Как найти координаты вектора скорости

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Рисунок траектории движения материальной точки

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Радиус-вектор пример траектории

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

решение примера построения траектории

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

Решение задачи

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

формула вектора скорости

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

закон движения материальной точки

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Нахождение вектора скорости точки

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Формула вектора ускорения точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Пример решения задачи как найти вектор ускорения точки

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Как найти модуль вектора скорости

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Пример нахождения вектора ускорения

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Решение задач

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

В школьной физике в основном рассматривают движение тел вдоль прямой – одномерный случай. Реже — на плоскости, когда для описания координат используем две взаимно перпендикулярные оси «Ox» и «Oy», т. е. двумерный случай движения.

В случае поступательного движения на плоскости, мы раскладываем векторы перемещения, скорости и ускорения на проекции по осям. Каждую проекцию при этом можно рассматривать, как случай одномерного движения отдельного тела. Тогда для каждой оси имеется своя скорость, свое ускорение и свое перемещение этого тела.

Примечания:

  1. Одним из примеров движения в плоскости может служить движение тела под действием силы тяжести. В этом случае плоскость, по которой движется тело, будет располагаться вертикально.
  2. Еще один пример: Заряженная частица влетела в магнитное поле, перпендикулярно вектору магнитной индукции. Движение частицы, также, будет происходить в плоскости.

Перемещение, скорость и ускорение на плоскости

Опишем движение материальной точки на плоскости. В процессе движения изменяются две координаты – «x» и «y». Перемещение тела для двумерного движения можно разделить на две проекции.

На рисунке 1 точка, в которой тело находилось в начале движения, имеет координаты (left( x_{0}; y_{0} right) ).

Конечная точка, в которую тело сместилось в процессе движения, имеет координаты (left( x; y right) ).

Серая линия – это траектория тела, а вектор перемещения тела обозначен красным цветом.

Тело перемещается из одной точки в другую точку на плоскости

Рис. 1. Тело сместилось из одной точки на плоскости в другую точку

Разложим вектор перемещения на проекции по осям:

[ large  begin{cases} S_{x} = x — x_{0} \ S_{y} = y — y_{0} end{cases}]

А после запишем координаты вектора перемещения

[ large vec{S}=left{ S_{x}; S_{y} right}  ]

Пользуясь известными проекциями на плоскости, мы можем посчитать модуль вектора перемещения:

[ large left| vec{S} right| = sqrt{ left( S_{x} right)^2 + left( S_{y} right)^2} ]

На перемещение тела было затрачено время t. По известному перемещению мы можем найти скорости и ускорения тела.

Векторы скорости и ускорения тела на плоскости будут иметь две координаты

[ large vec{v}=left{ v_{x}; v_{y} right}  ]

[ large vec{a}=left{ a_{x}; a_{y} right}  ]

Физический смысл производной

Этот смысл применяется не только для движения на плоскости, а вообще, к любому движению.

Скорость – это первая производная вектора перемещения, взятая по времени

[ large boxed { frac{dvec{S}}{dt} = vec{v} }]

Запись читается, как «дэ эс по дэ тэ равно вэ».

Ускорение – это вторая производная вектора перемещения, взятая по времени

[ large boxed {frac{d^{2}vec{S}}{dt^{2}} = vec{a} }]

Эта запись читается, как «дэ два эс по дэ тэ дважды равно а».

Также, ускорение – это первая производная скорости по времени

[large boxed{frac{dvec{v}}{dt} =vec{a}}]

Примечание: Словосочетание «физический смысл производной» следует понимать, как «что такое производная с точки зрения физики»

Перемещение самолета при боковом ветре

Найдем теперь перемещение тела, движущегося в горизонтальной плоскости.

Для решения задачи будем применять законы Ньютона, формулы кинематики и правила сложения векторов.

В горизонтальной плоскости летит самолет. Он движется по прямой с неизменной скоростью (vec{v_{0x}}), масса самолета (m). В некоторый момент времени подул ветер, перпендикулярно направлению, в котором движется самолет. Порыв ветра длился t секунд. Сила ветра, действующая на самолет, постоянная и равна (vec{F}). Найти координаты вектора конечной скорости самолета и перемещение самолета к тому моменту, когда ветер прекратился.

Решение задачи

Составим рисунок, на нем отметим векторы скорости самолета, силу воздействия на самолет и проведем оси. Координатные оси лежат в горизонтальной плоскости. Будем считать, что сила начала действовать на самолет в начальный момент времени (t_{0} = 0 ) секунд.

На рисунке изображены векторы скорости самолета и силы воздействия бокового ветра

Рис. 2. В горизонтальной плоскости проведены оси, вектор скорости самолета и вектор силы бокового воздействия на самолет

На рисунке 2 изображены векторы скорости самолета и силы воздействия бокового ветра.

Координаты вектора ускорения

В условии задачи написано, что на самолет действует боковая сила (vec{F}). Используем ее, чтобы записать силовое уравнение для оси Oy:

[ large F = m cdot a_{y} ]

По второму закону Ньютона, когда ускорение есть, скорость тела будет изменяться. (a_{y}) – это проекция ускорения, приобретенного самолетом, она сонаправлена с вектором силы. То есть, направлена вдоль оси Oy. Выразим это ускорение из силового уравнения:

[ large frac{F}{m} = a_{y} ]

По условию, вдоль оси Ox самолет движется с неизменной скоростью. Из первого закона Ньютона следует, что силы, действующие на самолет вдоль оси Ox, скомпенсированы. Значит, ускорения, направленного вдоль оси Ox, нет.

[ large a_{x} = 0 ]

Таким образом, координаты вектора ускорения самолета будут иметь вид:

[ large vec{a}=left{ 0; a_{y} right}  ]

Координаты вектора скорости

Зная ускорение, мы можем составить уравнения для скорости тела.

В начальный момент времени скорость имеет такие координаты:

[ large vec{v_{0}}=left{ v_{0x}; 0 right}  ]

Вектор скорости изменится благодаря наличию вектора ускорения. В конечной точке траектории скорость будет иметь координаты, отличные от начальных:

[ large vec{v}=left{ v_{x}; v_{y} right}  ]

Найдем координаты вектора конечной скорости. Конечная скорость будет больше начальной, значит, движение равноускоренное.

Запишем в векторном виде связь между начальной и конечной скоростью

[ large vec{v}= vec{v_{0}} + vec{a} cdot t ]

В это уравнение входит вектор (vec{a} cdot t). Его получили путем умножения вектора на скаляр. Вектор (vec{a} cdot t) сонаправлен с вектором (vec{a} ), но длина его больше в t раз, чем длина вектора (vec{a} ).

Размерность вектора (vec{a} cdot t) будет совпадать с размерностью скорости. А это значит, что такой вектор с вектором скорости складывать можно.

Примечание: Складывать можно только векторы, которые измеряются в одинаковых единицах, другими словами, размерности которых совпадают! Мы можем Ньютоны складывать с Ньютонами, метры в секунду складывать с метрами в секунду и т. д.

Нам известны направления векторов (vec{v_{0}}) и (vec{a} cdot t). Вектор ( overrightarrow{at} ) сонаправлен с вектором силы ( vec{F} ) бокового ветра. Сложим векторы геометрически (рис. 3).

Движение равноускоренное, конечная скорость больше начальной, вектор конечной скорости отклонился от первоначального направления на некоторый угол

Рис. 3. Вектор конечной скорости отклонился от первоначального направления на некоторый угол, движение равноускоренное, конечная скорость больше начальной

Из рисунка видно, что вектор конечной скорости отклонился от первоначального направления на угол ( alpha). Направление вектора конечной скорости ( vec{v} ) совпадает с направлением вектора перемещения ( vec{S} ) самолета.

Координаты вектора конечной скорости — это сумма координат слагаемых векторов.

[ large  begin{cases} v_{x} = v_{0x} +0 \ v_{y} = 0 + a_{y} cdot t end{cases}]

Окончательно запишем, вектор конечной скорости обладает такими координатами

[ large  vec{v} =  left{ v_{0x} ; a_{y} cdot t right} ]

Координаты вектора перемещения

Найдем теперь координаты вектора перемещения самолета. Графически траекторию движения самолета можно изобразить отрезком параболы, так, как это сделано на рисунке 4.

Красный цветом обозначен вектор перемещения, а синей кривой - отрезком параболы, изображена траектория

Рис. 4. Траектория движения самолета — отрезок параболы, красный цветом обозначен вектор перемещения

На рисунке 4 представлены траектория движения – кривая синяя линия и перемещение самолета – вектор AB, обозначенный красным цветом.

Координаты начальной точки A (0 ; 0).

Координаты конечной точки B ( left( S_{x} ; S_{y} right) ).

Точка, в которой находился самолет в момент, когда на него подействовала сила ветра, имела координаты (0 ; 0). Это значит, что в нашей задаче вектор перемещения является радиус вектором, его координаты совпадают с координатами его конечной точки B.

Скорость вдоль оси Ox не меняется ( large v_{x}= v_{0x} ), поэтому вдоль этой оси движение равномерное.

Перемещение самолета для равномерного движения вдоль оси Ox запишем так

[ large S_{x} = v_{0x} cdot t ]

А вдоль оси Oy самолет из начальной точки равноускорено сместится на такую величину

[ large S_{y} = v_{0y} cdot t + a_{y} cdot frac{t^{2}}{2} ]

Пользуясь найденными координатами вектора перемещения, найдем его длину

[ large left| vec{S} right| = sqrt{ left( S_{x} right)^2 + left( S_{y} right)^2} ]

Задача решена. Если будут известны числовые значения начальных данных, ответ можно будет выразить численно.

Для характеристики
быстроты движения вводится понятие
скорости.

Определение:
Средней
скоростью движения точки за интервал
времени от
доназывается
векторная величина равная отношению
приращения радиус-вектора точки за этот
промежуток времени к его продолжительности.

— средняя скорость.

Определение:
Скорость
(или мгновенная скорость) точки называется
векторная величина, равная первой
производной по времени от радиус-вектора.

Вектор скорости
характеризует движение, как по величине,
так и по направлению. Вектор скорости
всегда направлен по касательной к
траектории в сторону движения.

Определение:
Модуль
скорости равен первой производной по
времени от пройденного пути.

Разложим вектор
скорости по базису прямоугольной
декартовой системы координат:

, гдеVx,
Vy,
Vz
проекции вектора скорости на соответствующую
ось, которые соответственно равны:

где
— это иксовая проекция радиус-вектора
материальной точки.

В координатном
представлении вектор скорости имеет
вид:

Модуль вектора
скорости в координатном представлении:

Обратное соотношение.

Представим радиус
вектор скорости посредством определенного
и неопределенного интеграла:

где t,
t0
– начальный и конечный момент времени.

Представление
пройденного пути через модуль скорости
посредством определенного и неопределенного
интеграла.

§4. Вектор ускорения.

Для характеристики
быстроты изменения вектора скорости
точки в механике вводится понятие
ускорения.

Определение:
Среднее
ускорение за интервал времени от
доназывается векторная величина равная
отношению приращения вектора скорости
точки за данный интервал времени к его
величине.

Определение:
Ускорение
(или мгновенное ускорение) точки
называется векторная величина, численно
равная первой производной по времени
от скорости рассматриваемой точки или,
что то же самое, вторая производная по
времени от радиус-вектора этой точки:

Ускорение можно
ввести через предел от среднего ускорения:

Две введенные
записи ускорения являются эквивалентными.

Разложим вектор
ускорения по базису прямоугольной
декартовой системы координат:

где ax,
ay,
az
– проекции вектора ускорения на ось.

Координатное
представление модуля вектора ускорения:

Обратные соотношения:

;

Рассмотрим движение
материальной точки вдоль плоской кривой.
Ускорение всегда направлено внутрь
вогнутости кривой или траектории. Введем
два единичных вектора:
,
который направлен по касательной к
траектории и— направлен перпендикулярно траектории
в центр кривой.

;

Разложим вектор
ускорения по заданным направлениям.

— касательное
ускорение.

Определение:
Касательное
ускорение – векторная величина,
характеризующая быстроту изменения
вектора скорости по модулю.

— векторное
представление.

— скалярное
представление.

— нормальное
ускорение.

Определение:
Нормальное
ускорение характеризует быстроту
изменения вектора скорости по направлению
и вычисляется по формуле:

-где R- радиус
кривизны траектории в точке М

Если траектория
– окружность, то R
– радиус окружности.

В скалярном
представлении:

Из свойств
составляющих полное ускорение следует,
что полное ускорение направленно в
сторону вогнутости траектории.

Модуль полного
ускорения равен:

Аналогично для
вектора полного ускорения:

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Движение тела на плоскости

В школьной физике в основном рассматривают движение тел вдоль прямой – одномерный случай. Реже — на плоскости, когда для описания координат используем две взаимно перпендикулярные оси «Ox» и «Oy», т. е. двумерный случай движения.

В случае поступательного движения на плоскости, мы раскладываем векторы перемещения, скорости и ускорения на проекции по осям. Каждую проекцию при этом можно рассматривать, как случай одномерного движения отдельного тела. Тогда для каждой оси имеется своя скорость, свое ускорение и свое перемещение этого тела.

Примечания:

  1. Одним из примеров движения в плоскости может служить движение тела под действием силы тяжести. В этом случае плоскость, по которой движется тело, будет располагаться вертикально.
  2. Еще один пример: Заряженная частица влетела в магнитное поле, перпендикулярно вектору магнитной индукции. Движение частицы, также, будет происходить в плоскости.

Перемещение, скорость и ускорение на плоскости

Опишем движение материальной точки на плоскости. В процессе движения изменяются две координаты – «x» и «y». Перемещение тела для двумерного движения можно разделить на две проекции.

На рисунке 1 точка, в которой тело находилось в начале движения, имеет координаты (left( x_<0>; y_ <0>right) ).

Конечная точка, в которую тело сместилось в процессе движения, имеет координаты (left( x; y right) ).

Серая линия – это траектория тела, а вектор перемещения тела обозначен красным цветом.

Разложим вектор перемещения на проекции по осям:

[ large begin S_ = x — x_ <0>\ S_ = y — y_ <0>end]

А после запишем координаты вектора перемещения

Пользуясь известными проекциями на плоскости, мы можем посчитать модуль вектора перемещения:

[ large left| vec right| = sqrt < left( S_right)^2 + left( S_ right)^2> ]

На перемещение тела было затрачено время t. По известному перемещению мы можем найти скорости и ускорения тела.

Векторы скорости и ускорения тела на плоскости будут иметь две координаты

Физический смысл производной

Этот смысл применяется не только для движения на плоскости, а вообще, к любому движению.

Скорость – это первая производная вектора перемещения, взятая по времени

Запись читается, как «дэ эс по дэ тэ равно вэ».

Ускорение – это вторая производная вектора перемещения, взятая по времени

Эта запись читается, как «дэ два эс по дэ тэ дважды равно а».

Также, ускорение – это первая производная скорости по времени

Примечание: Словосочетание «физический смысл производной» следует понимать, как «что такое производная с точки зрения физики»

Перемещение самолета при боковом ветре

Найдем теперь перемещение тела, движущегося в горизонтальной плоскости.

Для решения задачи будем применять законы Ньютона, формулы кинематики и правила сложения векторов.

В горизонтальной плоскости летит самолет. Он движется по прямой с неизменной скоростью (vec>), масса самолета (m). В некоторый момент времени подул ветер, перпендикулярно направлению, в котором движется самолет. Порыв ветра длился t секунд. Сила ветра, действующая на самолет, постоянная и равна (vec). Найти координаты вектора конечной скорости самолета и перемещение самолета к тому моменту, когда ветер прекратился.

Решение задачи

Составим рисунок, на нем отметим векторы скорости самолета, силу воздействия на самолет и проведем оси. Координатные оси лежат в горизонтальной плоскости. Будем считать, что сила начала действовать на самолет в начальный момент времени (t_ <0>= 0 ) секунд.

На рисунке 2 изображены векторы скорости самолета и силы воздействия бокового ветра.

Координаты вектора ускорения

В условии задачи написано, что на самолет действует боковая сила (vec). Используем ее, чтобы записать силовое уравнение для оси Oy:

[ large F = m cdot a_ ]

По второму закону Ньютона, когда ускорение есть, скорость тела будет изменяться. (a_) – это проекция ускорения, приобретенного самолетом, она сонаправлена с вектором силы. То есть, направлена вдоль оси Oy. Выразим это ускорение из силового уравнения:

По условию, вдоль оси Ox самолет движется с неизменной скоростью. Из первого закона Ньютона следует, что силы, действующие на самолет вдоль оси Ox, скомпенсированы. Значит, ускорения, направленного вдоль оси Ox, нет.

Таким образом, координаты вектора ускорения самолета будут иметь вид:

Координаты вектора скорости

Зная ускорение, мы можем составить уравнения для скорости тела.

В начальный момент времени скорость имеет такие координаты:

Вектор скорости изменится благодаря наличию вектора ускорения. В конечной точке траектории скорость будет иметь координаты, отличные от начальных:

Найдем координаты вектора конечной скорости. Конечная скорость будет больше начальной, значит, движение равноускоренное.

Запишем в векторном виде связь между начальной и конечной скоростью

Примечание: Складывать можно только векторы, которые измеряются в одинаковых единицах, другими словами, размерности которых совпадают! Мы можем Ньютоны складывать с Ньютонами, метры в секунду складывать с метрами в секунду и т. д.

Из рисунка видно, что вектор конечной скорости отклонился от первоначального направления на угол ( alpha). Направление вектора конечной скорости ( vec ) совпадает с направлением вектора перемещения ( vec ) самолета.

Координаты вектора конечной скорости — это сумма координат слагаемых векторов.

[ large begin v_ = v_ <0x>+0 \ v_ = 0 + a_ cdot t end]

Окончательно запишем, вектор конечной скорости обладает такими координатами

[ large vec = left < v_<0x>; a_ cdot t right> ]

Координаты вектора перемещения

Найдем теперь координаты вектора перемещения самолета. Графически траекторию движения самолета можно изобразить отрезком параболы, так, как это сделано на рисунке 4.

На рисунке 4 представлены траектория движения – кривая синяя линия и перемещение самолета – вектор AB, обозначенный красным цветом.

Координаты начальной точки A (0 ; 0).

Координаты конечной точки B ( left( S_ ; S_ right) ).

Точка, в которой находился самолет в момент, когда на него подействовала сила ветра, имела координаты (0 ; 0). Это значит, что в нашей задаче вектор перемещения является радиус вектором, его координаты совпадают с координатами его конечной точки B.

Скорость вдоль оси Ox не меняется ( large v_= v_ <0x>), поэтому вдоль этой оси движение равномерное.

Перемещение самолета для равномерного движения вдоль оси Ox запишем так

[ large S_ = v_ <0x>cdot t ]

А вдоль оси Oy самолет из начальной точки равноускорено сместится на такую величину

[ large S_ = v_ <0y>cdot t + a_ cdot frac> <2>]

Пользуясь найденными координатами вектора перемещения, найдем его длину

[ large left| vec right| = sqrt < left( S_right)^2 + left( S_ right)^2> ]

Задача решена. Если будут известны числовые значения начальных данных, ответ можно будет выразить численно.

Скорость, Вектор скорости и траектория, Сложение скоростей

Скорость

Средняя скорость частицы характеризует быстроту ее движения за конечный промежуток времени. Неограниченно уменьшая этот промежуток, мы придем к физической величине, характеризующей быстроту движения в данный момент времени. Такая величина называется мгновенной скоростью или просто скоростью:

обозначает математическую операцию перехода к пределу. Под этим символом записывается условие, при котором выполняется данный предельный переход; в рассматриваемом случае это стремление к нулю промежутка времени. При вычислении скорости по этому правилу мы убедимся, что уменьшение промежутка времени приводит к тому, что на некотором этапе получаемые очередные значения средней скорости будут все меньше и меньше отличаться друг от друга. Поэтому на практике при нахождении скорости можно остановиться на конечном значении, достаточно малом для получения требуемой точности значения скорости.

Вектор скорости и траектория.

Рассматриваемый предельный переход имеет ясный геометрический смысл. Поскольку вектор перемещения направлен по хорде, соединяющей две точки траектории, то при сближении этих точек, происходящем при, он принимает положение, соответствующее касательной к траектории в данной точке. Это значит, что вектор скорости направлен по касательной к траектории. Так будет в любой точке траектории (рис. 14). При прямолинейной траектории движения вектор скорости направлен вдоль этой прямой.

Скорость прохождения пути.

Аналогичным переходом определяется мгновенная скорость прохождения пути:

Для плавной кривой, каковой является траектория любого непрерывного механического движения, длина дуги тем меньше отличается от длины стягивающей ее хорды, чем короче эта дуга. В пределе эти длины совпадают. Поэтому при можно считать, что . Это означает, что скорость прохождения пути равна модулю мгновенной скорости . Движение, при котором модуль скорости остается неизменным, называется равномерным. В случае прямолинейной траектории при равномерном движении вектор скорости постоянен, а в случае криволинейной траектории изменяется только его направление.

Сложение скоростей.

Если тело одновременно участвует в нескольких движениях, то его скорость равна векторной сумме скоростей каждого из этих движений. Это непосредственно следует из правила сложения перемещений: так как , то после деления на получаем

Иногда бывает удобно представить некоторое сложное движение как суперпозицию, т. е. наложение двух простых движений. В этом случае равенство (3) можно трактовать как правило разложения вектора скорости на составляющие.

По этой ссылке вы найдёте полный курс лекций по математике:

Задачи.

1.

Переправа через реку. Скорость течения в реке с параллельными берегами всюду одинакова и равна. Ширина реки (рис. 15). Катер может плыть со скоростью относительно воды. На какое расстояние s снесет катер вниз по течению реки, если при переправе нос катера направить строго поперек берегов?

Катер участвует одновременно в двух движениях: со скоростью , направленной поперек течения, и вместе с водой со скоростью которая направлена параллельно берегу. В соответствии с правилом сложения скоростей полная скорость катера относительно берегов равна векторной сумме (рис. 16). Очевидно, что движение катера происходит по прямой, направленной вдоль вектора. Искомое расстояние s, на которое снесет катер при переправе, можно найти из подобия треугольника, образованному векторами скоростей:

Эту задачу легко решить и не прибегая к сложению векторов скоростей.

Очевидно, что расстояние s равно произведению скорости течения на время в течение которого катер пересекает реку. Это время можно найти, разделив ширину реки на скорость движения катера поперек реки. Таким образом, находим Рис. 16. Сложение скоростей при переправе через .В этой простой задаче второй способ решения предпочтительнее, так как он проще. Однако уже при небольшом усложнении условия задачи становятся отчетливо видны преимущества первого способа, основанного на сложении векторов скоростей.

2. Переправа поперек реки. Предположим, что теперь нам нужно переправиться на катере через ту же реку точно поперек, т. е. попасть в точку В, лежащую напротив начальной точки А (рис. 17). Как нужно направить нос катера при переправе? Сколько времени займет такая переправа?Решение. В рассматриваемом случае полная скорость v катера относительно берегов, равная векторной сумме скоростей должна быть направлена поперек реки.

Из рис. 17 сразу видно, что вектор, вдоль которого и смотрит нос катера, должен отклоняться на некоторый угол а вверх по течению реки от направления . Синус этого угла равен отношению модулей скоростей течения и катера относительно воды. Переправа поперек реки без сноса возможна только в том случае, когда скорость катера относительно воды больше скорости течения. Это сразу видно либо из треугольника скоростей на рис. 17 (гипотенуза всегда больше катета), либо из формулы (синус угла а должен быть меньше единицы).Время переправы найдем, разделив ширину реки на полную скорость катера по теореме Пифагора.

Возможно вам будут полезны данные страницы:

3. Снос при быстром течении.

Предположим теперь, что скорость катера относительно воды меньше скорости течения: В таком случае переправа без сноса невозможна. Как следует направить нос катера при переправе, чтобы снос получился минимальным? На какое расстояние этом снесет катер? Решение. Полная скорость относительно берегов во всех рассматриваемых случаях дается формулой. Однако теперь нагляднее выполнить сложение векторов и по правилу треугольника (рис. 18) первым изображаем век гор для которого мы знаем модуль направление, а затем к его концу пристраиваем начало вектора известен только модуль, направление еще предстоит выбрать. Этот выбор нужно сделать так, вектор результирующей скорости как можно меньше отклонялся от направления поперек реки.

Рис. 19. Определение курса (направление вектора) переправы минимальным сносом 18. Сложение скоростей переправе Конец любом направлении должен лежать на окружности радиуса центр которой совпадает концом вектора. Эта окружность показана Так условию задачи то точка соответствующая началу лежит вне этой окружности.

Из рисунка видно, что образует прямой

наименьший угол тогда, когда он направлен касательной Следовательно, перпендикулярен вектору треугольник прямоугольный. Таким образом, направлять вверх течению под углом линии Синус этого угла дастся выражением Траектория направлена вдоль вектора, т.е. она перпендикулярна направлению, в котором смотрит катера. Это значит, своей траектории катер движется боком. другом берегу реки причалит точке, до найти из подобия треугольников. Модуль находится теореме Пифагора. результате получаем

4. Лодка тросе. Лодку подтягивают за привязанный носу трос, наматывая равномерно вращающийся барабан Барабан установлен высоком берегу. какой скоростью лодка тот момент, трос горизонтом? Трос выбирается барабаном скоростью.

Решение.

Точка троса, где он привязан к лодке, движется с той же скоростью, что и лодка. Эта скорость v направлена горизонтально. Чтобы связать ее со скоростью выбирания троса, нужно сообразить, что движение троса сводится к повороту вокруг точки В, где он касается барабана, и скольжению вдоль собственного направления, т. е. прямой . Поэтому естественно разложить скорость точки на две составляющие , направленные вдоль и поперек троса (рис. 21). Скорость , направленная поперек, связана с поворотом троса. Модуль скорости направленной вдоль троса, — это и есть данное в условии задачи значение скорости.

По мере приближения лодки к берегу угол а становится больше. Это значит, что cos а убывает и искомая скорость возрастает. Задача для самостоятельного решения Человек находится в поле на расстоянии от прямолинейного участка шоссе. Слева от себя он замечает движущийся по шоссе автомобиль. В каком направлении следует бежать к шоссе, чтобы выбежать на дорогу впереди автомобиля и как можно дальше от него? Скорость автомобиля и, скорость человека.

• Объясните, почему вектор скорости всегда направлен по касательной к траектории.

• В некоторых случаях траектория движения частицы может иметь изломы. Приведите примеры таких движений. Что можно сказать о направлении скорости в точках, где траектория имеет излом?

• В случае непрерывного механического движения вектор скорости не испытывает скачков ни по модулю, ни по направлению. Появление скачков скорости всегда связано с некоторой идеализацией реального процесса. Какие идеализации присутствовали в приведенных вами примерах траекторий с изломами?

• Найдите ошибку в приводимом ниже решении задачи 4. Разложим скорость , точки троса на вертикальную и горизонтальную составляющие (рис. 22). Горизонтальная составляющая это и есть искомая скорость лодки. Поэтому и (неверно!).

Скорость как производная.

Вернемся к выражению (1) для мгновенной скорости. При движении частицы ее радиус-вектор г изменяется, т. е. является некоторой функцией времени:. Перемещение Дг за промежуток времени At представляет собой разность радиусов-векторов в моменты времени. Поэтому формулу (1) можно переписать в виде В математике такую величину называют производной от функции по времени Для нее используют следующие обозначения. Последнее обозначение (точка над буквой) характерно именно для производной по времени. Отметим, что в данном случае производная представляет собой вектор, так как получается в результате дифференцирования векторной функции по скалярному аргументу. Для модуля мгновенной скорости в соответствии справедливо выражение в начале статьи.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

источники:

Движение тела на плоскости

http://natalibrilenova.ru/skorost-vektor-skorosti-i-traektoriya-slozhenie-skorostej/

Содержание:

  • Определение и формула скорости
  • Скорость в разных системах координат
  • Частные случаи формул для вычисления скорости
  • Единицы измерения скорости
  • Примеры решения задач

Определение и формула скорости

Определение

Мгновенной скоростью (или чаще просто скоростью) материальной точки называется физическая величина равная первой производной от радиус–вектора
$bar{r}$ точки по времени (t). Обозначают скорость обычно буквой v.
Это векторная величина. Математически определение вектора мгновенной скорости записывается как:

$$bar{v}=frac{d bar{r}}{d t}=dot{bar{r}}(1)$$

Скорость имеет направление указывающее направление движения материальной точки и лежит на касательной к траектории ее движения.
Модуль скорости можно определить как первую производную от длины пути (s) по времени:

$$v=frac{d s}{d t}=dot{s}(2)$$

Скорость характеризует быстроту перемещения в направлении движения точки по отношениюк рассматриваемой системе координат.

Скорость в разных системах координат

Проекции скорости на оси декартовой системы координат запишутся как:

$$v_{x}=dot{x} ; v_{y}=dot{y} ; v_{z}=dot{z}(3)$$

Следовательно, вектор скоростив декартовых координатах можно представить:

$$bar{v}=dot{x} bar{i}+dot{y} bar{j}+dot{z} bar{k}(4)$$

где $bar{i}, bar{j}, bar{k}$ единичные орты. При этом модуль вектора скорости находят при помощи формулы:

$$v=sqrt{(dot{x})^{2}+(dot{y})^{2}+(dot{z})^{2}}(5)$$

В цилиндрических координатах модуль скорости вычисляют при помощи формулы:

$$v=sqrt{(dot{rho})^{2}+(rho dot{varphi})^{2}+(dot{z})^{2}}(6)$$

в сферической системе координат:

$$v=sqrt{(r)^{2}+(r dot{theta})^{2}+(r dot{varphi} sin theta)^{2}}(7)$$

Частные случаи формул для вычисления скорости

Если модуль скорости не изменяется во времени, то такое движение называют равномерным (v=const).
При равномерном движении скорость можно вычислить, применяя формулу:

$$v=frac{s}{t}(8)$$

где s– длина пути, t – время, за которое материальная точка преодолела путь s.

При ускоренном движении скорость можно найти как:

$$bar{v}=int_{t_{1}}^{t_{2}} bar{a} d t(9)$$

где $bar{a}$ – ускорение точки,
$t_{1} leq t leq t_{2}$ – отрезок времени, в течение которого рассматривается скорость.

Если движение является равнопеременным, то применяется следующая формула для вычисления скорости:

$$bar{v}=bar{v}_{0}+bar{a} t$$

где $bar{v}_0$ – начальная скорость движения,
$bar{a} = const$ .

Единицы измерения скорости

Основной единицей измерения скорости в системе СИ является: [v]=м/с2

В СГС: [v]=см/с2

Примеры решения задач

Пример

Задание. Движение материальной точки А задано уравнением:
$x=2 t^{2}-4 t^{3}$ . Точка начала свое движение при
t0=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.

Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для
этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:

$$v=frac{d x}{d t}=4 t-12 t^{2}(1.1)$$

Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент
времении сравним результат с нулем:

$$v(t=0,5)=4 cdot 0,5-12(0,5)^{2}=-1 lt 0$$

Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.

Ответ. Против оси X.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Скорость материальной точки является функцией от времени вида:

$$v=10left(1-frac{t}{5}right)$$

где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии
10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.

Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:

$$x=int_{0}^{t} v d t=int_{0}^{t} 10left(1-frac{t}{5}right) d t=10 t-frac{10 t^{2}}{2 cdot 5}=10 t-t^{2}(2.1)$$

Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:

$$x=10 cdot 10-(10)^{2}=0(m)$$

Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат
приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:

$$
begin{array}{c}
10 t-t^{2}=10(2.2) \
t_{1}=5+sqrt{15} approx 8,8(c) ; t_{2}=5-sqrt{15} approx 1,13(c)
end{array}
$$

Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:

$$10 t-t^{2}=-10(2.3)$$

При решении уравнения (2.3) нам подойдет корень равный:

$$t_{3}=5+6=11 (c)$$

Ответ. 1) $x=0 mathrm{~m}$ 2) $t_{1}=8,8 mathrm{c}, t_{2}=1,13 c, t_{3}=11 c$

Читать дальше: Формула средней скорости.

Понравилась статья? Поделить с друзьями:
  • Как найти свою копию фото в интернете
  • Как составить коллекцию видов ткани
  • Как найти сбп в сбербанке на телефоне
  • Как найти 2 процента от 5000
  • Уильям стид дневник с титаника как нашли