Как найти координаты вершины модуля

Определение модуля

Алгебрагическое определение: | x |
=

Геометрическое определение: модулем
числа называется расстояние от точки,
изображающей это число, до начала отсчета.

Понятие модуля впервые вводится в 6 классе, в 7
классе рассматривается линейная функция и ее
график и уже можно показывать построение
несложных графиков функций, содержащих модуль.
Далее, по мере изучения различных функций, их
свойств, каждую такую тему можно заканчивать
рассмотрением более сложных графиков, в том
числе с модулем. В этой статье рассматриваются
основные приемы построения графиков таких
функций.

I. На алгебрагическом определении основан метод
«раскрытия модуля на промежутках».

Например: | x + 2 | = | x + 2 | =

Этот
метод можно применять при построении графиков
функций, содержащих один или более модулей.
Например, построим график функции у = | x + 2 | –
2x + 1 , предварительно упростив ее.

у = у
=

Если модулей несколько, то каждый из них
раскрываем на промежутках относительно точек,
обращающих каждый из них в нуль. Например,
построим график функции у = | 3 – x | – x
+ | x + 2 | + 1.

1. Если х < – 2, то у = 3 – хх
– (х + 2) + 1, у = – 3х + 2.

2. Если –2
< х < 3, то у = 3 – х – х + х
+ 2 + 1, у = – х + 6.

3. Если х > 3, то у = – (3 – х) – х
+ х + 2 + 1, у = х.

Функцию
записываем как кусочно-заданную:

у =

Подобно тому, как числовая прямая точками – 2 и 3
разбивается на промежутки, координатная
плоскость прямыми х = – 2 и х = 3
разбивается на части («полосы»), в каждой из
которых строим свой график. Заметим, что данная
функция непрерывна, поэтому на «границах» части
графика должны соединяться.

II. Этот
метод можно применять к функциям разных видов.

Например, построим график функции у = | log2
x – 1 | – log0,5 x.

Заметим, что х > 0.

1. Пусть log2x – 1 > 0, log2x >
1, x > 2, тогда у = log2 x – 1 +
  log2 x; y = 2 log2 x – 1.

2. Пусть log2 x – 1 < 0, 0 < x < 2,
тогда у = – log2 x + 1 + log2 x; y
= 1.

Запишем функцию как кусочно-заданную:

у =

III. Рассмотрим некоторые частные случаи
функций, содержащих модуль.

1) у = | f(x) |.
По определению модуля имеем: | f(x) | =

Таким образом , для того, чтобы построить график
такой функции, необходимо взять часть графика,
лежащую не ниже оси абсцисс, а часть графика,
лежащую ниже этой оси отобразить относительно
нее в верхнюю полуплоскость. (Заметим, что «–»,
стоящий перед функцией означает симметричное
отображение графика относительно оси абсцисс).
Например, построим график функции у = | x2
– 2х – 3 |.

Построим сначала график функции у = х2
– 2х – 3. Графиком этой функции является
парабола, ветви которой направлены вверх.
Координаты ее вершины: х = 1, у = – 4. Точки
пересечения параболы с осями координат: (0; – 3); (–
1; 0); (3; 0). Далее выполняем отображение части
графика, лежащей в нижней полуплоскости,
относительно оси абсцисс.

2) у = f(| x |). Используем определение модуля: f(|
x |) =

Чтобы построить график такой функции строим
график функции у = f(x) и берем ту его
часть, где х > 0 (в правой полуплоскости).
Затем эту часть симметрично отображаем в левую
полуплоскость, где х < 0. (Заметим, что
построение графика функции f(– x) и
состоит в отображении части графика, лежащей в
правой полуплоскости в левую относительно оси
ординат).

Например, построим график функции у = х2
– 2| х | – 3. Сначала строим график функции у
= х2 – 2х – 3, далее выполняем
указанные преобразования.

3) Построим график функции y = | f(| x
|)|, например, y = | x2 – 2| х | – 3 |,
выполним последовательно преобразования,
рассмотренные в пунктах 2 и 1.

4. Рассмотрим зависимость | y | = f(x).
Ее нельзя назвать функцией, так как не
выполняется условие: каждому значению х должно
соответствовать единственное значение у.

Рассмотрим построение графика такой
зависимости (можно говорить «графика
уравнения»). Используем определение модуля: у
= f(x), если у > 0, – у = f(x),
y = – f(x), если у < 0

Получаем, чтобы построить такой график, сначала
строим график функции у = f(x) и
берем ту его часть, которая лежит в верхней
полуплоскости, где у > 0; чтобы
построить график в нижней полуплоскости (где у
< 0), нужно построенную часть отобразить
симметрично относительно оси абсцисс (знак «–»
перед функцией и означает такое отображение)
Например, построим график уравнения | y | = x2
– 2х – 3

Заметим, что графики, не относящиеся к
рассмотренным частным случаям, следует строить «
раскрывая модули на промежутках».

x

1

0

– 1

y

0

IV. Приведем некоторые примеры

1. Построим график уравнения | y | = arccos| x
|.

2. Графическим способом можно решать и
неравенства с двумя переменными. Например,
решением неравенства | y | < arccos| x |
являются координаты точек закрашенной части
плоскости, включая границы.

Решим еще одно задание, предлагавшееся на ЕГЭ:
найти все целочисленные решения неравенства | y
| < | | x – 2 | – 3 | (х0; у0),
для которых х0 = у0. Построим
сначала график уравнения | y | = | | x – 2 | –
3 |. Решением данного неравенства будут являться
координаты точек закрашенной части плоскости,
включая границы.

Пары чисел (х0; у0),
являющиеся решениями неравенства, для которых y0
= x0, являются координатами точек,
лежащих на прямой у = х. Выберем точки с
целыми координатами: (0; – 1); (1; 0); (2; 1); (3; 2), они и
будут являться решениями данной задачи.

3. Определить, сколько корней имеет уравнение | 3
x | + log3| x | = 2 – x.

Запишем уравнение в виде | 3 – x | + x = log3|
x | + 2. В одной системе координат построим
графики функций y = | 3 – x | = x (1) и y
= log3| x | = 2 (2). Функцию (1) запишем как
кусочно-заданную, раскрывая модуль на
промежутках:

y =

График функции (2) построим, выполняя
отображение графика y =  log3x + 2
относительно оси ординат ( один из рассмотренных
частных случаев ).

Графики имеют две общие точки, следовательно,
данное уравнение имеет два корня.

V. Для повторения материала, его закрепления
предлагаем выполнить следующие задания.

1. Постройте графики функций и уравнений: y =
| y | = ; y = | | 2 – x
| – 4 |; y = | x2 – 4 | x | + 3 |; y = + 1.

2. Решите графически уравнения c одной и двумя
переменными: | 3 – x | – 3 = 2| x | – x2;
| y | = 2| x | – x2; = | x – 2,5 | –1,5.

3. Решите графически неравенства с двумя
переменными: | y | > x24x + 3;
| x | + | y | < 3.

4. Решите графически систему уравнений:

5. Найдите все значения а, при каждом из которых
уравнение | x + a | + | | x – 3 | – 4 | = 1
имеет ровно два корня.

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.


Графики — самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:

Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую. 

Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1

Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:

А если теперь добавить модуль y = |2x − 1|.

Модуль — это всегда положительное значение, получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).

Получается такая зеленая «галочка».

Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Здесь отражаем относительно оси «y».  Такая же галочка, только теперь через другую ось.

Смертельный номер: y = |2|x| − 1|.

Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть. 

В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны! 


А после этого отражаем относительно оси «y» то, что мы получили справа налево:

Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.

Разберем по винтикам параболу y =  + x  2. Точки пересечения с осью «x» получим с помощью дискриминанта: x = 1 и x = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x  2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

А дальше что мелочиться: рассмотри сразу остальные графики с модулем!

Следующий смертельный номер: |y| =  + x  2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2! 

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А теперь сразу комбо:

Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.

Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет «шире», расходится в бока он быстрее остальных.

Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.

Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум, потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x — простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе «1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| — отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.

Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.

Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно-заданных графика: 

C двумя модулями кусочно-заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!


Выводы:

  1. Модуль — это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль.
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.

Будь в курсе новых статеек, видео и легкого математического юмора.

23. Исследование функций и их графиков


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Функции с модулем x, y

Постройте график функции [y=|x^2-x-2|, .]

Какое наибольшее число общих точек может иметь график данной функции с прямой, параллельной оси абсцисс?

Данная функция имеет вид (|f(x)|). Для того, чтобы построить график такой функции, нужно построить график функции (f(x)) и затем ту часть графика, что находится ниже оси (Ox), симметрично оси абсцисс отобразить наверх.
Построим график (y=x^2-x-2). Это парабола, ветви которой направлены вверх, вершина находится в точке (x_0=frac12), (y_0=-2,frac14). Точки пересечения с осью (Ox) ищутся из уравнения (x^2-x-2=0). Следовательно, парабола проходит через точки ((-1;0)) и ((2;0)).
(Чтобы найти координаты вершины параболы (y=ax^2+bx+c), нужно воспользоваться формулами (x_0=-frac b{2a}), (y_0=y(x_0)).)

Из рисунка видно, что график (y=|x^2-x-2|) может иметь с прямой (y=k) две, три или четыре общие точки, или же не иметь общих точек. Следовательно, ответ 4.

Ответ: 4

Постройте график функции [y=-|x^2+5x+4|, .]

Определите, при каких значениях (k) график данной функции имеет ровно 3 общие точки с прямой (y=k).

Данная функция имеет вид (-|f(x)|). Для того, чтобы построить график такой функции, нужно построить график функции (f(x)), затем ту часть графика, что находится ниже оси (Ox), симметрично отобразить наверх (тогда мы получим график (|f(x)|)) и затем весь график симметрично оси абсцисс отобразить относительно (Ox) (тогда мы получим (-|f(x)|)).
Построим график (y=x^2+5x+4). Это парабола, ветви которой направлены вверх, вершина находится в точке (x_0=-frac52), (y_0=-2,frac14). Точки пересечения с осью (Ox) ищутся из уравнения (x^2+5x+4=0). Следовательно, парабола проходит через точки ((-1;0)) и ((-4;0)).
(Чтобы найти координаты вершины параболы (y=ax^2+bx+c), нужно воспользоваться формулами (x_0=-frac b{2a}), (y_0=y(x_0)).)

Из рисунка видно, что график (y=-|x^2+5x+4|) может иметь с прямой (y=k) две, три или четыре общие точки, или же не иметь общих точек, причем три точки будет тогда, когда (y=k) проходит через вершину параболы, то есть через точку (left(-frac52; -2frac14right)). Следовательно, (k=-2frac14=-2,25).

Ответ: -2,25

Постройте график функции [y=|x^2-9|, .]

Определите, при каких значениях (k) график данной функции имеет ровно 2 общие точки с прямой (y=k).

Данная функция имеет вид (|f(x)|). Для того, чтобы построить график такой функции, нужно построить график функции (f(x)), затем ту часть графика, что находится ниже оси (Ox), симметрично оси абсцисс отобразить наверх (тогда мы получим график (|f(x)|)).
Построим график (y=x^2-9). Это парабола, ветви которой направлены вверх. Чтобы построить график данной параболы, можно построить график (y=x^2) и опустить его на 9 единиц вниз по оси (Oy).

Из рисунка видно, что график (y=|x^2-9|) будет иметь две общие точки с прямой (y=k), если она будет находиться либо выше прямой (y=9) (прямой, проходящей через вершину параболы), либо совпадать с осью абсцисс. Следовательно, либо (k>9), либо (k=0).

Ответ: k = 0, k > 9

Постройте график функции [y=dfrac{3|x|-1}{|x|-3x^2}, .]

Определите, при каких значениях (k) прямая (y=kx) не имеет с графиком общих точек.

Заметим, что (x^2=|x|^2). Следовательно, функцию можно переписать как [y=dfrac{3|x|-1}{|x|-3|x|^2}] Таким образом, данная функция имеет вид (y=y(|x|)). Чтобы изобразить график такой функции, нужно изобразить график функции (y(x)), затем стереть ту часть графика, что находится левее оси (Oy), а часть графика, находящуюся правее (Oy), симметрично оси абсцисс отобразить влево.
Значит, рассмотрим [y=dfrac{3x-1}{x-3x^2}=-dfrac{3x-1}{(3x-1)x}] График данной функции – это график функции (y=-frac1x) с выколотой точкой (x=frac13) (так как (3x-1ne0)).
Графиком (y=-frac1x) является стандартная гипербола, находящаяся во 2 и 4 четвертях.

Прямая (y=kx), проходящая через начало координат, не имеет с искомым графиком (который изображен на правом рисунке) общих точек, если
1) проходит через одну из точек (left(frac13; -3right)) или (left(-frac13; -3right));
2) совпадает с осью абсцисс.
Если (y=kx) проходит через (left(frac13; -3right)), то (-3=kcdot
frac13)
, откуда (k=-9).
Аналогично находим остальные (k=9) и (k=0).

Ответ: -9;0;9

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Построение графиков функций, содержащих модули, обычно вызывает немалые затруднения у школьников. Однако, все не так плохо. Достаточно запомнить несколько алгоритмов решения таких задач, и вы сможете без труда построить график даже самой на вид сложной функции. Давайте разберемся, что же это за алгоритмы.

1. Построение графика функции y = |f(x)|

Заметим, что множество значений функций y = |f(x)| : y ≥ 0. Таким образом, графики таких функций всегда расположены полностью в верхней полуплоскости.

Построение графика функции y = |f(x)| состоит из следующих простых четырех этапов.

1) Построить аккуратно и внимательно график функции y = f(x).

2) Оставить без изменения все точки графика, которые находятся выше оси 0x или на ней.

3) Часть графика, которая лежит ниже оси 0x, отобразить симметрично относительно оси 0x.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 1. Изобразить график функции y = |x2 – 4x + 3|

1) Строим график функции y = x2 – 4x + 3. Очевидно, что график данной функции – парабола. Найдем координаты всех точек пересечения параболы с осями координат и координаты вершины параболы.

0x : y = 0.

x2 – 4x + 3 = 0.

x1 = 3, x2 = 1.

Следовательно, парабола пересекает ось 0x в точках (3, 0) и (1, 0).

0y: x = 0.

y = 02 – 4 · 0 + 3 = 3.

Следовательно, парабола пересекает ось 0y в точке (0, 3).

Координаты вершины параболы:

xв = -(-4/2) = 2, yв = 22 – 4 · 2 + 3 = -1.

Следовательно, точка (2, -1) является вершиной данной параболы.

Рисуем параболу, используя полученные данные (рис. 1)

Р1

2) Часть графика, лежащую ниже оси 0x, отображаем симметрично относительно оси 0x.

3) Получаем график исходной функции (рис. 2, изображен пунктиром).

Р2

2. Построение графика функции y = f(|x|)

Заметим, что функции вида y = f(|x|) являются четными:

y(-x) = f(|-x|) = f(|x|) = y(x). Значит, графики таких функций симметричны относительно оси 0y.

Построение графика функции y = f(|x|) состоит из следующей несложной цепочки действий.

1) Построить график функции y = f(x).

2) Оставить ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отобразить указанную в пункте (2) часть графика симметрично оси 0y.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 2. Изобразить график функции y = x2 – 4 · |x| + 3

Так как x2 = |x|2, то исходную функцию можно переписать в следующем виде: y = |x|2 – 4 · |x| + 3. А теперь можем применять предложенный выше алгоритм.

1) Строим аккуратно и внимательно график функции y = x2 – 4 · x + 3 (см. также рис. 1).

2) Оставляем ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отображаем правую часть графика симметрично оси 0y.

4) Окончательный график изображен на рисунке (рис. 3).

Р3

Пример 3. Изобразить график функции y = log2|x|

Применяем схему, данную выше.

1) Строим график функции y = log2x (рис. 4).

Р4

Далее повторяем пункты 2)-3) предыдущего примера и получаем окончательный график (рис. 5).

Р5

3. Построение графика функции y = |f(|x|)|

Заметим, что функции вида y = |f(|x|)| тоже  являются четными. Действительно, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), и поэтому , их графики симметричны относительно оси 0y. Множество значений таких функций: y 0. Значит, графики таких функций расположены полностью в верхней полуплоскости.

Чтобы построить график функции y = |f(|x|)|, необходимо:

1) Построить аккуратно график функции y = f(|x|).

2) Оставить без изменений ту часть графика, которая находится выше оси 0x или на ней.

3) Часть графика, расположенную ниже оси 0x, отобразить симметрично относительно оси 0x.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 4. Изобразить график функции y = |-x2 + 2|x| – 1|.

1) Заметим, что x2= |x|2. Значит, вместо исходной функции y = -x2 + 2|x| – 1

можно использовать функцию y = -|x|2 + 2|x| – 1, так как их графики совпадают.

Строим график y = -|x|2 + 2|x| – 1. Для этого применяем алгоритм 2.

a) Строим график функции y = -x2 + 2x – 1 (рис. 6).

Р6

b) Оставляем ту часть графика, которая расположена в правой полуплоскости.

c) Отображаем полученную часть графика симметрично оси 0y.

d) Полученный график изображен на рисунке пунктиром (рис. 7).

Р7

2) Выше оси 0х точек нет, точки на оси 0х оставляем без изменения.

3) Часть графика, расположенную ниже оси 0x, отображаем симметрично относительно 0x.

4) Полученный график изображен на рисунке пунктиром (рис. 8) .

Р8

Пример 5. Построить график функции y = |(2|x| – 4) / (|x| + 3)|

1) Сначала необходимо построить график функции y = (2|x| – 4) / (|x| + 3). Для этого возвращаемся к алгоритму 2.

a)  Аккуратно строим график функции y = (2x – 4) / (x + 3) (рис. 9).

Р9

Заметим, что данная функция является дробно-линейной и ее график есть гипербола. Для построения кривой сначала необходимо найти асимптоты графика. Горизонтальная – y = 2/1 (отношение коэффициентов при x в числителе и знаменателе дроби), вертикальная – x = -3.

Далее повторяем пункты b)-c) из предыдущего примера и получаем следующий график функции (рис. 10).

Р10

2) Ту часть графика, которая находится выше оси 0x или на ней, оставим без изменений.

3) Часть графика, расположенную ниже оси 0x, отобразим симметрично относительно 0x.

4) Окончательный график изображен на рисунке (рис. 11).Р11

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

График функции с модулем




Построить график функции с модулем — один из видов задания 23 ОГЭ по математике.

Рассмотрим примеры таких заданий.

1) Постройте график функции

    [ y = 5left| {x - 2} right| - x^2 + 5x - 6 ]

и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.

Решение:

Область определения функции D(y): x∈R.

1)Ищем значение, при котором выражение, стоящее под знаком модуля, обращается в нуль:

x-2=0,  x=2.

Найдём значение функции при x=2.

y(2)=5·0-2²+5∙2-3∙0-6=0.

Получили точку (2;0).

2) Ищем промежутки, в которых выражение, стоящее под знаком модуля, принимает положительные значения.

Если x-2>0, то есть при x>2, |х-2|=x-2,

y=5|х-2|-x²+5x-6=5(х-2)-x²+5x-6=5х-10-x²+5x-6=-x²+10x-16.

y=-x²+10x-16 — квадратичная функция. График — парабола ветвями вниз (так как a=-1<0).

Координаты вершины параболы

    [ x_o = - frac{b}{{2a}} = frac{{ - 10}}{{2 cdot ( - 1)}} = 5, ]

    [ y_o = - 5^2 + 10 cdot 5 - 16 = 9, ]

то есть вершина параболы — точка (5;9). От вершины строим график функции y=-x² (так как a=-1).

3)Ищем промежутки, в которых выражение, стоящее под знаком модуля, принимает отрицательные значения.

Если x-2<0, то есть при x<2, |х-2|=-(x-2),

y=5|х-2|-x²+5x-6=-5(х-2)-x²+5x-6=-5х+10-x²+5x-6=-x²+4.

y=-x²+4 — квадратичная функция. График — парабола ветвями вниз.

Координаты вершины параболы

    [ x_o = - frac{b}{{2a}} = - frac{0}{{2 cdot ( - 1)}} = 0, ]

    [ y_o = - 0^2 + 4 = 4, ]

то есть вершина параболы — точка (0;4). От вершины строим график функции y=-x².

Прямая x=2 разбивает координатную плоскость на две полуплоскости. Слева от неё, для x<2,  строим параболу y=-x²+4, справа, для x>2 — параболу y=-x²+10x-16:

grafik-funkcii-s-modulem

График функции с модулем можно рассматривать и как график кусочной функции:

    [ y = 5left| {x - 2} right| - x^2 + 5x - 6 ]

    [ y = left{ begin{array}{l} 5(x - 2) - x^2 + 5x - 6,x - 2 ge 0, \ - 5(x - 2) - x^2 + 5x - 6,x - 2 < 0; \ end{array} right. ]

    [ y = left{ begin{array}{l} - x^2 + 10x - 16,npu_x ge 2, \ - x^2 + 4,npu_x < 2. \ end{array} right. ]

Прямая y=m имеет с графиком ровно три общие точки при m=0 и m=4:

grafik-funkcii-s-modulem-oge

Ответ: 0; 4.

2) Постройте график функции

    [ y = x^2 - left| {6x + 1} right| ]

и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.

Решение:

Область определения функции D(y): x∈R.

1) Ищем значение, при котором выражение, стоящее под знаком модуля, обращается в нуль:

    [ 6x + 1 = 0, Rightarrow x = - frac{1}{6}. ]

    [ npu_x = - frac{1}{6},y = ( - frac{1}{6})^2 - 0 = frac{1}{{36}}. ]

    [ 2)npu_6x + 1 > 0,m.e._npu_x > - frac{1}{6} ]

|6x+1|=6x+1 и y=x²-(6x+1)=x²-6x-1.

y=x²-6x-1 — квадратичная функция. График — парабола ветвями вверх (поскольку a=1>0).

Координаты вершины параболы

    [ x_o = - frac{b}{{2a}} = - frac{{ - 6}}{{2 cdot 1}} = 3, ]

    [ y_o = 3^2 - 6 cdot 3 - 1 = - 10. ]

Так как a=1, от вершины (3;-10) строим график y=x².

    [ 3)npu_6x + 1 < 0,m.e._npu_x < - frac{1}{6} ]

|6x+1|=-(6x+1) и y=x²+(6x+1)=x²+6x+1.

y=x²+6x+1 — квадратичная функция. График — парабола ветвями вверх.

Координаты вершины параболы

    [ x_o = - frac{b}{{2a}} = - frac{6}{{2 cdot 1}} = - 3, ]

    [ y_o = ( - 3)^2 + 6 cdot ( - 3) + 1 = - 8, ]

от вершины (-3;-8)  строим график y=x².

Или:

    [ y = x^2 - left| {6x + 1} right|, ]

    [ y = left{ begin{array}{l} x^2 - 6x - 1,npu_x ge - frac{1}{6}, \ x^2 + 6x + 1,npu_x < frac{1}{6}. \ end{array} right. ]

grafik-s-modulem-ogeh

Прямая y=m имеет с графиком ровно три общие точки при m=1/30 и m=-8:

grafik-s-modulem-oge

Ответ: -8; 1/36.

3) Постройте график функции

    [ y = left| x right|x + 3left| x right| - 5x ]

и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.

Решение:

Область определения функции D(y): x∈R.

1) Если x=0, y=|0|·0+3·|0|-5·0=0.

2) Если x>0, |x|=x, y=x·x+3·x-5·x=x²-2x.

y=x²-2x — квадратичная функция. График — парабола ветвями вверх (a=1>0).

Координаты вершины параболы

    [ x_o = - frac{b}{{2a}} = - frac{{ - 2}}{{2 cdot 1}} = 1, ]

    [ y_o = 1^2 - 2 cdot 1 = - 1. ]

От вершины (1;-1) строим параболу y=x² (так как a=1).

3) Если x<0, |x|=-x, y=-x·x+3·(-x)-5·x=-x²-8x.

y=-x²-8x — квадратичная функция. График — парабола ветвями вниз (a=-1<0).

Координаты вершины параболы

    [ x_o = - frac{b}{{2a}} = - frac{{ - 8}}{{2 cdot ( - 1)}} = - 4, ]

    [ y_o = - ( - 4)^2 - 8 cdot ( - 4) = 16. ]

От вершины (-4;16) строим параболу y=-x² (так как a=-1).

Таким образом, график данной функции представляет собой комбинацию двух парабол: справа от прямой x=0 (оси Oy) — y=x²-2x, слева — y=-x²-8x:

grafik-s-modulem-na-oge

Альтернативный вариант:

    [ y = xleft| x right| + 3left| x right| - 5x, ]

    [ y = left{ begin{array}{l} x cdot x + 3x - 5x,npu_x ge 0, \ x cdot ( - x) + 3 cdot ( - x) - 5x,npu_x < 0; \ end{array} right. ]

    [ y = left{ begin{array}{l} x^2 - 2x,npu_x ge 0, \ - x^2 - 8x,npu_x < 0. \ end{array} right. ]

Прямая y=m имеет с графиком ровно две общие точки, когда она проходит через вершины парабол, то есть при m=-1 и m=16:

grafik-s-modulem-23-na-oge

Ответ: -1; 16.

4) Построить график функции y=|x²+2x-3|. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?

Решение:

Область определения функции D(y): x∈R.

Построим график функции y=x²+2x-3.

Эта функция — квадратичная. Её графиком является парабола, ветви которой направлены вверх.

Координаты вершины параболы

    [ x_o = - frac{b}{{2a}} = - frac{2}{{2 cdot 1}} = - 1, ]

    [ y_o = ( - 1)^2 + 2 cdot ( - 1) - 3 = - 4, ]

, то есть вершина параболы — точка (-1;-4).

От вершины строим график функции y=x²:

grafik-x-v-kvadrate-3x-3

График функции y=|x²+2x-3| может быть получен из графика функции y=x²+2x-3 следующим образом: часть графика, расположенную выше оси Ox, сохраняем. Часть, расположенную ниже оси Ox, отображаем симметрично относительно оси Ox.

Или y=|x²+2x-3|

    [ y = left{ begin{array}{l} x^2 + 2x - 3,npu_x^2 + 2x - 3 ge 0, \ - (x^2 + 2x - 3),npu_x^2 + 2x - 3 < 0; \ end{array} right. ]

    [ y = left{ begin{array}{l} x^2 + 2x - 3,npu_x le - 3;x ge 1, \ - x^2 - 2x + 3,npu_ - 3 < x < 1. \ end{array} right. ]

Вершина параболы (-1;-4) при этом переходит в точку (-1;4):

grafik-modul-x2-3x-3

Наибольшее число общих точек, которое график данной функции может иметь с прямой, параллельной оси абсцисс, равно 4 (например, прямая y=3 пересекает график в четырёх точках).

grafik-modul-x-v-kvadrate-3x-3-oge

Ответ: 4.

       

Понравилась статья? Поделить с друзьями:
  • Составить план текста культуру часто определяют как вторую природу
  • Как найти клиентов дубли
  • Финансовый омбудсмен как найти
  • Как исправить речевые ошибки в сочинении егэ
  • Как найти копирование контактов