Как найти корни многочлена 10 класс

Разложение многочлена на множители. Часть 3. Теорема Безу и схема Горнера

Разложение  многочлена на множители.  Теорема Безу и схема Горнера

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим,  каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена  Подготовка к ГИА и ЕГЭ  на  двучлен Подготовка к ГИА и ЕГЭ равен Подготовка к ГИА и ЕГЭ.

Но для нас важна не сама теорема, а следствие из нее:

Если число Подготовка к ГИА и ЕГЭ является корнем многочлена Подготовка к ГИА и ЕГЭ, то многочлен   Подготовка к ГИА и ЕГЭ делится без остатка на двучлен Подготовка к ГИА и ЕГЭ.

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на Подготовка к ГИА и ЕГЭ, где Подготовка к ГИА и ЕГЭ — корень многочлена. В результате мы  получаем многочлен,    степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена , и как разделить многочлен на двучлен.

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число Подготовка к ГИА и ЕГЭ является корнем многочлена.

Например, в многочлене Подготовка к ГИА и ЕГЭ сумма коэффициентов равна нулю: Подготовка к ГИА и ЕГЭ. Легко проверить, что Подготовка к ГИА и ЕГЭ является корнем многочлена.

Если сумма коэффициентов многочлена  при четных степенях Подготовка к ГИА и ЕГЭ равна сумме коэффициентов при нечетных степенях, то число Подготовка к ГИА и ЕГЭявляется корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку Подготовка к ГИА и ЕГЭ, а Подготовка к ГИА и ЕГЭ — четное число.

Например, в многочлене Подготовка к ГИА и ЕГЭ сумма коэффициентов при четных степенях Подготовка к ГИА и ЕГЭ:  Подготовка к ГИА и ЕГЭ, и сумма коэффициентов при нечетных степенях Подготовка к ГИА и ЕГЭ:   Подготовка к ГИА и ЕГЭ. Легко проверить, что Подготовка к ГИА и ЕГЭ является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени Подготовка к ГИА и ЕГЭ (то есть многочлена, в котором старший коэффициент — коэффициент при Подготовка к ГИА и ЕГЭ — равен единице) справедлива формула Виета:

Подготовка к ГИА и ЕГЭ, где Подготовка к ГИА и ЕГЭ — корни многочлена Подготовка к ГИА и ЕГЭ.

Если многочлен не является приведенным, то его можно сделать таковым, разделив на старший коэффициент.

Есть ещё Подготовка к ГИА и ЕГЭ формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни приведенного многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен Подготовка к ГИА и ЕГЭ.

Для этого многочлена произведение корней равно Подготовка к ГИА и ЕГЭ

Делители числа Подготовка к ГИА и ЕГЭ: Подготовка к ГИА и ЕГЭ; Подготовка к ГИА и ЕГЭ; Подготовка к ГИА и ЕГЭ

Сумма всех коэффициентов многочлена равна Подготовка к ГИА и ЕГЭ, следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях Подготовка к ГИА и ЕГЭ:  Подготовка к ГИА и ЕГЭ

Сумма коэффициентов при нечетных степенях Подготовка к ГИА и ЕГЭ: Подготовка к ГИА и ЕГЭ

Подготовка к ГИА и ЕГЭ, следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем  многочлена: Подготовка к ГИА и ЕГЭ, следовательно, число 2  является корнем многочлена. Значит, по теореме Безу, многочлен Подготовка к ГИА и ЕГЭ делится без остатка на двучлен Подготовка к ГИА и ЕГЭ.

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен Подготовка к ГИА и ЕГЭ  на двучлен Подготовка к ГИА и ЕГЭ столбиком:

Разложение многочлена на множители. Теорема Безу и схема Горнера

Есть и другой способ деления многочлена на двучлен — схема Горнера.

Разложение многочлена на множители. Теорема Безу и схема Горнера

Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 — так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен Подготовка к ГИА и ЕГЭна двучлен Подготовка к ГИА и ЕГЭ и в результате деления мы получаем многочлен Подготовка к ГИА и ЕГЭ, то коэффициенты многочлена  Подготовка к ГИА и ЕГЭ мы можем найти по схеме Горнера:

Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число Подготовка к ГИА и ЕГЭ является корнем многочлена Подготовка к ГИА и ЕГЭ, то остаток от деления многочлена на Подготовка к ГИА и ЕГЭ равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы «убиваем двух зайцев»: одновременно проверяем, является ли число Подготовка к ГИА и ЕГЭ корнем многочлена Подготовка к ГИА и ЕГЭ и делим этот многочлен на двучлен Подготовка к ГИА и ЕГЭ.

Пример. Решить уравнение:

Подготовка к ГИА и ЕГЭ

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24: Подготовка к ГИА и ЕГЭ

2. Проверим, является ли число 1  корнем многочлена.

Сумма коэффициентов многочлена Подготовка к ГИА и ЕГЭ, следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен Подготовка к ГИА и ЕГЭ с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий Подготовка к ГИА и ЕГЭ отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при Подготовка к ГИА и ЕГЭ пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен Подготовка к ГИА и ЕГЭ без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

aa

Будем делить дальше. Нам нужно найти корни многочлена Подготовка к ГИА и ЕГЭ. Корни также ищем среди делителей свободного члена, то есть теперь уже  числа -24.

Легко проверить, что числа 1 и -1 не являются корнями многочлена Подготовка к ГИА и ЕГЭ

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена Подготовка к ГИА и ЕГЭ:

Разложение многочлена на множители. Теорема Безу и схема Горнера

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 — число, не равное нулю, следовательно, многочлен Подготовка к ГИА и ЕГЭ делится на двучлен Подготовка к ГИА и ЕГЭ  с остатком, и число 2 не является корнем многочлена.

Идем дальше.

В) Проверим, является ли число -2 корнем многочлена Подготовка к ГИА и ЕГЭ. Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:

Отлично! В остатке мы получили ноль, следовательно, многочлен Подготовка к ГИА и ЕГЭ разделился на двучлен Подготовка к ГИА и ЕГЭ без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена Подготовка к ГИА и ЕГЭ на двучлен Подготовка к ГИА и ЕГЭ в таблице изображены зеленым цветом.

aa

В результате деления мы получили квадратный трехчлен Подготовка к ГИА и ЕГЭ, корни которого легко находятся по теореме Виета: Подготовка к ГИА и ЕГЭ

Итак, корни исходного уравнения Подготовка к ГИА и ЕГЭ:

{Подготовка к ГИА и ЕГЭ}

Ответ: {Подготовка к ГИА и ЕГЭ}

И.В. Фельдман, репетитор по математике.

Алгебра и начала математического анализа, 10 класс

Урок №11. Многочлен P(x) и его корень. Алгебраическое уравнение.

Перечень вопросов, рассматриваемых в теме

1) обобщенное понятие многочлена;

2) основные действия над многочленами;

3) определение алгебраического уравнения;

4) теорема Безу.

Глоссарий по теме

Многочлен P(x) = a + a n – 1 x n – 1 + a n – 2 x n – 2 + … + a 1 x + a 0 , где a≠0, aₖ, k=0,1,2,3,…, aₖ,k=0,1,2,3,…,n — числа, x — переменная, называется многочленом n -ной степени . 
Традиционно aₙ называется старшим коэффициентом, a₀ — свободным членом многочлена.

Стоит отметить, что каждый многочлен степени больше 2 можно разложить на множители.

Корнем многочлена Р(х) называют такое значение х, при котором многочлен обращается в нуль.

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-а равен Р(а).

Следствие. Если число а является корнем многочлена Р(х), то многочлен

Рₙ(х)= a₀ + a 1 x n – 1 + … + a n – 1 x + aделится без остатка на двучлен х-а.

Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида P(x1, x2, …, xn)=0,

где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.

Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнением над множеством  F.

Степенью алгебраического уравнения называют степень многочлена P.

Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Общая теория многочленов многих переменных далеко выходит за рамки школьного курса.

Мы рассмотрим многочлены одной действительной переменной, да и то в простейших случаях. Рассмотрим многочлены одной переменной, приведённые к стандартному виду.

Многочлен ax + b, где a≠0, a, b — числа, x — переменная, называется многочленом первой степени
Многочлен ax²+bx+c, где a≠0, a, b, c — числа, — переменная, называется многочленом второй степени (квадратным трёхчленом, квадратичной функцией). 
Многочлен ax³+bx²+cx+d, где a≠0, a, b, c, d — числа, x — переменная, называется многочленом третьей степени.

Вообще, многочлен P(x) = a + a n – 1 x n – 1 + a n – 2 x n – 2 + … + a 1 x + a 0, где a≠0, aₖ, k=0,1,2,3,…, aₖ,k=0,1,2,3,…,n — числа, x — переменная, называется многочленом n -ной степени
Традиционно aₙ называется старшим коэффициентом, а a₀ — свободным членом многочлена.

Стоит отметить, что каждый многочлен степени больше 2 можно разложить на множители.

Корнем многочлена Р(х) называют такое значение х, при котором многочлен обращается в нуль.

Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида

P(x1, x2, …, xn)=0,

где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.

Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнением над множеством  F.

Степенью алгебраического уравнения называют степень многочлена P.

Например, уравнение

является алгебраическим уравнением четвертой степени от трёх переменных (с тремя неизвестными) над множеством вещественных чисел.

Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Теорема Безу, невзирая на кажущуюся простоту и очевидность, является одной из базовых теорем теории многочленов. В данной теореме алгебраические характеристики многочленов (они позволяют работать с многочленами как с целыми числами) связываются с их функциональными характеристиками (которые позволяют рассматривать многочлены как функции).

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-а равен Р(а).

Доказательство. Разделим Р(х) c остатком на (x — а).

Получим Р(х)= (x — а)·Q(х) + R; по определению остатка, многочлен r либо равен 0, либо имеет степень, меньшую степени (x — a), т.е. меньшую 1. Но степень многочлена меньше 1 только в случае, когда она равна 0, и поэтому в обоих случаях R на самом деле является числом – нулем или отличным от нуля.

Подставив теперь в равенство Р(х)= (x — а)·Q(х) + R значение x = a, мы получим Р(a)= (a — а)Q(х) + R, P(a) = R, так что действительно R = P(a).

Эту закономерность отметил и математик Безу.

Следствие. Если число а является корнем многочлена Р(х), то многочлен

Рₙ(х)= a₀ + a 1 x n – 1 + … + a n – 1 x + aделится без остатка на двучлен х-а.

Историческая справка

Этьенн Безу — французский математик, член Парижской Академии Наук (с 1758 года), родился в Немуре 31 марта 1730 года и умер 27 сентября 1783 года. С 1763 года Безу преподавал математику в училище гардемаринов, а с 1768 года и в королевском артиллерийском корпусе.

Основные работы Этьенна Безу относятся к высшей алгебре, они посвящены созданию теории решения алгебраических уравнений.

В теории решения систем линейных уравнений он содействовал возникновению теории определителей, развивал теорию исключения неизвестных из систем уравнений высших степеней, доказал теорему (впервые сформулированную Маклореном) о том, что две кривые порядка m и n пересекаются не более чем в mn точках.

Во Франции и за её границей вплоть до 1848 года был очень популярен его шеститомный «Курс математики», написанный им в 1764-69 годах.

Безу развил метод неопределённых множителей. В элементарной алгебре его именем назван способ решения систем уравнений, основанный на этом методе.

Часть трудов Безу посвящена внешней баллистике.

Именем ученого названа одна из основных теорем алгебры.

Примеры алгебраических уравнений

  1. алгебраическое уравнение с одним неизвестным -уравнение вида , где n- натуральное число.
  2. Линейное уравнение от одной переменной ax+b=0, a
  3. Квадратное уравнение ax2+bx+c=0, a.

Примеры и разбор решения заданий тренировочного модуля

Пример 1.

Разложим на множители многочлен:

Решение: )

Ответ: ))

Пример 2.

Решить уравнение: х4 — x3 — 6x2 — x + 3 = 0.

Решение: Целые корни многочлена Р(х) = х4 — x3 — 6x2 — x + 3 должны быть делителями свободного члена, так что это могут быть числа -1, 1, 3, -3.

Подберем корень по схеме Горнера:

1

-1

-6

-1

3

-1

1

-2

-4

3

0

х4 — x3 — 6x2 — x + 3= (х + 1)(х3 -2х2 – 4х +3) =0

1

-2

-4

3

-1

1

-3

-1

4

 1

1

-1

-5

-2

-3

1

-5

11

-30

3

1

1

-1

0

 Q(x) = х3 -2х2 – 4х +3=(x- 3)(x2 + x -1)=0

x2 + x -1 =0

D=5

Ответ: -1; 3;

Цели:

  • научить находить значение многочлена, его
    корни, используя теорему Безу, схему Горнера;
  • формировать умения и навыки в нахождении корней
    многочленов;
  • научить обобщать и систематизировать материал;
  • развивать вычислительные навыки, концентрацию
    внимания, функции самоконтроля;
  • воспитывать требовательность к себе, усердие.

ХОД УРОКА

I. Организационный момент

Сообщить тему урока, сформулировать цели урока.

II. Актуализация знаний учащихся

1. Проверка домашнего задания.

а) Найти НОД ((x 6 – 1);(x 8 – 1))
по алгоритму Евклида (ученик готовит на доске).

Решение:

НОД ((x 6 – 1);(x 8 – 1))
= x 2 – 1
.

Ответ: x 2 – 1.

б) Узнайте, делится ли многочлен f(x) = x 5
– 5 x 4 + 8 x 3 – 5 x 2 + x + 2

на (x – 1), (x + 1), (x – 2) (проверяется
фронтально)
. [1]

Решение. По теореме Безу, если f(1) = 0,
то f(x) делится на (x – 1). Проверим это.

f(1) = 1 – 5 + 8 – 5 + 1 + 2 > 0, f(x) не делится
на (x – 1);
f(–1) = – 1 – 5 – 8 – 5 – 1 + 2 < 0, f(x) не
делится на (x + 1);
f(2) = 32 – 80 + 64 – 20 + 4 = 0, f(x) делится на (x – 2).

Ответ: делится на (x – 2).

в) Многочлен P(x) при делении на (x – 1)
дает остаток 3, а при делении на (x – 2) дает
остаток 5. Найти остаток от деления
многочлена P(x) на (x 2 – 3 x + 2).

(Решение проектируется на экран или заранее
написать на доску).

Решение.

P(x) = (x – 1) Q 1(x) + 3                                        (1)
P(x) = (x – 2) Q 2(x) + 5      
                                 (2)
Из (1) и (2) следует, что P(1) = 3, P(2) = 5.
Пусть P(x) = (x 2 – 3 x + 2)
Q (x) + a x + b
или
P(x) = (x – 1) (x – 2) Q (x) +
a x + b

                   (3)

Подставив в (3) последовательно x = 1 и x = 2,
получим систему уравнений, из которой a = 2,
b = 1.

Ответ: 2 x + 1.

г) При каких m и n многочлен x 3 + m x + n
при любых x делится на x 2 + 3 x + 10
без остатка.

(Решение проектируется на экран или заранее
написать на доску).

Решение. При делении “уголком” получим x 3 + m x + n = (x 2 + 3 x + 10) (x – 3) + ((m – 1) x
+ (n + 30))
.

Т.к. деление выполняется без остатка, то (m – 1) x
+ (n + 30) = 0
, а это возможно (при любом x)
только в случае, когда m = 1, n = –30.

Ответ: m = 1, n = –30.

2. Теоретический опрос.

а) Как читается теорема Безу?
б) Привести пример, где используется теорема
Безу.
в) Из правила перемножения двух многочленов как
найти старший коэффициент произведения?
г) Имеет ли степень нулевой многочлен?
д) Найти степень многочлена (3 x 499 – 5 x
400
 + 7 x 372 – 11) 4 + (x – 1) 2006 
.
(Ответ: десятая)
е) Приведите многочлен (x 2 – 1) (x 2005 + x 2003 + x 2001 + … + x)
к стандартному виду. (Ответ: x 2007 – 1).

III. Подготовка к изучению нового материала

В многочлен, как и в любое буквенное выражение,
можно вместо переменной подставлять числа, и в
результате он превращается в числовое выражение,
то есть, в конечном счете, в число. Сделаем два
важных для решения задач замечания:

  1. Значение f(0) равно свободному члену
    многочлена.
  2. Значение f(1) равно сумме коэффициентов
    многочлена.

Нахождение значений многочлена не
представляет никаких принципиальных трудностей,
однако вычисления при этом могут оказаться
достаточно громоздкими. Для упрощения
вычислений существует прием, называемый схемой
Горнера – по имени английского математика XVI
века. Эта схема состоит в заполнении некоторой
таблицы из двух строк.

Например, чтобы вычислить значение многочлена
f(x) = 2 x 4 – 9 x 3 – 32 x 2 – 57

при x = 7 (то есть узнать делится ли он на (x – 7)
по теореме Безу), надо подставить вместо x
число 7. Если f(7) = 0, то f(x) делится
без остатка. Если f(7) не равно 0, то f(x) делится
на (x – 7) с остатком. Чтобы облегчить
нахождение значения f(7) применим схему
Горнера. Заполним таблицу из двух строк по
следующему алгоритму:

1. Строка коэффициентов записывается первой.
2. Старший коэффициент дублируется во второй
строке, а перед ним ставится значение переменной
нашем случае число
7), при котором вычисляем
значение многочлена.

Получается таблица, пустые клетки которой надо
заполнить.

Таблица 1

3. Это делается по единому правилу: для пустой
клетки, стоящей справа, число 2 умножается на 7 и
складывается с числом, стоящим над пустой
клеткой. Ответ записывается в первую пустую
клетку. Так делают для заполнения остальных
пустых клеток. Поэтому, в первой пустой клетке
ставится число 2 • 7 – 9 = 5, во второй пустой
клетке ставится число 5 • 7 – 32 = 3, в третьей
ставится число 3 • 7 + 0 = 21, а в последней 21 • 7
– 57 = 90
. Полностью эта таблица выглядит так:

Таблица 2

 

2

– 9

– 32

0

–57

7

2

5

3

21

90

Последнее число второй строки является
ответом.

Замечание: программа для вычисления
значений многочлена в ЭВМ составляется по схеме
Горнера.

IV. Закрепление изученного материала

Рассмотрим решение домашнего задания
№ 1 (б) по схеме Горнера. Итак, применяя схему
Горнера, узнайте, делится многочлен (x) = x 5
– 5 x 4 + 8 x 3 – 5 x 2 + x + 2

на (x – 1), (x + 1), (x – 2). Если
требуется проверить несколько значений, то для
экономии выкладок строят одну объединенную
схему.

Таблица 3

 

3

– 5

0

– 7

0

12

1

3

– 2

– 2

– 9

– 9

3

– 1

3

– 8

8

– 15

15

– 3

2

3

1

2

–3

– 6

0

В последнем столбце в третьей, четвертой и
пятой строках – остатки от деления. Тогда f(x)
делится без остатка на (x – 2), т.к. r = 0. [2]

V. Нахождение корней многочлена

Теорема Безу дает возможность, найдя один
корень многочлена, искать далее корни
многочлена, степень которого на единицу меньше.
Иногда этим приемом – он называется “понижением
степени” – можно найти все корни многочлена.

В частности, подобрав один корень кубического
уравнения, тем самым понизив степень, можно его
полностью решить, решив полученное квадратное
уравнение.

При решении таких задач большую пользу
приносит та же схема Горнера. Однако, на самом
деле схема Горнера дает гораздо больше: числа,
стоящие во второй строке (не считая
последнего) – это коэффициенты частного
отделения на (x – a).

В таблице 3:

f(1) = 3,
f(–1) = – 3,
f(2) = 0,
f(x) = (3 x 4 – 2 x 3 – 2 x 2 – 9 x – 9) (x – 1) + 3;
f(x) = (3 x 4 – 8 x 3 + 8 x 2 – 15 x + 15) (x + 1) – 3;
f(x) = (3 x 4 + x 3 + 2 x 2 – 3 x – 6) (x – 2).

Пример 1. Найти корни
многочлена f(x) = (x 4 – x 3 – 6 x 2 – x + 3).

Решение. Делители свободного члена: – 11– 33
могут быть корнями многочлена. При x = 1
очевидно сумма коэффициентов равна нулю. Значит, x1 = 1
– корень. Проверим по схеме Горнера на корень
число – 1 и другие делители свободного
члена.

Таблица 4

 

1

– 1

– 6

– 1

3

– 1

1

– 2

– 4

3

0

– 1

1

– 3

– 1

4

 

3

1

1

– 1

0

 

x = –1 — корень
второй раз x = –1 — не корень
проверим x = 3
x = 3
– корень.
f(x) = (x + 1) (x – 3) (x 2 + x – 1),
x 2 + x – 1 = 0,

Замечание. При нахождении корней
многочлена не следует проводить лишних точных
вычислений в тех случаях, когда очевидные грубые
оценки приводят к нужному результату.
Например, схема Горнера для проверки значений 31
и – 31 как “кандидатов в корни” многочлена
x 5 – 41 x 4 + 32 x 2  – 4 x + 31
может выглядеть следующим образом:

Таблица 5

 

1

– 41

0

32

– 4

31

31

1

– 10

– 310

– 31

1

– 71

+

+

+

+

31 и – 31 не являются корнями
многочлена x 5 – 41 x 4 + 32 x 2  – 4 x + 31.

Пример 2. Найти корни
многочлена f (x) = x 4 + 2 x 3 – 6 x 2 – 22 x + 55.

Решение. Делители 55: – 11– 55– 1111,
– 5555. Заметим, что – 1 и 1
не являются корнями многочлена. Следует
проверить остальные делители.

Замечание. Очень важно учащимся овладеть
“длинной” схемой Горнера. В данном примере как
раз удобна “длинная” схема.

Таблица 6

 

1

2

– 6

– 22

53

– 5

1

– 3

9

– 57

5

1

7

29

+

+

– 11

1

– 9

93

+

11

1

13

137

+

+

– 55

1

– 53

2 909

+

55

1

57

3 129

+

+

x 2 + 57 x + 3 129 = 0,
корней нет.

Ответ: корней нет. [2]

VI. Самостоятельная работа

На доске три человека решают для последующей
проверки
.

Найти корни многочлена по схеме Горнера:

а) f (x) =  x 3 + 2 x 2 – 5 x – 6;

Ответ: – 12– 3.

б) f (x) =  x 5 – 5 x 4 + 6 x 3 – x 2 + 5 x – 6;

Ответ: 123.

в) f (x) =  x 4 + 12 x 3 + 32 x 2 – 8 x – 4.

Ответ:

(Проверка осуществляется в парах,
выставляются оценки).

VII. Исследовательская работа учащихся

– Ребята, вы не заметили, какие многочлены в
основном мы разбирали на уроках?

(Ответы учащихся).

– Да, это многочлены с целыми коэффициентами и
со старшим членом k = 1.

– В каких числах получались ответы?

(Ответы учащихся).

– Правильно, корни многочлена с целыми
коэффициентами и со старшим членом k = 1
либо целое, либо иррациональное, либо целые и
иррациональные, либо не имеют корней. Запишите
вывод в своих тетрадях.

VIII. Задание на дом

1. № 129 (1, 3, 5, 6) – Н. Я. Виленкин –
10, стр. 78. [3]
2. Выучить теорию данного урока.

IX. Подведение итогов урока и выставление
отметок

Литература

  1. М.Л. Галицкий. Углубленное изучение
    алгебры и математического анализа. //
    Просвещение, 1997 г.
  2. Г.В. Дорофеев. Многочлены с одной
    переменной. // Санкт-Петербург. Специальная
    литература, 1997 г.
  3. Н.Я. Виленкин. Алгебра и математический
    анализ. 10 класс // Просвещение, 1998 г.

Содержание:

Многочлен – это сумма одночленов, причем сам одночлен — это частный случай многочлена.

История многочелена:

Живший в 1050-1122 гг Омар Хаям известен в мире как мастер рубай. Однако имя Омара Хаяма также упоминается наряду с именами гениальных математиков. Именно Омар Хаям впервые представил общую формулу корней уравнения кубического многочлена Многочлен - виды, определение с примерами решения

Многочлены от одной переменной и действия над ними

Определение многочленов от одной переменной и их тождественное равенство

Рассмотрим одночлен и многочлен, которые зависят только от одной переменной, например, от переменной Многочлен - виды, определение с примерами решения

По определению одночлена числа и буквы (в нашем случае одна буква — Многочлен - виды, определение с примерами решения) в нем связаны только двумя действиями — умножением и возведением в натуральную степень. Если в этом одночлене произведение всех чисел записать перед буквой, а произведение всех степеней буквы записать как целую неотрицательную степень этой буквы (то есть записать одночлен в стандартном виде), то получим выражение вида Многочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения — некоторое число. Поэтому одночлен от одной переменной Многочлен - виды, определение с примерами решения — это выражение вида Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения — некоторое число, Многочлен - виды, определение с примерами решения — целое неотрицательное число. Если Многочлен - виды, определение с примерами решения то показатель степени Многочлен - виды, определение с примерами решения переменной Многочлен - виды, определение с примерами решения называется степенью одночлена. Например, Многочлен - виды, определение с примерами решения — одночлен шестой степени, Многочлен - виды, определение с примерами решения — одночлен второй степени. Если одночлен является числом, не равным нулю, то его степень считается равной нулю. Для одночлена, заданного числом 0, понятие степени не определяется (поскольку Многочлен - виды, определение с примерами решения).

По определению многочлен от одной переменной Многочлен - виды, определение с примерами решения — это сумма одночленов от одной переменной Многочлен - виды, определение с примерами решения. Поэтому

многочленом от одной переменной Многочлен - виды, определение с примерами решения: называется выражение вида

Многочлен - виды, определение с примерами решения (1)

где коэффициенты Многочлен - виды, определение с примерами решения — некоторые числа.

Если Многочлен - виды, определение с примерами решения, то этот многочлен называют многочленом Многочлен - виды, определение с примерами решения степени от переменной Многочлен - виды, определение с примерами решения. При этом член Многочлен - виды, определение с примерами решения называют старшим членом многочлена Многочлен - виды, определение с примерами решения, число Многочлен - виды, определение с примерами решениякоэффициентом при старшем члене, а член Многочлен - виды, определение с примерами решениясвободным членом. Например, Многочлен - виды, определение с примерами решения — многочлен третьей степени, у которого свободный член равен 1, а коэффициент при старшем члене равен 5.

Заметим, что иногда нумерацию коэффициентов многочлена начинают с начала записи выражения (1), и тогда общий вид многочлена Многочлен - виды, определение с примерами решения записывают так:

Многочлен - виды, определение с примерами решения

где Многочлен - виды, определение с примерами решения — некоторые числа.

Теорема 1. Одночлены Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения, тождественно равны тогда и только тогда, когда Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Одночлен Многочлен - виды, определение с примерами решения тождественно равен нулю тогда и только тогда, когда Многочлен - виды, определение с примерами решения

Поскольку равенство одночленов

Многочлен - виды, определение с примерами решения (2)

выполняется при всех значениях Многочлен - виды, определение с примерами решения (по условию эти одночлены тождественно равны), то, подставляя в это равенство Многочлен - виды, определение с примерами решения, получаем, что Многочлен - виды, определение с примерами решения Сокращая обе части равенства (2) на Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения по условию), получаем Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения из этого равенства имеем: Многочлен - виды, определение с примерами решения Поскольку 2Многочлен - виды, определение с примерами решения то равенство Многочлен - виды, определение с примерами решения возможно только тогда, когда Многочлен - виды, определение с примерами решения Таким образом, из тождественного равенства Многочлен - виды, определение с примерами решения получаем, что Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Если известно, что Многочлен - виды, определение с примерами решения для всех Многочлен - виды, определение с примерами решения то при Многочлен - виды, определение с примерами решения получаем Многочлен - виды, определение с примерами решения Поэтому одночлен Многочлен - виды, определение с примерами решения тождественно равен нулю при Многочлен - виды, определение с примерами решения (тогда Многочлен - виды, определение с примерами решения).

Далее любой одночлен вида Многочлен - виды, определение с примерами решения будем заменять на 0.

Теорема 2. Если многочлен Многочлен - виды, определение с примерами решения тождественно равен нулю (то есть принимает нулевые значения при всех значениях Многочлен - виды, определение с примерами решения), то все его коэффициенты равны нулю.

Многочлен - виды, определение с примерами решенияЗначком Многочлен - виды, определение с примерами решенияобозначено тождественное равенство многочленов.

Для доказательства используем метод математической индукции. Пусть Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения поэтому Многочлен - виды, определение с примерами решения То есть в этом случае утверждение теоремы выполняется.

Предположим, что при Многочлен - виды, определение с примерами решения это утверждение также выполняется: если многочлен Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения

Докажем, что данное утверждение выполняется и при Многочлен - виды, определение с примерами решения Пусть Многочлен - виды, определение с примерами решения (3)

Поскольку равенство (3) выполняется при всех значениях Многочлен - виды, определение с примерами решения, то, подставляя в это равенство Многочлен - виды, определение с примерами решения получаем, что Многочлен - виды, определение с примерами решения Тогда равенство (3) обращается в следующее равенство: Многочлен - виды, определение с примерами решения Вынесем Многочлен - виды, определение с примерами решения в левой части этого равенства за скобки и получим

Многочлен - виды, определение с примерами решения (4)

Равенство (4) должно выполняться при всех значениях Многочлен - виды, определение с примерами решения. Для того чтобы оно выполнялось при Многочлен - виды, определение с примерами решения должно выполняться тождество

Многочлен - виды, определение с примерами решения В левой части этого тождества стоит многочлен со степенями переменной от Многочлен - виды, определение с примерами решения до Многочлен - виды, определение с примерами решения Тогда по предположению индукции все его коэффициенты равны нулю: Многочлен - виды, определение с примерами решения Но мы также доказали, что Многочлен - виды, определение с примерами решения поэтому наше утверждение выполняется и при Многочлен - виды, определение с примерами решения Таким образом, утверждение теоремы справедливо для любого целого неотрицательного Многочлен - виды, определение с примерами решения то есть для всех многочленов.

Многочлен, у которого все коэффициенты равны нулю, обычно называют нулевым многочленом, или нуль-многочленом, и обозначают Многочлен - виды, определение с примерами решения или просто Многочлен - виды, определение с примерами решения (поскольку Многочлен - виды, определение с примерами решения).

Теорема 3. Если два многочлена Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения тождественно равны, то они совпадают (то есть их степени одинаковы и коэффициенты при одинаковых степенях равны).

Пусть многочлен Многочлен - виды, определение с примерами решения, а многочлен Многочлен - виды, определение с примерами решения Рассмотрим многочлен Многочлен - виды, определение с примерами решенияПоскольку многочлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения по условию тождественно равны, то многочлен Многочлен - виды, определение с примерами решения тождественно равен 0. Таким образом, все его коэффициенты равны нулю.

Но Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения Отсюда Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решенияКак видим, если допустить, что у какого-то из двух данных многочленов степень выше, чем у второго многочлена (например, Многочлен - виды, определение с примерами решения больше Многочлен - виды, определение с примерами решения), то коэффициенты разности будут равны нулю. Поэтому начиная с (Многочлен - виды, определение с примерами решения-го номера все коэффициенты Многочлен - виды, определение с примерами решения также будут равны нулю. То есть действительно многочлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

имеют одинаковую степень и соответственно равные коэффициенты при одинаковых степенях.

Теорема 3 является основанием так называемого метода неопределенных коэффициентов. Покажем его применение на следующем примере.

Пример:

Докажите, что выражение Многочлен - виды, определение с примерами решения

является полным квадратом.

Решение:

► Данное выражение может быть записано в виде многочлена четвертой степени, поэтому оно может быть полным квадратом только многочлена второй степени вида Многочлен - виды, определение с примерами решения Получаем тождество:

Многочлен - виды, определение с примерами решения (5)

Раскрывая скобки в левой и правой частях этого тождества и приравнивая коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения получаем систему равенств. Этот этап решения удобно оформлять в следующем виде:

Многочлен - виды, определение с примерами решения

Из первого равенства получаем Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения из второго равенства имеем а из третьего — Многочлен - виды, определение с примерами решения Как видим, при этих значениях Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения последние два равенства также выполняются. Следовательно, тождество (5) выполняется при Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения (аналогично можно также получить Многочлен - виды, определение с примерами решения). Таким образом, Многочлен - виды, определение с примерами решения

Действия над многочленами. Деление многочлена на многочлен с остатком

Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В результате выполнения действий сложения или умножения над многочленами от одной переменной всегда получаем многочлен от той же переменной.

Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.

При сложении многочленов одной степени получаем многочлен этой же степени, хотя иногда можно получить многочлен меньшей степени. Например, Многочлен - виды, определение с примерами решения При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей степени слагаемого.

Например, Многочлен - виды, определение с примерами решения Деление многочлена на многочлен определяется аналогично делению целых чисел. Напомним, что целое число Многочлен - виды, определение с примерами решения делится на целое число Многочлен - виды, определение с примерами решения если существует такое целое число Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения

Определение: Многочлен Многочлен - виды, определение с примерами решения делится на многочлен Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения— не нулевой многочлен), если существует такой многочлен Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения

Как и для целых чисел, операция деления многочлена на многочлен выполняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком. Говорят, что

многочлен Многочлен - виды, определение с примерами решения делится на многочлен Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения — не нулевой многочлен) с остатком, если существует такая пара многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения что Многочлен - виды, определение с примерами решения причем степень остатка Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения (в этом случае многочлен Многочлен - виды, определение с примерами решенияназывают неполным частным.)

Например, поскольку Многочлен - виды, определение с примерами решения то при делении многочлена Многочлен - виды, определение с примерами решения на многочлен Многочлен - виды, определение с примерами решения получаем неполное частное Многочлен - виды, определение с примерами решения: и остаток 2.

Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом.

Пример №1

Разделим многочлен Многочлен - виды, определение с примерами решения на многочленМногочлен - виды, определение с примерами решения

Решение:

Многочлен - виды, определение с примерами решения Докажем, что полученный результат действительно является результатом деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с остатком.

Если обозначить результат выполнения первого шага алгоритма через Многочлен - виды, определение с примерами решениявторого шага — через Многочлен - виды, определение с примерами решения третьего — через Многочлен - виды, определение с примерами решениято операцию деления, выполненную выше, можно записать в виде системы равенств:

Многочлен - виды, определение с примерами решения (1)

Многочлен - виды, определение с примерами решения (2)

Многочлен - виды, определение с примерами решения (3)

Сложим почленно равенства (1), (2), (3) и получим

Многочлен - виды, определение с примерами решения (4)

Учитывая, что степень многочлена Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения обозначим Многочлен - виды, определение с примерами решения (остаток), а Многочлен - виды, определение с примерами решения (неполное частное). Тогда из равенства (4) имеем: Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения а это и означает, что мы разделили Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с остатком.

Очевидно, что приведенное обоснование можно провести для любой пары многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого Многочлен - виды, определение с примерами решения и делителя Многочлен - виды, определение с примерами решения (где Многочлен - виды, определение с примерами решения — не нулевой многочлен) найти неполное частное Многочлен - виды, определение с примерами решения и остаток Многочлен - виды, определение с примерами решения

Отметим, что в случае, когда степень делимого Многочлен - виды, определение с примерами решения меньше степени делителя Многочлен - виды, определение с примерами решения, считают, что неполное частное Многочлен - виды, определение с примерами решения а остаток Многочлен - виды, определение с примерами решения

Теорема Безу. Корни многочлена. Формулы Виета

Рассмотрим деление многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения Поскольку степень делителя равна 1, то степень остатка, который мы получим, должна быть меньше 1, то есть в этом случае остатком будет некоторое число R. Таким образом, если разделить многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения, то получим

Многочлен - виды, определение с примерами решения

Это равенство выполняется тождественно, то есть при любом значении Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения Полученный результат называют теоремой БезуМногочлен - виды, определение с примерами решения.

Теорема 1 (теорема Безу). Остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решенияравен Многочлен - виды, определение с примерами решения (то есть значению многочлена при Многочлен - виды, определение с примерами решения).

Пример №2

Докажите, что Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения без остатка.

Решение:

► Подставив в Многочлен - виды, определение с примерами решения вместо Многочлен - виды, определение с примерами решения значение 1, получаем: Многочлен - виды, определение с примерами решения. Таким образом, остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен 0, то есть Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения без остатка. <]

Определение: Число Многочлен - виды, определение с примерами решения называют корнем многочлена Многочлен - виды, определение с примерами решения если

Многочлен - виды, определение с примерами решения

Если многочлен Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения — корень этого многочлена.

Многочлен - виды, определение с примерами решенияБезу Этьен (1730-1783) — французский математик, внесший значительный вклад в развитие теории алгебраических уравнений.

Действительно, если Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения и поэтому Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения

Справедливо и обратное утверждение. Оно является следствием теоремы Безу.

Теорема 2. Если число Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения то этот многочлен делится на двучлен Многочлен - виды, определение с примерами решения без остатка.

По теореме Безу остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен Многочлен - виды, определение с примерами решения Но по условию Многочлен - виды, определение с примерами решения — корень Многочлен - виды, определение с примерами решения таким образом, Многочлен - виды, определение с примерами решения

Обобщением теоремы 2 является следующее утверждение.

Теорема 3. Если многочлен Многочлен - виды, определение с примерами решения имеет попарно разные корни Многочлен - виды, определение с примерами решения то он делится без остатка на произведение Многочлен - виды, определение с примерами решения

Для доказательства используем метод математической индукции.

При Многочлен - виды, определение с примерами решения утверждение доказано в теореме 2.

Допустим, что утверждение справедливо при Многочлен - виды, определение с примерами решения То есть если Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решенияпопарно разные корни многочлена Многочлен - виды, определение с примерами решения то он делится на произведение Многочлен - виды, определение с примерами решения Тогда

Многочлен - виды, определение с примерами решения (1)

Докажем, что утверждение теоремы справедливо и при Многочлен - виды, определение с примерами решения Пусть Многочлен - виды, определение с примерами решения — попарно разные корни многочлена Многочлен - виды, определение с примерами решения Поскольку Многочлен - виды, определение с примерами решения — корень Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения. Принимая во внимание равенство (1), которое выполняется согласно допущению индукции, получаем:

Многочлен - виды, определение с примерами решения

По условию все корни Многочлен - виды, определение с примерами решения разные, поэтому ни одно из чисел Многочлен - виды, определение с примерами решения не равно нулю. Тогда Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения Тогда по теореме 2 многочлен Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения и из равенства (1) имеем

Многочлен - виды, определение с примерами решения

Это означает, что Многочлен - виды, определение с примерами решения делится на произведение

Многочлен - виды, определение с примерами решения то есть теорема доказана и при Многочлен - виды, определение с примерами решения

Таким образом, теорема справедлива для любого натурального Многочлен - виды, определение с примерами решения

Следствие. Многочлен степени Многочлен - виды, определение с примерами решенияимеет не больше Многочлен - виды, определение с примерами решения разных корней.

Допустим, что многочлен Многочлен - виды, определение с примерами решения степени имеет Многочлен - виды, определение с примерами решения разных корней: Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения делится на произведение Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения многочлен степени Многочлен - виды, определение с примерами решения но это невозможно. Поэтому многочлен Многочлен - виды, определение с примерами решения степени не может иметь больше чем Многочлен - виды, определение с примерами решения корней.

Пусть теперь многочлен Многочлен - виды, определение с примерами решения степени Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения имеет Многочлен - виды, определение с примерами решения разных корней Многочлен - виды, определение с примерами решения Тогда этот многочлен делится без остатка на произведение Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Это произведение является многочленом той же

Многочлен - виды, определение с примерами решения степени. Таким образом, в результате деления можно получить только многочлен нулевой степени, то есть число. Таким образом,

Многочлен - виды, определение с примерами решения (2)

Если раскрыть скобки в правой части равенства (2) и приравнять коэффициенты при старших степенях, то получим, что Многочлен - виды, определение с примерами решения то есть

Многочлен - виды, определение с примерами решения (3)

Сравнивая коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения в левой и правой частях тождества (3), получаем соотношения между коэффициентами уравнения и его корнями, которые называют формулами Виета:

Многочлен - виды, определение с примерами решения (4)

Например, при Многочлен - виды, определение с примерами решения имеем:

Многочлен - виды, определение с примерами решения

а при Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения (5)

Выполнение таких равенств является необходимым и достаточным

условием того, чтобы числа Многочлен - виды, определение с примерами решения были корнями многочлена

Многочлен - виды, определение с примерами решения

Формулы (3) и (4) справедливы не только для случая, когда все корни многочлена Многочлен - виды, определение с примерами решения разные. Введем понятие кратного корня многочлена.

Если многочлен Многочлен - виды, определение с примерами решения делится без остатка на Многочлен - виды, определение с примерами решения но не делится без остатка на Многочлен - виды, определение с примерами решения то говорят, что число Многочлен - виды, определение с примерами решения является корнем кратности Многочлен - виды, определение с примерами решения многочлена Многочлен - виды, определение с примерами решения

Например, если произведение Многочлен - виды, определение с примерами решения записать в виде многочлена, то для этого многочлена число Многочлен - виды, определение с примерами решения является корнем кратности 3, число 1 — корнем кратности 2, а число Многочлен - виды, определение с примерами решения — корнем кратности 1.

При использовании формул Виета в случае кратных корней необходимо каждый корень записать такое количество раз, которое равно его кратности.

Пример №3

Проверьте справедливость формул Виета для многочлена Многочлен - виды, определение с примерами решения

Решение:

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Поэтому Многочлен - виды, определение с примерами решения имеет корни: Многочлен - виды, определение с примерами решения (поскольку Многочлен - виды, определение с примерами решения — корень кратности 2).

Проверим справедливость формулы (5). В нашем случае: Многочлен - виды, определение с примерами решения Тогда

Многочлен - виды, определение с примерами решения

Как видим, все равенства выполняются, поэтому формулы Виета справедливы для данного многочлена.

Пример №4

Составьте квадратное уравнение, корнями которого являются квадраты корней уравнения Многочлен - виды, определение с примерами решения

Решение:

► Обозначим корни уравнения Многочлен - виды, определение с примерами решения через Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Тогда корнями искомого уравнения должны быть числа Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Поэтому искомое уравнение имеет вид Многочлен - виды, определение с примерами решения где

Многочлен - виды, определение с примерами решения

По формулам Виета имеем Многочлен - виды, определение с примерами решения Отсюда находим, что Многочлен - виды, определение с примерами решения а Многочлен - виды, определение с примерами решения Таким образом, искомое уравнение имеет вид Многочлен - виды, определение с примерами решения

Схема Горнера

Делить многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения иногда удобно с помощью

специальной схемы, которую называют схемой Горнера.

Пусть многочлен Многочлен - виды, определение с примерами решения необходимо разделить на двучлен Многочлен - виды, определение с примерами решения В результате деления многочлена Многочлен - виды, определение с примерами решения степени на многочлен первой степени получим некоторый многочлен Многочлен - виды, определение с примерами решения степени (то есть Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения) и остаток Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения то есть

Многочлен - виды, определение с примерами решения

Левая и правая части полученного равенства тождественно равны, поэтому, перемножив многочлены, стоящие в правой части, можем приравнять коэффициенты при соответствующих степенях Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Найдем из этих равенств коэффициенты Многочлен - виды, определение с примерами решения и остаток Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Как видим, первый коэффициент неполного частного равен первому коэффициенту делимого. Остальные коэффициенты неполного частного и остаток находятся одинаково: для того чтобы найти коэффициент Многочлен - виды, определение с примерами решениянеполного частного, достаточно предыдущий найденный коэффициент Многочлен - виды, определение с примерами решения умножить на Многочлен - виды, определение с примерами решения и добавить Многочлен - виды, определение с примерами решения коэффициент делимого. Эту процедуру целесообразно оформлять в виде специальной схемы-таблицы, которую называют схемой Горнера.

Многочлен - виды, определение с примерами решения

Пример №5

Разделите по схеме Горнера многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения

Решение:

► Запишем сначала все коэффициенты многочлена Многочлен - виды, определение с примерами решения (если в данном многочлене пропущена степень 2, то соответствующий коэффициент считаем равным 0), а потом найдем коэффициенты неполного частного и остаток по указанной схеме:

Многочлен - виды, определение с примерами решения

Таким образом, Многочлен - виды, определение с примерами решения

Пример №6

Проверьте, является ли Многочлен - виды, определение с примерами решения корнем многочлена Многочлен - виды, определение с примерами решения

Решение:

► По теореме Безу остаток от деления многочлена Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения равен Многочлен - виды, определение с примерами решенияпоэтому найдем с помощью схемы Горнера остаток от деления Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Поскольку Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения — корень многочлена Многочлен - виды, определение с примерами решения

Нахождение рациональных корней многочлена с целыми коэффициентами

Теорема 4. Если многочлен с целыми коэффициентами Многочлен - виды, определение с примерами решения имеет рациональный корень Многочлен - виды, определение с примерами решения, то Многочлен - виды, определение с примерами решения является делителем свободного члена Многочлен - виды, определение с примерами решения a Многочлен - виды, определение с примерами решения — делителем коэффициента при старшем члене Многочлен - виды, определение с примерами решения

Если Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения Подставляем

Многочлен - виды, определение с примерами решения вместо Многочлен - виды, определение с примерами решения в Многочлен - виды, определение с примерами решения и из последнего равенства имеем

Многочлен - виды, определение с примерами решения (1)

Умножим обе части равенства (1) на Многочлен - виды, определение с примерами решения Получаем

Многочлен - виды, определение с примерами решения (2)

В равенстве (2) все слагаемые, кроме последнего, делятся на Многочлен - виды, определение с примерами решения Поэтому Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения

Но когда мы записываем рациональное число в виде Многочлен - виды, определение с примерами решения то эта дробь считается несократимой, то есть Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения не имеют общих делителей. Произведение Многочлен - виды, определение с примерами решения может делиться на Многочлен - виды, определение с примерами решения (если Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения— взаимно простые числа) только тогда, когда Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения Таким образом, Многочлен - виды, определение с примерами решения — делитель свободного члена Многочлен - виды, определение с примерами решения

Аналогично все слагаемые равенства (2), кроме первого, делятся на Многочлен - виды, определение с примерами решения ТогдаМногочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения Поскольку Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения взаимно простые числа, то Многочлен - виды, определение с примерами решения делится на Многочлен - виды, определение с примерами решения, следовательно, Многочлен - виды, определение с примерами решения — делитель коэффициента при старшем члене.

Отметим два следствия из этой теоремы. Если взять Многочлен - виды, определение с примерами решения то корнем многочлена будет целое число Многочлен - виды, определение с примерами решения — делитель Многочлен - виды, определение с примерами решения Таким образом, имеет место:

Следствие 1. Любой целый корень многочлена с целыми коэффициентами является делителем его свободного члена.

Если в заданном многочлене Многочлен - виды, определение с примерами решения коэффициент Многочлен - виды, определение с примерами решения то делителями Многочлен - виды, определение с примерами решения могут быть только числа Многочлен - виды, определение с примерами решения то есть Многочлен - виды, определение с примерами решения и имеет место:

Следствие 2. Если коэффициент при старшем члене уравнения с целыми коэффициентами равен 1, то все рациональные корни этого уравнения (если они существуют) — целые числа.

Пример №7

Найдите рациональные корни многочлена Многочлен - виды, определение с примерами решения

Решение:

► Пусть несократимая дробь Многочлен - виды, определение с примерами решения является корнем многочлена. Тогда Многочлен - виды, определение с примерами решениянеобходимо искать среди делителей свободного члена, то есть среди чисел Многочлен - виды, определение с примерами решения a Многочлен - виды, определение с примерами решения — среди делителей старшего коэффициента: Многочлен - виды, определение с примерами решения

Таким образом, рациональные корни многочлена необходимо искать среди чисел Многочлен - виды, определение с примерами решения Проверять, является ли данное число корнем многочлена, целесообразно с помощью схемы Горнера.

При Многочлен - виды, определение с примерами решения имеем следующую таблицу.

Многочлен - виды, определение с примерами решения

Кроме того, по схеме Горнера можно записать, что

Многочлен - виды, определение с примерами решения

Многочлен Многочлен - виды, определение с примерами решения не имеет действительных корней (а тем более рациональных), поэтому заданный многочлен имеет единственный рациональный корень Многочлен - виды, определение с примерами решения

Пример №8

Разложите многочлен Многочлен - виды, определение с примерами решения на множители.

Решение:

► Ищем целые корни многочлена среди делителей свободного члена: Многочлен - виды, определение с примерами решения

Подходит 1. Делим Многочлен - виды, определение с примерами решения на Многочлен - виды, определение с примерами решения с помощью схемы Горнера.

Многочлен - виды, определение с примерами решения

Тогда Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения

Ищем целые корни кубического многочлена Многочлен - виды, определение с примерами решения среди делителей его свободного члена: Многочлен - виды, определение с примерами решения Подходит Многочлен - виды, определение с примерами решения Делим на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Имеем Многочлен - виды, определение с примерами решения

Квадратный трехчлен Многочлен - виды, определение с примерами решения не имеет действительных корней и на линейные множители не раскладывается.

Ответ: Многочлен - виды, определение с примерами решения

Отметим, что во множестве действительных чисел не всегда можно найти все корни многочлена (например, квадратный трехчлен Многочлен - виды, определение с примерами решения не имеет действительных корней). Таким образом, многочлен Многочлен - виды, определение с примерами решения степени не всегда можно разложить на произведение линейных множителей. Но многочлен нечетной степени всегда можно разложить на произведение линейных и квадратных множителей, а многочлен четной степени — на произведение квадратных трехчленов.

Например, многочлен четвертой степени раскладывается на произведение двух квадратных трехчленов. Для нахождения коэффициентов этого разложения иногда можно применить метод неопределенных коэффициентов.

Пример №9

Разложите на множители многочлен Многочлен - виды, определение с примерами решения

Решение:

► Попытка найти рациональные корни ничего не дает: многочлен не имеет рациональных (целых) корней.

Попытаемся разложить этот многочлен на произведение двух квадратных трехчленов. Поскольку старший коэффициент многочлена равен 1, то и у квадратных трехчленов возьмем старшие коэффициенты равными 1. То есть будем искать разложение нашего многочлена в виде:

Многочлен - виды, определение с примерами решения (3)

где Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения — неопределенные (пока что) коэффициенты. Многочлены, стоящие в левой и правой частях этого равенства, тождественно равны, поэтому и коэффициенты при одинаковых степенях Многочлен - виды, определение с примерами решения у них равны. Раскроем скобки в правой части равенства и приравняем соответствующие коэффициенты. Это удобно записать так:

Многочлен - виды, определение с примерами решения

Получаем систему

Многочлен - виды, определение с примерами решения (4)

Попытка решить эту систему методом подстановки приводит к уравнению 4-й степени, поэтому попробуем решить систему (4) в целых числах. Из последнего равенства системы (4) получаем, что Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения могут быть только делителями числа 6. Все возможные варианты запишем в таблицу.

Многочлен - виды, определение с примерами решения

Коэффициенты Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения в равенстве (3) равноправны, поэтому мы не рассматриваем случаи Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения и т. д.

Для каждой пары значений Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения из третьего равенства системы (4) найдем Многочлен - виды, определение с примерами решения а из второго равенства имеем Многочлен - виды, определение с примерами решения Зная Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения по теореме, обратной теореме Виета, находим а и с как корни квадратного уравнения. Найденные таким образом значения Многочлен - виды, определение с примерами решения подставим в четвертое равенство системы (4) Многочлен - виды, определение с примерами решения чтобы выбрать те числа, которые являются решениями системы (4). Удобно эти рассуждения оформить в виде таблицы:

Многочлен - виды, определение с примерами решения

Как видим, системе (4) удовлетворяет набор целых чисел Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения Тогда равенство (3) имеет вид

Многочлен - виды, определение с примерами решения (5)

Поскольку квадратные трехчлены Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения не имеют не только рациональных, но и действительных корней, то равенство (5) дает окончательный ответ.

Деление многочлена на многочлен

Задача. Объём подарочных коробок, размеры которых даны в сантиметрах, можно смоделировать функцией Многочлен - виды, определение с примерами решения — положительное целое число и . Если высоты коробок можно определить при помощи линейной функции Многочлен - виды, определение с примерами решения, то как можно выразить другие размеры коробки в виде многочлена? Вы сможете решить эту задачу, изучив правило деления многочлена на многочлен.

Исследование. Изучите, как правило деления многозначных чисел столбиком можно применить при делении многочлена.

Многочлен - виды, определение с примерами решения

a) Для каждого из двух случаев укажите, какие числа и какие многочлены соответствуют понятиям делимое, делитель и частное.

b) Как был найден первый член при делении многочлена? Каковы сходные и отличительные черты данного деления и деления многозначных чисел?

c) Как вы убедились,что каждое из двух делений выполнено правильно?

Выражение вида Многочлен - виды, определение с примерами решения называется многочленом Многочлен - виды, определение с примерами решения степени от одной переменной. Здесь Многочлен - виды, определение с примерами решения — переменная, Многочлен - виды, определение с примерами решения — определенные числа и Многочлен - виды, определение с примерами решения — старший член, Многочлен - виды, определение с примерами решения— коэффициент при старшем члене, Многочлен - виды, определение с примерами решения-свободный член. Многочлен можно разделить на многочлен аналогично правилу деления целых чисел столбиком.

Деление целого числа па целое число можно проверить равенством

Многочлен - виды, определение с примерами решения

Аналогичное правило справедливо и при делении многочлена на многочлен. Если многочлен Многочлен - виды, определение с примерами решения -делимое, Многочлен - виды, определение с примерами решения — делитель, Многочлен - виды, определение с примерами решения — неполное частное, Многочлен - виды, определение с примерами решения — остаток, то справедливо равенство

Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения.

Здесь, степень многочлена Многочлен - виды, определение с примерами решения ниже степени многочлена Многочлен - виды, определение с примерами решения Если делителем является двучлен Многочлен - виды, определение с примерами решения, то остатком может являться определенное число Многочлен - виды, определение с примерами решения

В этом случае: Многочлен - виды, определение с примерами решения

Пример №10

а) Разделите многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения.

Ответ запишите в виде Многочлен - виды, определение с примерами решения

b) Определите множество допустимых значений переменной.

c) Выполните проверку.

Решение:

Многочлен - виды, определение с примерами решения

b) При этом Многочлен - виды, определение с примерами решения или Многочлен - виды, определение с примерами решения, иначе возникает деление на нуль.

c) Должно выполняться тождество

Многочлен - виды, определение с примерами решения

Пример №11

Разделите Многочлен - виды, определение с примерами решения на многочлен Многочлен - виды, определение с примерами решения.

Решение:

запишем делимое в порядке убывания степеней. Введем в запись отсутствующие члены с коэффициентом равным 0. Многочлен - виды, определение с примерами решения

Пример №12

1) Исследуйте деление столбиком многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения .

2) На каждом шаге деления делимое делится на старший член делителя, на Многочлен - виды, определение с примерами решения и результат записывается в частное. Установите, как можно найти первый член при делении на каждом из следующих шагов.

Многочлен - виды, определение с примерами решения Правило синтетического деления многочлена на двучлен Многочлен - виды, определение с примерами решения(схема Горнера)

При делении многочлена на двучлен вида Многочлен - виды, определение с примерами решения можно использовать метод, альтернативный делению столбиком — метод синтетического деления. При синтетическом делении, используя только коэффициенты, выполняется меньшее количество вычислений.

Пример №13

Разделите многочлен Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения методом синтетического деления.

Решение:

коэффициенты делимого записываются в порядке убывания степеней (отсутствующий член записывается с коэффициентом равным нулю). Если двучлен имеет вид Многочлен - виды, определение с примерами решения, то его записывают в виде Многочлен - виды, определение с примерами решения.

Запишем двучлен Многочлен - виды, определение с примерами решения в виде Многочлен - виды, определение с примерами решения.

Многочлен - виды, определение с примерами решения

Таким образом, для делимого Многочлен - виды, определение с примерами решения и делителя Многочлен - виды, определение с примерами решениячастным будет Многочлен - виды, определение с примерами решения, а остатком Многочлен - виды, определение с примерами решения.

Деление можно записать в виде: Многочлен - виды, определение с примерами решения В общем случае, правило синтетического деления (или схема Горнера) многочлена и-ой степени на двучлен х -т приведено в таблице ниже.

Многочлен - виды, определение с примерами решения

Теорема об остатке

Теорема об остатке (Теорема Безу)

Остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения равен значению многочлена Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Доказательство: В равенстве Многочлен - виды, определение с примерами решения запишем Многочлен - виды, определение с примерами решения. Многочлен - виды, определение с примерами решения, тогда Многочлен - виды, определение с примерами решения.

Пример №14

Найдите остаток от деления многочлена Многочлен - виды, определение с примерами решения на двучлен Многочлен - виды, определение с примерами решения, применив теорему об остатке.

Решение: запишем делитель в виде Многочлен - виды, определение с примерами решения, тогда Многочлен - виды, определение с примерами решения. По теореме об остатке получим, что остаток равен Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения.

Проверим решение.

Многочлен - виды, определение с примерами решения

Теорема о разложении многочлена на множители

Значения переменной Многочлен - виды, определение с примерами решения, которые обращают многочлен Многочлен - виды, определение с примерами решения в нуль (т.е. корни уравнения Многочлен - виды, определение с примерами решения), называются корнями (или нулями) многочлена.

Теорема. Если число Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения, то двучлен Многочлен - виды, определение с примерами решения является множителем многочлена Многочлен - виды, определение с примерами решения.

Действительно, если Многочлен - виды, определение с примерами решения, то из равенства Многочлен - виды, определение с примерами решения имеем Многочлен - виды, определение с примерами решения. Верно и обратное утверждение, т.е. если двучлен Многочлен - виды, определение с примерами решения является множителем многочлена Многочлен - виды, определение с примерами решения.

Пример №15

При помощи теоремы о разложении многочлена на множители определите, являются ли двучлены Многочлен - виды, определение с примерами решения множителями многочлена Многочлен - виды, определение с примерами решения.

Решение: вычислим значение многочлена Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения.

Многочлен - виды, определение с примерами решения

Значит, Многочлен - виды, определение с примерами решения не является множителем, а Многочлен - виды, определение с примерами решения является одним из множителей данного многочлена.

Пример №16

Зная, что Многочлен - виды, определение с примерами решения, разложите многочлен Многочлен - виды, определение с примерами решения на множители.

Решение: так как Многочлен - виды, определение с примерами решения, то двучлен Многочлен - виды, определение с примерами решения один из множителей многочленаМногочлен - виды, определение с примерами решения . Другой множитель найдем, используя метод синтетического деления.

Многочлен - виды, определение с примерами решения

Учитывая, что Многочлен - виды, определение с примерами решения получим: Многочлен - виды, определение с примерами решения .

Отсюда получаем, что Многочлен - виды, определение с примерами решения являются нулями многочлена.

Примечание: Если многочлен задан в виде Многочлен - виды, определение с примерами решения (здесь Многочлен - виды, определение с примерами решения), то число Многочлен - виды, определение с примерами решения является Многочлен - виды, определение с примерами решения кратным корнем многочлена Многочлен - виды, определение с примерами решения (повторяется Многочлен - виды, определение с примерами решения раз). Например, если разложение многочлена на множители имеет вид Многочлен - виды, определение с примерами решения, то число Многочлен - виды, определение с примерами решения является корнем кратности 3.

Нахождение рациональных корней

Теорема о рациональных корнях

Если для многочлена Многочлен - виды, определение с примерами решения с целыми коэффициентами существует рациональный корень, то этот корень имеет вид

Многочлен - виды, определение с примерами решения

Доказательство. Пусть несократимая дробь Многочлен - виды, определение с примерами решения является корнем многочлена Многочлен - виды, определение с примерами решения с целыми коэффициентами:

Многочлен - виды, определение с примерами решения

Умножим обе части равенства на Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Так как в последнем равенстве каждый член, кроме члена Многочлен - виды, определение с примерами решения, содержит множитель Многочлен - виды, определение с примерами решения и каждый член, кроме члена Многочлен - виды, определение с примерами решения, содержит множитель Многочлен - виды, определение с примерами решения.то коэффициент Многочлен - виды, определение с примерами решения должен делится на Многочлен - виды, определение с примерами решения, а коэффициент Многочлен - виды, определение с примерами решения должен делится на Многочлен - виды, определение с примерами решения.

Пример №17

Найдите рациональные корни многочлена Многочлен - виды, определение с примерами решения.

Решение: свободный член 6, старший коэффициент 2.

Для Многочлен - виды, определение с примерами решения, запишем все возможные числа вида Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения, т.е. одним из множителей является двучлен Многочлен - виды, определение с примерами решения. Другие множители найдем, используя синтетическое деление: Многочлен - виды, определение с примерами решения

Так как, Многочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения, получим, что Многочлен - виды, определение с примерами решения являются корнями многочлена.

Следствие 1. Если старший коэффициент Многочлен - виды, определение с примерами решения и многочлен имеет рациональный корень, то он является целым числом.

Следствие 2. Целые корни многочлена с целыми коэффициентами (если они имеются) являются делителями свободного члена.

Пример №18

Найдите корни многочлена Многочлен - виды, определение с примерами решения

Решение: по теореме о рациональных корнях многочлена, целый корень данного многочлена (если он существует) надо искать среди делителей числа 5. Это числа ±5; ±1.

Многочлен - виды, определение с примерами решения

Запишем это короче при помощи синтетического деления и проверим, являются ли эти числа корнями многочлена.

Так как Многочлен - виды, определение с примерами решения то, решив квадратное уравнение Многочлен - виды, определение с примерами решения получим другие корни: Многочлен - виды, определение с примерами решения Значит данный многочлен третьей степени имеет три корня: Многочлен - виды, определение с примерами решения

Внимание! Если коэффициенты многочлена являются рациональными числами, то для нахождения рациональных корней уравнения Многочлен - виды, определение с примерами решения сначала обе части уравнения надо умножить на такое число (отличное от нуля), чтобы коэффициенты стали целыми. Например, для нахождения корней многочлена

Многочлен - виды, определение с примерами решения надо умножить все члены уравнения Многочлен - виды, определение с примерами решения на 12, а затем решить полученное

уравнение Многочлен - виды, определение с примерами решения

Для нахождения рациональных корней выполните следующие действия.

1. Записывается множество всех возможных дробей, числителями которых являются делители свободного члена, а знаменателями являются делители старшего коэффициента.

2. Из этих чисел выбирается число Многочлен - виды, определение с примерами решения (обращающее значение многочлена в нуль), которое является корнем многочлена, т. е. определяется двучлен Многочлен - виды, определение с примерами решения на который многочлен делится без остатка.

3. Для данного многочлена при помощи синтетического деления на двучлен Многочлен - виды, определение с примерами решения определяется другой множитель.

4. Если другой множитель является квадратным трехчленом или его можно разложить при помощи формул сокращенного умножения, находятся другие корни. Иначе все линейные множители находятся синтетическим делением.

5. Возможно, что ни одно число из списка не будет нулем многочлена. В этом случае многочлен не имеет рациональных корней. Например, рациональными корнями многочлена Многочлен - виды, определение с примерами решения могут являться числа ±1.

Проверим: Многочлен - виды, определение с примерами решения Значит, многочлен Многочлен - виды, определение с примерами решения не имеет рациональных корней.

Основная теорема алгебры

Покажем на примере, что многочлен Многочлен - виды, определение с примерами решенияой степени имеет Многочлен - виды, определение с примерами решения корней.

Пример №19

Найдите все корни многочлена Многочлен - виды, определение с примерами решения

Решение: рациональными корнями данного многочлена (если они существуют), согласно правилу, могут являться числа ±1, ±5. Проверим:

Многочлен - виды, определение с примерами решения

Значит, Многочлен - виды, определение с примерами решения является корнем данного многочлена Многочлен - виды, определение с примерами решения Другие корни найдем синтетическим делением.

Многочлен - виды, определение с примерами решения

В выражении Многочлен - виды, определение с примерами решения для множителя Многочлен - виды, определение с примерами решения вновь применим теорему о рациональных корнях и синтетическое деление. Тогда Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решенияРешим уравнение Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения ( корень кратности 2);

Многочлен - виды, определение с примерами решения

Корни: Многочлен - виды, определение с примерами решения

Во всех рассмотренных нами примерах уравнение Многочлен - виды, определение с примерами решенияой степени всегда имеет Многочлен - виды, определение с примерами решения корней, включая кратные корни (действительных или комплексных).

Теорема. Любой многочлен ненулевой степени имеет хотя бы один корень на множестве комплексных чисел.

Если Многочлен - виды, определение с примерами решения является многочленом ненулевой степени с комплексными коэффициентами, то согласно основной теореме алгебры, у него есть хотя бы один корень Многочлен - виды, определение с примерами решенияПо теореме о разложении многочлена на множители получим Многочлен - виды, определение с примерами решения При этом многочлен Многочлен - виды, определение с примерами решения имеет степень Многочлен - виды, определение с примерами решения Если Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения если Многочлен - виды, определение с примерами решения то согласно той же теореме, многочлен Многочлен - виды, определение с примерами решения имеет хотя бы один корень. Обозначим его через Многочлен - виды, определение с примерами решения тогда справедливо разложение Многочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения — многочлен степени Многочлен - виды, определение с примерами решения Значит, можно записать Многочлен - виды, определение с примерами решения Аналогично, если Многочлен - виды, определение с примерами решения то Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения на основании той же теоремы, многочлен Многочлен - виды, определение с примерами решения имеет хотя бы один корень. Обозначим его через Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения т. е. можно записать Многочлен - виды, определение с примерами решения

Продолжая процесс Многочлен - виды, определение с примерами решения раз, получаем Многочлен - виды, определение с примерами решения Тогда для многочлена Многочлен - виды, определение с примерами решения можно записать следующее разложение:

Многочлен - виды, определение с примерами решения

здесь числа Многочлен - виды, определение с примерами решения являются нулями многочлена Многочлен - виды, определение с примерами решения Эти нули могут и не быть различными.

Следствие. Многочлен Многочлен - виды, определение с примерами решенияой степени Многочлен - виды, определение с примерами решения на множестве комплексных чисел имеет ровно Многочлен - виды, определение с примерами решения корней, включая кратные корни.

Отметим, что если комплексное число Многочлен - виды, определение с примерами решения является корнем многочлена с действительными коэффициентами, то сопряженное комплексное число Многочлен - виды, определение с примерами решения гак же является корнем данного многочлена.

Любой многочлен с действительными коэффициентами можно представить в виде произведения двучленов вида Многочлен - виды, определение с примерами решения соответствующих действительным корням, и трехчленов вида Многочлен - виды, определение с примерами решения соответствующих сопряженным комплексным корням.

Отсюда можно сделать вывод, что многочлен нечетной степени с действительными коэффициентами всегда имеет действительные корни.

Пример №20

Запишите в виде произведения множителей многочлен наименьшей степени, если коэффициент при старшем члене равен 2, а корни равны 3 и Многочлен - виды, определение с примерами решения

Решение: так как число Многочлен - виды, определение с примерами решения является корнем многочлена, то сопряженное комплексное число Многочлен - виды, определение с примерами решения также является корнем этого многочлена. Тогда искомый многочлен можно записать в виде

Многочлен - виды, определение с примерами решения

  • Заказать решение задач по высшей математике
Пример №21

При движении скоростной карусели в Лунапарке изменение высоты (в метрах) кабины от нулевого уровня за первые 5 секунд можно смоделировать функцией Многочлен - виды, определение с примерами решения В какие моменты в течении 5 секунд после начала движения кабина карусели находилась на нулевом уровне?

Решение: во всех случаях, кроме значений Многочлен - виды, определение с примерами решения равных нулю, кабина карусели находится либо ниже, либо выше нулевого уровня. Значит, мы должны найти корни заданного многочлена. Применим правило нахождения рациональных корней.

1. Проверим, является ли число Многочлен - виды, определение с примерами решения корнем.

Многочлен - виды, определение с примерами решения

2. Число Многочлен - виды, определение с примерами решения является корнем, значит одним из множителей данного многочлена является Многочлен - виды, определение с примерами решения Другие корни найдем при помощи синтетического деления.

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Учитывая, что Многочлен - виды, определение с примерами решения запишем многочлен в виде Многочлен - виды, определение с примерами решения т. е. Многочлен - виды, определение с примерами решения являются корнями уравнения. Значения Многочлен - виды, определение с примерами решения принадлежат временному интервалу в 5 секунд, и в этих моментах кабина карусели находилась на нулевом уровне. То, что корни найдены верно показывает график многочлена, построенный при помощи графкалькулягора.

Многочлен - виды, определение с примерами решения

Функция-многочлен

График функции-многочлен

В стандартном виде функция — многочлен записывается как Многочлен - виды, определение с примерами решения В частном случае, при Многочлен - виды, определение с примерами решения получаем линейную функцию (график — прямая линия), при Многочлен - виды, определение с примерами решения получаем квадратичную функцию (график- парабола). Любой многочлен определен на множестве действительных чисел и его графиком является непрерывная (сплошная) линия.

При возрастании значений аргумента по абсолютному значению многочлен ведет себя как функция старшего члена Многочлен - виды, определение с примерами решения Ниже показаны примеры графиков функции — многочлен и их свойства.

Многочлен - виды, определение с примерами решения

Пример №22

Определите характер поведения функции — многочлен в зависимости от степени и коэффициента при старшем члене при возрастании аргумента по абсолютному значению.

a) Многочлен - виды, определение с примерами решения б) Многочлен - виды, определение с примерами решения

Решение: а) степень многочлена Многочлен - виды, определение с примерами решения нечетная (равна 3). Коэффициент старшего члена равен Многочлен - виды, определение с примерами решения По таблице видно, что в данном случае при Многочлен - виды, определение с примерами решения а при Многочлен - виды, определение с примерами решения

b) степень многочлена Многочлен - виды, определение с примерами решения четная (равна 4). Коэффициент старшего члена равен 1. В данном случае при Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения

Пример №23

По графику определите как ведет себя функция — многочлен при неограниченном возрастании аргументов но абсолютному значению, четность или нечетность степени многочлена, знак коэффициента старшего члена.

Многочлен - виды, определение с примерами решения

Решение:

при Многочлен - виды, определение с примерами решения

при Многочлен - виды, определение с примерами решения

Многочлен нечетной степени

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Решение:

при Многочлен - виды, определение с примерами решения

при Многочлен - виды, определение с примерами решения

Многочлен четной степени

Многочлен - виды, определение с примерами решения

Отметим, что если Многочлен - виды, определение с примерами решения нечетно, то функция — многочлен имеет хотя бы один действительный нуль, если Многочлен - виды, определение с примерами решения четно, то их вообще может и не быть.

Алгоритм построения эскиза графика функции — многочлен.

1. Находятся точки пересечения графика с осями координат (если они есть). Эти точки отмечаются на координатной плоскости.

2. Вычисляются значения функции в некоторых точках между действительными нулями. Соответствующие точки отмечаются на координатной плоскости.

3. Определяется поведение графика при больших значениях аргумента по абсолютному значению.

4. На основе полученных данных строят схематически график.

Пример №24

Постройте график функции Многочлен - виды, определение с примерами решения

Решение:

1. Применим теорему о рациональных корнях. Разложим многочлен на множители и найдем нули функции.

По теореме возможные рациональные нули надо искать среди чисел, которые являются делителями числа Многочлен - виды, определение с примерами решения

Проверим Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения

Значит, двучлен Многочлен - виды, определение с примерами решения является одним из множителей. Остальные множители найдем синтетическим делением.

Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Зная, что Многочлен - виды, определение с примерами решения запишем все линейные множители многочлена: Многочлен - виды, определение с примерами решения

Отсюда находим нули Многочлен - виды, определение с примерами решения Т. е. график пересекает ось абсцисс в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения Так как Многочлен - виды, определение с примерами решения то точка Многочлен - виды, определение с примерами решения является точкой пересечения с осью Многочлен - виды, определение с примерами решения Отметим эти точки на координатной плоскости.

2. Найдем еще несколько значений функции в точках, не требующих сложных вычислений. Например, в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Отметим точки Многочлен - виды, определение с примерами решения

3. Определим, как меняется график при уменьшении или увеличении значений Многочлен - виды, определение с примерами решения Степень при старшем члене равна 3, а коэффициент положителен, функция нечетная. Значит, при Многочлен - виды, определение с примерами решения при Многочлен - виды, определение с примерами решения

4. Соединим отмеченные точки и получим схематический график функции Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Рациональная функция

Рациональной функцией называется функция, которою можно представить в виде отношения двух многочленов:

Многочлен - виды, определение с примерами решения

Самым простым примером рациональной функции является функция Многочлен - виды, определение с примерами решения

График функции Многочлен - виды, определение с примерами решения называется гиперболой.

Многочлен - виды, определение с примерами решения

При стремлении значений Многочлен - виды, определение с примерами решения к нулю точки гиперболы стремятся к оси ординат, т е. к прямой Многочлен - виды, определение с примерами решения при неограниченном увеличении Многочлен - виды, определение с примерами решения но абсолютному значению точки гиперболы неограниченно приближаются к оси абсцисс, т. е. к прямой Многочлен - виды, определение с примерами решения Прямая Многочлен - виды, определение с примерами решения называется вертикальной асимптотой, а прямая Многочлен - виды, определение с примерами решения называется горизонтальной асимптотой гиперболы Многочлен - виды, определение с примерами решения При параллельном переносе гиперболы Многочлен - виды, определение с примерами решения на вектор Многочлен - виды, определение с примерами решения получается график функции Многочлен - виды, определение с примерами решения. В этом случае начало координат преобразуется в точку Многочлен - виды, определение с примерами решения и вертикальной асимптотой становится прямая Многочлен - виды, определение с примерами решения а горизонтальной- прямая Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

Пример №25

Постройте график функции Многочлен - виды, определение с примерами решения

Решение: точки пересечения с осью Многочлен - виды, определение с примерами решения найдем из уравнения Многочлен - виды, определение с примерами решения Многочлен - виды, определение с примерами решения

При Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения и график пересекает ось Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения Разделим почленно числитель функции на знаменатель и запишем ее в виде Многочлен - виды, определение с примерами решения Прямая Многочлен - виды, определение с примерами решения является вертикальной асимптотой, а прямая Многочлен - виды, определение с примерами решения — горизонтальной асимптотой. Зададим таблицу значений для нескольких точек справа и слева от вертикальной асимптоты

Многочлен - виды, определение с примерами решения

Отметим на координатной плоскости точки, соответствующие парам значений из таблицы и, учитывая горизонтальную и вертикальную асимптоту, изобразим ветви гиперболы, которые пересекают координатные оси в точках Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Многочлен - виды, определение с примерами решения

В общем случае, для построения графика рациональной функции надо найти точки пересечения с осями координат (если они есть) и ее асимптоты. Если выражение, которое задает рациональную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке Многочлен - виды, определение с примерами решения а числитель отличен от нуля, то данная функция имеет вертикальную асимптоту. Горизонтальные асимптоты для рациональной функции Многочлен - виды, определение с примерами решения определяются в соответствии со степенью Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения данных многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решения

Для Многочлен - виды, определение с примерами решения т. е. если степень многочлена в числителе на 1 единицу больше степени многочлена в знаменателе, частное, полученное при делении, имеет вид Многочлен - виды, определение с примерами решения и является линейной функцией. При возрастании Многочлен - виды, определение с примерами решения по абсолютному значению график функции приближается к данной прямой. В этом случае говорят, что прямая Многочлен - виды, определение с примерами решения является наклонной асимптотой.

Пример №26

Найдите асимптоты и схематично изобразите график функции

Многочлен - виды, определение с примерами решения

Решение: Точки пересечения с осью Многочлен - виды, определение с примерами решения найдем из уравнения Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения получим Многочлен - виды, определение с примерами решения и график пересекает ось Многочлен - виды, определение с примерами решения в точке Многочлен - виды, определение с примерами решения При Многочлен - виды, определение с примерами решения знаменатель обращается в нуль, а числитель отличен от нуля. Значит, прямая Многочлен - виды, определение с примерами решения является вертикальной асимптотой. Горизонтальной асимптоты у данной функции нет Многочлен - виды, определение с примерами решения Разделив числитель на знаменатель, запишем функцию в виде:

Многочлен - виды, определение с примерами решения

Для больших, но модулю, значений Многочлен - виды, определение с примерами решения дробь Многочлен - виды, определение с примерами решения по абсолютному значению уменьшается и график заданной функции бесконечно приближается к прямой Многочлен - виды, определение с примерами решения т. е. прямая Многочлен - виды, определение с примерами решения является наклонной асимптотой данной функции. Составим таблицу значений для некоторых точек слева и справа от вертикальной оси.

Многочлен - виды, определение с примерами решения

Отметим точки, координаты которых соответствуют парам из таблицы. Учитывая вертикальную и наклонную асимптоту, схематично изобразим график функции.

Многочлен - виды, определение с примерами решения

Многочлены в линейной алгебре

Многочленом от переменной х степени n называется выражение вида:

Многочлен - виды, определение с примерами решения, где Многочлен - виды, определение с примерами решения — действительные или комплексные числа, называемые коэффициентами, n — натуральное число, х — переменная величина, принимающая произвольные числовые значения.

Если коэффициент Многочлен - виды, определение с примерами решения приМногочлен - виды, определение с примерами решениямногочлена Многочлен - виды, определение с примерами решенияотличен от нуля, а коэффициенты при более высоких степенях равны нулю, то число n называется степенью многочлена, Многочлен - виды, определение с примерами решения — старшим коэффициентом, а Многочлен - виды, определение с примерами решения — старшим членом многочлена. Коэффициент Многочлен - виды, определение с примерами решения называется свободным членом. Если все коэффициенты многочлена равны нулю, то многочлен называется нулевым и обозначается 0. Степень нулевого многочлена не определена.

Два многочлена называются равными, если они имеют одинаковую степень и коэффициенты при одинаковых степенях равны.

Суммой многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решенияназывается многочлен

Многочлен - виды, определение с примерами решения

Произведением многочленов Многочлен - виды, определение с примерами решения и Многочлен - виды, определение с примерами решенияназывается многочлен: Многочлен - виды, определение с примерами решения

Легко проверить, что сложение и умножение многочленов ассоциативно, коммутативно и связаны между собой законом дистрибутивности.

Многочлен Многочлен - виды, определение с примерами решения называется делителем многочлена Многочлен - виды, определение с примерами решения , если существует многочлен Многочлен - виды, определение с примерами решениятакой, что Многочлен - виды, определение с примерами решения

Теорема о делении с остатком

Для любых многочленов Многочлен - виды, определение с примерами решения существуют многочлены Многочлен - виды, определение с примерами решения такие, что Многочлен - виды, определение с примерами решения причем степень Многочлен - виды, определение с примерами решенияменьше степени g(x) илиМногочлен - виды, определение с примерами решения. Многочлены g(x) и r(x) определены однозначно.

Многочлены g(x) и r(x) называются соответственно частным и остатком. Если g(x) делит Многочлен - виды, определение с примерами решения, то остаток Многочлен - виды, определение с примерами решения.

Число с называется корнем многочлена Многочлен - виды, определение с примерами решения, если Многочлен - виды, определение с примерами решения.

Теорема Безу

Число с является корнем многочлена Многочлен - виды, определение с примерами решения тогда и только тогда, когда Многочлен - виды, определение с примерами решения делится на x — с.

Пусть с — корень многочлена Многочлен - виды, определение с примерами решения, т.е.Многочлен - виды, определение с примерами решения. Разделим Многочлен - виды, определение с примерами решения на

Многочлен - виды, определение с примерами решения где степень r(х) меньше степени (x-с) которая равна 1. Значит, степень г(х) равна 0, т.е. r(х) = const. Значит, Многочлен - виды, определение с примерами решения. Так как Многочлен - виды, определение с примерами решения, то из последнего равенства следует, что r=0, т.е. Многочлен - виды, определение с примерами решения

Обратно, пусть (х-с) делит Многочлен - виды, определение с примерами решения, т.е. Многочлен - виды, определение с примерами решения. Тогда Многочлен - виды, определение с примерами решения

Следствие. Остаток от деления многочлена Многочлен - виды, определение с примерами решения на (x-с) равен Многочлен - виды, определение с примерами решения.

Многочлены первой степени называются линейными многочленами. Теорема Безу показывает, что разыскание корней многочлена Многочлен - виды, определение с примерами решения равносильно разысканию его линейных делителей со старшим коэффициентом 1.

Многочлен Многочлен - виды, определение с примерами решения можно разделить на линейный многочлен х-с с помощью алгоритма деления с остатком, но существует более удобный способ деления, известный под названием схемы Горнера.

Пусть Многочлен - виды, определение с примерами решения и пустьМногочлен - виды, определение с примерами решения где Многочлен - виды, определение с примерами решения Сравнивая коэффициенты при одинаковых степенях неизвестной с левой и правой частях последнего равенства, имеем:

Многочлен - виды, определение с примерами решения

Число с-называется корнем кратности к многочлена Многочлен - виды, определение с примерами решения, если Многочлен - виды, определение с примерами решения делит Многочлен - виды, определение с примерами решения, но Многочлен - виды, определение с примерами решения уже не делит Многочлен - виды, определение с примерами решения.

Чтобы поверить, будет ли число с корнем многочлена Многочлен - виды, определение с примерами решения и какой кратности, можно воспользоваться схемой Горнера. Сначала Многочлен - виды, определение с примерами решения делится на х-с, затем, если остаток равен нулю, полученное частное делится на х-с, и т.д. до получения не нулевого остатка.

Число различных корней многочлена не превосходит его степени.

Большое значение имеет следующая основная теорема.

Основная теорема. Всякий многочлен с числовыми коэффициентами ненулевой степени имеет хотя бы один корень (может быть комплексный).

Следствие. Всякий многочлен степени Многочлен - виды, определение с примерами решенияимеет в С (множестве комплексный чисел) столько корней, какова его степень, считая каждый корень столько раз, какова его кратность.

Многочлен - виды, определение с примерами решения

где Многочлен - виды, определение с примерами решения— корни Многочлен - виды, определение с примерами решения, т.е. во множестве С всякий многочлен разлагается в произведение линейных множителей. Если одинаковые множители собрать вместе, то: Многочлен - виды, определение с примерами решениягде Многочлен - виды, определение с примерами решения уже различные корни Многочлен - виды, определение с примерами решения, Многочлен - виды, определение с примерами решения — кратность корня Многочлен - виды, определение с примерами решения

Если многочлен Многочлен - виды, определение с примерами решения, с действительными коэффициентами имеет корень с, то число с также корень Многочлен - виды, определение с примерами решения

Значит, у многочлена с действительными коэффициентами комплексные корни входят парами.

Следствие. Многочлен с действительными коэффициентами нечетной степени имеет нечетное число действительных корней.

Пусть Многочлен - виды, определение с примерами решения корни Многочлен - виды, определение с примерами решения Тогда Многочлен - виды, определение с примерами решения делится на х-с и Многочлен - виды, определение с примерами решения, но так как у Многочлен - виды, определение с примерами решения и х-с, нет общих делителей, то Многочлен - виды, определение с примерами решения делится на произведение Многочлен - виды, определение с примерами решения

Утверждение 2. Многочлен с действительными коэффициентами степени Многочлен - виды, определение с примерами решениявсегда разлагается на множестве действительных чисел в произведение линейных многочленов, отвечающих его вещественным корням, и многочленов 2-ой степени, отвечающих паре сопряженных комплексных корней.

При вычислении интегралов от рациональных функций нам понадобится представление рациональной дроби в виде суммы простейших.

Рациональной дробью называется дробь гдеМногочлен - виды, определение с примерами решения многочлены с действительными коэффициентами, причем многочлен Многочлен - виды, определение с примерами решения Рациональная дробь Многочлен - виды, определение с примерами решения называется правильной, если степень числителя меньше степени знаменателя. Если рациональная дробь не является правильной, то, произведя деление числителя на знаменатель по правилу деления многочленов, ее можно представить в виде Многочлен - виды, определение с примерами решения некоторые многочлены, а Многочлен - виды, определение с примерами решения правильная рациональная дробь.

Лемма 1, Если Многочлен - виды, определение с примерами решения правильная рациональная дробь, а число Многочлен - виды, определение с примерами решения является вещественным корнем кратности Многочлен - виды, определение с примерами решения многочлена Многочлен - виды, определение с примерами решения, т.е.Многочлен - виды, определение с примерами решения, то существует вещественное число A и многочлен Многочлен - виды, определение с примерами решения с вещественными коэффициентами, такие, что Многочлен - виды, определение с примерами решения где дробь Многочлен - виды, определение с примерами решения является правильной.

При этом несложно показать, что полученное выражение является рациональной дробью с вещественными коэффициентами.

Лемма 2. Если Многочлен - виды, определение с примерами решения правильная рациональная дробь, а числоМногочлен - виды, определение с примерами решенияявляется корнем кратности Многочлен - виды, определение с примерами решения многочлена g(x), т.е. Многочлен - виды, определение с примерами решения и если Многочлен - виды, определение с примерами решения, то существуют вещественные числа M и N многочлен Многочлен - виды, определение с примерами решения с вещественными коэффициентами, такие, Многочлен - виды, определение с примерами решения где дробь , Многочлен - виды, определение с примерами решениятакже является правильной.

Рациональные дроби видаМногочлен - виды, определение с примерами решенияМногочлен - виды, определение с примерами решения — трехчлен с действительными коэффициентами, не имеющий действительных корней, называются простейшими (или элементарными) дробями.

Всякая правильная рациональная дробь представима единственным образом в виде суммы простейших дробей.

При практическом получении такого разложения оказывается удобным так называемый метод неопределенных коэффициентов.

Он состоит в следующем:

При этом если степень многочлена Многочлен - виды, определение с примерами решенияравна n, то в числителе после приведения к общему знаменателю получается многочлен степени n-1, т.е. многочлен Многочлен - виды, определение с примерами решения коэффициентами.

Число неизвестных Многочлен - виды, определение с примерами решения‘ также равняется n: Многочлен - виды, определение с примерами решения

Таким образом, получается система n уравнений с n неизвестными. Существование решения у этой системы следует из приведенной выше теоремы.

  • Квадратичные формы — определение и понятие
  • Системы линейных уравнений с примерами
  • Линейное программирование
  • Дифференциальное исчисление функций одной переменной
  • Кривые второго порядка
  • Евклидово пространство
  • Матрица — виды, операции и действия с примерами
  • Линейный оператор — свойства и определение

Теорема Безу и следствия из неё

19 июля 2022

Теорема Безу позволяет решать уравнения высших степеней, которые на первый взгляд не решаются, и раскладывать на множители многочлены, которые не раскладываются.:)

Формулировка теоремы довольно проста:

Терема Безу. Остаток от деления многочлена

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

на двучлен $x- color{red}{a}$ равен значению этого многочлена в точке $x= color{red}{a}$:

[r=Pleft( color{red}{a} right)]

На практике нас интересует не сама теорема Безу, а некоторые следствия из неё — именно они помогают решать уравнения и раскладывать многочлены на множители. В этом уроке мы рассмотрим все такие следствия и станем настоящими мастерами в работе с многочленами.

Содержание

  1. Деление с остатком
  2. Разложение на множители
  3. Целые корни многочленов
  4. Рациональные корни многочленов
  5. Доказательства

В разных учебниках теорему Безу проходят то в 9-м классе, то в 10-м. Этот урок построен так, что вы поймёте его вне зависимости от школы, класса и учебника.

1. Деление с остатком

Итак, есть многочлен $Pleft( x right)$ и двучлен $x- color{red}{a}$. Разделим $Pleft( x right)$ на $x- color{red}{a}$ с остатком:

[Pleft( x right)=Qleft( x right)cdot left( x- color{red}{a} right)+r]

Теперь найдём значение многочлена $Pleft( x right)$ в точке $x= color{red}{a}$:

[Pleft( color{red}{a} right)=Qleft( color{red}{a} right)cdot left( color{red}{a}- color{red}{a} right)+r=r]

Собственно, мы только что доказали теорему Безу. А заодно подготовили основу для первого важного следствия.

Следствие 1. Деление на произвольный двучлен

Теорема Безу прекрасно работает не только для двучлена $x-color{red}{a}$, но и для любого линейного выражения вида $color{blue}{k}x+color{red}{b}$.

Следствие 1. Остаток от деления многочлена

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

на двучлен $color{blue}{k}x+color{red}{b}$ равен значению этого многочлена в точке $x=-color{red}{b}/ color{blue}{k};$:

[r=Pleft( -frac{color{red}{b}}{color{blue}{k}} right)]

На практике для большей надёжности рекомендуется приравнять двучлен $color{blue}{k}x+color{red}{b}$ к нулю:

[begin{align} color{blue}{k}x+color{red}{b} &=0 \ x &=-frac{color{red}{b}}{color{blue}{k}} \ end{align}]

Затем подставить найденное значение $x=-{color{red}{b}}/{color{blue}{k}};$ в многочлен $Pleft( x right)$ и таким образом найти $Pleft( -{color{red}{b}}/{color{blue}{k}}; right)$:

[r=Pleft( -frac{color{red}{b}}{color{blue}{k}} right)]

Пример 1. Стандартный многочлен

Не выполняя деления, найдите остаток от деления многочлена

[Pleft( x right)=4{{x}^{3}}-3{{x}^{2}}+5x-6]

на двучлен $Tleft( x right)=x-2$.

Решение. Это стандартный двучлен вида $x-color{red}{a}$, поэтому решаем по стандартной теореме Безу, согласно которой остаток от деления многочлена $Pleft( x right)$ на двучлен $x-color{red}{2}$ равен $Pleft( color{red}{2} right)$:

[begin{align}r &=Pleft( color{red}{2} right)= \ &=4cdot {color{red}{2}^{3}}-3cdot {color{red}{2}^{2}}+5cdotcolor{red}{2}-6 \ &=32-12+10-6=24 end{align}]

Ответ: 24.

Пример 2. Более сложный многочлен

Не выполняя деления, найдите остаток от деления многочлена

[Pleft( x right)={{left( {{x}^{3}}-2{{x}^{2}}+5 right)}^{3}}{{left( 2x+1 right)}^{5}}]

на двучлен $Tleft( x right)=x+1$.

Решение. Многочлен $Pleft( x right)$ представлен в виде произведения двух других многочленов, которые ещё и возведены в степени. Если раскрыть скобки и привести подобные слагаемые, получится обычный многочлен вида

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

По свойствам степеней найдём степень такого многочлена:

[deg Pleft( x right)=3cdot 3+1cdot 5=14]

Раскрывать скобки и приводить подобные в многочлене 14-й степени долго и трудно, а главное — в этом нет никакой необходимости. Ведь по теореме Безу остаток от деления $Pleft( x right)$ на двучлен $x-color{red}{a}$ всегда равен $Pleft( color{red}{a} right)$ — и не важно, как записан исходный многочлен $Pleft( x right)$.

Для надёжности, чтобы найти $color{red}{a}$, приравняем к нулю двучлен $Tleft( x right)=x+1$:

[begin{align}x+1 &=0 \ x &=color{red}{-1} \ end{align}]

Теперь подставим $x=color{red}{-1}$ в многочлен $Pleft( x right)$ и найдём остаток:

[begin{align}r &=Pleft( color{red}{-1} right)= \ &={{left( {{left( color{red}{-1} right)}^{3}}-2cdot {{left( color{red}{-1} right)}^{2}}+5 right)}^{3}}cdot {{left( 2cdot left( color{red}{-1} right)+1 right)}^{5}}= \ &={{left( -1-2+5 right)}^{3}}cdot {{left( -2+1 right)}^{5}}=-8 end{align}]

Ответ: −8.

Пример 3. Рациональные коэффициенты

Не выполняя деления, найдите остаток от деления многочлена

[Pleft( x right)=3{{x}^{20}}+{{x}^{19}}-7x+1]

на двучлен $Tleft( x right)=3x+1$.

Решение. Воспользуемся Следствием 1 из теоремы Безу. Для надёжности приравняем к нулю двучлен $Tleft( x right)$ и найдём $color{red}{a}$:

[begin{align}3x+1 &=0 \ x &=color{red}{-{1}/{3};} end{align}]

Подставим найденное $x=color{red}{-{1}/{3};}$ в многочлен $Pleft( x right)$ и найдём остаток:

[begin{align} Pleft( color{red}{-frac{1}{3}} right) &=3cdot {{left( color{red}{-frac{1}{3}} right)}^{20}}+{{left( color{red}{-frac{1}{3}} right)}^{19}}-7cdot left( color{red}{-frac{1}{3}} right)+1= \ &=frac{1}{{{3}^{19}}}-frac{1}{{{3}^{19}}}+frac{7}{3}+1=frac{10}{3} end{align}]

Ответ: ${10}/{3};$.

Пример 4. Иррациональные коэффициенты

Не выполняя деления, найдите остаток от деления многочлена

[Pleft( x right)={{x}^{6}}-12{{x}^{4}}+48{{x}^{2}}+64]

на двучлен $Tleft( x right)=left( 1-sqrt{3} right)x+2$.

Решение. Вновь воспользуемся Следствием 1 из теоремы Безу. Приравняем двучлен $Tleft( x right)$ к нулю и найдём $color{red}{a}$:

[left( 1-sqrt{3} right)x+2=0]

Это линейное уравнение с иррациональными коэффициентами. Такое уравнение решается стандартно (см. урок «Линейные уравнения»):

[x=-frac{2}{1-sqrt{3}}=frac{2}{sqrt{3}-1}]

Избавимся от иррациональности в знаменателе, домножив числитель и знаменатель на сопряжённое:

[x=frac{2color{blue}{left( sqrt{3}+1 right)}}{left( sqrt{3}-1 right) color{blue}{left( sqrt{3}+1 right)}}=frac{2left( sqrt{3}+1 right)}{2}= color{red}{sqrt{3}+1}]

Степень исходного многочлена: $deg Pleft( x right)=6$. Если подставить в такой многочлен иррациональное число, то это число придётся возводить в шестую степень. Это слишком долго и трудно, поэтому перепишем многочлен $Pleft( x right)$ так:

[begin{align} Pleft( x right) &=left( {{x}^{6}}-12{{x}^{4}}+48{{x}^{2}}-64 right)+128= \ &={{left( {{x}^{2}}-4 right)}^{3}}+128 end{align}]

Мы выделили точный куб разности — классическую формулу сокращённого умножения. Как это работает — см. уроки «Формулы сокращённого умножения» и «Куб суммы и разности».

В такую формулу намного проще подставить $x=color{red}{sqrt{3}+1}$:

[begin{align}Pleft( color{red}{sqrt{3}+1} right) &={{left( {{left( color{red}{sqrt{3}+1} right)}^{2}}-4 right)}^{3}}+128= \ &={{left( {{left( sqrt{3} right)}^{2}}+2sqrt{3}+{{1}^{2}}-4 right)}^{3}}+128= \ &={{left( 2sqrt{3} right)}^{3}}+128= \ &=24sqrt{3}+128 end{align}]

Ответ получился некрасивым, но это и есть искомый остаток от деления.

Ответ: $24sqrt{3}+128$.

2. Разложение на множители

Сейчас будет немного теории, которая может показаться непонятной, но далее на примерах всё встанет на свои места.

Рассмотрим ещё раз деление многочлена $Pleft( x right)$ на двучлен $x-color{red}{a}$ с остатком:

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)+r]

По теореме Безу мы легко найдём остаток $r=Pleft( color{red}{a} right)$. В частности, при $Pleft( color{red}{a} right)=0$ многочлен примет вид

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)]

А это значит, что многочлен $Pleft( x right)$ разделился на двучлен $x-color{red}{a}$ без остатка, и мы получили разложение на множители.

Кроме того, равенство $Pleft( color{red}{a} right)=0$ означает, что число $x=color{red}{a}$ — корень многочлена $Pleft( x right)$. И это ещё одно замечательное следствие теоремы Безу.

Следствие 2. Корни многочлена и деление

Следствие 2. Число $x=color{red}{a}$ является корнем многочлена $Pleft( x right)$ тогда и только тогда, когда $Pleft( x right)$ делится без остатка на $left( x-color{red}{a} right)$.

На практике это означает, что для разложения многочлена на множители мы просто перебираем разные числа $x=color{red}{a}$ до тех пор, пока не окажется, что $Pleft( color{red}{a} right)=0$. В этот момент многочлен перепишется в виде

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)]

Такой перебор особенно эффективен в сочетании со схемой Горнера (см. урок «Схема Горнера»). Потому что параллельно с вычислением $Pleft( color{red}{a} right)$ мы получаем ещё и коэффициенты нового многочлена $Qleft( x right)$.

Пример 10. Обычный многочлен

Разложите на множители многочлен

[Pleft( x right)={{x}^{4}}+3{{x}^{3}}-3{{x}^{2}}-11x-6]

Решение. Для наглядности отметим синим цветом коэффициенты многочлена $Pleft( x right)$:

[Pleft( x right)= color{blue}{1}cdot {{x}^{4}}+color{blue}{3}cdot {{x}^{3}}+left( color{blue}{-3} right)cdot {{x}^{2}}+left( color{blue}{-11} right)cdot x+left( color{blue}{-6} right)]

Составим из них таблицу для схемы Горнера:

[begin{array}{r|r|r|r|r|r} {} & color{blue}{1} & color{blue}{3} & color{blue}{-3} & color{blue}{-11} & color{blue}{-6}\ hline{} & {} & {} & {} & {} & {}\ end{array}]

Все коэффициенты целые, поэтому логично проверять целые $x=color{red}{a}$, начиная с самых простых и маленьких чисел:

[x=pm 1; pm 2; pm 3; ldots ]

Проверим $x=color{red}{1}$ и $x=color{red}{-1}$:

[begin{array}{r|r|r|r|r|r}{} & color{blue}{1} & color{blue}{3} & color{blue}{-3} & color{blue}{-11} & color{blue}{-6}\ hline color{red}{1} & 1 & 4 & 1 & -10 & color{red}{-16}\ hline color{red}{-1} & 1 & 2 & -5 & -6 & color{green}{0}\ end{array}]

Проверка числа $x=color{red}{1}$ окончилась неудачей: остаток $r=color{red}{-16}$. Зато проверка $x=color{red}{-1}$ дала остаток $r=color{green}{0}$. Следовательно, $x=color{red}{-1}$ является корнем многочлена $Pleft( x right)$, и сам многочлен можно переписать так:

[begin{align}Pleft( x right) &=Qleft( x right)cdot left( x-left( color{red}{-1} right) right) \ &=left( {{x}^{3}}+2{{x}^{2}}-5x-6 right)left( x+1 right) end{align}]

Теперь разложим многочлен $Qleft( x right)$ по схеме Горнера. Проверим ещё раз число $x=color{red}{-1}$:

[begin{array}{r|r|r|r|r|r}{} & 1 & 3 & -3 & -11 & -6\ hline color{red}{-1} & color{blue}{1} & color{blue}{2} & color{blue}{-5} & color{blue}{-6} & color{green}{0}\ hline color{red}{-1} & 1 & 1 & -6 & color{green}{0} & {}\ end{array}]

И вновь получили $r=color{green}{0}$. Исходный многочлен примет вид

[Pleft( x right)=left( {{x}^{2}}+x-6 right){{left( x-1 right)}^{2}}]

В первой скобке стоит квадратный трёхчлен. Разложим его на множители по теореме Виета:

[{{x}^{2}}+x-6=left( x+3 right)left( x-2 right)]

Итого окончательное разложение многочлена $Pleft( x right)$:

[left( x+3 right)left( x-2 right){{left( x-1 right)}^{2}}]

Однако это было довольно простое задание: теорема Безу использовалась лишь в качестве обоснования, почему вместо $Pleft( x right)$ мы пишем $Qleft( x right)left( x-color{red}{a} right)$.

Следующее задание будет намного интереснее.:)

Пример 11. Многочлен с двумя переменными

Разложите на множители многочлен

[Pleft( x,y right)=y{{x}^{2}}+3yx+x-4y-1]

Решение. Это многочлен от двух переменных. Он квадратный относительно переменной $x$ и линейный относительно $y$. Чтобы разложить такой многочлен на множители, сгруппируем его слагаемые относительно переменной $x$:

[Pleft( x,y right)= color{blue}{y}cdot {{x}^{2}}+left( color{blue}{3y+1} right)cdot x+left( color{blue}{-4y-1} right)]

Составляем таблицу:

[begin{array}{c|c|c|c}{} & color{blue}{y} & color{blue}{3y+1} & color{blue}{-4y-1}\ hline {} & {} & {} & {}\ end{array}]

Чтобы воспользоваться теоремой Безу, нужно найти такое $x=color{red}{a}$, чтобы $r=Pleft( color{red}{a} right)= color{green}{0}$. Поскольку в роли коэффициентов выступают выражения, содержащие переменную $y$, вновь рассмотрим самые простые варианты, которые приходят в голову:

[x=pm 1; pm y]

Проверим, например, $x=color{red}{1}$:

[begin{array}{c|c|c|c}{} & color{blue}{y} & color{blue}{3y+1} & color{blue}{-4y-1}\ hline color{red}{1} & y & 4y+1 & color{green}{0}\ end{array}]

Первая же попытка привела к успеху: $r=color{green}{0}$, поэтому $x=color{red}{1}$ — крень многочлена $Pleft( x,y right)$. Разложим этот многочлен на множители согласно Следствию 2 теоремы Безу:

[Pleft( x,y right)=left( ycdot x+4y+1 right)cdot left( x-color{red}{1} right)]

В первой скобке стоит новый многочлен, линейный по $x$ и по $y$. Его уже нельзя разложить на множители, поэтому ответ окончательный:

[Pleft( x,y right)=left( xy+4y+1 right)left( x-1 right)]

Важное замечание. Строго говоря, линейность многочлена по каждой переменной ещё не означает, что его нельзя разложить на множители. Простой контрпример:

[xy-x+y-1=left( x+1 right)left( y-1 right)]

Однако в нашем случае дальнейшее применение теоремы Безу и проверки по схеме Горнера не даст никаких новых множителей.

3. Целые корни многочленов

До сих пор мы подставляли числа наугад. И если удавалось найти число $x=color{red}{a}$ такое, что $Pleft( color{red}{a} right)=0$, мы объявляли его корнем, а многочлен $Pleft( x right)$ переписывали в виде

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)]

Однако с помощью теоремы Безу можно значительно ускорить отыскание корней, отбросив заведомо неподходящие варианты. В этом нам поможет следующее утверждение.

Следствие 3. Целочисленные корни

Пусть $Pleft( x right)$ — приведённый многочлен с целыми коэффициентами:

[Pleft( x right)={{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

Тогда свободный член ${{a}_{0}}$ делится на любой целый корень многочлена $Pleft( x right)$.

Обратите внимание: старший коэффициент при ${{x}^{n}}$ равен единице. Именно поэтому многочлен $Pleft( x right)$ называется приведённым. Кроме того, все коэффициенты ${{a}_{n-1}},ldots ,{{a}_{0}}$ должны быть целыми числами.

И вот тогда целые корни следует искать среди делителей свободного члена ${{a}_{0}}$.

Пример 5. Простое уравнение

Решите уравнение

[{{x}^{3}}-2{{x}^{2}}-x+2=0]

Решение. Это приведённое кубическое уравнение с целыми коэффициентами. Рассмотрим многочлен

[Pleft( x right)= color{blue}{1}cdot {{x}^{3}}+left( color{blue}{-2} right)cdot {{x}^{2}}+left( color{blue}{-1} right)cdot x+color{blue}{2}]

Если у него есть целые корни, то по Следствию 3 теоремы Безу все они находятся среди делителей свободного члена ${{a}_{0}}=2$. Таких делителей всего четыре:

[x=pm 1; pm 2]

Подставим эти числа в схему Горнера:

[begin{array}{r|r|r|r|r}{} & color{blue}{1} & color{blue}{-2} & color{blue}{-1} & color{blue}{2}\ hline color{red}{1} & 1 & -1 & -2 & color{green}{0}\ hline color{red}{-1} & 1 & -2 & color{green}{0} & {}\ end{array}]

Уже на первом шаге мы получили $r=color{green}{0}$. Следовательно, $x=color{red}{1}$ — корень многочлена $Pleft( x right)$, и сам многочлен можно переписать так:

[Pleft( x right)=left( {{x}^{2}}-x-2 right)left( x-color{red}{1} right)]

Впрочем, если учесть третью строку таблицы, то можно вообще записать

[Pleft( x right)=left( x-2 right)left( x-left( color{red}{-1} right) right)left( x-color{red}{1} right)]

В любом случае, корни многочлена, как и корни уравнения — это числа 2, 1 и −1.

Ответ: $x=1$, $x=-1$, $x=2$.

Формула понижения степени

Итак, с помощью теоремы Безу мы можем:

  1. Найти целый корень многочлена;
  2. Разложить исходный многочлен на множители;
  3. Далее искать корни многочлена степени на единицу меньше.

В самом деле, если $Pleft( color{red}{a} right)=0$, тогда по Следствию 2 теоремы Безу мы переписываем многочлен $Pleft( x right)$ в виде

[Pleft( x right)=Qleft( x right)left( x-color{red}{a} right)]

Далее мы ищем корни многочлена $Qleft( x right)$, степень которого на единицу меньше $Pleft( x right)$.

Этот приём называется понижением степени. Он помогает свести исходный многочлен к квадратному, корни которого легко считаются, например, через дискриминант.

Пример 6. Среднее уравнение

Решите уравнение

[{{x}^{3}}-3{{x}^{2}}-4x+12=0]

Решение. Это уравнение третьей степени. Достаточно найти один корень — далее останется решить квадратное уравнение. Заметим, что многочлен

[Pleft( x right)= color{blue}{1}cdot {{x}^{3}}+left( color{blue}{-3} right)cdot {{x}^{2}}+left( color{blue}{-4} right)cdot x+color{blue}{12}]

является приведённым с целочисленными коэффициентами. По Следствию 3 теоремы Безу все целые корни этого многочлена содержатся среди делителей свободного члена ${{a}_{0}}=12$. Таких делителей довольно много:

[x=pm 1; pm 2; pm 3; pm 4; pm 6; pm 12]

Впрочем, нам достаточно найти всего один корень. Воспользуемся схемой Горнера:

[begin{array}{r|r|r|r|r}{} & color{blue}{1} & color{blue}{-3} & color{blue}{-4} & color{blue}{12}\ hlinecolor{red}{1} & 1 & -2 & -7 & color{red}{5}\ hlinecolor{red}{-1} & 1 & -4 & 0 & color{red}{12}\ hlinecolor{red}{2} & 1 & -1 & -6 & color{green}{0}\ end{array}]

Проверка закончилась неудачей для $x=color{red}{1}$ и $x=color{red}{-1}$. Но для $x=color{red}{2}$ мы нашли то, что искали: остаток $r=color{green}{0}$. Следовательно, $x=color{red}{2}$ — корень многочлена $Pleft( x right)$.

Разложим многочлен на множители согласно теореме Безу:

[Pleft( x right)=left( {{x}^{2}}-x-6 right)left( x-color{red}{2} right)]

В первой скобке стоит квадратный трёхчлен. Его корни легко найти по теореме Виета:

[Pleft( x right)=left( x-3 right)left( x+2 right)left( x-2 right)]

Приравниваем полученное произведение к нулю и решаем уравнение: $x=3$, $x=-2$, $x=2$.

Ответ: $x=2$, $x=-2$, $x=3$.

Пример 7. Сложное уравнение

Решите уравнение

[{{x}^{4}}-{{x}^{3}}-5{{x}^{2}}+3x+2=0]

Решение. Слева приведённый многочлен с целочисленными коэффициентами, поэтому все целые корни находятся среди делителей свободного члена ${{a}_{0}}=2$:

[x=pm 1; pm 2]

Достаточно подобрать два корня — далее уравнение сведётся к квадратному. Воспользуемся схемой Горнера:

[begin{array}{r|r|r|r|r|r}{} & color{blue}{1} & color{blue}{-1} & color{blue}{-5} & color{blue}{3} & color{blue}{2}\ hlinecolor{red}{-1} & 1 & -2 & -3 & 6 & color{red}{-4}\ hlinecolor{red}{1} & 1 & 0 & -5 & -2 & color{green}{0}\ hlinecolor{red}{-2} & 1 & -2 & -1 & color{green}{0} & {}\ end{array}]

Получили корни $x=color{red}{1}$ и $x=color{red}{-2}$. Разложим многочлен на множители:

[left( {{x}^{2}}-2x-1 right)left( x-color{red}{1} right)left( x-left( color{red}{-2} right) right)=0]

Решим квадратного уравнение из первой скобки:

[{{x}^{2}}-2x-1=0]

Дискриминант положителен:

[begin{align} D &={{left( -2 right)}^{2}}-4cdot 1cdot left( -1 right)= \ &=4+4=8 end{align}]

Следовательно, уравнение имеет два корня:

[x=frac{2pm 2sqrt{2}}{2}=1pm sqrt{2}]

Ответ: $x=1$, $x=-2$, $x=1pm sqrt{2}$.

4. Рациональные корни

До сих пор мы работали лишь с приведёнными многочленами, где старший коэффициент равен единице. Однако теорема Безу прекрасно работает и для неприведённых многочленов — при условии что все коэффициенты остаются целыми.

Рассмотрим уравнение

[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}=0]

где ${{a}_{n}},ldots ,{{a}_{0}}$ — целые числа, причём ${{a}_{n}}ne 0$.

Следствие 4. Если рациональное число $x=color{red}{p}/color{blue}{q};$, где $color{red}{p}in mathbb{Z}$, $color{blue}{q}in mathbb{N}$ и дробь $color{red}{p}/color{blue}{q};$ несократима, является корнем уравнения

[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}=0]

то свободный член ${{a}_{0}}$ делится на $color{red}{p}$, а старший коэффициент ${{a}_{n}}$ делится на $color{blue}{q}$.

Это утверждение будет доказано в конце урока. Сейчас важен практический смысл, который состоит в том, что все рациональные корни уравнения

[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}=0]

имеют вид $x=color{red}{p}/color{blue}{q};$, где $color{red}{p}$ следует искать среди делителей ${{a}_{0}}$, а $color{blue}{q}$ — среди положительных делителей ${{a}_{n}}$.

Пример 8. Простой многочлен

Найдите рациональные корни многочлена

[Pleft( x right)=2{{x}^{5}}-{{x}^{4}}+4x-2]

Решение. Делители свободного члена ${{a}_{0}}=-2$:

[p=pm 1; pm 2]

Положительные делители старшего коэффициента ${{a}_{4}}=2$:

[q=1; 2]

Возможные рациональные корни многочлена $Pleft( x right)$ по Следствию 4 теоремы Безу:

[x=pm 1; pm 2; pm {1}/{2};]

Проверять числа $x=color{red}{pm 1}$ нет смысла, поскольку все коэффициенты многочлена $Pleft( x right)$, за исключением одного, чётные. Следовательно, при подстановке нечётных чисел многочлен принимает нечётные значения, которые точно не равны нулю.

Остальные числа проверим по схеме Горнера:

[begin{array}{r|r|r|r|r|r|r}{} & color{blue}{2} & color{blue}{-1} & color{blue}{0} & color{blue}{0} & color{blue}{4} & color{blue}{-2}\ hlinecolor{red}{2} & 2 & 3 & 6 & 12 & 28 & color{red}{54}\ hlinecolor{red}{-2} & 2 & -5 & 10 & -20 & 44 & color{red}{-90}\ hline color{red}{{1}/{2};} & 2 & 0 & 0 & 0 & 4 & color{green}{0}\ hline color{red}{-{1}/{2};} & 2 & -2 & 1 & -{1}/{2}; & {17}/{4}; & color{red}{-{33}/{8};}\ end{array}]

Подошло лишь одно число: $x=color{red}{{1}/{2};}$. Следовательно, многочлен имеет лишь один рациональный корень.

Ответ: $x={1}/{2};$.

Обратите внимание: проверку дробных чисел можно прекращать, как только в строке таблицы появилась дробь. Потому что дальше это число будет лишь умножаться на новые дроби и складываться с другими целыми числами. При таких обстоятельствах получить $r=color{green}{0}$ уже невозможно.

Пример 9. Сложный многочлен

Найдите рациональные корни многочлена

[Pleft( x right)=3{{x}^{7}}+2{{x}^{6}}-5{{x}^{5}}+3{{x}^{3}}-{{x}^{2}}-7x+5]

Решение. Это многочлен с целыми коэффициентами. Делители свободного члена ${{a}_{0}}=5$:

[p=pm 1; pm 5]

Положительные делители старшего коэффициента ${{a}_{7}}=3$:

[q=1; 3]

Кандидаты в корни согласно Следствию 4 теоремы Безу:

[x=pm 1; pm 5; pm {1}/{3};; pm {1}/{5};]

Всего восемь кандидатов. Проверим их все по схеме Горнера:

[begin{array}{r|r|r|r|r|c|c|c|c}{} & color{blue}{3} & color{blue}{2} & color{blue}{-5} & color{blue}{0} & color{blue}{3} & color{blue}{-1} & color{blue}{-7} & color{blue}{5}\ hlinecolor{red}{1} & 3 & 5 & 0 & 0 & 3 & 2 & -5 & color{green}{0}\ hlinecolor{red}{-1} & 3 & 2 & -2 & 2 & 1 & 1 & color{red}{-6} & {}\ hlinecolor{red}{5} & 3 & 20 & 100 & color{red}{500} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{-5} & 3 & -10 & 50 & color{red}{-250} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{{1}/{3};} & 3 & 6 & 2 & color{red}{{2}/{3};} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{-{1}/{3};} & 3 & 4 & color{red}{-{4}/{3};} & color{red}{-} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{{5}/{3};} & 3 & 10 & color{red}{{50}/{3};} & color{red}{-} & color{red}{-} & color{red}{-} & color{red}{-} & {}\ hlinecolor{red}{-{5}/{3};} & 3 & 0 & 0 & 0 & 3 & -3 & color{green}{0} & {}\ end{array}]

Обратите внимание: для чисел $x=color{red}{5}$ и $x=color{red}{-5}$ мы прекратили вычисления досрочно, поскольку получили явно неадекватные числа, которые дальше будут только расти.

При проверке $x=color{red}{{1}/{3};}$, $x=color{red}{-{1}/{3};}$ и $x=color{red}{{5}/{3};}$ мы в какой-то момент возникли дроби, после чего дальнейшие вычисления теряют смысл.

Итого найдены два рациональных корня: $x=color{red}{1}$ и $x=color{red}{-{5}/{3};}$. Пожалуй, это одно из самых утомительных заданий на применение теоремы Безу, которые я когда-либо решал.:)

5. Доказательства

Рассмотрим доказательства всех ключевых утверждений сегодняшнего урока.

5.1. Теорема Безу

Мы сформулировали эту теорему в самом начале урока:

Терема Безу. Остаток от деления многочлена

[Pleft( x right)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

на двучлен $x-color{red}{a}$ равен значению этого многочлена в точке $x=color{red}{a}$:

[r=Pleft( color{red}{a} right)]

Доказательство. Разделим многочлен $Pleft( x right)$ на двучлен $x-color{red}{a}$ с остатком:

[Pleft( x right)=Qleft( x right)cdot left( x-color{red}{a} right)+r]

Такое представление всегда однозначно (см. урок «Деление многочленов с остатком»). Здесь многочлен $Qleft( x right)$ — неполное частное, $r$ — остаток, причём

[begin{align}deg r lt deg left( x-color{red}{a} right) &=1 \ deg r &=0 \ end{align}]

Другими словами, остаток $r$ — это просто число.

Теперь найдём значение $Pleft( x right)$ в точке $x=color{red}{a}$:

[Pleft( color{red}{a} right)=Qleft( color{red}{a} right)cdot left( color{red}{a}-color{red}{a} right)+r=r]

Теорема Безу доказана. Однако её доказательство опирается на единственность деления с остатком.

5.2. Целочисленные корни

Целочисленные корни приведённого многочлена с целыми коэффициентами следует искать среди делителей свободного члена.

Следствие 3. Пусть $Pleft( x right)$ — приведённый многочлен с целыми коэффициентами:

[Pleft( x right)={{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}]

Тогда свободный член ${{a}_{0}}$ делится на любой целый корень многочлена $Pleft( x right)$.

Доказательство. Пусть $color{red}{b}in mathbb{Z}$ — корень многочлена $Pleft( x right)$, т.е. $Pleft( color{red}{b} right)=0$. Подставим число $x=color{red}{b}$ в формулу многочлена и получим уравнение:

[{color{red}{b}^{n}}+{{a}_{n-1}}{color{red}{b}^{n-1}}+ldots +{{a}_{1}}color{red}{b}+{{a}_{0}}=0]

Перенесём последнее слагаемое вправо, а слева из оставшихся слагаемых вынесем множитель $color{red}{b}$ за скобку:

[color{red}{b}cdot left( {color{red}{b}^{n-1}}+{{a}_{n-1}}{color{red}{b}^{n-2}}+ldots +{{a}_{1}} right)=-{{a}_{0}}]

Поскольку $-{{a}_{0}}in mathbb{Z}$, а слева стоят два целочисленных множителя, получаем, что число $-{{a}_{0}}$ делится на $color{red}{b}$. Следовательно, свободный член ${{a}_{0}}$ тоже делится на $color{red}{b}$, что и требовалось доказать.

5.3. Рациональные корни

Рассмотрим уравнение

[{{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+ldots +{{a}_{1}}x+{{a}_{0}}=0]

где ${{a}_{n}},ldots ,{{a}_{0}}$ — целые числа, причём ${{a}_{n}}ne 0$.

Утверждение. Если рациональное число $x=color{red}{p}/color{blue}{q};$, где $color{red}{p}in mathbb{Z}$, $color{blue}{q}in mathbb{N}$ и дробь $color{red}{p}/color{blue}{q};$ несократима, является корнем уравнения $Pleft( x right)=0$, то свободный член ${{a}_{0}}$ делится на $color{red}{p}$, а старший коэффициент ${{a}_{n}}$ делится на $color{blue}{q}$.

Доказательство. Подставим число $x=color{red}{p}/color{blue}{q};$ в исходное уравнение. Поскольку $x=color{red}{p}/color{blue}{q};$ — корень, уравнение обратится в верное числовое равенство:

[{{a}_{n}}cdot {{left( frac{color{red}{p}}{color{blue}{q}} right)}^{n}}+{{a}_{n-1}}cdot {{left( frac{color{red}{p}}{color{blue}{q}} right)}^{n-1}}+ldots +{{a}_{1}}cdot frac{color{red}{p}}{color{blue}{q}}+{{a}_{0}}=0]

Домножим обе части на ${color{blue}{q}^{n}}$. Получим

[{{a}_{n}}{color{red}{p}^{n}}+{{a}_{n-1}}{color{red}{p}^{n-1}}color{blue}{q}+ldots +{{a}_{1}}color{red}{p}{color{blue}{q}^{n-1}}+{{a}_{0}}{color{blue}{q}^{n}}=0]

Перенесём последнее слагаемое ${{a}_{0}}{color{blue}{q}^{n}}$ вправо, а в левой части из оставшихся слагаемых вынесем множитель $color{red}{p}$ за скобку:

[color{red}{p}left( {{a}_{n}}{color{red}{p}^{n-1}}+{{a}_{n-1}}{color{red}{p}^{n-2}}color{blue}{q}+ldots +{{a}_{1}}{color{blue}{q}^{n-1}} right)=-{{a}_{0}}{color{blue}{q}^{n}}]

Слева и справа от знака равенства стоят целые числа, поскольку все слагаемые и множители являются целыми. Мы видим, что левая часть делится на $color{red}{p}$. Следовательно, правая часть тоже делится на $color{red}{p}$:

[-{{a}_{0}}{color{blue}{q}^{n}} vdots color{red}{p}]

По условию теоремы дробь $color{red}{p}/color{blue}{q};$ несократима. Следовательно, числа $color{blue}{q}$ и $color{red}{p}$ не имеют общих делителей, и единственный возможный вариант — это когда ${{a}_{0}}$ делится на $color{red}{p}$.

Аналогично доказывается, что старший коэффициент ${{a}_{n}}$ делится на $color{blue}{q}$. Теорема доказана.

Вот и всё.:)

Смотрите также:

  1. Схема Горнера
  2. Деление многочленов уголком
  3. Теорема Виета
  4. Задача B3 — работа с графиками
  5. Метод коэффициентов, часть 2
  6. Нестандартная задача B2: студенты, гонорары и налоги

Понравилась статья? Поделить с друзьями:
  • Как найти берлогу бурого медведя
  • Как найти сторону квадрата имея диагональ
  • Как исправить неполадки в телевизоре
  • Как найти разрыв страницы в ворде
  • Как найти кеш браузера хром