конца и начала.
Найти координаты O A → и A B → при значении координат точек A ( 2 , — 3 ) , B ( — 4 , — 1 ) .
Для начала определяется радиус-вектор точки A . O A → = ( 2 , — 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.
Получаем: A B → = ( — 4 — 2 , — 1 — ( — 3 ) ) = ( — 6 , 2 ) .
Ответ: O A → = ( 2 , — 3 ) , A B → = ( — 6 , — 2 ) .
Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , — 2 ) . Найти координаты конца A B → .
Подставляем координаты точки A : A B → = ( x b — 3 , y b — 5 , z b — 7 ) .
По условию известно, что A B → = ( 2 , 0 , — 2 ) .
Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b — 3 = 2 y b — 5 = 0 z b — 7 = — 2
Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5
Ответ: B ( 5 , 5 , 5 ) .
Векторы в пространстве и метод координат
Существует два способа решения задач по стереометрии
Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.
Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.
Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.
Система координат в пространстве
Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.
Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.
Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:
Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.
Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.
Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:
Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма
Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .
Произведение вектора на число:
Скалярное произведение векторов:
Косинус угла между векторами:
Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.
1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.
Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:
Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.
Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.
Запишем координаты векторов:
и найдем косинус угла между векторами и :
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.
Координаты точек A, B и C найти легко:
Из прямоугольного треугольника AOS найдем
Координаты вершины пирамиды:
Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.
Найдем координаты векторов и
и угол между ними:
Покажем теперь, как вписать систему координат в треугольную призму:
3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1
Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.
Запишем координаты точек:
Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.
Найдем координаты векторов и , а затем угол между ними:
Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.
Плоскость в пространстве задается уравнением:
Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.
Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.
Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Покажем, как это делается.
Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).
Уравнение плоскости выглядит так:
Подставим в него по очереди координаты точек M, N и K.
То есть A + C + D = 0.
Аналогично для точки K:
Получили систему из трех уравнений:
В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.
Пусть, например, D = −2. Тогда:
Выразим C и B через A и подставим в третье уравнение:
Решив систему, получим:
Уравнение плоскости MNK имеет вид:
Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:
Вектор — это нормаль к плоскости MNK.
Уравнение плоскости, проходящей через заданную точку имеет вид:
Угол между плоскостями равен углу между нормалями к этим плоскостям:
Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.
Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.
Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.
4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.
Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.
Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.
Итак, первый вектор нормали у нас уже есть:
Напишем уравнение плоскости AEF.
Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.
Пусть С = -1. Тогда A = B = 2.
Уравнение плоскости AEF:
Нормаль к плоскости AEF:
Найдем угол между плоскостями:
5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.
Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике»
Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».
Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?
«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.
Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .
Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:
Координаты вектора — тоже:
Находим угол между плоскостями, равный углу между нормалями к ним:
Зная косинус угла, находим его тангенс по формуле
Получим:
Ответ:
Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.
Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.
Находим синус угла между прямой m и плоскостью α по формуле:
6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.
Как всегда, рисуем чертеж и выбираем систему координат
Находим координаты вектора .
Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .
Найдем угол между прямой и плоскостью:
Ответ:
Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:
7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.
Построим чертеж и выпишем координаты точек:
Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D
Решим эту систему. Выберем
Тогда
Уравнение плоскости A1DB имеет вид:
Дальше все просто. Находим расстояние от точки A до плоскости A1DB:
В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.
Как найти вектор по точкам
Формула
Чтобы найти координаты вектора $overline$ на плоскости, если он задан координатами своих начала $Aleft(x_ <1>; y_<1>right)$ и конца $Bleft(x_ <2>; y_<2>right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть
Чтобы найти координаты вектора $overline$, заданного в пространстве координатами $Aleft(x_ <1>; y_ <1>; z_<1>right)$ и $Bleft(x_ <2>; y_ <2>; z_<2>right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:
Примеры нахождения координат вектора по точкам
Задание. Даны точки $A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline$ и $overline$
Решение. Для вектора $overline$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline$ равны
Для вектора точка $B$ является началом, а точка $A$ — концом. Тогда координаты вектора $overline$ равны
Ответ. $overline=(-2 ; 2), overline=(2 ;-2)$
Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов $overline$, $overline$, $overline$
Решение. Для искомого вектора $overline$ точка $A$ является началом, а точка $B$ — концом. Тогда координаты вектора $overline$ соответственно равны:
$$overline=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$
Для вектора $overline$ точка $A$ является началом, а точка $C$ — концом. Тогда его координаты соответственно равны
Для вектора $overline$ точка $B$ является началом, а точка $C$ — концом. Его координаты равны
Ответ. $overline=(2 ; 4 ; 1), overline=(-1 ; 1 ; 0,5), overline=(-3 ;-3 ;-0,5)$
http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/
http://www.webmath.ru/poleznoe/formules_13_0.php
В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.
- Нахождение координат вектора
- Примеры задач
Нахождение координат вектора
Для того, чтобы найти координаты вектора AB, нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).
Формулы для определения координат вектора
Для плоских задач | AB = {Bx — Ax; By — Ay} |
Для трехмерных задач | AB = {Bx — Ax; By — Ay; Bz — Az} |
Для n-мерных векторов | AB = {B1 — A1; B2 — A2; … Bn — An} |
Примеры задач
Задание 1
Найдем координаты вектора AB, если у его точек следующие координаты: A = (2; 8), B = (5; 12).
Решение:
AB = {5 – 2; 12 – 8} = {3; 4}.
Задание 2
Определим координаты точки B вектора AB = {6; 14}, если координаты точки A = (2; 5).
Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = ABx + Ax = 6 + 2 = 8.
By = ABy + Ay = 14 + 5 = 19.
Таким образом, B = (8; 19).
Чтобы разложить, вектор b по базисным векторам a1, …, an, необходимо найти коэффициенты x1, …, xn, при которых линейная комбинация векторов a1, …, an равна вектору b:
x1a1 + … + xnan = b,
при этом коэффициенты x1, …, xn, называются координатами вектора b в базисе a1, …, an.
Пример задачи на разложение вектора по базисным векторам
Пример 1. Разложить вектор b = {8; 1} по базисным векторам p = {1; 2} и q = {3; 1}.
Решение: Составим векторное уравнение:
xp + yq = b,
которое можно записать в виде системы линейных уравнений
1x + 3y = 8 | |
2x + 1y = 1 |
из первого уравнения выражаем x
x = 8 — 3y | |
2x + y = 1 |
Подставим x во второе уравнение
x = 8 — 3y | |
2(8 — 3y) + y = 1 |
x = 8 — 3y | |
16 — 6y + y = 1 |
x = 8 — 3y | |
5y = 15 |
x = 8 — 3y | |
y = 3 |
x = 8 — 3·3 | |
y = 3 |
x = -1 | |
y = 3 |
Ответ: b = —p + 3q.