Прежде чем перейти к разбору решений не совсем типичных квадратных неравенств, потренируйтесь в
решении обычных квадратных неравенств,
у которых при решении соответствующего квадратного уравнения получаются два корня.
Квадратные неравенства, у которых получается один корень
Рассмотрим неравенство, в котором при решении квадратного уравнения
методом интервалов
получается только один корень.
Например, требуется решить следующее квадратное неравенство:
x2 − 2x + 1 ≤ 0
Используем метод интервалов для решения квадратного неравенства.
Сразу переходим к
п.3
правила из урока
«Метод интвервалов», так как
п.1
и
п.2
уже выполнены. То есть, приравняем левую часть неравенства к нулю и
решим полученное квадратное уравнение.
x2 − 2x + 1 = 0
x1;2 =
−(−2) ± √(−2)2 − 4 · 1 · 1 |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
x1 = x2 = 1
У нас получилось, что оба корня имеют одно одинаковое значение равное единице. Другими словами, значение корня повторяется два раза.
Отметим это значение на числовой оси согласно
п.5
из правила метода интервалов.
Теперь по
п.6
отметим знаки внутри интервалов. Но в отличии от решения обычных квадратных
неравенств с двумя различными корнями здесь появляется важный нюанс.
Запомните!
Если значение корня в уравнении повторяется четное количество раз, то при расставлении знаков
в интервалах при переходе через этот корень знак не меняется.
В нашем случае значение корня повторяется два раза «x1 = x2 = 1».
Значит, при переходе через это значение
знак не поменяется.
С учетом выше сказанного проставим знаки в интервалах справа налево, начиная со знака «+».
Теперь по исходному неравенству
«x2 − 2x + 1 ≤ 0»
определяем, какие интервалы мы запишем в ответ. Исходя из знак неравенства делаем вывод,
что нас интересуют отрицательные интервалы.
Таких интервалов на нашем рисунке нет, но неравенство
нестрогое,
значит, только
число «1» является решением неравенства. Запишем ответ.
Ответ: x = 1
Убедимся в правильности нашего решения, подставив «x = 1» в исходное неравенство.
x2 − 2x + 1 ≤ 0
12 − 2 · 1 + 1 ≤ 0
0 ≤ 0
(верно)
Квадратные неравенства, не имеющие корней (нет решений)
Рассмотрим квадратные неравенства, у которых при решении соответствующего
квадратного уравнения не получается ни одного
корня. Пусть требуется решить следующее квадратное неравенство.
П.1
и
п.2
для решения этого квадратного неравенства методом интервалов уже выполнен, поэтому сразу перейдем
к
п.3,
то есть к решению соответсвующего квадратного уравнения.
x2 + 2x + 7 ≤ 0
x2 + 2x + 7 = 0
x1;2 =
2 ± √22 − 4 · 7 · 1 |
2 · 1 |
x1;2 =
x1;2 =
Нет действительных корней
При решении квадратного уравнения мы получили, что действительных корней нет. Но это вовсе не означает,
что исходное квадратное неравенство невозможно решить.
Запомните!
Если при решении квадратного уравнения для неравенства получилось, что действительных корней нет, значит, ответом квадратного
неравенства будет: «нет действительных решений».
Так и запишем в ответ.
Ответ: нет действительных решений.
При написании ответа для квадратного неравенства важно помнить, что изначально мы решаем
именно неравенство, поэтому речь идет
именно о «решениях», а не о «корнях».
Помните, что решением любых неравенств, как правило, являются области решений
(множество чисел), а в уравнениях — это конкретные числа, которые мы называем корнями уравнений.
Стоит запомнить для себя: уравнения — корни, неравенства — решения.
В завершении урока разберем еще одно квадратное неравенство, при решении которого
получается только один корень.
x2 − 6x + 9 > 0
x2 − 6x + 9 = 0
x1;2 =
6 ± √62 − 4 · 1 · 9 |
2 · 1 |
x1;2 =
x1;2 =
x1;2 =
x1;2 =
x1 = x2 = 3
Корень повторяется два раза, значит, знак при переходе через
число «3» не меняется.
Выберем нужные интервалы. В исходном неравенстве
« x2 − 6x + 9 > 0 », значит, нам нужны интервалы
со знаком «+».
Ответ: x < 3; x > 3
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
Квадратные неравенства — коротко о главном
Квадратичная функция–это функция вида: ( displaystyle fleft( x right)=a{{x}^{2}}+bx+c=0), ( displaystyle ane 0)
График квадратичной функции – парабола. Её ветви направлены вверх, если ( displaystyle a>0), и вниз, если ( displaystyle a<0):
Если требуется найти числовой промежуток, на котором квадратный трёхчлен больше нуля, то это числовой промежуток, где парабола лежит выше оси ( Ox).
Если требуется найти числовой промежуток, на котором квадратный трёхчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ( Ox).
Виды квадратных неравенств
Все квадратные неравенства сводятся к следующим четырём видам:
( displaystyle left. begin{array}{l}a{{x}^{2}}+bx+c ge 0\a{{x}^{2}}+bx+c>0\a{{x}^{2}}+bx+cle 0\a{{x}^{2}}+bx+c<0end{array} rightrangle ane 0)
Алгоритм решения квадратных неравенств:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства ( >,text{ }<,text{ }ge ,text{ }le ) на знак равенства «( displaystyle=)»).
Пример:
( 2{{x}^{2}}+x-3ge 0)
( 2{{x}^{2}}+x-3=0)
2) Найдём корни этого уравнения:
( {{x}_{1}}=-frac{3}{2};text{ }{{x}_{2}}=1)
3) Отметим корни на оси ( Ox) и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим «( +)», а там где ниже – «( —)».
5) Выписываем интервал(ы), соответствующий(ие) «( +)» или «( —)», в зависимости от знака неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое — не входят.
( xin left( -infty ;-frac{3}{2} right]cup left[ 1;+infty right))
А теперь еще раз тоже самое но более сжато (то есть на языке математики)
Прежде чем говорить о теме «квадратные неравенства», вспомним что такое квадратичная функция и что из себя представляет её график.
Квадратичная функция – это функция вида ( fleft( x right)=a{{x}^{2}}+bx+c=0), ( ane 0)
Другими словами, это многочлен второй степени.
График квадратичной функции – парабола (помнишь, что это такое?)
- если ( a>0), то ветви параболы направлены вверх;
- если ( a<0), то ветви параболы направлены вниз.
Если парабола не пересекает ось Х и ее ветви направлены вверх, функция при всех значениях Х принимает лишь положительные значения.
Если парабола не пересекает ось Х и ее ветви направлены вниз – лишь отрицательные.
В случае, когда у уравнения (( 1)) ровно один корень (например, если дискриминант равен нулю), это значит, что график касается оси ( Ox):
Тогда, аналогично предыдущему случаю, при ( a>0) функция неотрицательна ( left( f(x) ge 0 right)) при всех ( x), а при ( a<0) – неположительна ( left( f(x) le 0 right)).
Так вот, мы ведь недавно уже научились определять, где квадратичная функция больше нуля, а где – меньше:
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое — не входят.
Если корень только один, – ничего страшного, будет везде один и тот же знак. Если корней нет, всё зависит только от коэффициента ( a): если ( a>0), то всё выражение больше 0, и наоборот.
Ну что, уловил? Тогда давай смотреть примеры!
Неравенства, содержащие переменную под знаком радикала, называются иррациональными неравенствами.
Содержание:
Решение иррациональных неравенств также ищут на множестве действительных чисел и, используя свойства корня и неравенств, сводится к решению системы рациональных неравенств.
Пример: Решите неравенство
Решение: чтобы найти множество решений данного неравенства на множестве допустимых значений, т. е. при условии
Каждое неравенство системы решим методом интервалов и найдем пересечение полученных решений:
Пример: Решите неравенство
Решение: рассмотрим два случая, в зависимости от знака правой части.
1) при для всех
неравенство справедливо для всех
Значит, надо решить систему
Ее решением является промежуток
2) при обе стороны заданного неравенства можно возвести в квадрат. Тогда получим систему
Ее решением является промежуток
Решением заданного неравенства является
Способы решения иррациональных неравенств
С действием возведения в степень связаны разные виды выражений. Будем рассматривать выражения с переменными, при образовании которых используются действия сложения, вычитания, умножения, деления и возведения в степень, причем возведение в степень хотя бы один раз применено к выражению с переменной.
Если показатель степени целый, то возникает рациональное выражение, если дробный, то — иррациональное выражение, а если иррациональный, то — трансцендентное выражение.
К трансцендентным выражениям приводят и действия нахождения значений синуса, косинуса, тангенса, котангенса, арксинуса, арккосинуса, арктангенса, арккотангенса. Рациональные и иррациональные выражения вместе составляют множество алгебраических выражений.
Из выражений
выражения (1) и (2) являются рациональными, выражения (3) и (4) — иррациональными, выражения (5) и (6) — трансцендентными, а выражения (1)—(4) — алгебраическими.
В зависимости от того, из каких выражений составлено уравнение, говорят о рациональных, иррациональных, трансцендентных уравнениях.
Из уравнений
уравнения (1) и (2) являются рациональными, уравнения (3) и (4) — иррациональными, а уравнения (5) и (6) — трансцендентными.
Так же говорят о рациональных, иррациональных, трансцендентных неравенствах.
В этом параграфе рассматривается решение иррациональных уравнений и неравенств. При их решении нужно следить за тем, какие преобразования выполняются при этом.
Утверждение равносильно утверждению
, если утверждения
и
истинны при одних и тех же значениях переменной
. Равносильность уравнений означает, что они имеют одни и те же корни, а равносильность неравенств — то, что они имеют одни и те же решения. Равносильность утверждений
и
обозначают
=
.
Утверждение следует из утверждения
, если утверждение
истинно при всех значениях переменной
, при которых истинно утверждение
. Следование второго уравнения из первого означает, что каждый корень первого уравнения является корнем второго уравнения, но второе уравнение может иметь и дополнительные корни. Так же понимается и следование одного неравенства из другого. Следование утверждения
из утверждения
обозначают
.
Отношения равносильности и следования связаны:
При решении иррациональных неравенств нужно учитывать, что проверка подстановкой найденного множества чисел обычно невозможна из-за его бесконечности. Поэтому при решении неравенств нужно следить за равносильностью проводимых преобразований.
Теорема:
Верны следующие равносильности:
Доказательство проводится по схеме, использованной при доказательстве теоремы 9 с применением соответствующих свойств числовых неравенств.
Пример №1
Решим неравенство . Это неравенство равносильно совокупности неравенств
Первую систему можно заменить равносильной системой , которая равносильна системе
, которая, в свою очередь, равносильна неравенству
.
Вторая система совокупности равносильна системе , которая равносильна неравенству
.
Решения данного неравенства получим, когда объединим решения и
первой и второй систем совокупности, в результате получим множество всех действительных чисел.
Ответ. .
Пример №2
Решим неравенство .
Обратим внимание на то, что на области определения левая и правая части данного неравенства обе неотрицательны, поэтому оно равносильно системе неравенств
решение которой следующее:
Ответ. .
- Заказать решение задач по высшей математике
Какие неравенства называются иррациональными
В этой лекции мы будем рассматривать неравенства, содержащие переменную (неизвестное) под знаком корня. Такие неравенства называются иррациональными.
При решении иррациональных неравенств часто используют подход, который мы уже применяли, решая иррациональные уравнения. Он состоит в замене исходного неравенства равносильным ему неравенством (системой или совокупностью неравенств).
Пример №3
Решить неравенство:
Решение:
а) Учитывая свойства корня нечетной степени, получаем:
б) По определению корня четной степени значения выражения
неотрицательны при всех значениях
при которых это
выражение имеет смысл, т. е. когда значения подкоренного выражения неотрицательны. Таким образом, имеем:
Ответ:
Пример №4
Решить неравенство:
Решение:
а) По определению корня четной степени значения выражения отрицательными быть не могут. Поэтому имеем:
б) Поскольку обе части неравенства неотрицательны при всех значениях
при которых его левая часть имеет смысл, то имеем:
Ответ:
При решении иррациональных неравенств часто используется также метод интервалов.
Пример №5
Решить неравенство
Решение:
Обозначим Найдем область определения функции
Таким образом,
Найдем нули функции т. е. корни уравнения
Проверка:
Значит, 0,5 — единственный нуль функции
Отметим нуль функции на области определения
(рис.22). Определим знаки значений функции
на образовавшихся интервалах, для чего вычислим:
Используя рисунок 22, запишем решение неравенства
Ответ:
Пример №6
Решить неравенство
Решение:
Решение этого примера аналогично решению примера 3.
Используя рисунок 22, записываем решение неравенства
Ответ:
▲ При решении иррациональных неравенств часто используются следующие утверждения о равносильности неравенств и систем неравенств:
Решим пример 3, используя равносильность (1):
Ответ:
Решим пример 4, используя равносильность (2):
Ответ:
Для решения заданий такого типа, как, например, в 1.265, можно использовать следующие утверждения о равносильности:
Аналогичные утверждения можно записать и для неравенств
- Производная в математике
- Как найти производную функции
- Асимптоты графика функции
- Касательная к графику функции и производная
- Формулы преобразования суммы и разности синусов (косинусов) в произведение
- Корень n-й степени из числа и его свойства
- Свойства и график функции y=ⁿ√x (n>1, n∈N)
- Иррациональные уравнения
В данной публикации мы рассмотрим, что такое квадратное неравенство, и как оно решается методом интервалов в зависимости от количества корней. Также разберем практические примеры по этой теме.
- Определение квадратного неравенства
-
Решение квадратных неравенств
- С двумя корнями
- С одним корнем
- Без корней
Определение квадратного неравенства
Если старшая степень неизвестной переменной (чаще всего это x) равняется двум, то неравенство называется квадратным.
Например:
- x2 – 3x + 4 > 0
- 2x2 + 7x – 5 < 0
- x2 + 12x + 2 ≥ 0
- 3x2 – 4 ≤ 0
Решение квадратных неравенств
С двумя корнями
Квадратные уравнения решаются с помощью так называемого метода интервалов, принцип которого заключается в следующем:
1. Все элементы неравенства собираем в левой части, в правой должен остаться только ноль. Помним, что при переносе элемента из одной части в другую его знак меняется на противоположный.
2. Если перед неизвестной переменной во второй степени стоит отрицательный коэффициент, умножаем все элементы неравенства на число -1, изменив знак сравнения на противоположный.
3. Заменив знак сравнения на “равно” решаем полученное квадратное уравнение.
4. Найденные корни отмечаем на числовой оси.
При этом, если знак сравнения строгий (“больше” или “меньше”), то отметкой обычно является незакрашенный внутри кружок, если нестрогий (“больше или равно”, “меньше или равно”) – закрашенный.
5. Рисуем интервалы, и справа-налево присваиваем им знаки “плюс” и “минус” (начинаем с “+”, затем чередуем).
6. Если в неравенстве стоят знаки “>“ или “≥“, нам нужны положительные интервалы, если “<“ или “≤“ – отрицательные.
Пример 1
Решим квадратное неравенство x2 + 4x > -3.
Решение:
1. Т.к. правая часть должны быть нулевой, перенесем число -3 в левую, заменив его знак на “плюс”:
x2 + 4x + 3 > 0
2. Теперь найдем корни квадратного уравнения x2 + 4x + 3 = 0.
Мы подробно рассматривали данный вопрос в отдельной публикации, поэтому здесь отдельно на этом останавливаться не будем.
Итак, корни заданного уравнения: x1 = -1, x2 = -3. Отмечаем их на числовой оси (незакрашенные кружки, т.к. неравенство является строгим).
Рисуем интервалы, отметив знаками “плюс” и “минус”.
Нам нужные только положительные области, т.к. в неравенстве стоит знак “больше”.
Таким образом, решение неравенства следующее:
x > -1 и x < -3.
Примечание: если бы в рассматриваемом нами неравенстве стояли другие знаки, область решения была бы следующей:
- знак “<“, тогда -3 < x < -1
- знак “≥”, тогда x ≥ -1 и x ≤ -3
- знак “≤”, тогда -3 ≤ x ≤ -1
С одним корнем
Квадратные уравнения не всегда имеют два корня, иногда он может быть один.
Пример 2
Давайте решим x2 – 4x + 4 < 0.
Решение:
Корень у соответствующего квадратного уравнения всего один: x1 = x2 = 2, т.е. его значение повторяется дважды.
Отмечаем точку в виде незаполненного кружка на числовой оси и рисуем два исходящих от нее интервала.
Теперь нужно присвоить знаки интервалам, и здесь эта процедура отличается от описанного выше (когда у уравнения два корня): если значение корня в уравнении повторяется четное количество раз, то при смене интервалов знак не меняется. Проставляем их, также, справа-налево, начав с “плюса”.
В нашем случае значение повторяется два раза, т.е. получаем:
Нам нужны только отрицательные интервалы, а их здесь нет. К тому же, неравенство строгое. Следовательно, решений у него нет.
Примечание: если бы этом неравенстве стояли другие знаки, область решения была бы следующей:
- знак “>”, тогда x > 2 и x < 2
- знак “≥”, тогда x ≥ 2 и x ≤ 2, т.е. все действительные числа.
- знак “≤”, единственное решение – это x = 2
Без корней
В некоторых случаях квадратные уравнения могут и вовсе не иметь действительных корней.
В этом случае у соответствующее неравенства, также, не будет действительных решений. Это и будет ответом.
Пример 3
x2 + 3x + 5 > 0
Решение:
Уравнение не имеет корней, следовательно, у неравенства нет действительных решений.
Иррациональные неравенства с примерами решения
Неравенства, содержащие переменную под знаком радикала, называются иррациональными неравенствами.
Содержание:
Решение иррациональных неравенств также ищут на множестве действительных чисел и, используя свойства корня и неравенств, сводится к решению системы рациональных неравенств.
Пример: Решите неравенство
Решение: чтобы найти множество решений данного неравенства на множестве допустимых значений, т. е. при условии
Каждое неравенство системы решим методом интервалов и найдем пересечение полученных решений:
Пример: Решите неравенство
Решение: рассмотрим два случая, в зависимости от знака правой части.
1) при для всех
неравенство справедливо для всех
Значит, надо решить систему
Ее решением является промежуток
2) при обе стороны заданного неравенства можно возвести в квадрат. Тогда получим систему
Ее решением является промежуток
Решением заданного неравенства является
Способы решения иррациональных неравенств
С действием возведения в степень связаны разные виды выражений. Будем рассматривать выражения с переменными, при образовании которых используются действия сложения, вычитания, умножения, деления и возведения в степень, причем возведение в степень хотя бы один раз применено к выражению с переменной.
Если показатель степени целый, то возникает рациональное выражение, если дробный, то — иррациональное выражение, а если иррациональный, то — трансцендентное выражение.
К трансцендентным выражениям приводят и действия нахождения значений синуса, косинуса, тангенса, котангенса, арксинуса, арккосинуса, арктангенса, арккотангенса. Рациональные и иррациональные выражения вместе составляют множество алгебраических выражений.
выражения (1) и (2) являются рациональными, выражения (3) и (4) — иррациональными, выражения (5) и (6) — трансцендентными, а выражения (1)—(4) — алгебраическими.
В зависимости от того, из каких выражений составлено уравнение, говорят о рациональных, иррациональных, трансцендентных уравнениях.
уравнения (1) и (2) являются рациональными, уравнения (3) и (4) — иррациональными, а уравнения (5) и (6) — трансцендентными.
Так же говорят о рациональных, иррациональных, трансцендентных неравенствах.
В этом параграфе рассматривается решение иррациональных уравнений и неравенств. При их решении нужно следить за тем, какие преобразования выполняются при этом.
Утверждение равносильно утверждению
, если утверждения
и
истинны при одних и тех же значениях переменной
. Равносильность уравнений означает, что они имеют одни и те же корни, а равносильность неравенств — то, что они имеют одни и те же решения. Равносильность утверждений
и
обозначают
=
.
Утверждение следует из утверждения
, если утверждение
истинно при всех значениях переменной
, при которых истинно утверждение
. Следование второго уравнения из первого означает, что каждый корень первого уравнения является корнем второго уравнения, но второе уравнение может иметь и дополнительные корни. Так же понимается и следование одного неравенства из другого. Следование утверждения
из утверждения
обозначают
.
Отношения равносильности и следования связаны:
При решении иррациональных неравенств нужно учитывать, что проверка подстановкой найденного множества чисел обычно невозможна из-за его бесконечности. Поэтому при решении неравенств нужно следить за равносильностью проводимых преобразований.
Теорема:
Верны следующие равносильности:
Доказательство проводится по схеме, использованной при доказательстве теоремы 9 с применением соответствующих свойств числовых неравенств.
Пример №1
Решим неравенство . Это неравенство равносильно совокупности неравенств
Первую систему можно заменить равносильной системой , которая равносильна системе
, которая, в свою очередь, равносильна неравенству
.
Вторая система совокупности равносильна системе , которая равносильна неравенству
.
Решения данного неравенства получим, когда объединим решения и
первой и второй систем совокупности, в результате получим множество всех действительных чисел.
Ответ. .
Пример №2
Решим неравенство .
Обратим внимание на то, что на области определения левая и правая части данного неравенства обе неотрицательны, поэтому оно равносильно системе неравенств
решение которой следующее:
Ответ. .
Какие неравенства называются иррациональными
В этой лекции мы будем рассматривать неравенства, содержащие переменную (неизвестное) под знаком корня. Такие неравенства называются иррациональными.
При решении иррациональных неравенств часто используют подход, который мы уже применяли, решая иррациональные уравнения. Он состоит в замене исходного неравенства равносильным ему неравенством (системой или совокупностью неравенств).
Пример №3
Решение:
а) Учитывая свойства корня нечетной степени, получаем:
б) По определению корня четной степени значения выражения
неотрицательны при всех значениях
при которых это
выражение имеет смысл, т. е. когда значения подкоренного выражения неотрицательны. Таким образом, имеем:
Ответ:
Пример №4
Решение:
а) По определению корня четной степени значения выражения отрицательными быть не могут. Поэтому имеем:
б) Поскольку обе части неравенства неотрицательны при всех значениях
при которых его левая часть имеет смысл, то имеем:
Ответ:
При решении иррациональных неравенств часто используется также метод интервалов.
Пример №5
Решить неравенство
Решение:
Обозначим Найдем область определения функции
Таким образом,
Найдем нули функции т. е. корни уравнения
Проверка:
Значит, 0,5 — единственный нуль функции
Отметим нуль функции на области определения
(рис.22). Определим знаки значений функции
на образовавшихся интервалах, для чего вычислим:
Используя рисунок 22, запишем решение неравенства
Ответ:
Пример №6
Решить неравенство
Решение:
Решение этого примера аналогично решению примера 3.
Используя рисунок 22, записываем решение неравенства
Ответ:
▲ При решении иррациональных неравенств часто используются следующие утверждения о равносильности неравенств и систем неравенств:
Решим пример 3, используя равносильность (1):
Ответ:
Решим пример 4, используя равносильность (2):
Ответ:
Для решения заданий такого типа, как, например, в 1.265, можно использовать следующие утверждения о равносильности:
Аналогичные утверждения можно записать и для неравенств
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Производная в математике
- Как найти производную функции
- Асимптоты графика функции
- Касательная к графику функции и производная
- Формулы преобразования суммы и разности синусов (косинусов) в произведение
- Корень n-й степени из числа и его свойства
- Свойства и график функции y=ⁿ√x (n>1, n∈N)
- Иррациональные уравнения
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Алгебра
План урока:
Иррациональные уравнения
Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.
Приведем примеры иррациональных ур-ний:
Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести
Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.
Простейшие иррациональные уравнения
Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:
где а – некоторое число (константа), f(x) – рациональное выражение.
Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:
Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии
n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.
Ответ: корней нет.
Пример. Решите ур-ние
Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:
Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).
Пример. Найдите решение ур-ния
Решение. Возведем обе части в пятую степень:
х 2 – 14х – 32 = 0
Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:
D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324
Итак, нашли два корня: (– 2) и 16.
Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.
Пример. Решите ур-ние
Решение. Возводим обе части во вторую степень:
х – 2 = х 2 – 8х + 16
D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9
Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):
при х = 3 х – 4 = 3 – 4 = – 1
при х = 6 6 – 4 = 6 – 4 = 2
Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.
Пример. Решите ур-ние
Решение. Здесь используется кубический корень, а потому возведем обе части в куб:
3х 2 + 6х – 25 = (1 – х) 3
3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3
Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:
Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.
Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:
при х = 2 1 – х = 1 – 2 = – 1
Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:
Уравнения с двумя квадратными корнями
Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.
Пример. Решите ур-ние
Решение. Перенесем вправо один из корней:
Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:
Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:
Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:
(2х – 4) 2 = 13 – 3х
4х 2 – 16х + 16 = 13 – 3х
4х 2 – 13х + 3 = 0
D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121
Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:
Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3
На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.
Введение новых переменных
Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние
Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.
Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:
х 1/2 – 10х 1/4 + 9 = 0
Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид
Это квадратное ур-ние. Найдем его корни:
D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64
Получили два значения t. Произведем обратную замену:
х 1/4 = 1 или х 1/4 = 9
Возведем оба ур-ния в четвертую степень:
(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4
х = 1 или х = 6561
Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:
В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.
Пример. Решите ур-ние
х 1/3 + 5х 1/6 – 24 = 0
Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:
Его корни вычислим через дискриминант:
D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121
Далее проводим обратную заменуx 1/6 = t:
х 1/6 = – 8 или х 1/6 = 3
Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.
Замена иррационального уравнения системой
Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.
Пример. Решите ур-ние
Решение. Заменим первый корень буквой u, а второй – буквой v:
Исходное ур-ние примет вид
Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:
Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:
Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:
(х + 6) + (11 – х) = u 3 + v 2
из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:
17 = u 3 + (5 – u) 2
17 = u 3 + u 2 – 10u + 25
u 3 + u 2 – 10u + 8 = 0
Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа
подставим полученные значения в (4):
x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3
x + 6 = 1 или х + 6 = 8 или х + 6 = – 64
х = – 5 или х = 2 или х = – 70
Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим
Корень подошел. Проверяем следующее число, х = 2:
Корень снова оказался верным. Осталась последняя проверка, для х = – 70:
Итак, все три числа прошли проверку.
Уравнения с «вложенными» радикалами
Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:
При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:
Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:
Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:
Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:
Возводим в квадрат и получаем:
х 2 + 40 = (х + 4) 2
х 2 + 40 = х 2 + 8х + 16
И снова нелишней будет проверка полученного корня:
Иррациональные неравенства
По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:
Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.
Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида
Может быть справедливым только тогда, когда
То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во
при четном n можно заменить системой нер-в
Пример. При каких значениях x справедливо нер-во
Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:
х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)
Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во
чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.
Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.
Пример. Найдите решение нер-ва
Решение. Всё очень просто – надо всего лишь возвести обе части в куб:
x 2 – 7x– 8 2 – 7x– 8 = 0
D = b 2 – 4ac = (– 7) 2 – 4•1•(– = 49 + 32 = 81
Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:
Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.
Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.
Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид
Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.
Пример. Решите нер-во
Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):
И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:
D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9
Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.
стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:
f(x) > 0 (подкоренное выражение не может быть отрицательным);
g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).
Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.
Пример. Решите нер-во
Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим
х 2 – 10х + 21 > 0(1)
Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:
Во-вторых, выражение 4 – х не может быть отрицательным:
Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):
Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:
Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:
Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:
Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:
Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).
Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение иррациональных уравнений и неравенств.
Этот математический калькулятор онлайн поможет вам решить иррациональное уравнение или неравенство. Программа для решения иррациональных уравнений и неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> sqrt(x) — квадратный корень x
x^(1/n) — корень степени n
Введите иррациональное уравнение или неравенство
Решить уравнение или неравенство
Немного теории.
Решение иррациональных уравнений и неравенств
1. Иррациональные уравнения
Иррациональными называют уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень. Для таких уравнений ищут, как правило, только действительные корни.
Основной метод решения иррациональных уравнений — метод возведения обеих частей уравнения в одну и ту же степень. При этом следует иметь в виду, что возведение обеих частей уравнения в одну и ту же нечётную степень есть равносильное преобразование уравнения, а в чётную — НЕравносильное. Значит, основные принципиальные трудности связаны с возведением обеих частей уравнения в одну и ту же чётную степень, когда из-за неравносильности преобразования могут появиться посторонние корни, а потому обязательна проверка всех найденных корней.
ПРИМЕР 1.
( sqrt[Large6normalsize] = sqrt[Large6normalsize] <2x-6>)
Возведя обе части уравнения в шестую степень, получим:
( x^2-5x = 2x-6 Rightarrow )
( x^2-7x +6= 0 Rightarrow )
( x_1=1, ; x_2=6 )
Проверка. «Хорошие» корни можно проверить непосредственной подстановкой в исходное уравнение. При x = 1 заданное уравнение принимает вид ( sqrt[Large6normalsize] <-4>= sqrt[Large6normalsize] <-4>), во множестве действительных чисел такое «равенство» не имеет смысла. Значит, 1 — посторонний корень, он появился по причине расширения ОДЗ уравнения после возведения в шестую степень. При х = 6 заданное уравнение принимает вид ( sqrt[Large6normalsize] <6>= sqrt[Large6normalsize] <6>) — это верное равенство.
Итак, уравнение имеет единственный корень: х = 6.
Ответ: х = 6
Введя новую переменную ( u=x^2-x), получим существенно более простое иррациональное уравнение:
( sqrt+sqrt = sqrt <2u+21>).
Возведём обе части уравнения в квадрат:
( (sqrt+sqrt)^2 = (sqrt<2u+21>)^2 Rightarrow )
( u+2 +2sqrtsqrt +u+7 = 2u+21 Rightarrow )
( sqrt <(u+2)(u+7)>= 6 Rightarrow )
( u^2+9u+14=36 Rightarrow )
( u^2+9u-22=0 Rightarrow )
( u_1=2, ; u_2=-11 )
Проверка найденных значений их подстановкой в уравнение ( sqrt+sqrt = sqrt <2u+21>) показывает, что ( u_1=2 ) — корень уравнения, а ( u_2=-11 ) — посторонний корень.
Возвращаясь к исходной переменной x, получаем уравнение ( x^2-x=2 Rightarrow x^2-x-2=0 ), решив которое находим два корня: ( x_1=2, ; x_2=-1 )
Ответ: 2; -1.
Уединение корня и возведение обеих частей уравнения в квадрат привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, можно заметить, что уравнение легко сводится к квадратному. Действительно, умножим обе его части на 2:
( 2x^2 +6 -2sqrt <2x^2-3x+2>= 3x+12 Rightarrow )
( 2x^2 -3x +2 -2sqrt <2x^2-3x+2>-8 = 0 Rightarrow )
Введя новую переменную ( y=sqrt <2x^2-3x+2>), получим: ( y^2-2y-8=0 ), откуда ( y_1=4, ; y_2=-2 ). Значит, исходное уравнение равносильно следующей совокупности уравнений:
( left[begin sqrt <2x^2-3x+2>=4 \ sqrt <2x^2-3x+2>= -2 endright. )
Из первого уравнения этой совокупности находим: ( x_1=3<,>5; ; x_2=-2 ). Второе уравнение корней не имеет.
Проверка. Так как совокупность уравнений равносильна исходному уравнению, причём второе уравнение этой совокупности корней не имеет, то найденные корни можно проверить подстановкой в уравнение ( sqrt <2x^2-3x+2>=4). Эта подстановка показывает, что оба найденных значения x являются корнями этого уравнения, а значит, и исходного уравнения.
Ответ: 3,5; -2.
Областью определения уравнения является луч ( [5; ; +infty) ). В этой области выражение ( sqrt ) можно представить следующим образом: ( sqrt = sqrtsqrt ). Теперь уравнение можно переписать так:
( x+x -5 +2sqrtsqrt +2sqrt +2sqrt -48 = 0 Rightarrow ) ( (sqrt)^2 +2sqrtsqrt +(sqrt)^2 +2(sqrt+sqrt) -48 = 0 Rightarrow ) ( (sqrt +sqrt)^2 +2(sqrt+sqrt) -48 = 0 )
Введя новую переменную ( y= sqrt +sqrt ), получим квадратное уравнение ( y^2+2y-48=0 ), из которого находим: ( y_1=6, ; y_2=-8 ). Таким образом, задача свелась к решению совокупности уравнений:
( left[begin sqrt +sqrt =6 \ sqrt +sqrt = -8 endright. )
Из первого уравнения совокупности находим ( x= left( frac<41> <12>right)^2 ), второе уравнение совокупности решений явно не имеет.
Проверка. Нетрудно проверить (подстановкой), что ( x= left( frac<41> <12>right)^2 ) — является корнем уравнения ( sqrt +sqrt =6 ). Но это уравнение равносильно исходному уравнению, значит, ( x= left( frac<41> <12>right)^2 ) — является корнем и исходного уравнения.
Ответ: ( x= left( frac<41> <12>right)^2 )
Иногда при решении иррациональных уравнений оказывается удобным ввести две новые переменные.
ПРИМЕР 5.
( sqrt[Large4normalsize] <1-x>+ sqrt[Large4normalsize] <15+x>=2 )
Введём новые переменные: ( left<begin u=sqrt[Large4normalsize] <1-x>\ v=sqrt[Large4normalsize] <15+x>endright. )
Тогда уравнение примет вид (u+v=2). Но для нахождения значений двух новых переменных одного уравнения недостаточно. Возведя в четвёртую степень обе части каждого из уравнений системы, получим:
( left<begin u^4=1-x \ v^4= 15+x endright. )
Сложим уравнения последней системы: (u^4 +v^4 =16). Таким образом, для нахождения u, v мы имеем следующую симметрическую систему уравнений:
( left<begin u+v=2 \ u^4 +v^4 =16 endright. )
Решив её, находим: ( left<begin u_1=0 \ v_1 =2; endright. ) ( left<begin u_2=2 \ v_2 =0 endright. )
Таким образом, исходное уравнение свелось к следующей совокупности систем уравнений: ( left<begin sqrt[Large4normalsize] <1-x>=0 \ sqrt[Large4normalsize] <15+x>=2; endright. ) ( left<begin sqrt[Large4normalsize] <1-x>=2 \ sqrt[Large4normalsize] <15+x>=0 endright. )
Решив эту совокупность, находим: (x_1=1, ; x_2=-15 )
Проверка. Проще всего проверить найденные корни непосредственной подстановкой в заданное уравнение. Проделав это, убеждаемся, что оба значения являются корнями исходного уравнения.
Ответ: 1; -15.
ПРИМЕР 6.
( sqrt[Large3normalsize] <2x+1>+ sqrt[Large3normalsize] <6x+1>= sqrt[Large3normalsize] <2x-1>)
Возведём обе части уравнения в куб:
( 2x+1 + 3sqrt[Large3normalsize] <(2x+1)^2>cdot sqrt[Large3normalsize] <6x+1>+ 3sqrt[Large3normalsize] <2x+1>cdot sqrt[Large3normalsize] <(6x+1)^2>+6x+1 = 2x-1 Rightarrow ) ( 3sqrt[Large3normalsize] <2x+1>cdot sqrt[Large3normalsize] <6x+1>cdot (3sqrt[Large3normalsize] <2x+1>+ sqrt[Large3normalsize] <6x+1>) = -6x-3 )
Воспользовавшись исходным уравнением, заменим сумму ( sqrt[Large3normalsize] <2x+1>+ sqrt[Large3normalsize] <6x+1>) на выражение ( sqrt[Large3normalsize] <2x-1>):
( 3sqrt[Large3normalsize] <2x+1>cdot sqrt[Large3normalsize] <6x+1>cdot sqrt[Large3normalsize] <2x-1>= -6x-3 Rightarrow )
( 3sqrt[Large3normalsize] < (2x+1)(6x+1)(2x-1) >= -2x-1 )
Возведём обе части в куб:
( (2x+1)(6x+1)(2x-1) = -(2x+1)^3 Rightarrow )
( (2x+1)((6x+1)(2x-1) + (2x+1)^2) =0 Rightarrow )
( 16x^2(2x+1) =0 Rightarrow )
( x_1= -0<,>5; ; x_2=0 )
Проверка. Подстановкой найденных значений x в исходное уравнение убеждаемся, что его корнем является только x = -0,5.
Ответ: -0,5.
2. Иррациональные неравенства
Рассмотрим иррациональное неравенство вида ( sqrt 0 ). Осталось лишь заметить, что при одновременном выполнении указанных выше условий обе части заданного иррационального неравенства неотрицательны, а потому их возведение в квадрат представляет собой равносильное преобразование неравенства.
Таким образом, иррациональное неравенство ( sqrt 0 \ f(x) 0 \ x^2-x-12 0 \ x > -12 endright. )
Получаем: ( x geqslant 4)
Ответ: ( x geqslant 4)
Рассмотрим теперь неравенство вида ( sqrt > g(x) ).
Ясно, во-первых, что его решения должны удовлетворять условию ( f(x) geqslant 0 ).
Во-вторых, замечаем, что при ( g(x) g(x) ) не вызывает сомнений.
В-третьих, замечаем, что если ( g(x) geqslant 0 ), то можно возвести в квадрат обе части заданного иррационального неравенства.
Таким образом, иррациональное неравенство ( sqrt > g(x) ) равносильно совокупности систем неравенств:
( left<begin f(x) geqslant 0 \ g(x) (g(x))^2 endright. )
Во второй системе первое неравенство является следствием третьего, его можно не писать.
Данное неравенство равносильно совокупности систем неравенств:
( left<begin x^2-x-12 geqslant 0 \ x 0 )
Преобразуем неравенство к виду ( x^2+3x-10 +3sqrt >0 ) и введём новую переменную ( y= sqrt ). Тогда последнее неравенство примет вид ( y^2+3y-10 >0 ), откуда находим, что либо (y 2).
Таким образом, задача сводится к решению совокупности двух неравенств:
( left[begin sqrt 2 endright. )
Первое неравенство не имеет решений, а из второго находим:
( x^2+3x >4 Rightarrow )
( (x+4)(x-1) >0 Rightarrow )
( x 1 )
Ответ: ( x 1 ).
http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye
http://www.math-solution.ru/math-task/irrational-equality-inequality