Как найти корень дискриминанта если нет с

Неполные квадратные уравнения

теория по математике 📈 уравнения

Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.

Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.

Неполное квадратное уравнение при b=0: ax 2 +c=0

Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два корня уравнения, либо доказать, что корней нет (если х 2 равен отрицательному коэффициенту; знаем, что квадрат любого числа равен только положительному числу).

Пример №1. Решить уравнение:

Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х 2 =45; найдем переменную в квадрате, поделив обе части уравнения на 5: х 2 =9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный корень из числа 9, получим –3 и 3. Оформляем решение уравнения обычным способом:

Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым). Пример №2. Решить уравнение:

Выполним решение уже известным способом: –6х 2 =90. х 2 =–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней. Пример №3. Решить уравнение:

Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.

Неполное квадратное уравнение при с=0: ax 2 +bx=0

Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.

Пример №4. Решить уравнение:

Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.

Пример №5. Решить уравнение:

Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.

Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax 2 =0

Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.

Пример №6. Решить уравнение:

Обе части уравнения делим на (–14) и получаем х 2 =0, откуда соответственно и единственный корень – нуль. Пример №6. Решить уравнение:

Также делим обе части на 23 и получаем х 2 =0. Значит, корень уравнения – нуль.

Неполные квадратные уравнения

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.

Неполные квадратные уравнения бывают трех видов:

  • Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.

Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три формулы неполных квадратных уравнений:

  • ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax² + c = 0, при b = 0;
  • ax² + bx = 0, при c = 0.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Как решить уравнение ax² = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.

Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.

Пример 1. Решить −5x² = 0.

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!

Как решить уравнение ax² + с = 0

Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:

  • перенесем c в правую часть: ax² = — c,
  • разделим обе части на a: x² = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:

  • не имеет корней при — c/а 0.

Пример 1. Найти решение уравнения 9x² + 4 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 9:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 9x² + 4 = 0 не имеет корней.

    Пример 2. Решить -x² + 9 = 0.

      Перенесем свободный член в правую часть:

    Разделим обе части на -1:

    Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.

    Как решить уравнение ax² + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.

    Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 2x² — 32x = 0

      Вынести х за скобки
  • Это уравнение равносильно х = 0 и 2x — 32 = 0.
  • Решить линейное уравнение:
  • Значит корни исходного уравнения — 0 и 16.
  • Ответ: х = 0 и х = 16.

    Пример 2. Решить уравнение 3x² — 12x = 0

    Разложить левую часть уравнения на множители и найти корни:

    Дискриминант квадратного уравнения

    Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

    Вид уравнения Формула корней Формула
    дискриминанта
    ax 2 + bx + c = 0 b 2 — 4ac
    ax 2 + 2kx + c = 0 k 2 — ac
    x 2 + px + q = 0
    p 2 — 4q

    Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

    Вид уравнения Формула
    ax 2 + bx + c = 0 , где D = b 2 — 4ac
    ax 2 + 2kx + c = 0 , где D = k 2 — ac
    x 2 + px + q = 0 , где D =
    , где D = p 2 — 4q

    Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

    1. Если дискриминант больше нуля, то уравнение имеет два корня.
    2. Если дискриминант равен нулю, то уравнение имеет один корень.
    3. Если дискриминант меньше нуля, то уравнение не имеет корней.

    Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

    так как она относится к формуле:

    ,

    которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

    Решение квадратных уравнений через дискриминант

    Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

    Пример 1. Решить уравнение:

    Определим, чему равны коэффициенты:

    D = b 2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,

    Определим, чему равны коэффициенты:

    D = b 2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,

    Уравнение имеет всего один корень:

    Определим, чему равны коэффициенты:

    D = b 2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,

    источники:

    http://skysmart.ru/articles/mathematic/nepolnye-kvadratnye-uravneniya

    http://izamorfix.ru/matematika/algebra/diskriminant.html

    Решение квадратных уравнений

    6 июля 2011

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    1. Не имеют корней;
    2. Имеют ровно один корень;
    3. Имеют два различных корня.

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

    Дискриминант

    Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    1. Если D < 0, корней нет;
    2. Если D = 0, есть ровно один корень;
    3. Если D > 0, корней будет два.

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    Задача. Сколько корней имеют квадратные уравнения:

    1. x2 − 8x + 12 = 0;
    2. 5x2 + 3x + 7 = 0;
    3. x2 − 6x + 9 = 0.

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    Формула корней квадратного уравнения

    Основная формула корней квадратного уравнения

    Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

    Задача. Решить квадратные уравнения:

    1. x2 − 2x − 3 = 0;
    2. 15 − 2xx2 = 0;
    3. x2 + 12x + 36 = 0.

    Первое уравнение:
    x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2)2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Решение простого квадратного уравнения

    Второе уравнение:
    15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2)2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    [begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

    Наконец, третье уравнение:
    x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 122 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    [x=frac{-12+sqrt{0}}{2cdot 1}=-6]

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    1. x2 + 9x = 0;
    2. x2 − 16 = 0.

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (−c/a) < 0, корней нет.

    Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Разложение уравнения на множители

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    1. x2 − 7x = 0;
    2. 5x2 + 30 = 0;
    3. 4x2 − 9 = 0.

    x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

    5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

    Смотрите также:

    1. Теорема Виета
    2. Следствия из теоремы Виета
    3. Тест на тему «Значащая часть числа»
    4. Метод коэффициентов, часть 1
    5. Однородные тригонометрические уравнения: общая схема решения
    6. Задача B4: строительные бригады
    Определение

    Квадратным уравнением называется уравнение вида ax2+bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.

    Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.

    Неполное квадратное уравнение при b=0: ax2+c=0

    Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два корня уравнения, либо доказать, что корней нет (если х2 равен отрицательному коэффициенту; знаем, что квадрат любого числа равен только положительному числу).

    Пример №1. Решить уравнение:

    2–45=0

    Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х2=45; найдем переменную в квадрате, поделив обе части уравнения на 5: х2=9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный корень из числа 9, получим –3 и 3. Оформляем решение уравнения обычным способом:

    2–45=0

    2=45

    х2=9

    Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым).

    Пример №2. Решить уравнение:

    –6х2–90=0

    Выполним решение уже известным способом: –6х2=90. х2=–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней.

    Пример №3. Решить уравнение:

    х2–100=0

    Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.

    Неполное квадратное уравнение при с=0: ax2+bx=0

    Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.

    Пример №4. Решить уравнение:

    х2+8х=0

    Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.

    Пример №5. Решить уравнение:

    2–12х=0

    Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.

    Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax2=0

    Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.

    Пример №6. Решить уравнение:

    –14х2=0

    Обе части уравнения делим на (–14) и получаем х2=0, откуда соответственно и единственный корень – нуль.

    Пример №6. Решить уравнение:

    23х2=0

    Также делим обе части на 23 и получаем х2=0. Значит, корень уравнения – нуль.

    Даниил Романович | Просмотров: 8.7k

    Способы решения квадратных уравнений

    Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

    В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно в своей работе я разобрала каждый из них.

    1. СПОСОБ: Разложение левой части уравнения на множители.

    х 2 + 10х — 24 = 0.

    Разложим левую часть на множители:

    х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

    Следовательно, уравнение можно переписать так:

    (х + 12)(х — 2) = 0

    Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = — 12. Это означает, что число 2 и — 12 являются корнями уравнения х 2 + 10х — 24 = 0.

    2. СПОСОБ: Метод выделения полного квадрата.

    Решим уравнение х 2 + 6х — 7 = 0.

    Выделим в левой части полный квадрат.

    Для этого запишем выражение х 2 + 6х в следующем виде:

    х 2 + 6х = х 2 + 2* х * 3.

    В полученном выражении первое слагаемое — квадрат числа х, а второе — удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

    х 2 + 2* х * 3 + 3 2 = (х + 3) 2 .

    Преобразуем теперь левую часть уравнения

    х 2 + 6х — 7 = 0,

    прибавляя к ней и вычитая 3 2 . Имеем:

    х 2 + 6х — 7 = х 2 + 2* х * 3 + 3 2 — 3 2 — 7 = (х + 3) 2 — 9 — 7 = (х + 3) 2 — 16.

    Таким образом, данное уравнение можно записать так:

    (х + 3) 2 — 16 =0, (х + 3) 2 = 16.

    Следовательно, х + 3 — 4 = 0, х1= 1, или х + 3 = -4, х2 = -7.

    3. СПОСОБ: Решение квадратных уравнений по формуле.

    Умножим обе части уравнения

    ах 2 + bх + с = 0, а ? 0

    на 4а и последовательно имеем:

    2 х 2 + 4аbх + 4ас = 0,

    ((2ах) 2 + 2ах * b + b 2 ) — b 2 + 4ac = 0,

    (2ax + b) 2 = b 2 — 4ac,

    2ax + b = ± v b 2 — 4ac,

    2ax = — b ± v b 2 — 4ac,

    Примеры.

    а) Решим уравнение: 2 + 7х + 3 = 0.

    а = 4, b = 7, с = 3, D = b 2 — 4ac = 7 2 — 4 * 4 * 3 = 49 — 48 = 1,

    D > 0, два разных корня;

    Таким образом, в случае положительного дискриминанта, т.е. при

    b 2 — 4ac >0 , уравнение ах 2 + bх + с = 0 имеет два различных корня.

    б) Решим уравнение: 2 — 4х + 1 = 0,

    а = 4, b = — 4, с = 1, D = b 2 — 4ac = (-4) 2 — 4 * 4 * 1= 16 — 16 = 0,

    D = 0, один корень;

    Итак, если дискриминант равен нулю, т.е. b2 — 4ac = 0, то уравнение

    ах 2 + bх + с = 0 имеет единственный корень,

    в) Решим уравнение: 2 + 3х + 4 = 0,

    а = 2, b = 3, с = 4, D = b 2 — 4ac = 3 2 — 4 * 2 * 4 = 9 — 32 = — 13 , D < 0.

    Данное уравнение корней не имеет.

    Итак, если дискриминант отрицателен, т.е. b 2 — 4ac < 0,

    уравнение ах 2 + bх + с = 0 не имеет корней.

    Формула (1) корней квадратного уравнения ах 2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.

    4. СПОСОБ: Решение уравнений с использованием теоремы Виета.

    Как известно, приведенное квадратное уравнение имеет вид

    х 2 + px + c = 0. (1)

    Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

    x1 x2= q,

    x1 + x2= — p

    Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

    а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны.

    x 2 — 3x + 2 = 0; x1= 2 и x2= 1, так как q = 2 > 0 и p = — 3 < 0;

    x 2 + 8x + 7 = 0; x1 = — 7 и x2= — 1, так как q = 7 > 0 и p= 8 > 0.

    б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .

    x 2 + 4x — 5 = 0; x1= — 5 и x2= 1, так как q= — 5 < 0 и p = 4 > 0;

    x 2 — 8x — 9 = 0; x1 = 9 и x2= — 1, так как q = — 9 < 0 и p = — 8 < 0.

    5. СПОСОБ: Решение уравнений способом «переброски».

    Рассмотрим квадратное уравнение

    ах 2 + bх + с = 0, где а ? 0.

    Умножая обе его части на а, получаем уравнение

    а 2 х 2 + аbх + ас = 0.

    Пусть ах = у, откуда х = у/а; тогда приходим к уравнению

    у 2 + by + ас = 0,

    равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета.

    х1= у1 и х1= у2.

    При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

    Решим уравнение 2 — 11х + 15 = 0.

    Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

    у 2 — 11у + 30 = 0.

    Согласно теореме Виета

    у1 = 5 х1= 5/2 x1= 2,5

    у2= 6 x2= 6/2 x2= 3.

    6. СПОСОБ: Свойства коэффициентов квадратного уравнения.

    А. Пусть дано квадратное уравнение

    ах 2 + bх + с = 0, где а ? 0.

    1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1,

    Доказательство. Разделим обе части уравнения на а ? 0, получим приведенное квадратное уравнение

    x 2 + b/a * x + c/a = 0.

    Согласно теореме Виета

    x1+ x2= — b/a,

    x1x2= 1* c/a.

    По условию а — b + с = 0, откуда b = а + с. Таким образом,

    x1+ x2= — а + b/a= -1 — c/a,

    x1x2= — 1* ( — c/a),

    т.е. х1= -1 и х2= c/a, что м требовалось доказать.

    1) Решим уравнение 345х 2 — 137х — 208 = 0.

    Решение. Так как а + b + с = 0 (345 — 137 — 208 = 0), то

    х1= 1, х2= c/a = -208/345.

    Ответ: 1; -208/345.

    2)Решим уравнение 132х 2 — 247х + 115 = 0.

    Решение. Так как а + b + с = 0 (132 — 247 + 115 = 0), то

    х1= 1, х2= c/a = 115/132.

    Ответ: 1; 115/132.

    Б. Если второй коэффициент b = 2k — четное число, то формулу корней

    Пример.

    Решим уравнение 3х2 — 14х + 16 = 0.

    Решение. Имеем: а = 3, b = — 14, с = 16, k = — 7;

    D = k 2 — ac = (- 7) 2 — 3 * 16 = 49 — 48 = 1, D > 0, два различных корня;

    В. Приведенное уравнение

    х 2 + рх + q= 0

    совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

    Формулу (3) особенно удобно использовать, когда р — четное число.

    Пример. Решим уравнение х 2 — 14х — 15 = 0.

    Решение. Имеем: х1,2=7±

    Ответ: х1= 15; х2= -1.

    7. СПОСОБ: Графическое решение квадратного уравнения.

    Если в уравнении

    х 2 + px + q = 0

    перенести второй и третий члены в правую часть, то получим

    х 2 = — px — q.

    Построим графики зависимости у = х 2 и у = — px — q.

    График первой зависимости — парабола, проходящая через начало координат. График второй зависимости —

    прямая (рис.1). Возможны следующие случаи:

    — прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квад- ратного уравнения;

    — прямая и парабола могут касаться ( только одна общая точка), т.е. уравнение имеет одно решение;

    — прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

    1) Решим графически уравнение х 2 — 3х — 4 = 0 (рис. 2).

    Решение. Запишем уравнение в виде х 2 = 3х + 4.

    Построим параболу у = х 2 и прямую у = 3х + 4. Прямую

    у = 3х + 4 можно построить по двум точкам М (0; 4) и

    N (3; 13). Прямая и парабола пересекаются в двух точках

    А и В с абсциссами х1= — 1 и х2 = 4. Ответ: х1= — 1;

    2) Решим графически уравнение (рис. 3) х 2 — 2х + 1 = 0.

    Решение. Запишем уравнение в виде х 2 = 2х — 1.

    Построим параболу у = х 2 и прямую у = 2х — 1.

    Прямую у = 2х — 1 построим по двум точкам М (0; — 1)

    и N(1/2; 0). Прямая и парабола пересекаются в точке А с

    абсциссой х = 1. Ответ: х = 1.

    3) Решим графически уравнение х 2 — 2х + 5 = 0 (рис. 4).

    Решение. Запишем уравнение в виде х 2 = 5х — 5. Построим параболу у = х 2 и прямую у = 2х — 5. Прямую у = 2х — 5 построим по двум точкам М(0; — 5) и N(2,5; 0). Прямая и парабола не имеют точек пересечения, т.е. данное уравнение корней не имеет.

    Ответ. Уравнение х 2 — 2х + 5 = 0 корней не имеет.

    8. СПОСОБ: Решение квадратных уравнений с помощью циркуля и линейки.

    Графический способ решения квадратных уравнений с помощью параболы неудобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точности получаемых результатов невелика.

    Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки (рис. 5).

    Допустим, что искомая окружность пересекает ось

    абсцисс в точках В(х1; 0 ) и D (х2; 0), где х1 и х2 — корни уравнения ах 2 + bх + с = 0, и проходит через точки

    А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB * OD = OA * OC, откуда OC = OB * OD/ OA= х1х2/ 1 = c/a.

    Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому

    1) построим точки (центр окружности) и A(0; 1);

    2) проведем окружность с радиусом SA;

    3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

    При этом возможны три случая.

    1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках (рис. 6,а) В(х1; 0) и D(х2; 0), где х1 и х2 — корни квадратного уравнения ах 2 + bх + с = 0.

    2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 — корень квадратного уравнения.

    3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

    Решим уравнение х 2 — 2х — 3 = 0 (рис. 7).

    Решение. Определим координаты точки центра окружности по формулам:

    Проведем окружность радиуса SA, где А (0; 1).

    Ответ: х1= — 1; х2= 3.

    9. СПОСОБ: Решение квадратных уравнений с помощью номограммы.

    Это старый и незаслуженно забыты способ решения квадратных уравнений, помещенный на с.83 (см. Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990).

    Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициен там определить корни уравнения.

    Криволинейная шкала номограммы построена по формулам (рис.11):

    Полагая ОС = р, ED = q, ОЕ = а (все в см.), из подобия треугольников САН и CDF получим пропорцию

    откуда после подстановок и упрощений вытекает уравнение

    z 2 + pz + q = 0,

    причем буква z означает метку любой точки криволинейной шкалы.

    1) Для уравнения z 2 — 9z + 8 = 0 номограмма дает корни

    z1= 8,0 и z2= 1,0 (рис.12).

    2) Решим с помощью номограммы уравнение

    2z 2 — 9z + 2 = 0.

    Разделим коэффициенты этого уравнения на 2, получим уравнение

    z 2 — 4,5z + 1 = 0.

    Номограмма дает корни z1= 4 и z2= 0,5.

    3) Для уравнения

    z 2 — 25z + 66 = 0

    коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t, получим уравнение

    t 2 — 5t + 2,64 = 0,

    которое решаем посредством номограммы и получим t1= 0,6 и t2= 4,4, откуда z1= 5t1= 3,0 и z2= 5t2= 22,0.

    10. СПОСОБ: Геометрический способ решения квадратных уравнений.

    В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

    1) Решим уравнение х 2 + 10х = 39.

    В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15).

    Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

    Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4* 2,5х = 10х ) и четырех пристроенных квадратов (6,25* 4 = 25), т.е. S = х 2 + 10х + 25. Заменяя

    х 2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

    2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0.

    Решение представлено на рис. 16, где

    у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

    Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1= 2, у2= — 8 (рис.16).

    3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

    Преобразуя уравнение, получаем

    у 2 — 6у = 16.

    На рис. 17 находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у 2 — 6у прибавить 9, то получим площадь квадрата со стороной у — 3. Заменяя выражение у 2 — 6у равным ему числом 16,

    получаем: (у — 3) 2 = 16 + 9, т.е. у — 3 = ± v25, или у — 3 = ± 5, где у1= 8 и у2= — 2.

    Квадратное уравнение

    Квадратное уравнение — важное уравнение не только в школьном курсе алгебры. Квадратное уравнение часто используется в геометрии при расчете. Поэтому знать формулы корней квадратного уравнения, чтобы решать его быстрее, нужно всем.

    Определение квадратного уравнения

    Квадратное уравнение — это уравнение вида ax^2+bx+c=0, где x— переменная, a, b, c— некоторые числа, причем a neq 0. В квадратном уравнении ax^2+bx+c=0коэффициент aназывают первым коэффициентом, b— вторым коэффициентом, c— свободным членом.

    Формула корней

    Формула корней квадратного уравнения имеет вид:

    displaystyle x_{1,2}=frac{-b pm sqrt{b^2-4ac}}{2a}

    Выражение b^2-4acназывается дискриминантом квадратного уравнения и обозначается буквой D.

    Влияние дискриминанта на корни квадратного уравнения

    Максимальное количество корней квадратного уравнения равно степени уравнения. Квадратное уравнение имеет вторую степень переменной, поэтому и должно иметь два корня. Однако возможны случаи совпадения корней, тогда формально говорят, что «уравнение имеет один корень», хотя правильнее говорить — «уравнение имеет одно значение переменной», или «корни уравнения совпадают и равны…» Есть еще вариант, что уравнение не имеет действительных корней или не имеет действительных решений. Узнать о том — решается квадратное уравнение и сколько имеет корней можно вычислив дискриминант.

    1. Если D=0, то существует только одно значение переменной, удовлетворяющее уравнению ax^2+bx+c=0. Однако условились говорить, что в этом случае квадратное уравнение имеет два равных действительных корня, а само число displaystyle - frac{b}{2a}называют корнем кратности два.
    2. Если D<0, то квадратное уравнение не имеет действительных корней.
    3. Если D>0, то квадратное уравнение имеет два различных действительных корня.

    Приведенное квадратное уравнение

    Пусть дано квадратное уравнение ax^2+bx+c=0. Так как a neq 0, то, разделив обе части уравнения на a, получим уравнение displaystyle x^2+ frac{b}{a} x + frac{c}{a} = 0. Считая, что displaystyle frac{b}{a}=pи displaystyle frac{c}{a}=q, получим уравнение displaystyle x^2+px+q=0, в котором первый коэффициент равен 1. Это уравнение называется приведенным.

    Формула корней приведенного квадратного уравнения имеет вид:

    displaystyle x_{1,2}=- frac{p}{2} pm sqrt{frac{p^2}{4}-q}

    Неполные квадратные уравнения

    Уравнения вида ax^2+bx=0(c=0), ax^2+c=0(b=0)и ax^2=0(b=0, c=0)называются квадратными уравнениями.

    Биквадратное уравнение

    Уравнение вида ax^4+bx^2+c=0называется биквадратным уравнением. Оно решается с помощью замены переменной по формуле x^2=tи приводится к квадратному уравнению at^2+bt+c=0.

    Примеры решения квадратного уравнения

    Уравнение 1

    Решите уравнение x^2+5x-6=0

    Решение:Найдем дискриминант D=25+24=49, D>0.

    Найдем корни уравнения по формуле корней квадратного уравнения: displaystyle x_{1,2}=frac{-5 pm sqrt{49}}{2}.

    displaystyle x_{1}= frac{-5-7}{2}=-6, displaystyle x_{2}=frac{-5+7}{2}=1.

    Ответ: x_{1}=-6, x_{2}=1.

    Уравнение 2

    Решите уравнение 2x^2-3x+1=0.

    Решение: находим дискриминант D=3^2-4 cdot 2 cdot 1=1, D>0. Применим формулу корней квадратного уравнения: displaystyle x_{1,2}=frac{3 pm sqrt{1}}{4}. Тогда

    displaystyle x_{1}=frac{1}{2}, displaystyle x_{2}=1.

    Ответ: x_{1}=0,5, x_{2}=1.

    Уравнение 3

    Решите уравнение 2x^2-3x+4=0.

    Решение: найдем дискриминант D=3^2-4 cdot 2 cdot 4=9-32, D<0. Так как дискриминант отрицателен, то уравнение не имеет корней.

    Ответ: нет корней.

    Уравнение 4

    Решите уравнение 9x^2+6x+1=0

    Решение: находим дискриминант D=6^2-4 cdot 9 cdot 1=36-36=0, D=0. Применим формулу корней квадратного уравнения

    displaystyle x_{1,2}=frac{-6 pm sqrt{0}}{18}.

    displaystyle x_{1}=frac{-6+0}{18}=-frac{1}{3},

    displaystyle x_{2}=frac{-6-0}{18}=-frac{1}{3}

    Таким образом, уравнение имеет единственный корень displaystyle x_{1,2}=- frac{1}{3}.

    Ответ: displaystyle x_{1,2}=- frac{1}{3}

    Уравнение 5

    Решите квадратное уравнение x^2-10x+24=0

    Решение: Применим формулу корней для приведенного квадратного уравнения: x_{1,2}=5 pm 1. Отсюда x_1=5-1=4, x_2=5+1=6.

    Ответ: x_1=4, x_2=6.

    Квадратные уравнения

    где a, b и c – произвольные вещественные числа, отличные от нуля.

    Неполными квадратными уравнениями называют квадратные уравнения следующих типов:

    Решение неполных квадратных уравнений

    Покажем, как решаются неполные квадратные уравнения на примерах.

    Пример 1 . Решить уравнение

    Пример 2 . Решить уравнение

    Решение . Вынося в левой части уравнения (3) переменную x за скобки, перепишем уравнение в виде

    Поскольку произведение двух сомножителей равно нулю тогда и только тогда, когда, или первый сомножитель равен нулю, или второй сомножитель равен нулю, то из уравнения (4) получаем:

    Пример 3 . Решить уравнение

    Пример 4 . Решить уравнение

    Решение . Поскольку левая часть уравнения (5) положительна при всех значениях переменной x , а правая часть равна 0, то уравнение решений не имеет.

    Выделение полного квадрата

    Выделением полного квадрата называют представление квадратного трёхчлена (1) в виде:

    Для того, чтобы получить формулу (6), совершим следующие преобразования:

    Формула (6) получена.

    Дискриминант

    Дискриминантом квадратного трёхчлена (1) называют число, которое обозначается буквой D и вычисляется по формуле:

    Дискриминант квадратного трёхчлена играет важную роль, и от того, какой знак он имеет, зависят различные свойства квадратного трёхчлена.

    Используя дискриминант, формулу (6) можно переписать в виде

    Разложение квадратного трёхчлена на множители

    Утверждение . В случае, когда , квадратный трёхчлен (1) разлагается на линейные множители. В случае, когда D < 0 , квадратный трехчлен нельзя разложить на линейные множители.

    Доказательство . В случае, когда D = 0 , формула (8) и является разложением квадратного трехчлена на линейные множители:

    В случае, когда D > 0 , выражение, стоящее в квадратных скобках в формуле (8), можно разложить на множители, воспользовавшись формулой сокращенного умножения «Разность квадратов»:

    Таким образом, в случае, когда D > 0 , разложение квадратного трехчлена (1) на линейные множители имеет вид

    В случае, когда D < 0 , выражение, стоящее в квадратных скобках в формуле (8), является суммой квадратов и квадратный трёхчлен на множители не раскладывается.

    Замечание . В случае, когда D < 0 , квадратный трехчлен всё-таки можно разложить на линейные множители, но только в области комплексных чисел, однако этот материал выходит за рамки школьного курса.

    Формула для корней квадратного уравнения

    Из формул (9) и (10) вытекает формула для корней квадратного уравнения .

    Действительно, в случае, когда D = 0 , из формулы (9) получаем:

    Следовательно, в случае, когда D = 0 , уравнение (1) обладает единственным корнем, который вычисляется по формуле

    В случае, когда D > 0 , из формулы (10) получаем:

    Таким образом, в случае, когда D > 0 , уравнение (1) имеет два различных корня , которые вычисляются по формулам

    Замечание 1 . Формулы (12) и (13) часто объединяют в одну формулу и записывают так:

    Замечание 2 . В случае, когда D = 0 , обе формулы (12) и (13) превращаются в формулу (11). Поэтому часто говорят, что в случае, когда D = 0 , квадратное уравнение (1) имеет два совпавших корня , вычисляемых по формуле (11), а саму формулу (11) переписывают в виде:

    Замечание 3 . В соответствии с материалом, изложенным в разделе «Кратные корни многочленов», корень (11) является корнем уравнения (1) кратности 2.

    В случае, когда D = 0 , разложение квадратного трехчлена на линейные множители (9) можно переписать по-другому, воспользовавшись формулой (15):

    ax 2 + bx + c =
    = a (x – x1) 2 .
    (16)

    В случае, когда D > 0 , разложение квадратного трехчлена на линейные множители (10) с помощью формул (12) и (13) переписывается так:

    ax 2 + bx + c =
    = a (x – x1) (x – x2) .
    (17)

    Замечание 4 . В случае, когда D = 0 , корни x1 и x2 совпадают, и формула (17) принимает вид (16).

    Прямая и обратная теоремы Виета

    Раскрывая скобки и приводя подобные члены в правой части формулы (17), получаем равенство

    Отсюда, поскольку формула (17) является тождеством, вытекает, что коэффициенты многочлена

    равны соответствующим коэффициентам многочлена

    Таким образом, справедливы равенства

    следствием которых являются формулы

    Формулы (18) и составляют содержание теоремы Виета (прямой теоремы Виета) .

    Словами прямая теорема Виета формулируется так: — «Если числа x1 и x2 являются корнями квадратного уравнения (1), то они удовлетворяют равенствам (18)».

    Обратная теорема Виета формулируется так: — «Если числа x1 и x2 являются решениями системы уравнений (18), то они являются корнями квадратного уравнения (1)».

    Для желающих ознакомиться с примерами решений различных задач по теме «Квадратные уравнения» мы рекомендуем наше учебное пособие «Квадратный трехчлен».

    Графики парабол и решение с их помощью квадратных неравенств представлены в разделе «Парабола на координатной плоскости. Решение квадратных неравенств» нашего справочника.

    Например, для трехчлена (3x^2+2x-7), дискриминант будет равен (2^2-4cdot3cdot(-7)=4+84=88). А для трехчлена (x^2-5x+11), он будет равен ((-5)^2-4cdot1cdot11=25-44=-19).

    Дискриминант обозначается буквой (D) и часто используется при решении квадратных уравнений. Также по значению дискриминанта можно понять, как примерно выглядит график квадратичной функции (см. ниже).

    Дискриминант и корни квадратного уравнения

    Значение дискриминанта показывает количество корней квадратного уравнения:
             — если (D) положителен – уравнение будет иметь два корня;
             — если (D) равен нулю – только один корень;
             — если (D) отрицателен – корней нет.

    Это не надо учить, к такому выводу несложно прийти, просто зная, что квадратный корень из дискриминанта (то есть, (sqrt{D}) входит в формулу для вычисления корней квадратного уравнения: (x_{1}=)(frac{-b+sqrt{D}}{2a}) и (x_{2}=)(frac{-b-sqrt{D}}{2a}). Давайте рассмотрим каждый случай подробнее.

    Если дискриминант положителен

    В этом случае корень из него – это некоторое положительное число, а значит (x_{1}) и (x_{2}) будут различны по значению, ведь в первой формуле (sqrt{D}) прибавляется, а во второй – вычитается. И мы имеем два разных корня.

    Пример: Найдите корни уравнения (x^2+2x-3=0)
    Решение:

    (x^2+2x-3=0)

                                  

    Выписываем коэффициенты:

    (a=1;)      (b=2;)      (c=-3;)

     

    Вычисляем дискриминант по формуле (D=b^2-4ac)

    (D=2^2-4cdot1cdot(-3)=)
    (=4+12=16)

     

    Найдем корни уравнения

    (x_{1}=)(frac{-2+sqrt{16}}{2cdot1})(=)(frac{2}{2})(=1)

    (x_{2}=)(frac{-2-sqrt{16}}{2cdot1})(=)(frac{-6}{2})(=-3)

    Получили два различных корня из-за разных знаков перед (sqrt{D})

    Ответ: (x_{1}=1);    (x_{2}=-3)

    На графике квадратичной функции положительный дискриминант будет означать пересечение функции с осью икс ровно в двух точках – корнях уравнения.  И это логично. Вдумайтесь – если уравнение (x^2+2x-3=0) имеет корни (x_{1}=1) и (x_{1}=-3), значит при подстановке (1) и (-3) вместо икса, левая часть станет нулем. А значит, если те же самые единицу и минус тройку подставить в функцию (y=x^2+2x-3) получим (y=0). То есть, функция (y=x^2+2x-3) проходит через точки ((1;0)) и ((-3;0)) (подробнее смотри статью Как построить график функции). 

    график параболы при положительном дискриминанте.png

    Если дискриминант равен нулю

    А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.

    Формулы корней выглядят так: (x_{1}=)(frac{-b+sqrt{D}}{2a}) и (x_{2}=)(frac{-b-sqrt{D}}{2a}).  И если дискриминант – ноль, то и корень из него тоже ноль.  Тогда получается:

    (x_{1}=)(frac{-b+sqrt{D}}{2a})(=)(frac{-b+sqrt{0}}{2a})(=)(frac{-b+0}{2a})(=)(frac{-b}{2a})

    (x_{2}=)(frac{-b-sqrt{D}}{2a})(=)(frac{-b-sqrt{0}}{2a})(=)(frac{-b-0}{2a})(=)(frac{-b}{2a})

    То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.

    Пример: Найдите корни уравнения (x^2-4x+4=0)
    Решение:

    (x^2-4x+4=0)

                                  

    Выписываем коэффициенты:

    (a=1;)      (b=-4;)      (c=4;)

     

    Вычисляем дискриминант по формуле (D=b^2-4ac)

    (D=(-4)^2-4cdot1cdot4=)
    (=16-16=0)

     

    Находим корни уравнения

    (x_{1}=)(frac{-(-4)+sqrt{0}}{2cdot1})(=)(frac{4}{2})(=2)

    (x_{2}=)(frac{-(-4)-sqrt{0}}{2cdot1})(=)(frac{4}{2})(=2)

    Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.

    Ответ: (x=2)

    На графике квадратичной функции нулевой дискриминант означает одну точку пересечения функции с осью икс.  Все аналогично изложенному выше: два корня – две точки пересечения, один корень – одна. В частности, функция (y=x^2-4x+4) будет выглядеть вот так:

    график параболы при дискриминанте равном нулю.png

    Если дискриминант отрицателен

    В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.

    Пример: Найдите корни уравнения (x^2+x+3=0)
    Решение

    (x^2+x+3=0)

                                  

    Выписываем коэффициенты:

    (a=1;)      (b=1;)      (c=3;)

     

    Вычисляем дискриминант по формуле (D=b^2-4ac)

    (D=1^2-4cdot1cdot3=)
    (=1-12=-11)

     

    Находим корни уравнения

    (x_{1}=)(frac{-1+sqrt{-11}}{2cdot1})(=…)

    (x_{2}=)(frac{-1-sqrt{-11}}{2cdot1})(=…)

    Оба корня содержат невычислимое выражение (sqrt{-11}), значит, и сами не вычислимы

    Ответ: нет корней.

    То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение (x^2+x+3) получился ноль.

    Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.

    Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!

    график параболы при отрицательном дискриминанте.png

    Понравилась статья? Поделить с друзьями:
  • Как найти деньги для открытия своего бизнеса
  • Как найти работу в уральске зко
  • Как составить акт нарушения качества предоставляемых услуг
  • Как найти джиуба в каирне душ карта
  • Как составить температурный график системы отопления