Как найти корень числа в скобках

Определение

Квадратным корнем или корнем 2-ой степени числа X называется число, которое при умножении само на себя даёт число b, т. е. a*a = b.

В статье мы поговорим о таких действиях с квадратными корнями, как сложение и вычитание.

Свойство 1. 

Корень, взятый от умножения двух корней равен произведению корней от указанных множителей, если они больше нуля:

√(a*b) = √a*√b, где a и b – неотрицательные числа.

Свойство может быть распространено на большее число множителей, т. е. √(a*b*…*d) = √a*√b* …*√d. При этом, если число отрицательных множителей чётное, то их произведение всё равно даст положительное число, а значит свойство останется справедливым.

Свойство 2. 

Корень отношения из отношения членов выражения равен отношению корней:

√(a/b) = √a/√b, где a – неотрицательное, не равное нулю число, число и b – неотрицательные число.

Свойство 3.  

√a2n= an, где a – неотрицательное, натуральное, не равное нулю число.

Правило

Сложение и вычитание корней возможно только если выражение под корнем у них одно и то же. В частности, можно сложить или вычесть один из другого 2√7 и 5√7, а вот такие же действия с 2√7 и 5√8 или с 2√2 и 5√7 провести уже не получится. В частности, невозможно вычисление суммы или разности типа 5 + √X или 5 — √X. Если число целое, значит подкоренным числом является 1. Фактически любое число можно записать как N или как N √1.

Общие правила сложения и вычитания корней

Правила

В общем случае порядок действий при сложении и вычитании квадратных корней следующий:

  1. Соединяем корни посредством знаков, обозначающих соответствующие операции. Допустим нам нужно из корня X вычесть корень Y. Записываем выражение √X — √Y. Если нам требуется сложить, то выражение будет √X + √Y
  2. Приводим выражения к простейшей форме, т. е. если между ними имеются подобные, то делаем приведение. Так называется математическая операция, при которой коэффициенты подобных членов берутся со знаками соответствующих членов, заключаются в скобки, затем общий корень выводится за их пределы. Упрощение полученного коэффициента происходит по общим правилам математики.

Вся сложность заключается в упрощении подкоренного выражения. Когда приступаешь к этому, не известно получится ли его упростить. Окончательно решить вопрос можно лишь попробовав подобное сделать.

Сложение и вычитание квадратных корней, простейшие случаи

Пример 1. Сложить √4 + √64. Казалось бы числа под знаком корня разные, и складываться не должны, но √4 = 2, а √64 = 8. Получаем 2√1 + 8√1 или 2 + 8. Результат равен 10. Ответ: √4 + √64 = 10. Это один из примеров того, как складывать разные корни. К сожалению, так легко получается далеко не всегда.


Пример 2. Сложить 7√3 + 5√3. Выносим √4 за скобки, получаем (7+5) √3 или 12√3.

Ответ: 7√3 + 5√3 = 12√3.


Пример 3. Вычесть √64 — √4.

Т. к. √64 = 8, а √4 = 2, получаем √64 — √4 = 8 – 2 = 6.

Ответ: √64 — √4 = 6.


Пример 4. Вычесть 7√3 — 5√3.

Выносим √3 за скобки, получаем (7-5) √3 = 2√3.

Ответ: 7√3 — 5√3 = 2√3.


Пример 5. Сложить √45 + 4√5.

Число √45 можно представить в виде √(9*5). Как известно √9 = 3, выносим это число из-под знака корня. Получаем 3√5. Нам нужно будет выполнить сложение 3√5 + 4√5. Подкоренное выражение одинаковое, поэтому действие допустимо. Выносим √5 за скобки и получаем (3+4)√5 = 7√5.

Ответ: √45 + 4√5 = 7√5.


Пример.6. Вычислить выражение 6√40 — 3√10 + √5.

Упрощаем число 6√40. Разлагаем √40 на множители: 6√(4*10). Выносим 4 из-под корня: 6*2√10. Перемножаем 6 и 2, в результате имеем 12√10.

Выражение 6√40 — 3√10 + √5 записываем в виде 12√10 — 3√10 + √5. У первых двух членов общее подкоренное число √10, выносим его за скобки и получаем (12-3)√10 + √5 = 9√10 +√5. Больше упрощать некуда.

Ответ: 6√40 — 3√10 + √5 = 9√10 +√5.

Вычитание и сложение квадратных корней с помощью сокращения знаменателя

Это часто бывает нужно, когда требуется избавиться от иррациональности в знаменателе. Нам дано выражение N/(√X +√Y). Умножаем обе части дроби (числитель и знаменатель) на √X -√Y. Вспомните формулу сокращённого умножения. (a+b)*(a-b) = a2 – b2. Применительно к нашему случаю это будет (√X +√Y)*(√X -√Y) = X-Y.

Пример 7. Вычислить 4 / (√3 + √5). Умножаем всё на (√3 — √5). В результате получаем

4 * (√3 — √5) / ((√3 + √5) * (√3 — √5)) =

= 4 * (√3 — √5) / (3-5) = 4 * (√3 — √5) / (-2) =

=2 * (√5 — √3).

Далее задача посложнее.


Пример 8. Нужно вычислить выражение 12 / (√2 + √3 + √5). Поступить можно только одним образом – умножить обе части дроби на (√2 + √3 — √5). Обратите внимание, последний знак в выражении минус, а не плюс, как в исходном. В результате мы имеем:

12*(√2 + √3 — √5)/[(√2 + √3 + √5)* (√2 + √3 — √5)].

После последовательного перемножения всех чисел получаем  12 * (√2 + √3 — √5) / (2 * √6). Упрощаем выражение далее и в итоге получаем: 2 * √3 + 3 * √2 — √30.

Ответ: 12 / (√2 + √3 + √5) = 2 * √3 + 3 * √2 — √30.

Теперь вы знаете, как складывать квадратные корни при действиях с дробями.

Нет времени решать самому?

Наши эксперты помогут!

Приближённое вычисление квадратного корня

Приближённое сложение и вычитание корней проводится следующим образом:

Сначала на калькуляторе вычисляем точное значение каждого из корней, округляем их до требуемой степени точности, после чего проводим сложение приближённых чисел.

Иногда это является единственным доступным способом решить задачу, а иногда используется в качестве проверки результата, полученного иным путём.

Пример 9. Сложить √7 + √5.  Сложение этих квадратных корней проводим, используя калькулятор точное значение √7 = 2,645751, и точное значение √5 = 2,236067.

Округляем полученные числа и складываем их 2,65 + 2,24 = 4,89.

Важно. Выражения √(X+Y) = √X +√Y и√(X-Y) = √X — √Y абсолютно не верны. Чтобы убедиться в этом, давайте посчитаем сколько будет √(9+16) = √25 = 5.

Если складывать, числа как отдельные корни, то, √9 +√16 = 3 + 4 = 7.

Посмотрите, сколько будет, если √(16-9) = √7 ≈ 2,65, При вычитании чисел, как отдельных корней √16 — √9 = 4 – 3 = 1.

Дополнительные примеры

Приведём ряд дополнительных примеров по сложению и вычитанию корней.

Пример 10. Вычислить √9 + √4 — 3√2. Из 9 и 4 квадратные корни вычисляются очень легко. √9 = 3, √4 = 2. В результате имеем 3 + 2 — 3√2 = 5 — 3√2. Это выражение дальше уже никак нельзя сделать проще, т. е. окончательным будет результат 5 — 3√2.

Ответ: √9 + √4 — 3√2 = 5 — 3√2.


Пример 11. Вычислить (√2)/4 + (√2)/2. Сначала находим наименьший знаменатель указанных дробей. Не сложно понять, что он равен 4. Чтобы привести к наименьшему знаменателю вторую дробь, умножаем её на 2/2 и получаем (2√2)/4. Теперь нам остаётся сложить лишь числители, знаменатель остаётся прежним. В итоге получаем (√2)/4 + (2√2)/4 = (3√2)/4.

Ответ: (√2)/4 + (√2)/2 = (3√2)/4.


Пример 12. Посчитать выражение (√X+√Y)/ (√X-√Y). Умножаем указанное выражение на дробь (√X+√Y)/(√X+√Y), В результате будем иметь

[(√X+√Y)*(√X+√Y)]/[(√X-√Y)*(√X+√Y)] = (√X+√Y)2/(X-Y).

Далее нужно раскрыть скобки. Тогда мы получим [X + 2√(X*Y) + Y]/(X – Y).

Ответ: (√X+√Y)/(√X-√Y) = [X + 2√(X*Y) + Y]/(X – Y). Проще исходного полученное выражение назвать сложно. Скорее это наглядный пример того, что упрощение возможно далека не всегда. Его попытка имеет смысл лишь для того, чтобы в последнем убедить себя окончательно.


Пример 13. Вычислить выражение (√2 +√3)*(√2-√3)3/(2-2√6+3). Раскладываем второй множитель числителя на два множителя

 (√2-√3)3 = (√2-√3)2*(√2-√3). После этого будем иметь выражение [(√2-√3)2*(√2-√3)*(√2 +√3)]/(2-2√6+3), но ведь (√2-√3)2 = 2 -2√6+3 и оно совпадает со знаменателем дроби, а значит может быть сокращено. Мы имеем (√2-√3)*(√2 +√3), по известной формуле  (a+b)*(a-b) = a2 – b2 в результате мы получаем (√2-√3)*(√2 +√3) = 2 – 3 = -1.

Казалось бы, очень сложное выражение получилось равным (-1). Результат абсолютно точен. Вычисляя выражение через приближённые значения корней, мы пришли бы к тому же самому результату, то в его точности сомнения тогда могли бы остаться. Сейчас же их совершенно нет. Надеемся, что статья была для вас понятной и полезной.

Факт 1.
(bullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0)). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b), при возведении которого в квадрат мы получим число (a): [sqrt a=bquad text{то же самое, что }quad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0). Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0).
(bullet) Чему равен (sqrt{25})? Мы знаем, что (5^2=25) и ((-5)^2=25). Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt{25}=5) (так как (25=5^2)).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a), а число (a) называется подкоренным выражением.
(bullet) Исходя из определения, выражения (sqrt{-25}), (sqrt{-4}) и т.п. не имеют смысла.
 

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20): [begin{array}{|ll|}
hline
1^2=1 & quad11^2=121 \
2^2=4 & quad12^2=144\
3^2=9 & quad13^2=169\
4^2=16 & quad14^2=196\
5^2=25 & quad15^2=225\
6^2=36 & quad16^2=256\
7^2=49 & quad17^2=289\
8^2=64 & quad18^2=324\
9^2=81 & quad19^2=361\
10^2=100& quad20^2=400\
hline end{array}]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
(bullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt bne sqrt{apm b}] Таким образом, если вам нужно вычислить, например, (sqrt{25}+sqrt{49}), то первоначально вы должны найти значения (sqrt{25}) и (sqrt{49}), а затем их сложить. Следовательно, [sqrt{25}+sqrt{49}=5+7=12] Если значения (sqrt a) или (sqrt b) при сложении (sqrt
a+sqrt b)
найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме (sqrt
2+ sqrt {49})
мы можем найти (sqrt{49}) – это (7), а вот (sqrt
2)
никак преобразовать нельзя, поэтому (sqrt 2+sqrt{49}=sqrt
2+7)
. Дальше это выражение, к сожалению, упростить никак нельзя

 
(bullet) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть [sqrt acdot sqrt b=sqrt{ab}quad text{и}quad
sqrt a:sqrt b=sqrt{a:b}]
(при условии, что обе части равенств имеют смысл)
Пример: (sqrt{32}cdot sqrt 2=sqrt{32cdot
2}=sqrt{64}=8)
;
 
(sqrt{768}:sqrt3=sqrt{768:3}=sqrt{256}=16);
 
(sqrt{(-25)cdot (-64)}=sqrt{25cdot 64}=sqrt{25}cdot sqrt{64}=
5cdot 8=40)
.
 
(bullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt{44100}). Так как (44100:100=441), то (44100=100cdot 441). По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49), то есть (441=9cdot 49).
Таким образом, мы получили: [sqrt{44100}=sqrt{9cdot 49cdot 100}=
sqrt9cdot sqrt{49}cdot sqrt{100}=3cdot 7cdot 10=210]
Рассмотрим еще один пример: [sqrt{dfrac{32cdot 294}{27}}=
sqrt{dfrac{16cdot 2cdot 3cdot 49cdot 2}{9cdot 3}}= sqrt{
dfrac{16cdot4cdot49}{9}}=dfrac{sqrt{16}cdot sqrt4 cdot
sqrt{49}}{sqrt9}=dfrac{4cdot 2cdot 7}3=dfrac{56}3]

(bullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot
sqrt2)
). Так как (5=sqrt{25}), то [5sqrt2=sqrt{25}cdot sqrt2=sqrt{25cdot 2}=sqrt{50}] Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2),
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a).

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число (sqrt2) мы не можем. Представим, что (sqrt2) – это некоторое число (a). Соответственно, выражение (sqrt2+3sqrt2) есть не что иное, как (a+3a) (одно число (a) плюс еще три таких же числа (a)). А мы знаем, что это равно четырем таким числам (a), то есть (4sqrt2).
 

Факт 4.
(bullet) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака (sqrt {} ) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа (16) можно, потому что (16=4^2), поэтому (sqrt{16}=4). А вот извлечь корень из числа (3), то есть найти (sqrt3), нельзя, потому что нет такого числа, которое в квадрате даст (3).
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа (sqrt3, 1+sqrt2, sqrt{15}) и т.п. являются иррациональными.
Также иррациональными являются числа (pi) (число “пи”, приблизительно равное (3,14)), (e) (это число называют числом Эйлера, приблизительно оно равно (2,7)) и т.д.
(bullet) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой (mathbb{R}).
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
 

Факт 5.
(bullet) Модуль вещественного числа (a) – это неотрицательное число (|a|), равное расстоянию от точки (a) до (0) на вещественной прямой. Например, (|3|) и (|-3|) равны 3, так как расстояния от точек (3) и (-3) до (0) одинаковы и равны (3).
(bullet) Если (a) – неотрицательное число, то (|a|=a).
Пример: (|5|=5); (qquad |sqrt2|=sqrt2).
 
(bullet) Если (a) – отрицательное число, то (|a|=-a).
Пример: (|-5|=-(-5)=5); (qquad |-sqrt3|=-(-sqrt3)=sqrt3).
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число (0), модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная (x) (или какая-то другая неизвестная), например, (|x|), про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: (|x|).
 
(bullet) Имеют место следующие формулы: [{large{sqrt{a^2}=|a|}}] [{large{(sqrt{a})^2=a}},
text{ при условии } ageqslant 0]
Очень часто допускается такая ошибка: говорят, что (sqrt{a^2}) и ((sqrt a)^2) – одно и то же. Это верно только в том случае, когда (a) – положительное число или ноль. А вот если (a) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо (a) число (-1). Тогда (sqrt{(-1)^2}=sqrt{1}=1), а вот выражение ((sqrt {-1})^2) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что (sqrt{a^2}) не равен ((sqrt a)^2)!
 
Пример: 1) (sqrt{left(-sqrt2right)^2}=|-sqrt2|=sqrt2), т.к. (-sqrt2<0);

(phantom{00000}) 2) ((sqrt{2})^2=2).
 
(bullet) Так как (sqrt{a^2}=|a|), то [sqrt{a^{2n}}=|a^n|] (выражение (2n) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) (sqrt{4^6}=|4^3|=4^3=64)
2) (sqrt{(-25)^2}=|-25|=25) (заметим, что если модуль не поставить, то получится, что корень из числа равен (-25); но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) (sqrt{x^{16}}=|x^8|=x^8) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
(bullet) Для квадратных корней верно: если (sqrt a<sqrt b), то (a<b); если (sqrt a=sqrt b), то (a=b).
Пример:
1) сравним (sqrt{50}) и (6sqrt2). Для начала преобразуем второе выражение в (sqrt{36}cdot sqrt2=sqrt{36cdot 2}=sqrt{72}). Таким образом, так как (50<72), то и (sqrt{50}<sqrt{72}). Следовательно, (sqrt{50}<6sqrt2).
2) Между какими целыми числами находится (sqrt{50})?
Так как (sqrt{49}=7), (sqrt{64}=8), а (49<50<64), то (7<sqrt{50}<8), то есть число (sqrt{50}) находится между числами (7) и (8).
3) Сравним (sqrt 2-1) и (0,5). Предположим, что (sqrt2-1>0,5): [begin{aligned}
&sqrt 2-1>0,5 big| +1quad text{(прибавим единицу к обеим
частям)}\[1ex]
&sqrt2>0,5+1 big| ^2 quadtext{(возведем обе части в
квадрат)}\[1ex]
&2>1,5^2\
&2>2,25 end{aligned}]
Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и (sqrt 2-1<0,5).
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве (-3<sqrt2) нельзя (убедитесь в этом сами)!
 
(bullet) Следует запомнить, что [begin{aligned}
&sqrt 2approx 1,4\[1ex]
&sqrt 3approx 1,7 end{aligned}]
Знание приблизительного значения данных чисел поможет вам при сравнении чисел!
 
(bullet) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем (sqrt{28224}). Мы знаем, что (100^2=10,000), (200^2=40,000) и т.д. Заметим, что (28224) находится между (10,000) и (40,000). Следовательно, (sqrt{28224}) находится между (100) и (200).
Теперь определим, между какими “десятками” находится наше число (то есть, например, между (120) и (130)). Также из таблицы квадратов знаем, что (11^2=121), (12^2=144) и т.д., тогда (110^2=12100), (120^2=14400), (130^2=16900), (140^2=19600), (150^2=22500), (160^2=25600), (170^2=28900). Таким образом, мы видим, что (28224) находится между (160^2) и (170^2). Следовательно, число (sqrt{28224}) находится между (160) и (170).
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце (4)? Это (2^2) и (8^2). Следовательно, (sqrt{28224}) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем (162^2) и (168^2):
(162^2=162cdot 162=26224)
(168^2=168cdot 168=28224).
Следовательно, (sqrt{28224}=168). Вуаля!

  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Квадратное уравнение

    Что такое квадратное уравнение и как его решать?

    Мы помним, что уравнение это равенство, содержащее в себе переменную, значение которой нужно найти.

    Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением.

    Например, следующие уравнения являются квадратными:

    Решим первое из этих уравнений, а именно x 2 − 4 = 0 .

    Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.

    Итак, в уравнении x 2 − 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:

    Получили уравнение x 2 = 4 . Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду x = a , где a — корень уравнения.

    У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.

    Чтобы решить уравнение x 2 = 4 , нужно ответить на вопрос при каком значении x левая часть станет равна 4 . Очевидно, что при значениях 2 и −2 . Чтобы вывести эти значения воспользуемся определением квадратного корня.

    Число b называется квадратным корнем из числа a , если b 2 = a и обозначается как

    У нас сейчас похожая ситуация. Ведь, что такое x 2 = 4 ? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень x прирáвнена к 4.

    Тогда можно записать, что . Вычисление правой части позвóлит узнать чему равно x . Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем x = 2 и x = −2 .

    Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят арифметическое значение квадратного корня. В нашем случае на этапе когда записано выражение , перед следует поставить знак ±

    Затем найти арифметическое значение квадратного корня

    Выражение x = ± 2 означает, что x = 2 и x = −2 . То есть корнями уравнения x 2 − 4 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

    Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

    В обоих случаях левая часть равна нулю. Значит уравнение решено верно.

    Решим ещё одно уравнение. Пусть требуется решить квадратное уравнение (x + 2) 2 = 25

    Для начала проанализируем данное уравнение. Левая часть возведенá в квадрат и она равна 25 . Какое число в квадрате равно 25 ? Очевидно, что числа 5 и −5

    То есть наша задача найти x, при которых выражение x + 2 будет равно числам 5 и −5 . Запишем эти два уравнения:

    Решим оба уравнения. Это обычные линейные уравнения, которые решаются легко:

    Значит корнями уравнения (x + 2) 2 = 25 являются числа 3 и −7 .

    В данном примере как и в прошлом можно использовать определение квадратного корня. Так, в уравнения (x + 2) 2 = 25 выражение (x + 2) представляет собой квадратный корень из числа 25 . Поэтому можно cначала записать, что .

    Тогда правая часть станет равна ±5 . Полýчится два уравнения: x + 2 = 5 и x + 2 = −5. Решив по отдельности каждое из этих уравнений мы придём к корням 3 и −7 .

    Запишем полностью решение уравнения (x + 2) 2 = 25

    Из рассмотренных примеров видно, что квадратное уравнение имеет два корня. Чтобы не забыть о найденных корнях, переменную x можно подписывать нижними индексами. Так, корень 3 можно обозначить через x1 , а корень −7 через x2

    В предыдущем примере тоже можно было сделать так. Уравнение x 2 − 4 = 0 имело корни 2 и −2 . Эти корни можно было обозначить как x1 = 2 и x2 = −2.

    Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

    Сделаем проверку для уравнения (x + 2) 2 = 25 . Подставим в него корни 3 и −7 . Если при значениях 3 и −7 левая часть равна 25 , то это будет означать, что уравнение решено верно:

    В обоих случаях левая часть равна 25 . Значит уравнение решено верно.

    Квадратное уравнение бывает дано в разном виде. Наиболее его распространенная форма выглядит так:

    ax 2 + bx + c = 0 ,
    где a, b, c — некоторые числа, x — неизвестное.

    Это так называемый общий вид квадратного уравнения. В таком уравнении все члены собраны в общем месте (в одной части), а другая часть равна нулю. По другому такой вид уравнения называют нормальным видом квадратного уравнения.

    Пусть дано уравнение 3x 2 + 2x = 16 . В нём переменная x возведенá во вторую степень, значит уравнение является квадратным. Приведём данное уравнение к общему виду.

    Итак, нам нужно получить уравнение, которое будет похоже на уравнение ax 2 + bx + c = 0 . Для этого в уравнении 3x 2 + 2x = 16 перенесем 16 из правой части в левую часть, изменив знак:

    Получили уравнение 3x 2 + 2x − 16 = 0 . В этом уравнении a = 3 , b = 2 , c = −16 .

    В квадратном уравнении вида ax 2 + bx + c = 0 числа a , b и c имеют собственные названия. Так, число a называют первым или старшим коэффициентом; число b называют вторым коэффициентом; число c называют свободным членом.

    В нашем случае для уравнения 3x 2 + 2x − 16 = 0 первым или старшим коэффициентом является 3 ; вторым коэффициентом является число 2 ; свободным членом является число −16 . Есть ещё другое общее название для чисел a, b и cпараметры.

    Так, в уравнении 3x 2 + 2x − 16 = 0 параметрами являются числа 3 , 2 и −16 .

    В квадратном уравнении желательно упорядочивать члены так, чтобы они располагались в таком же порядке как у нормального вида квадратного уравнения.

    Например, если дано уравнение −5 + 4x 2 + x = 0 , то его желательно записать в нормальном виде, то есть в виде ax 2 + bx + c = 0.

    В уравнении −5 + 4x 2 + x = 0 видно, что свободным членом является −5 , он должен располагаться в конце левой части. Член 4x 2 содержит старший коэффициент, он должен располагаться первым. Член x соответственно будет располагаться вторым:

    Квадратное уравнение в зависимости от случая может принимать различный вид. Всё зависит от того, чему равны значения a , b и с .

    Если коэффициенты a , b и c не равны нулю, то квадратное уравнение называют полным. Например, полным является квадратное уравнение 2x 2 + 6x − 8 = 0 .

    Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид. Такое квадратное уравнение называют неполным. Например, неполным является квадратное уравнение 2x 2 + 6x = 0, в нём имеются коэффициенты a и b (числа 2 и 6 ), но отсутствует свободный член c.

    Рассмотрим каждый из этих видов уравнений, и для каждого из этих видов определим свой способ решения.

    Пусть дано квадратное уравнение 2x 2 + 6x − 8 = 0 . В этом уравнении a = 2 , b = 6 , c = −8 . Если b сделать равным нулю, то уравнение примет вид:

    Получилось уравнение 2x 2 − 8 = 0 . Чтобы его решить перенесем −8 в правую часть, изменив знак:

    Для дальнейшего упрощения уравнения воспользуемся ранее изученными тождественными преобразованиями. В данном случае можно разделить обе части на 2

    У нас получилось уравнение, которое мы решали в начале данного урока. Чтобы решить уравнение x 2 = 4 , следует воспользоваться определением квадратного корня. Если x 2 = 4 , то . Отсюда x = 2 и x = −2 .

    Значит корнями уравнения 2x 2 − 8 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

    Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

    В обоих случаях левая часть равна нулю, значит уравнение решено верно.

    Уравнение, которое мы сейчас решили, является неполным квадратным уравнением. Название говорит само за себя. Если полное квадратное уравнение выглядит как ax 2 + bx + c = 0 , то сделав коэффициент b нулём получится неполное квадратное уравнение ax 2 + c = 0 .

    У нас тоже сначала было полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Но мы сделали коэффициент b нулем, то есть вместо числа 6 поставили 0 . В результате уравнение обратилось в неполное квадратное уравнение 2x 2 − 4 = 0 .

    В начале данного урока мы решили квадратное уравнение x 2 − 4 = 0 . Оно тоже является уравнением вида ax 2 + c = 0 , то есть неполным. В нем a = 1 , b = 0 , с = −4 .

    Также, неполным будет квадратное уравнение, если коэффициент c равен нулю.

    Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициент c нулём. То есть вместо числа 4 поставим 0

    Получили квадратное уравнение 2x 2 + 6x=0 , которое является неполным. Чтобы решить такое уравнение, переменную x выносят за скобки:

    Получилось уравнение x(2x + 6) = 0 в котором нужно найти x, при котором левая часть станет равна нулю. Заметим, что в этом уравнении выражения x и (2x + 6) являются сомножителями. Одно из свойств умножения говорит, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

    В нашем случае равенство будет достигаться, если x будет равно нулю или (2x + 6) будет равно нулю. Так и запишем для начала:

    Получилось два уравнения: x = 0 и 2x + 6 = 0 . Первое уравнение решать не нужно — оно уже решено. То есть первый корень равен нулю.

    Чтобы найти второй корень, решим уравнение 2x + 6 = 0 . Это обычное линейное уравнение, которое решается легко:

    Видим, что второй корень равен −3.

    Значит корнями уравнения 2x 2 + 6x = 0 являются числа 0 и −3 . Запишем полностью решение данного уравнения:

    Выполним проверку. Подставим корни 0 и −3 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 0 и −3 левая часть равна нулю, то это будет означать, что уравнение решено верно:

    Следующий случай это когда числа b и с равны нулю. Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициенты b и c нулями. Тогда уравнение примет вид:

    Получили уравнение 2x 2 = 0 . Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю. Очевидно, что x = 0 . Действительно, 2 × 0 2 = 0 . Отсюда, 0 = 0 . При других значениях x равенства достигаться не будет.

    Проще говоря, если в квадратном уравнении вида ax 2 + bx + c = 0 числа b и с равны нулю, то корень такого уравнения равен нулю.

    Отметим, что когда употребляются словосочетания « b равно нулю » или « с равно нулю «, то подразумевается, что параметры b или c вовсе отсутствуют в уравнении.

    Например, если дано уравнение 2x 2 − 32 = 0 , то мы говорим, что b = 0 . Потому что если сравнить с полным уравнением ax 2 + bx + c = 0 , то можно заметить, что в уравнении 2x 2 − 32 = 0 присутствует старший коэффициент a , равный 2; присутствует свободный член −32 ; но отсутствует коэффициент b .

    Наконец, рассмотрим полное квадратное уравнение ax 2 + bx + c = 0 . В качестве примера решим квадратное уравнение x 2 − 2x + 1 = 0 .

    Итак, требуется найти x , при котором левая часть станет равна нулю. Воспользуемся изученными ранее тождественными преобразованиями.

    Прежде всего заметим, что левая часть уравнения представляет собой квадрат разности двух выражений. Если мы вспомним как раскладывать многочлен на множители, то получим в левой части (x − 1) 2 .

    Рассуждаем дальше. Левая часть возведенá в квадрат и она равна нулю. Какое число в квадрате равно нулю? Очевидно, что только 0 . Поэтому наша задача найти x , при котором выражение x − 1 равно нулю. Решив простейшее уравнение x − 1 = 0 , можно узнать чему равно x

    Этот же результат можно получить, если воспользоваться квадратным корнем. В уравнении (x − 1) 2 = 0 выражение (x − 1) представляет собой квадратный корень из нуля. Тогда можно записать, что . В этом примере записывать перед корнем знак ± не нужно, поскольку корень из нуля имеет только одно значение — ноль. Тогда получается x − 1 = 0 . Отсюда x = 1 .

    Значит корнем уравнения x 2 − 2x + 1 = 0 является единица. Других корней у данного уравнения нет. В данном случае мы решили квадратное уравнение, имеющее только один корень. Такое тоже бывает.

    Не всегда бывают даны простые уравнения. Рассмотрим например уравнение x 2 + 2x − 3 = 0 .

    В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

    Заметим, что левая часть уравнения представляет собой квадратный трехчлен. Тогда можно попробовать выделить полный квадрат из этого трёхчлена и посмотреть что это нам даст.

    Выделим полный квадрат из квадратного трёхчлена, располагающего в левой части уравнения:

    В получившемся уравнении перенесем −4 в правую часть, изменив знак:

    Теперь воспользуемся квадратным корнем. В уравнении (x + 1) 2 = 4 выражение (x + 1) представляет собой квадратный корень из числа 4 . Тогда можно записать, что . Вычисление правой части даст выражение x + 1 = ±2 . Отсюда полýчится два уравнения: x + 1 = 2 и x + 1 = −2 , корнями которых являются числа 1 и −3

    Значит корнями уравнения x 2 + 2x − 3 = 0 являются числа 1 и −3 .

    Пример 3. Решить уравнение x 2 − 6x + 9 = 0 , выделив полный квадрат.

    Выделим полный квадрат из левой части:

    Далее воспользуемся квадратным корнем и узнáем чему равно x

    Значит корнем уравнения x 2 − 6x + 9 = 0 является 3. Выполним проверку:

    Пример 4. Решить квадратное уравнение 4x 2 + 28x − 72 = 0 , выделив полный квадрат:

    Выделим полный квадрат из левой части:

    Перенесём −121 из левой части в правую часть, изменив знак:

    Воспользуемся квадратным корнем:

    Получили два простых уравнения: 2x + 7 = 11 и 2x + 7 = −11. Решим их:

    Пример 5. Решить уравнение 2x 2 + 3x − 27 = 0

    Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

    Так, в прошлом примере первым членом уравнения был 4x 2 . Его можно было представить в виде квадрата выражения 2x , то есть (2x) 2 = 2 2 x 2 = 4x 2 . Чтобы убедиться что это правильно, можно извлечь квадратный корень из выражения 4x 2 . Это квадратный корень из произведения — он равен произведению корней:

    В уравнении 2x 2 + 3x − 27 = 0 первый член это 2x 2 . Его нельзя представить в виде квадрата какого-нибудь выражения. Потому что нет числá, квадрат которого равен 2. Если бы такое число было, то этим числом был бы квадратный корень из числа 2. Но квадратный корень из числа 2 извлекается только приближённо. А приближённое значение не годится для представления числá 2 в виде квадрата.

    Если обе части исходного уравнения умножить или разделить на одно и то же число, то полýчится уравнение равносильное исходному. Это правило сохраняется и для квадратного уравнения.

    Тогда можно разделить обе части нашего уравнения на 2 . Это позвóлит избавиться от двойки перед x 2 что впоследствии даст нам возможность выделить полный квадрат:

    Перепишем левую часть в виде трёх дробей со знаменателем 2

    Сократим первую дробь на 2. Остальные члены левой части перепишем без изменений. Правая часть по-прежнему станет равна нулю:

    Выделим полный квадрат.

    При представлении члена в виде удвоенного произведения, появление множителя 2 привело бы к тому, что этот множитель и знаменатель дроби сократились бы. Чтобы этого не произошло, удвоенное произведение было домножено на . При выделении полного квадрата всегда нужно стараться сделать так, чтобы значение изначального выражения не изменилось.

    Свернём полученный полный квадрат:

    Приведём подобные члены:

    Перенесём дробь в правую часть, изменив знак:

    Воспользуемся квадратным корнем. Выражение представляет собой квадратный корень из числа

    Для вычисления правой части воспользуемся правилом извлечения квадратного корня из дроби:

    Тогда наше уравнение примет вид:

    Полýчим два уравнения:

    Значит корнями уравнения 2x 2 + 3x − 27 = 0 являются числа 3 и .

    Корень удобнее оставить в таком виде, не выполняя деления числителя на знаменатель. Так проще будет выполнять проверку.

    Выполним проверку. Подставим найденные корни в исходное уравнение:

    В обоих случаях левая часть равна нулю, значит уравнение 2x 2 + 3x − 27 = 0 решено верно.

    Решая уравнение 2x 2 + 3x − 27 = 0 , в самом начале мы разделили обе его части на 2 . В результате получили квадратное уравнение, в котором коэффициент перед x 2 равен единице:

    Такой вид квадратного уравнения называют приведённым квадратным уравнением.

    Любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведённым. Для этого нужно разделить обе его части на коэффициент, который располагается перед x². В данном случае обе части уравнения ax 2 + bx + c = 0 нужно разделить на a

    Пример 6. Решить квадратное уравнение 2x 2 + x + 2 = 0

    Сделаем данное уравнение приведённым:

    Выделим полный квадрат:

    Получили уравнение , в котором квадрат выражения равен отрицательному числу . Такого быть не может, поскольку квадрат любого числа или выражения всегда положителен.

    Следовательно, нет такого значения x , при котором левая часть стала бы равна . Значит уравнение не имеет корней.

    А поскольку уравнение равносильно исходному уравнению 2x 2 + x + 2 = 0 , то и оно (исходное уравнение) не имеет корней.

    Формулы корней квадратного уравнения

    Выделять полный квадрат для каждого решаемого квадратного уравнения не очень удобно.

    Можно ли создать универсальные формулы для решения квадратных уравнений? Оказывается можно. Сейчас мы этим и займёмся.

    Взяв за основу буквенное уравнение ax 2 + bx + c = 0 , и выполнив некоторые тождественные преобразования, мы сможем получить формулы для вывода корней квадратного уравнения ax 2 + bx + c = 0 . В эти формулы можно будет подставлять коэффициенты a , b , с и получать готовые решения.

    Итак, выделим полный квадрат из левой части уравнения ax 2 + bx + c = 0. Сначала сделаем данное уравнение приведённым. Разделим обе его части на a

    Теперь в получившемся уравнении выделим полный квадрат:

    Перенесем члены и в правую часть, изменив знак:

    Приведём правую часть к общему знаменателю. Дроби, состоящие из букв, привóдят к общему знаменателю методом «крест-нáкрест». То есть знаменатель первой дроби станóвится дополнительным множителем второй дроби, а знаменатель второй дроби станóвится дополнительным множителем первой дроби:

    В числителе правой части вынесем за скобки a

    Сократим правую часть на a

    Поскольку все преобразования были тождественными, то получившееся уравнение имеет те же корни, что и исходное уравнение ax 2 + bx + c = 0.

    Уравнение будет иметь корни только тогда, если правая часть больше нуля или равна нулю. Это потому что в левой части выполнено возведéние в квадрат, а квадрат любого числа положителен или равен нулю (если в этот квадрат возвóдится ноль). А чему будет равна правая часть зависит от того, что будет подставлено вместо переменных a , b и c .

    Поскольку при любом a не рáвным нулю, знаменатель правой части уравнения всегда будет положительным, то знак дроби будет зависеть от знака её числителя, то есть от выражения b 2 − 4ac .

    Выражение b 2 − 4ac называют дискриминантом квадратного уравнения. Дискриминант это латинское слово, означающее различитель . Дискриминант квадратного уравнения обозначается через букву D

    Дискриминант позволяет заранее узнать имеет ли уравнение корни или нет. Так, в предыдущем задании мы долго решали уравнение 2x 2 + x + 2 = 0 и оказалось, что оно не имеет корней. Дискриминант же позволил бы нам заранее узнать, что корней нет. В уравнении 2x 2 + x + 2 = 0 коэффициенты a , b и c равны 2, 1 и 2 соответственно. Подставим их в формулу D = b 2 −4ac

    D = b 2 − 4ac = 1 2 − 4 × 2 × 2 = 1 − 16 = −15.

    Видим, что D (оно же b 2 − 4ac ) является отрицательным числом. Тогда нет смысла решать уравнение 2x 2 + x + 2 = 0, выделяя в нём полный квадрат, потому что когда мы дойдем до уравнения вида , окажется что правая часть станет меньше нуля (из-за отрицательного дискриминанта). А квадрат числа не может быть отрицательным. Следовательно, корней у данного уравнения не будет.

    Станóвится понятно почему древние люди считали выражение b 2 − 4ac различителем. Это выражение подобно индикатору позволяет различить уравнение имеющего корни от уравнения, не имеющего корней.

    Итак, D равно b 2 − 4ac . Подставим в уравнении вместо выражения b 2 − 4ac букву D

    Если дискриминант исходного уравнения окажется меньше нуля (D , то уравнение примет вид:

    В этом случае говорят, что у исходного уравнения корней нет, поскольку квадрат любого числа не должен быть отрицательным.

    Если дискриминант исходного уравнения окажется больше нуля (D > 0) , то уравнение примет вид:

    В этом случае уравнение будет иметь два корня. Для их вывода воспользуемся квадратным корнем:

    Получили уравнение . Из него полýчится два уравнения: и . Выразим x в каждом из уравнений:

    Получившиеся два равенства это и есть универсальные формулы для решения квадратного уравнения ax 2 + bx + c = 0. Их называют формулами корней квадратного уравнения .

    Чаще всего эти формулы обозначаются как x1 и x2 . То есть для вычисления первого корня используется формула c индексом 1; для вывода второго корня — формула с индексом 2. Обозначим свои формулы так же:

    Очерёдность применения формул не важнá.

    Решим например квадратное уравнение x 2 + 2x − 8 = 0 с помощью формул корней квадратного уравнения. Коэффициенты данного квадратного уравнения это числа 1 , 2 и −8 . То есть, a = 1 , b = 2 , c = −8 .

    Прежде чем использовать формулы корней квадратного уравнения, нужно найти дискриминант этого уравнения.

    Найдём дискриминант квадратного уравнения. Для этого воспользуемся формулой D = b 2 4 ac . Вместо переменных a, b и c у нас будут коэффициенты уравнения x 2 + 2x − 8 = 0

    D = b 2 4ac = 2 2 − 4 × 1 × (−8) = 4 + 32 = 36

    Дискриминант больше нуля. Значит уравнение имеет два корня. Теперь можно воспользоваться формулами корней квадратного уравнения:

    Значит корнями уравнения x 2 + 2x − 8 = 0 являются числа 2 и −4 . Проверкой убеждаемся, что корни найдены верно:

    Наконец, рассмотрим случай когда дискриминант квадратного уравнения равен нулю. Вернёмся к уравнению . Если дискриминант равен нулю, то правая часть уравнения примет вид:

    И в этом случае квадратное уравнение будет иметь только один корень. Воспользуемся квадратным корнем:

    Далее выражаем x

    Это ещё одна формула для вывода корня квадратного корня. Рассмотрим её применение. Ранее мы решили уравнение x 2 − 6x + 9 = 0 , имеющее один корень 3. Решили мы его методом выделения полного квадрата. Теперь попробуем решить с помощью формул.

    Найдём дискриминант квадратного уравнения. В этом уравнении a = 1 , b = −6 , c = 9 . Тогда по формуле дискриминанта имеем:

    D = b 2 4ac = (−6) 2 − 4 × 1 × 9 = 36 − 36 = 0

    Дискриминант равен нулю (D = 0) . Это означает, что уравнение имеет только один корень, и вычисляется он по формуле

    Значит корнем уравнения x 2 − 6x + 9 = 0 является число 3.

    Для квадратного уравнения, имеющего один корень также применимы формулы и . Но применение каждой из них будет давать один и тот же результат.

    Применим эти две формулы для предыдущего уравнения. В обоих случаях получим один и тот же ответ 3

    Если квадратное уравнение имеет только один корень, то желательно применять формулу , а не формулы и . Это позволяет сэкономить время и место.

    Пример 3. Решить уравнение 5x 2 − 6x + 1 = 0

    Найдём дискриминант квадратного уравнения:

    Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

    Значит корнями уравнения 5x 2 − 6x + 1 = 0 являются числа 1 и .

    Ответ: 1; .

    Пример 4. Решить уравнение x 2 + 4x + 4 = 0

    Найдём дискриминант квадратного уравнения:

    Дискриминант равен нулю. Значит уравнение имеет только один корень. Он вычисляется по формуле

    Значит корнем уравнения x 2 + 4x + 4 = 0 является число −2 .

    Пример 5. Решить уравнение 3x 2 + 2x + 4 = 0

    Найдём дискриминант квадратного уравнения:

    Дискриминант меньше нуля. Значит корней у данного уравнения нет.

    Ответ: корней нет.

    Пример 6. Решить уравнение (x + 4) 2 = 3x + 40

    Приведём данное уравнение к нормальному виду. В левой части располагается квадрата суммы двух выражений. Раскрóем его:

    Перенесём все члены из правой части в левую часть, изменив их знаки. В правой части останется ноль:

    Приведём подобные члены в левой части:

    В получившемся уравнении найдём дискриминант:

    Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

    Значит корнями уравнения (x + 4) 2 = 3x + 40 являются числа 3 и −8 .

    Ответ: 3 ; −8.

    Пример 7. Решить уравнение

    Умнóжим обе части данного уравнения на 2 . Это позвóлит нам избавиться от дроби в левой части:

    В получившемся уравнении перенесём 22 из правой части в левую часть, изменив знак. В правой части останется 0

    Приведём подобные члены в левой части:

    В получившемся уравнении найдём дискриминант:

    Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

    Значит корнями уравнения являются числа 23 и −1 .

    Ответ: 23; −1.

    Пример 8. Решить уравнение

    Умнóжим обе части на наименьшее общее кратное знаменателей обеих дробей. Это позвóлит избавиться от дробей в обеих частях. Наименьшее общее кратное чисел 2 и 3 это число 6 . Тогда получим:

    В получившемся уравнении раскроем скобки в обеих частях:

    Теперь перенесём все члены из правой части в левую часть, изменив у них знаки. В правой части останется 0

    Приведём подобные члены в левой части:

    В получившемся уравнении найдём дискриминант:

    Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

    Значит корнями уравнения являются числа и 2.

    Примеры решения квадратных уравнений

    Пример 1. Решить уравнение x 2 = 81

    Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 9 и −9. Воспользуемся квадратным корнем для их вывода:

    Ответ: 9, −9 .

    Пример 2. Решить уравнение x 2 − 9 = 0

    Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

    Ответ: 3, −3.

    Пример 3. Решить уравнение x 2 − 9x = 0

    Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

    Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

    Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение x − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

    Ответ: 0, 9 .

    Пример 4. Решить уравнение x 2 + 4x − 5 = 0

    Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

    Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

    D = b 2 − 4ac = 4 2 − 4 × 1 × (−5) = 16 + 20 = 36

    Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

    Ответ: 1, −5 .

    Пример 5. Решить уравнение

    Умнóжим обе части на наименьшее общее кратное чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

    В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

    Приведём подобные члены:

    Решим получившееся уравнение с помощью формул:

    Ответ: 5 , .

    Пример 6. Решить уравнение x 2 = 6

    В данном примере как и в первом нужно воспользоваться квадратным корнем:

    Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

    Но чаще всего корень оставляют в виде радикала:

    Ответ:

    Пример 7. Решить уравнение (2x + 3) 2 + (x − 2) 2 = 13

    Раскроем скобки в левой части уравнения:

    В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

    Получили неполное квадратное уравнение. Решим его:

    Ответ: 0 , −1,6 .

    Пример 8. Решить уравнение (5 + 7x)(4 − 3x) = 0

    Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

    Первый способ. Раскрыть скобки и получить нормальный вид квадратного уравнения.

    Приведём подобные члены:

    Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

    Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

    Решим получившееся уравнение с помощью формул корней квадратного уравнения:

    Второй способ. Найти значения x , при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

    Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x)(4 − 3x) = 0 будет достигаться, если выражение (5 + 7x) равно нулю, или же выражение (4 − 3x) равно нулю. Наша задача выяснить при каких x это происходит:

    Примеры решения задач

    Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м 2 . При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

    Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

    Обозначим ширину комнаты через x . А длину комнаты через 2x , потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

    Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

    По условию задачи площадь должна быть 8 м 2 . Значит выражение 2x × x следует приравнять к 8

    Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

    Первое что можно сделать это выполнить умножение в левой части уравнения:

    В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

    Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

    Теперь воспользуемся квадратным корнем. Если x 2 = 4 , то . Отсюда x = 2 и x = −2 .

    Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2 . Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

    А длина была обозначена через 2x . Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

    Значит длина равна 4 м , а ширина 2 м . Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м 2

    Ответ: длина комнаты составляет 4 м , а ширина 2 м .

    Пример 2. Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м 2

    Решение

    Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (x + 10) метров. Площадь участка составляет 1200 м 2 . Умножим длину участка на его ширину и приравняем к 1200 , получим уравнение:

    Решим данное уравнение. Для начала раскроем скобки в левой части:

    Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется 0

    Решим получившееся уравнение с помощью формул:

    Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30 . Потому что ширина не может выражаться отрицательным числом.

    Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение x + 10 . Подставим в него найденное значение x и вычислим длину:

    x + 10 = 30 + 10 = 40 м

    Значит длина участка составляет сорок метров, а ширина тридцать метров. Эти значения удовлетворяют условию задачи, поскольку если перемножить длину и ширину (числа 40 и 30 ) получится 1200 м 2

    40 × 30 = 1200 м 2

    Теперь ответим на вопрос задачи. Какова длина изгороди? Чтобы её вычислить нужно найти периметр участка.

    Периметр прямоугольника это сумма всех его сторон. Тогда:

    P = 2(a + b) = 2 × (40 + 30) = 2 × 70 = 140 м.

    Ответ: длина изгороди огородного участка составляет 140 м.

    Уравнение и его корни

    Время чтения: 11 минут

    Основные понятия уравнения

    Уравнением называют равенство, в котором одна из переменных неизвестна, и её нужно найти. Значение этой неизвестной должно быть таким, чтобы равенство было верным.

    К примеру: 3+4=7 это числовое равенство, при вычислении которого с левой стороны получается 7=7.

    Уравнением же будет называться следующее равенство: 3+х=7, поскольку есть неизвестная переменная х, её значение можно найти.

    Из этого уравнения следует, что переменная х=4, только при таком его значении равенство 3+х=7, будет верным.

    Неизвестные переменные принято писать в виде маленьких латинских букв, можно любыми, но чаще используют x,y,z.

    Получается, чтобы равенство сделать уравнением необходимо, чтобы в нем была буква, значение которой неизвестно.

    Как мы понимаем существует множество примеров уравнений с разными арифметическими действиями.

    Пример: х + 5 = 1= 9; z — 2 = 7; 9 * y = 18, 6 : f = 2

    Помимо этого существуют уравнения со скобками. К таким уравнениям относится 8 : (х — 4) = 2 * (8 — х), неизвестных может быть несколько, они могут быть, как слева уравнения, так и справа или в обеих частях.

    Помимо таких простых уравнений они могут быть с корнями, логарифмами, степенями и тд.

    Уравнение может содержать несколько переменными, тогда их принято называть, соответственно уравнениями с двумя, тремя и более переменными.

    3 * а = 15 : х — уравнение с двумя переменными:

    8 — а = 5 * х — z — уравнение с тремя переменными.

    Корень уравнения

    Мы часто слышим фразу на уроках математики, «найдите корень уравнения», давайте разберёмся, что же это значит.

    В примере 3+х=7, можно представить вместо буквы число, и уравнение тогда станет равенством, оно может быть либо верным, либо неверным, если поставить х=3, то первичное равенство примет вид 3+3 = 7 и станет неверным, а если х= 4 то равенство 3+4=7 будет верным, а значит х = 4 будет называться корнем или по другому решением уравнения 3+х=7.

    Определение.

    Отсюда можно выделить следующее определение: корень уравнения — это такое значение неизвестной переменной, при котором числовое равенство будет верным.

    Стоит отметить, что корней может быть несколько или не быть вовсе.

    Рассмотрим подробнее пример который не будет иметь корней. Таким примером станет 0 * х = 7, сколько бы чисел мы сюда не подставляли равенство не будет верным, так как умножая на ноль будет ноль, а не 7.

    Но существуют и уравнения с множественным числом корней, к примеру, х — 3 = 6, в таком уравнении только один корень 9, а в уравнении квадратного вида х2 = 16, два корня 4 и -4, можно привести пример и с тремя корнями х * (х — 1) * (х — 2) = 0, в данном случае три решения ноль, два и один.

    Для того чтобы верно записать результат уравнения мы пишем так:

    • Если корня нет, пишем уравнение корней не имеет;
    • Если есть и их несколько, они либо прописываются через запятые, либо в фигурных скобках, например, так: <-2, 3, 5>;
    • Еще одним вариантом написания корней, считается запись в виде простого равенства, к примеру неизвестная х а корни 3,5 тогда результат прописывается так: х=3, х=5.
    • или прибавляя индекс снизух1 =3 , х2 = 5. данным способом указывается номер корня;
    • Если решений уравнения бесконечное множество, то запись будет либо в виде числового промежутка от и до, или общепринятыми обозначениями. множество натуральных чисел N, целых – Z, действительных — R.

    Стоит отметить, что если уравнение имеет два и более корней, то чаще употребляется понятие решение уравнения. Рассмотрим определение уравнения с несколькими переменными.

    Решение уравнения с двумя и более переменными, означает, что эти несколько значений превращают уравнение в верное равенство.

    Представим, что мы имеем следующее уравнение х + а = 5, такое уравнение имеет две переменные. Если мы поставим вместо них числа 3 и 6 то равенство не будет верным, соответственно и данные числа не являются решением для данного примера. А если взять числа 2 и 3 то равенство превратится в верное, а числа 2 и 3 будут решением уравнения. Представленные уравнения с несколькими переменными, тоже могут или не иметь корня вообще или наоборот иметь множество решений.

    Правила нахождения корней

    Таких правил существует несколько рассмотрим их ниже.

    Пример 1

    Допустим мы имеем уравнение 4 + х = 10, чтобы найти корень уравнения или значение х в данном случае необходимо найти неизвестное слагаемое, для этого есть следующее правило или формула. Для нахождения неизвестного слагаемого, нужно из суммы вычесть известное значение.

    Решение:

    Чтобы проверить является ли 6 решением, мы ставим его на место неизвестной переменной х в исходное уравнение, получаем следующее равенство 4 + 6 = 10, такое равенство является верным, что означает число корня уравнения, равно 6.

    Пример 2

    Возьмём уравнение вида х — 5 = 3, в данном примере х это неизвестное уменьшаемое, для того чтобы его найти необходимо следовать следующему правилу:

    Для нахождения уменьшаемого необходимо сложить разность и вычитаемое.

    Решение:

    Проверяем правильность нахождения корня уравнения, подставляем, вместо переменной неизвестной, найденное число 8, получаем равенство 8 — 5 = 3, так как оно верное, то и корень уравнения найден правильно.

    Пример 3

    Берём уравнение, в котором неизвестное х будет вычитаемое к примеру: 8 — х = 4. для того чтобы найти х необходимо воспользоваться правилом:

    Для нахождения вычитаемого, нужно из уменьшаемого вычесть разность.

    Решение:

    Проверяем правильность нахождения корня уравнения, для этого полученное значение ставим вместо неизвестного вычитаемого в исходный пример, и получаем следующее равенство 8 — 4 = 4, равенство верно, значит и корень найден правильно.

    источники:

    Квадратное уравнение

    http://www.napishem.ru/spravochnik/matematika/uravnenie-i-ego-korni.html

    Корни и степени

    • Степень с натуральным показателем

    • Степень с целым показателем

    • Кубический корень

    • Корень -ной степени

    • Сравнение арифметических корней

    • Как избавиться от иррациональности в знаменателе

    • Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

    Степенью называется выражение вида a^c.

    Здесь a — основание степени, c  — показатель степени.

    к оглавлению ▴

    Степень с натуральным показателем

    Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

    По определению, a^1=a.

    Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
    Возвести число в квадрат — значит умножить его само на себя.

    a^2=a cdot a.

    Возвести число в куб — значит умножить его само на себя три раза.

    a^3=a cdot a cdot a.

    Возвести число в натуральную степень n — значит умножить его само на себя n раз:

    a^n= underbrace{a cdot a cdot a cdot a cdot ldots cdot a}_{displaystyle n}.

    к оглавлению ▴

    Степень с целым показателем

    Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

    По определению,

    a^0=1.

    Это верно для aneq 0. Выражение 00 не определено.

    Определим также, что такое степень с целым отрицательным показателем.

    a^{-1}=genfrac{}{}{}{0}{1}{a};

    a^{-2}=genfrac{}{}{}{0}{1}{a^2};

    a^{-n}=genfrac{}{}{}{0}{1}{a^n}.

    Конечно, все это верно для aneq 0, поскольку на ноль делить нельзя.

    Например,

    5^{-2}=genfrac{}{}{}{0}{1}{5^2};

    left( genfrac{}{}{}{0}{1}{2} right)^{-1}=2;

    left( genfrac{}{}{}{0}{2}{7} right)^{-1}=genfrac{}{}{}{0}{7}{2}.

    Заметим, что при возведении в минус первую степень дробь переворачивается.

    left( genfrac{}{}{}{0}{5}{3} right)^{-2}=1 : left( genfrac{}{}{}{0}{5}{3} right)^{2}=left( genfrac{}{}{}{0}{3}{5} right)^{2}=genfrac{}{}{}{0}{9}{25}.

    Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби genfrac{}{}{}{0}{p}{q}, где p — целое, q — натуральное.

    Здесь нам понадобится новое понятие — корень n-степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

    Определение.

    Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

    Согласно определению, left (sqrt{a} right )^2=a; , , sqrt{a}geq 0; , , ageq 0.

    В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение  sqrt{a}  для нас сейчас имеет смысл только при ageq 0.

    Выражение sqrt{a} всегда неотрицательно, т.е. sqrt{a}geq 0. Например, sqrt{25}=5.

    Свойства арифметического квадратного корня:

    sqrt{ab}=sqrt{a} cdot sqrt{b}, ; sqrt{a^2}=left|aright| , ; sqrt{a^{2n}}={left|aright|}^n; 

    sqrt{genfrac{}{}{}{0}{a}{b}}=genfrac{}{}{}{0}{sqrt{a}}{sqrt{b}}.

    Запомним важное правило: sqrt{a^2}=left|aright| .

    По определению, .

    к оглавлению ▴

    Кубический корень

    Аналогично, кубический корень из a — это такое число, которое при возведении в третью степень дает число a.

    left( sqrt[leftroot{3}scriptstyle 3]{a} right) ^3 = sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a} cdot sqrt[leftroot{3}scriptstyle 3]{a}.

    Например, sqrt[leftroot{3}scriptstyle 3]{8} = 2, так как 2^3 = 2 cdot 2 cdot 2 = 8 ;

    sqrt[leftroot{3}scriptstyle 3]{1000} = 10, так как 10^3 = 1000;

    sqrt[leftroot{3}scriptstyle 3]{-genfrac{}{}{}{0}{1}{125}} = -genfrac{}{}{}{0}{1}{5}, так как left( -genfrac{}{}{}{0}{1}{5} right) ^3 = -genfrac{}{}{}{0}{1}{125}.

    Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

    Теперь мы можем дать определение корня n-ной степени для любого целого n.

    к оглавлению ▴

    Корень n-ной степени

    Корень n-ной степени из числа a — это такое число, при возведении которого в n-ную степень получается число a.

    Например,

    sqrt[leftroot{3}scriptstyle 5]{32} = 2;

    sqrt[leftroot{3}scriptstyle 4]{81} = 3;

    sqrt[leftroot{3}scriptstyle 3]{mathstrut 0,001} = 0,1.

    Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

    Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

    Итак, sqrt[leftroot{3}scriptstyle n]{a} — такое число, что left( sqrt[leftroot{3}scriptstyle n]{a} right) ^n = a. Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

    По определению,

    a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = sqrt{a},

    a^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = sqrt[leftroot{3}scriptstyle 3]{a},

    в общем случае a^{frac{1}{n}} = sqrt[leftroot{3}scriptstyle n]{a}..

    Сразу договоримся, что основание степени a больше 0.

    Например,

    25^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 2}} = 5;

    8^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 2;

    81^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 4}} = 3;

    100000^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 5}} = 10;

    0,001^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 3}} = 0,1.

    Выражение a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} по определению равно sqrt[leftroot{3}scriptstyle n]{a^m}.

    При этом также выполняется условие, что a больше 0.

    a^{genfrac{}{}{}{3}{scriptstyle m}{scriptstyle n}} = sqrt[leftroot{3}scriptstyle n]{a^m} = left( sqrt[leftroot{3}scriptstyle n]{a} right) ^m.

    Например,

    8^{genfrac{}{}{}{3}{scriptstyle 4}{scriptstyle 3}} = left( sqrt[leftroot{3} scriptstyle 3]{8} right) ^4 = 2^4 = 16;

    a^{genfrac{}{}{}{3}{scriptstyle 3}{scriptstyle 5}} = sqrt[leftroot{3} scriptstyle 5]{a^3} = left( sqrt[leftroot{3} scriptstyle n]{a} right) ^m;

    b^{-genfrac{}{}{}{3}{scriptstyle 2}{scriptstyle 3}} = genfrac{}{}{}{0}{1}{sqrt[leftroot{3} scriptstyle 3]{b^2}}.

    Запомним правила действий со степенями:

    a^ma^n = a^{m+n} — при перемножении степеней показатели складываются;

    genfrac{}{}{}{0}{a^m}{a^n} = a^{m-n} — при делении степени на степень показатели вычитаются;

    left( a^m right) ^n = left( a^n right) ^m = a^{mn} — при возведении степени в степень показатели перемножаются;

    a^nb^n = left( ab right) ^n;

    genfrac{}{}{}{0}{a^n}{b^n} = left( genfrac{}{}{}{0}{a}{b} right) ^n.

    Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

    1. genfrac{}{}{}{0}{sqrt{ mathstrut 2,8} cdot sqrt{ mathstrut 4,2}}{sqrt{ mathstrut 0,24}}= sqrt{ mathstrut genfrac{}{}{}{0}{2,8 cdot 4,2}{0,24}} = sqrt{ mathstrut genfrac{}{}{}{0}{28 cdot 42}{24}}=sqrt{ mathstrut genfrac{}{}{}{0}{7 cdot 4 cdot 7 cdot 6}{4 cdot 6}} =

    = sqrt{ mathstrut 7 cdot 7} = 7.

    Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

    2. genfrac{}{}{}{0}{left( 2 sqrt{7} right) ^2}{14}= genfrac{}{}{}{0}{ 2^2 cdot left( sqrt{7} right) ^2}{14} = genfrac{}{}{}{0}{4 cdot 7}{14} = 2.

    3. genfrac{}{}{}{0}{ sqrt[leftroot{3} scriptstyle 9]{7} cdot sqrt[leftroot{3} scriptstyle 18]{7}}{sqrt[leftroot{3} scriptstyle 6]{7}}=genfrac{}{}{}{0}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9}} cdot 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}}}{7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}}=7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 9} + genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 18}- genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}= 7^{genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6} - genfrac{}{}{}{3}{scriptstyle 1}{scriptstyle 6}}=7^0=1.

    Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
    4. Найдите значение выражения displaystyle frac{11a^6b^3-{left(3a^2bright)}^3}{4a^6b^6} при b = 2.

    Решение:

    displaystyle frac{11a^6b^3-{left(3a^2bright)}^3}{4a^6b^6}=displaystyle frac{11a^6b^3-{27a^6b}^3}{4a^6b^6}=displaystyle frac{-16a^6b^3}{4a^6b^6}=-displaystyle frac{4}{b^3}.

    При b = 2 получим -displaystyle frac{4}{2^3}=-displaystyle frac{4}{8}=-0,5 .

    Ответ: -0,5.

    5. Найдите значение выражения displaystyle frac{a^{3,21} cdot  a^{7,36}}{a^{8,57}} при a=12 .

    Решение:

    displaystyle frac{a^{3,21} cdot  a^{7,36}}{a^{8,57}}=displaystyle frac{a^{3,21+7,36}}{a^{8,57}}=displaystyle frac{a^{10,57}}{a^{8,57}}=a^{10,57-8,57}=a^2.

    При a = 12 получим {12}^2=144.

    Мы воспользовались свойствами степеней.

    Ответ: 144.

    6. Найдите значение выражения displaystyle frac{{left(b^{sqrt{3}}right)}^{2sqrt{3}}}{b^4} при b = — 5.

    Решение: displaystyle frac{{left(b^{sqrt{3}}right)}^{2sqrt{3}}}{b^3}=displaystyle frac{b^{sqrt{3} cdot  2sqrt{3}}}{b^3}=displaystyle frac{b^6}{b^3}=b^3 .

    При b = — 5 получим: {(-5)}^3=-125 .

    Ответ: -125.

    7. Расположите в порядке возрастания: {left(displaystyle frac{7}{8}right)}^{-3}; displaystyle frac{7}{8}; {left(displaystyle frac{8}{7}right)}^{-3}.

    Решение:

    Запишем выражения как степени с положительным показателем и сравним.

    left(displaystyle frac{7}{8}right)^-3=left(displaystyle frac{8}{7}right)^3. Так как displaystyle frac{8}{7} textgreater 1, то left(displaystyle frac{8}{7}right)^3 textgreater 1.

    left(displaystyle frac{8}{7}right)^-3=left(displaystyle frac{7}{8}right)^3. Так как displaystyle frac{7}{8} textless 1, то left(displaystyle frac{7}{8}right)^3 textless 1.

    Сравним displaystyle frac{7}{8} и {left(displaystyle frac{7}{8}right)}^3, для этого оценим их разность:

    displaystyle frac{7}{8} - {left(displaystyle frac{7}{8}right)}^3=displaystyle frac{7}{8} - displaystyle frac{7^3}{8^3}=displaystyle frac{7 cdot  8^2-7^3}{8^3}=displaystyle frac{7(8^2-7^2)}{8^3}=displaystyle frac{7(64-49)}{8^3} textgreater 0 , значит displaystyle frac{7}{8} textgreater {left(displaystyle frac{7}{8}right)}^3 .

    Получим : {left(displaystyle frac{7}{8}right)}^3 textless displaystyle frac{7}{8} textless {left(displaystyle frac{8}{7}right)}^3 , поэтому {left(displaystyle frac{8}{7}right)}^{-3} ; displaystyle frac{7}{8} ; {left(displaystyle frac{7}{8}right)}^{-3} .

    Ответ: {left(displaystyle frac{8}{7}right)}^{-3}; displaystyle frac{7}{8} ; {left(displaystyle frac{7}{8}right)}^{-3}.

    8. Представьте выражение в виде степени: displaystyle frac{x^{-6}+x^{-4}+x^{-2}}{x^2+x^4+x^6}.

    Решение:

    Вынесем за скобку степень с меньшим показателем:

    displaystyle frac{x^{-6}+x^{-4}+x^{-2}}{x^2+x^4+x^6}=displaystyle frac{x^{-6}(1+x^2+x^4)}{x^2(1+x^2+x^4)}=displaystyle frac{x^{-6}}{x^2}=x^{-6-2}=x^{-8}.

    Ответ: x^{-8} .

    9. Упростите выражение: displaystyle frac{2^{2n-1} cdot  3^{n+1}}{6 cdot  {12}^n} .

    Решение:

    Приведем основания 6 и 12 к основаниям 2 и 3:

    displaystyle frac{2^{2n-1} cdot  3^{n+1}}{6 cdot  {12}^n}=displaystyle frac{2^{2n-1} cdot  3^{n+1}}{2 cdot 3 cdot  {(2^2 cdot 3 )}^n}= displaystyle frac{2^{2n-1} cdot  3^{n+1}}{2^1cdot 3^1cdot 2^{2n} cdot  3^n} =

    (выполним деление степеней с одинаковыми основаниями)

    = 2^{2n-1-1-2n}cdot 3^{n+1-1-n}=2^{-2}cdot 3^0=displaystyle frac{1}{2^2}cdot 1=displaystyle frac{1}{4} = 0,25.

    Ответ: 0,25.

    10. Чему равно значение выражения displaystyle frac{a^{-4}cdot { a}^{-3}}{a^{-5}} при a=displaystyle frac{1}{3}?

    Решение:

    displaystyle frac{a^{-4}cdot { a}^{-3}}{a^{-5}}=a^{-4+left(-3right)-(-5)}=a^{-2}.

    При a=displaystyle frac{1}{3}, получим {left(displaystyle frac{1}{3}right)}^{-2}=3^2=9.

    Ответ: 9.

    к оглавлению ▴

    Сравнение арифметических корней

    11. Какое из чисел больше: sqrt{5}+sqrt{6} или 2+sqrt{7}?

    Решение:

    Возведем в квадрат оба числа (числа положительные):

    {left(sqrt{5}+sqrt{6}right)}^2= 5 + 2sqrt{5cdot 6}+6=11+2sqrt{30};

    {left(2+7right)}^2={left(sqrt{4}+sqrt{7}right)}^2= 4 + 2sqrt{4cdot 7}+7=11+2sqrt{28}.

    Найдем разность полученных результатов:

    11+2sqrt{30}-(11+2sqrt{28})=2(sqrt{30}-sqrt{28}) textgreater 0, так как sqrt{30} textgreater sqrt{28}.

    Значит, первое число больше второго.

    Ответ: sqrt{5}+sqrt{6} textgreater  2+sqrt{7}.

    к оглавлению ▴

    Как избавиться от иррациональности в знаменателе

    Если дана дробь вида displaystyle frac{a}{sqrt{b}}, то нужно умножить числитель и знаменатель дроби на sqrt{b}:

    displaystyle frac{a}{sqrt{b}} = displaystyle frac{a cdot sqrt{b}}{sqrt{b}cdot sqrt{b}} = displaystyle frac{a cdot sqrt{b}}{sqrt{b}^2} = displaystyle frac{a cdot sqrt{b}}{b}.

    Тогда знаменатель станет рациональным.

    Если дана дробь вида displaystyle frac{c}{ a pm  sqrt{b}} или displaystyle frac{c}{  sqrt{a} pm  sqrt{b}}, то нужно умножить числитель и знаменатель дроби на сопряженное выражение, чтобы получить в знаменателе разность квадратов.

    Сопряженные выражения — это выражения, отличающиеся только знаками. Например,

    a + sqrt{b} и a-sqrt{b}; sqrt{a}+sqrt{b} и sqrt{a}-sqrt{b} — сопряженные выражения.

    Пример:

    displaystyle frac{c}{sqrt{a}-sqrt{b}}=displaystyle frac{c (sqrt{a}+ sqrt{b})}{ (sqrt{a}- sqrt{b})(sqrt{a}+ sqrt{b})}=

    =displaystyle frac{c (sqrt{a}+sqrt{b})}{{ left(sqrt{a}right)}^2-{left(sqrt{b}right)}^2  }=displaystyle frac{c(sqrt{a}+ sqrt{b})}{a-b } .

    12. Вот несколько примеров — как избавиться от иррациональности в знаменателе:

    Пример 1.

    displaystyle frac{2}{sqrt{27}}= displaystyle frac{2 cdot  sqrt{3}}{sqrt{3^3} cdot  sqrt{3}}=displaystyle frac{2 sqrt{3}}{sqrt{3^4} }=displaystyle frac{2 sqrt{3}}{9}.

    Пример 2.

    displaystyle frac{6}{1+sqrt{3}} = displaystyle frac{6(sqrt{3}-1)}{(sqrt{3}+1)(sqrt{3}-1)}=displaystyle frac{6(sqrt{3}-1)}{3-1}=

    =displaystyle frac{6(sqrt{3}-1)}{2}=3(sqrt{3}-1).

    Пример 3.

    displaystyle frac{33}{7-3sqrt{3}} = displaystyle frac{33(7+3sqrt{3})}{(7-3sqrt{3})(7+3sqrt{3})}= displaystyle frac{33(7+3sqrt{3})}{49 -9 cdot 3}=

    displaystyle frac{33(7+3sqrt{3})}{22}=displaystyle frac{3(7+3sqrt{3})}{2}.

    Пример 4.

    displaystyle frac{12}{sqrt{3}+sqrt{6}}=displaystyle frac{12(sqrt{6}-sqrt{3})}{(sqrt{3}+sqrt{6})(sqrt{6}-sqrt{3})}=displaystyle frac{12(sqrt{6}-sqrt{3})}{6-3}=

    =displaystyle frac{12(sqrt{6}-sqrt{3})}{3}=4(sqrt{6}-sqrt{3}).

    Совет. Если в знаменателе дана сумма двух корней, то в разности первым числом пишите то, которое больше, и тогда разность квадратов корней будет положительным числом.

    Пример 5.

    displaystyle frac{5+3sqrt{3}}{sqrt{3}+2}= displaystyle frac{(5+3sqrt{3})(2-sqrt{3})}{(sqrt{3}+2)(2-sqrt{3})}=

    =displaystyle frac{10+6sqrt{3}-5sqrt{3}-9}{2^2-{(sqrt{3} )}^2}=displaystyle frac{1+sqrt{3}}{4-3}= 1+sqrt{3}.

    13. Сравните sqrt{140} и displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}}.

    1) displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}}=displaystyle frac{7-4sqrt{3}+7+4sqrt{3}}{(7+4sqrt{3})(7-4sqrt{3})}=displaystyle frac{14}{7^2-{(4sqrt{3})}^2}=

    =displaystyle frac{14}{49-48}=14.

    2) Сравним sqrt{140} и 14.

    14 = sqrt{{14}^2}=sqrt{196}, 140 textless 196, то и sqrt{140} textless sqrt{196}, а значит,

    sqrt{140} textless displaystyle frac{1}{7+4sqrt{3}}+displaystyle frac{1}{7-4sqrt{3}} .

    Ответ: sqrt{140} меньше.

    к оглавлению ▴

    Как упрощать иррациональные выражения, пользуясь формулами сокращенного умножения

    Покажем несколько примеров.

    14. Упростите: выражения: sqrt{3-2sqrt{2}}; sqrt{7+4sqrt{3}}; sqrt{19-8sqrt{3}}.

    Пример 5.

    sqrt{3-2sqrt{2}}=sqrt{2+1-2sqrt{2}}=sqrt{{left(sqrt{2}right)}^2-2cdot 1cdot sqrt{2}+1}=

    =sqrt{{left(sqrt{2}-1right)}^2} =  left|sqrt{2}-1right| = sqrt{2}-1, т.к. sqrt{2} textgreater 1.

    Пример 6.

    sqrt{7+4sqrt{3}} =  sqrt{4+3+4sqrt{3 }}=sqrt{2^2+2cdot 2cdot sqrt{3 }+{(sqrt{3 })}^2} =

    = sqrt{{(2+sqrt{3})}^2} = 2+sqrt{3}.

    Пример 7.

    sqrt{19-8sqrt{3}} =  sqrt{16+3-8sqrt{3 }}=sqrt{4^2-2cdot 4cdot sqrt{3 }+{(sqrt{3 })}^2} =

    =sqrt{{(4-sqrt{3})}^2} = 4-sqrt{3},

    так как 4-sqrt{3}=sqrt{16}-sqrt{3} textgreater 0 .

    Следующие несколько задач решаются с помощью формулы:

    sqrt{a^2}=left|aright|.

    Решение:

    sqrt{{(5-2x)}^2}=left|5-2xright|.

    Получим уравнение left|5-2xright|=2x-5, 2x-5ge 0, x geq 2,5.

    Ответ: [2,5; + infty ).

    19. Вычислите значение выражения: sqrt{{(sqrt{3}-1)}^2}+sqrt{{(sqrt{3}-2)}^2}.

    Решение:

    sqrt{(sqrt{3}-1)^2}+sqrt{(sqrt{3}-2)^2}=|sqrt{3}-1|+|sqrt{3}-2|=

    =sqrt{3}-1+2-sqrt{3}=1.

    Ответ: 1.

    20. Вычислите значение выражения: sqrt{{(2-sqrt{5})}^2}+sqrt{{(3-sqrt{5})}^2}.

    Решение: sqrt{{(2-sqrt{5})}^2}+sqrt{{(3-sqrt{5})}^2}= left|2-sqrt{5}right|+left|3-sqrt{5}right|=

    =sqrt{5}-2+3-sqrt{5} = 1.

    Ответ: 1.

    21. Вычислите значение выражения: (x - 3) sqrt{displaystyle frac{1}{x^2-6x+9}}, если x textless 3.

    Решение. (x - 3) sqrt{displaystyle frac{1}{x^2-6x+9}}=left(x - 3right)sqrt{displaystyle frac{1}{{left(x-3right)}^2}}=displaystyle frac{x-3}{left|x-3right|}=

    =displaystyle frac{x-3}{3-x}=-1.

    Если x textless 3, то x - 3 textless 0, следовательно left|x-3right|=-left(x-3right)=3-x.

    Ответ: — 1.

    22. Вычислите: (sqrt{3}-2)(sqrt{7+4sqrt{3}}).

    Решение: left(sqrt{3}-2right)left(sqrt{7+4sqrt{3}}right) = sqrt{{left(sqrt{3}-2right)}^2(7+4sqrt{3}})=

    =sqrt{left(3-4sqrt{3}+4right)left(7+4sqrt{3}right)}=sqrt{left(7-4sqrt{3}right)left(7+4sqrt{3}right)}=sqrt{7^2-{left(4sqrt{3}right)}^2}=

    = sqrt{49-48} = 1.

    Ответ: 1.

    Рассмотрим уравнение вида a^x=a^y, где a textgreater 0.

    Это равенство выполняется, только если x = y.

    Подробно об таких уравнениях — в статье «Показательные уравнения».

    При решении уравнений такого вида мы пользуемся монотонностью показательной функции.

    23. Решите уравнение:

    а) 2^{3-x}=16;

    б) {27}^{displaystyle frac{1}{3}x-1}-3=0;

    в) {left(displaystyle frac{1}{sqrt{3}}right)}^{2x+1}={left(3sqrt{3}right)}^x.

    Решение.

    23. Решите уравнение: 2^{3-x}=16.

    Решение:

    2^{3-x}=2^4, тогда 3 - x = 4, ; x = - 1.

    Ответ: -1.

    24. Решите уравнение:

    {27}^{displaystyle frac{1}{3}x-1}-3=0.

    Решение:

    {left(3^3right)}^{left(displaystyle frac{1}{3}x-1right)}=3 , ; 3^{3left(displaystyle frac{1}{3}x-1right)}=3^1;

    3left(displaystyle frac{1}{3}x-1right)=1, ; x - 3 = 1, ; x = 4.

    Ответ: 4.

    25. Решите уравнение: {left(displaystyle frac{1}{sqrt{3}}right)}^{2x+1}={left(3sqrt{3}right)}^x.

    Решение:

    {left(3^{- displaystyle frac{1}{2}}right)}^{2x+1}={left(3^{1+ displaystyle frac{1}{2}}right)}^x ,; ; 3^{-displaystyle frac{1}{2} cdot (2x+1)}=3^{displaystyle frac{3}{2}x}.

    Значит, -displaystyle frac{1}{2} cdot left(2x+1right)=displaystyle frac{3}{2}x, - 2x - 1 = 3x, - 5x = 1 , x = -displaystyle frac{1}{5}.

    Ответ: -0,2.

    Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

    Благодарим за то, что пользуйтесь нашими статьями.
    Информация на странице «Корни и степени» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
    Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
    Также вы можете воспользоваться другими статьями из разделов нашего сайта.

    Публикация обновлена:
    08.05.2023

    Содержание

    1. Что значит извлечь квадратный корень
    2. Если Вам нравится этот сайт.
    3. Вычислить квадратный корень из числа
    4. Что такое квадратный корень
    5. Проводим расчеты вручную

    Что значит извлечь квадратный корень

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно «не очень. »
    И для тех, кто «очень даже. » )

    Это понятие очень простое. Естественное, я бы сказал. Математики на каждое действие стараются найти противодействие. Есть сложение — есть и вычитание. Есть умножение — есть и деление. Есть возведение в квадрат. Значит есть и извлечение квадратного корня! Вот и всё. Это действие (извлечение квадратного корня) в математике обозначается вот таким значком:

    Сам значок называется красивым словом «радикал«.

    Как извлечь корень? Это лучше рассмотреть на примерах.

    Как извлечь (или посчитать — это всё едино) корень квадратный из 4? Нужно просто сообразить: какое число в квадрате даст нам 4? Да конечно же 2! Значит:

    Сколько будет квадратный корень из 9? А какое число в квадрате даст нам 9? 3 в квадрате даст нам 9! Т.е:

    А вот сколько будет квадратный корень из нуля? Не вопрос! Какое число в квадрате ноль даёт? Да сам же ноль и даёт! Значит:

    Уловили, что такое квадратный корень? Тогда считаем примеры:

    Ответы (в беспорядке): 6; 1; 4; 9; 5.

    Решили? Действительно, уж куда проще-то?!

    Но. Что делает человек, когда видит какое-нибудь задание с корнями?

    Тосковать начинает человек. Не верит он в простоту и лёгкость корней. Хотя, вроде, и знает, что такое квадратный корень.

    Всё потому, что человек проигнорировал несколько важных пунктиков при изучении корней. Потом эти пунктики жестоко мстят на контрольных и экзаменах.

    Пунктик первый. Корни надо узнавать в лицо!

    Сколько будет корень квадратный из 49? Семь? Верно! А как вы узнали, что семь? Возвели семёрку в квадрат и получили 49? Правильно! Обратите внимание, чтобы извлечь корень из 49 нам пришлось проделать обратную операцию — возвести 7 в квадрат! И убедиться, что мы не промахнулись. А могли и промахнуться.

    В этом и есть сложность извлечения корней. Возвести в квадрат можно любое число без особых проблем. Умножить число само на себя столбиком — да и все дела. А вот для извлечения корня такой простой и безотказной технологии нет. Приходится подбирать ответ и проверять его на попадание возведением в квадрат.

    Этот сложный творческий процесс — подбор ответа — сильно упрощается, если вы помните квадраты популярных чисел. Как таблицу умножения. Если, скажем, надо умножить 4 на 6 — вы же не складываете четверку 6 раз? Сразу выплывает ответ 24. Хотя, не у всех он выплывает, да.

    Для свободной и успешной работы с корнями достаточно знать квадраты чисел от 1 до 20. Причём туда и обратно. Т.е. вы должны легко называть как, скажем, 11 в квадрате, так и корень квадратный из 121. Чтобы добиться такого запоминания, есть два пути. Первый — выучить таблицу квадратов. Это здорово поможет решать примеры. Второй — решать побольше примеров. Это здорово поможет запомнить таблицу квадратов.

    И никаких калькуляторов! Только для проверки. Иначе на экзамене будете тормозить нещадно.

    Итак, что такое квадратный корень и как извлекать корни — думаю, понятно. Теперь выясним ИЗ ЧЕГО можно их извлекать.

    Пунктик второй. Корень, я тебя не знаю!

    Из каких чисел можно извлекать квадратные корни? Да почти из любых. Проще понять, из чего нельзя их извлекать.

    Попробуем вычислить вот такой корень:

    Для этого нужно подобрать число, которое в квадрате даст нам -4. Подбираем.

    Что, не подбирается? 2 2 даёт +4. (-2) 2 даёт опять +4! Вот-вот. Нет таких чисел, которые при возведении в квадрат дадут нам отрицательное число! Хотя я такие числа знаю. Но вам не скажу). Поступите в институт — сами узнаете.

    Такая же история будет с любым отрицательным числом. Отсюда вывод:

    Выражение, в котором под знаком квадратного корня стоит отрицательное число — не имеет смысла! Это запретная операция. Такая же запретная, как и деление на ноль. Запомните этот факт железно! Или, другими словами:

    Квадратные корни из отрицательных чисел извлечь нельзя!

    Зато из всех остальных — можно. Например, вполне можно вычислить

    На первый взгляд это очень сложно. Подбирать дроби, да в квадрат возводить. Не волнуйтесь. Когда разберёмся со свойствами корней, такие примеры будут сводиться к всё той же таблице квадратов. Жизнь станет проще!

    Ну ладно дроби. Но нам ведь ещё попадаются выражения типа:

    Ничего страшного. Всё то же самое. Корень квадратный из двух — это число, которое при возведении в квадрат даст нам двойку. Только число это совсем неровное. Вот оно:

    Что интересно, эта дробь не кончается никогда. Такие числа называются иррациональными. В квадратных корнях это — самое обычное дело. Кстати, именно поэтому выражения с корнями называют иррациональными. Понятно, что писать всё время такую бесконечную дробь неудобно. Поэтому вместо бесконечной дроби так и оставляют:

    Если при решении примера у вас получилось что-то неизвлекаемое, типа:

    то так и оставляем. Это и будет ответ.

    Нужно чётко понимать, что под значками

    , , .

    и так далее, скрываются просто числа! Неровные, лохматые, иррациональные, но числа!

    Конечно, если корень из числа извлекается ровно, вы обязаны это сделать. Ответ задания в виде, например

    никто не оценит. Надо корень посчитать и написать

    вполне себе полноценный ответ.

    И, конечно, надо знать на память приблизительные значения:

    Это знание здорово помогает оценить ситуацию в сложных заданиях.

    Пунктик третий. Самый хитрый.

    Основную путаницу в работу с корнями вносит как раз этот пунктик. Именно он придаёт неуверенность в собственных силах. Разберёмся с этим пунктиком как следует!

    Для начала опять извлечём квадратный корень их четырёх. Что, уже достал я вас с этим корнем?) Ничего, сейчас интересно будет!

    Какое число даст в квадрате 4? Ну два, два — слышу недовольные ответы.

    Верно. Два. Но ведь и минус два даст в квадрате 4. А между тем, ответ

    правильный, а ответ

    грубейшая ошибка. Вот так.

    Так в чём же дело?

    Действительно, (-2) 2 = 4. И под определение корня квадратного из четырёх минус два вполне подходит. Это тоже корень квадратный из четырёх.

    Но! В школьном курсе математики принято считать за квадратные корни только неотрицательные числа! Т.е ноль и все положительные. Даже термин специальный придуман: арифметический квадратный корень из числа а — это неотрицательное число, квадрат которого равен а. Отрицательные результаты при извлечении арифметического квадратного корня попросту отбрасываются. В школе все квадратные корни — арифметические. Хотя особо об этом не упоминается.

    Ну ладно, это понятно. Это даже и лучше — не возиться с отрицательными результатами. Это ещё не путаница.

    Путаница начинается при решении квадратных уравнений. Например, надо решить вот такое уравнение.

    Уравнение простое, пишем ответ (как учили):

    Такой ответ (совершенно правильный, кстати) — это просто сокращённая запись двух ответов:

    Стоп-стоп! Чуть выше я написал, что квадратный корень — число всегда неотрицательное! А здесь один из ответов — отрицательный! Непорядок. Это первая ( но не последняя) проблемка, которая вызывает недоверие к корням. Решим эту проблемку. Запишем ответы (чисто для понимания!) вот так:

    Скобки сути ответа не меняют. Просто я отделил скобками знаки от корня. Теперь наглядно видно, что сам корень (в скобках) — число всё равно неотрицательное! А знаки — это результат решения уравнения. Ведь при решении любого уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше уравнение подходит корень из пяти (положительный!) как с плюсом, так и с минусом.

    Вот так. Если вы просто извлекаете квадратный корень из чего-либо, вы всегда получаете один неотрицательный результат. Например:

    Потому, что это — арифметический квадратный корень.

    Но если вы решаете какое-нибудь квадратное уравнение, типа:

    то всегда получается два ответа (с плюсом и минусом):

    Потому, что это — решение уравнения.

    Надеюсь, что такое квадратный корень со своими пунктиками вы уяснили. Теперь осталось узнать, что можно делать с корнями, каковы их свойства. И какие там пунктики и подводные кор. извините, камни!)

    Всё это — в следующих уроках.

    Если Вам нравится этот сайт.

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

    А вот здесь можно познакомиться с функциями и производными.

    Источник

    Вычислить квадратный корень из числа


    Необходимо произвести сложные расчеты, а электронного вычислительного устройства под рукой не оказалось? Воспользуйтесь онлайн программой — калькулятором корней. Она поможет:

    • найти квадратные или кубические корни из заданных чисел;
    • выполнить математическое действие с дробными степенями.
    Число знаков после запятой:

    Что такое квадратный корень

    Корень n степени натурального числа a — число, n степень которого равна a (подкоренное число). Обозначается корень символом √. Его называют радикалом.

    Каждое математическое действие имеет противодействие: сложение→вычитание, умножение→деление, возведение в степень→извлечение корня.

    Квадратным корнем из числа a будет число, квадрат которого равен a. Из этого следует ответ на вопрос, как вычислить корень из числа? Нужно подобрать число, которое во второй степени будет равно значению под корнем.

    Обычно 2 не пишут над знаком корня. Поскольку это самая маленькая степень, а соответственно если нет числа, то подразумевается показатель 2. Решаем: чтобы вычислить корень квадратный из 16, нужно найти число, при возведении которого во вторую степень получиться 16.

    Проводим расчеты вручную

    Вычисления методом разложения на простые множители выполняется двумя способами, в зависимости от того, какое подкоренное число:

    1.Целое, которое можно разложить на квадратные множители и получить точный ответ.

    Квадратные числа — числа, из которых можно извлечь корень без остатка. А множители — числа, которые при перемножении дают исходное число.

    25, 36, 49 — квадратные числа, поскольку:


    Получается, что квадратные множители — множители, которые являются квадратными числами.

    Возьмем 784 и извлечем из него корень.

    Раскладываем число на квадратные множители. Число 784 кратно 4, значит первый квадратный множитель — 4 x 4 = 16. Делим 784 на 16 получаем 49 — это тоже квадратное число 7 x 7 = 16.
    Применим правило

    Извлекаем корень из каждого квадратного множителя, умножаем результаты и получаем ответ.

    Ответ.

    2.Неделимое. Его нельзя разложить на квадратные множители.

    Такие примеры встречаются чаще, чем с целыми числами. Их решение не будет точным, другими словами целым. Оно будет дробным и приблизительным. Упростить задачу поможет разложение подкоренного числа на квадратный множитель и число, из которого извлечь квадратный корень нельзя.

    Раскладываем число 252 на квадратный и обычный множитель.
    Оцениваем значение корня. Для этого подбираем два квадратных числа, которые стоят впереди и сзади подкоренного числа в цифровой линейки. Подкоренное число — 7. Значит ближайшее большее квадратное число будет 8, а меньшее 4.

    между 2 и 4.

    Оцениваем значение Вероятнее √7 ближе к 2. Подбираем таким образом, чтобы при умножении этого числа на само себя получилось 7.

    2,7 x 2,7 = 7,2. Не подходит, так как 7,2>7, берем меньшее 2,6 x 2,6 = 6,76. Оставляем, ведь 6,76

    7.

    Вычисляем корень

    Как вычислить корень из сложного числа? Тоже методом оценивая значения корня.

    При делении в столбик получается максимально точный ответ при извлечении корня.

    Возьмите лист бумаги и расчертите его так, чтобы вертикальная линия находилась посередине, а горизонтальная была с ее правой стороны и ниже начала.
    Разбейте подкоренное число на пары чисел. Десятичные дроби делят так:

    — целую часть справа налево;

    — число после запятой слева направо.

    Пример: 3459842,825694 → 3 45 98 42, 82 56 94

    Допускается, что вначале остается непарное число.

    Для первого числа (или пары) подбираем наибольшее число n. Его квадрат должен быть меньше или равен значению первого числа (пары чисел).

    Извлеките из этого числа корень — √n. Запишите полученный результат сверху справа, а квадрат этого числа — снизу справа.

    У нас первая 7. Ближайшее квадратное число — 4. Оно меньше 7, а 4 =

    Вычтите найденный квадрат числа n из первого числа (пары). Результат запишите под 7.

    А верхнее число справа удвойте и запишите справа выражение 4_х_=_.

    Примечание: числа должны быть одинаковыми.

    Подбираем число для выражения с прочерками. Для этого найдите такое число, чтобы полученное произведение не было больше или равнялось текущему числу слева. В нашем случае это 8.
    Запишите найденное число в верхнем правом углу. Это второе число из искомого корня.

    Снесите следующую пару чисел и запишите возле полученной разницы слева.

    Вычтите полученное справа произведение из числа слева.

    Удваиваем число, которое расположено справа вверху и записываем выражение с прочерками.

    Сносим к получившейся разнице еще пару чисел. Если это числа дробной части, то есть расположены за запятой, то и в верхнем правом углу возле последней цифры искомого квадратного корня ставим запятую.

    Заполняем прочерки в выражении справа, подбирая число так, чтобы полученное произведение было меньше или равно разницы выражения слева.

    Если необходимо большее количества знаков после запятой, то дописывайте возле текущей цифры слева и повторяйте действия: вычитание слева, удваиваем число в верхнем правом углу, записываем выражение прочерками, подбираем множители для него и так далее.

    Как думаете сколько времени вы потратите на такие расчеты? Сложно, долго, запутанно. Тогда почему бы не упростить себе задачу? Воспользуйтесь нашей программой, которая поможет произвести быстрые и точные расчеты.

    1. Введите желаемое количество знаков после запятой.

    2. Укажите степень корня (если он больше 2).

    3. Введите число, из которого планируете извлечь корень.

    Источник

    Понравилась статья? Поделить с друзьями:
  • Как составить админ протокол
  • Как найти дома жучок для прослушки
  • Как найти папку с фото на ноутбуке
  • Как найти силу ампера по схеме
  • Как найти объем процентного раствора