Автор проекта:
Шелкова Полина,
Класс: 10Руководитель:
Злобова Людмила Викторовна,
учитель математики
ВВЕДЕНИЕ
Слово «тригонометрия» греческое, оно переводится как «измерение треугольников» (τρίγονον — «тригон» — треугольник и μετρειν — «метрео» — измеряю).
Тригонометрия, как и всякая другая наука, выросла из практической деятельности человека. Потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил, оказали большое влияние на развитие астрономии и тесно связанной с ней тригонометрией. Предполагают, что основополагающее значение для развития тригонометрии в эпоху ее зарождения, имели работы древнегреческого астронома Гиппарха Никейского (180-125 лет до н. э.) (прил. №3). Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд (прил. №2). Т.е. таблицы, которые выражают длину хорды для различных центральных углов в круге постоянного радиуса, что является аналогом современных таблиц тригонометрических функций. Впрочем, до нас не дошли оригинальные таблицы Гиппарха, как и почти все, что им написано. И мы, можем составить себе о них представление главным образом по сочинению «Великое построение» или «Альмагесту» знаменитого астронома Клавдия Птолемея, жившего в середине II века н.э.
Несмотря на то, что в работах ученых древности нет «тригонометрии» в строгом смысле этого слова, но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. Например, задачи на решение треугольников (определение всех сторон и углов треугольника по трем его известным элементам), теоремы Евклида и Архимеда представленные в геометрическом виде, эквивалентны специфическим тригонометрическим формулам. Главным достижением средневековой Индии стала замена хорд синусами. Это позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии, как учению о тригонометрических величинах.
Учёные стран Ближнего и Среднего Востока с VIII века развили тригонометрию своих предшественников. Уже в середине IX века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того, как трактаты мусульманских ученых были переведены на латынь, многие идеи греческих, индийских и мусульманских математиков стали достоянием европейской, а затем и мировой науки. В дальнейшем потребности географии, геодезии, военного дела, способствовали развитию тригонометрии. Особенно усиленно шло ее развитие в средневековое время. Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насир ад-Дину ат-Туси (1201-1274), написавшему «Трактат о полном четырехстороннике». Творения ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела науки. Однако в их трудах еще не была введена необходимая символика. Современный вид тригонометрия получила в трудах Леонарда Эйлера (1707-1783). На основании трудов Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности (прил. №4). Тригонометрические вычисления применяются во многих областях человеческой деятельности: в геометрии, в физике, в астрономии, в архитектуре, в геодезии, инженерном деле, в акустике, в электронике и т.д.
I РАЗДЕЛ (теоретический)
Тема проекта и её актуальность: почему я выбрала тему «Способы отбора корней в тригонометрических уравнениях»?
- Расширить и углубить свои знания, полученные в курсе геометрии 8-9 класса.
- Тригонометрические уравнения рассматриваются в курсе алгебры и начал математического анализа 10-11 класса.
- Тригонометрические уравнения включены в КИМы ЕГЭ по математике.
Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку — это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Немаловажно также знать, тригонометрические формулы, табличные значения тригонометрических функций для решения целого ряда заданий Единого Государственного Экзамена по математике.
Цель проекта: изучить способы отбора корней в тригонометрических уравнениях и выбрать для себя наиболее рациональные подходы для качественной подготовки к ЕГЭ.
Задачи:
- познакомиться с историческими сведениями о возникновении тригонометрии, как науки;
- изучить соответствующую литературу;
- научиться решать тригонометрические уравнения;
- найти теоретический материал и изучить методы отбора корней в тригонометрических уравнениях;
- научиться отбирать корни в тригонометрических уравнениях, принадлежащим заданному промежутку;
- подготовиться к ЕГЭ по математике.
Приёмы отбора корней тригонометрического уравнения на заданном промежутке.
При решении тригонометрических уравнений предлагается провести отбор корней из множества значений неизвестного. В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.
Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.
Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.
Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрической окружности или числовой прямой. Тригонометрическая окружность более удобна, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. В остальных случаях предпочтительнее модель числовой прямой. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого не превосходит 2 или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.
Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.
II РАЗДЕЛ (практический)
Покажу практически три наиболее эффективных и рациональных, с моей точки зрения, метода отбора корней на примере решения следующего тригонометрического уравнения:
sinx=cos2x;
sinx−cos2x=0; [применили формулу двойного угла: cos2x = cos2x−sin2x]
sinx−(cos2x−sin2x)=0;
sinx−(1−sin2x−sin2x)=0;
sinx−(1−2sin2x)=0;
2sin2x+sinx−1=0.
Введем новую переменную: sinx = t, -1 ≤ t ≤1, получим
2t2+t-1=0
D=b2-4ac, т.е. D=9
t1 = -1, t2 = ½.
Вернемся к замене:
б) Рассмотрим три способа отбора корней, попадающих в отрезок .
1 способ: обратимся к единичной окружности. Отметим на ней дугу, соответствующую указанному отрезку, т.е. выполним отбор корней арифметическим способом и с помощью тригонометрической окружности:
2 способ: указанный отрезок соответствует неравенству: Подставим в него полученные корни:
3 способ: разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо n, и нуль (0), а потом добавим к каждому корню периоды.
Нам останется только выбрать корни, которые попали в нужный нам отрезок.
Ответ:
(Более подробный пример в приложении №1)
ЗАКЛЮЧЕНИЕ
При работе над моим проектом я изучила методы решения тригонометрических уравнений и способы отбора корней тригонометрических уравнений. Выяснила для себя положительные и отрицательные моменты. При апробации этих подходов в отборе корней тригонометрического уравнения, понимаешь, что каждый из этих способов удобен по-своему в том или ином случае. Например, алгебраический способ (решение неравенством) наиболее эффективен, когда промежуток для отбора корней достаточно большой, в тоже время он дает практически стопроцентное нахождение целочисленного параметра для вычисления корней, а применение арифметического способа приводит к громоздким вычислениям. При отборе корней уравнения, удовлетворяющих дополнительным условиям, т.е. когда корни уравнения принадлежат заданному промежутку, мне проще и нагляднее получить корни с помощью тригонометрической окружности, а проверить себя можно арифметическим способом. Замечу, что при решении тригонометрических уравнений трудности, связанные с отбором корней, возрастают, если в уравнении приходится учитывать ОДЗ. Как показывает практика и анкетирование моих одноклассников, из четырёх возможных методов отбора корней тригонометрического уравнения по дополнительным условиям, наиболее предпочтительным является отбор корней по окружности. Анкетирование проходили 12 респондентов, изучающих тригонометрию (прил. №5). Большинство из них отвечали, что этот раздел математики достаточно сложный: большой объем информации, очень много формул, табличных значений, которые нужно знать и уметь применять на практике. Еще как одна из проблем — небольшое количество времени, отведенное на изучение этого сложного раздела математики. И я разделяю их мнение. При такой сложности, многие считают, что тригонометрия важный раздел математики, который находит применение в других науках и практической деятельности человека.
СПИСОК ЛИТЕРАТУРЫ
- Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб для общеобразоват. организаций: базовый и углубленный уровни/ [С.М.Никольский, М.К.Потапов, Н.Н.Решетников и др.]-3 -е изд.- М.: Просвещение, 2016.
- Алгебра и начала математического анализа: Учеб для 10-11 кл.общеобразоват. организаций / А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницин и др. под редакцией А.Н.Колмогорова — М. Просвещение, 2017.
- С.В Кравцев и др. Методы решения задач по алгебре: от простых до самых сложных — М: Издательство: «Экзамен», 2005.
- Корянов А.Г., Прокофьев А.А. — Тригонометрические уравнения: методы решения и отбор корней. — М.: Математика ЕГЭ, 2012.
Электронные ресурсы
- https://ru.wikipedia.org/wiki/Тригонометрия
- https://www.yaklass.ru/p/ege/matematika/podgotovka-k-ege-po-matematike-profilnyi-uroven-10744/trigonometricheskie-uravneniia-s-ogranicheniiami-zadacha-13-536475/re-a4b9cc95-fe96-40c2-b70c-f46548b726a0
- https://mat.1sept.ru/1999/no19.htm
-
- https://math-ege.sdamgia.ru/
- https://alexlarin.net/ege21.html
- https://www.academia.edu/10962821/МАТЕМАТИКА_ЕГЭ_2012_Тригонометрические_уравнения_методы_решений_и_отбор_корней_типовые_задания_С1
- http://teacher-andreeva.ru/wp-content/uploads/2016/03/тригоном-ур-я.pdf
- https://reshimvse.com/article.php?id=100
В этой статье и постараюсь объяснить 2 способа отбора корней в тригонометрическом уравнение: с помощью неравенств и с помощью тригонометрической окружности. Перейдем сразу к наглядному примеру и походу дела будем разбираться.
а) Решить уравнение sqrt(2)cos^2x=sin(Pi/2+x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-7Pi/2; -2Pi]
Решим пункт а.
Воспользуемся формулой приведения для синуса sin(Pi/2+x) = cos(x)
sqrt(2)cos^2x = cosx
sqrt(2)cos^2x — cosx = 0
cosx(sqrt(2)cosx — 1) = 0
cosx = 0
x1 = Pi/2 + Pin, n ∈ Z
sqrt(2)cosx — 1 = 0
cosx = 1/sqrt(2)
cosx = sqrt(2)/2
x2 = arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x3 = -arccos(sqrt(2)/2) + 2Pin, n ∈ Z
x2 = Pi/4 + 2Pin, n ∈ Z
x3 = -Pi/4 + 2Pin, n ∈ Z
Решим пункт б.
1) Отбор корней с помощью неравенств
Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [-7Pi/2; -2Pi], находим целые значения для n.
-7Pi/2 меньше или равно Pi/2 + Pin меньше или равно -2Pi
Сразу делим все на Pi
-7/2 меньше или равно 1/2 + n меньше или равно -2
-7/2 — 1/2 меньше или равно n меньше или равно -2 — 1/2
-4 меньше или равно n меньше или равно -5/2
Целые n в этом промежутку это -4 и -3. Значит корни принадлежащие этому промежутку буду Pi/2 + Pi(-4) = -7Pi/2, Pi/2 + Pi(-3) = -5Pi/2
Аналогично делаем еще два неравенства
-7Pi/2 меньше или равно Pi/4 + 2Pin меньше или равно -2Pi
-15/8 меньше или равно n меньше или равно -9/8
Целых n в этом промежутке нет
-7Pi/2 меньше или равно -Pi/4 + 2Pin меньше или равно -2Pi
-13/8 меньше или равно n меньше или равно -7/8
Одно целое n в этом промежутку это -1. Значит отобранный корень на этом промежутку -Pi/4 + 2Pi*(-1) = -9Pi/4.
Значит ответ в пункте б: -7Pi/2, -5Pi/2, -9Pi/4
2) Отбор корней с помощью тригонометрической окружности
Чтобы пользоваться этим способом надо понимать как работает эта окружность. Постараюсь простым языком объяснить как это понимаю я. Думаю в школах на уроках алгебры эта тема объяснялась много раз умными словами учителя, в учебниках сложные формулировки. Лично я понимаю это как окружность, которую можно обходить бесконечное число раз, объясняется это тем, что функции синус и косинус периодичны.
Обойдем раз против часовой стрелки
Обойдем 2 раза против часовой стрелки
Обойдем 1 раз по часовой стрелки (значения будут отрицательные)
Вернемся к нашем вопросу, нам надо отобрать корни на промежутке [-7Pi/2; -2Pi]
Чтобы попасть к числам -7Pi/2 и -2Pi надо обойти окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.
Рассмотри x = Pi/2 + Pin. Какой приблизительно должен быть n, чтобы значение x было где-то в этом промежутке? Подставляем, допустим -2, получаем Pi/2 — 2Pi = -3Pi/2, очевидно это не входит в наш промежуток, значит берем меньше -3, Pi/2 — 3Pi = -5Pi/2, это подходит, попробуем еще -4, Pi/2 — 4Pi = -7Pi/2, также подходит.
Рассуждая аналогично для Pi/4 + 2Pin и -Pi/4 + 2Pin, находим еще один корень -9Pi/4.
Сравнение двух методов.
Первый способ (с помощью неравенств) гораздо надежнее и намного проще для пониманию, но если действительно серьезно разобраться с тригонометрической окружностью и со вторым методом отбора, то отбор корней будет гораздо быстрее, можно сэкономить около 15 минут на экзамене.
Просмотры: 158637 |
Статью добавил: slava191 |
Категория: математика
Тригонометрические уравнения
-
Замена переменной и сведение к квадратному уравнению
-
Разложение на множители
-
Однородные уравнения
-
Введение дополнительного угла
-
Универсальная подстановка
-
Учет ОДЗ уравнения
-
Метод оценки
-
Тригонометрические уравнения повышенной сложности.
Приемы решения
В данной статье мы расскажем об основных типах тригонометрических уравнений и методах их решения. Тригонометрические уравнения чаще всего встречаются в задаче 12 ЕГЭ.
В вариантах ЕГЭ задача, где нужно решить уравнение, состоит из двух пунктов. Первый пункт – решение самого уравнения. Второй – нахождение его корней на некотором отрезке.
Некоторые из методов (например, замена переменной или разложение на множители) являются универсальными, то есть применяются и в других разделах математики. Другие являются специфическими именно для тригонометрии.
Необходимых формул по тригонометрии не так уж и много. Учите наизусть!
Тригонометрические формулы.
Любой метод решения тригонометрических уравнений состоит в том, чтобы привести их к простейшим, то есть к уравнениям вида sin x = a, cos x = a, tg x = a, ctg x = a.
Если вы не помните, как решать простейшие тригонометрические уравнения, — читайте материал на нашем сайте: Простейшие тригонометрические уравнения, часть 1.
О том, что такое арксинус, арккосинус, арктангенс и арккотангенс, — еще одна статья на нашем сайте: Простейшие тригонометрические уравнения,часть 2.
Теперь — сами методы. Теория и примеры решения задач.
к оглавлению ▴
Замена переменной и сведение к квадратному уравнению
Это универсальный способ. Применяется в любых уравнениях — степенных, показательных, тригонометрических, логарифмических, каких угодно. Замена не всегда видна сразу, и уравнение нужно сначала преобразовать.
1. а) Решите уравнение:
б) Найдите корни уравнения, принадлежащие отрезку
Решение:
а) Рассмотрим уравнение
Преобразуем его, применив основное тригонометрическое тождество:
Заменяя sin x на t, приходим к квадратному уравнению:
Решая его, получим:
Теперь вспоминаем, что мы обозначили за t. Первый корень приводит нас к уравнению
Оно не имеет решений, поскольку
Второй корень даёт простейшее уравнение
Решаем его:
б) Найдем корни уравнения на отрезке с помощью двойного неравенства.
Разделим обе части неравенства на
Вычтем из обеих частей неравенства:
Разделим на 2 обе части неравенства:
Единственное целое решение – это n=0. Тогда — это единственный корень, который принадлежит отрезку
Ответ:
2. а) Решите уравнение:
б) Укажите корни этого уравнения, принадлежащие отрезку
Решение:
а)
Выразим косинус двойного угла по формуле
Получим:
Заменяя cosx на t, приходим к квадратному уравнению:
1)
2) нет решений, т. к.
Получим:
б) Отметим отрезок и найденные серии решений на единичной окружности.
Видим, что данному отрезку принадлежит только точка
Ответ: а)
б)
3. а) Решите уравнение:
б) Найдите все корни этого уравнения, принадлежащие отрезку
Решение:
а) Чтобы упростить уравнение применяем формулу приведения.
Так как получим:
Сделаем замену: Получим квадратное уравнение:
Сделаем обратную замену.
1) — нет решений, т. к.
2)
б) Найдем корни уравнения, принадлежащие отрезку , с помощью двойного неравенства.
Для серии решений получим:
Так как то
Для серии решений получим:
отсюда
У этого неравенства нет целых решенией, и значит, из второй серии ни одна точка в указанный отрезок не входит.
Ответ: а)
б)
к оглавлению ▴
Разложение на множители
Во многих случаях уравнение удаётся представить в таком виде, что в левой части стоит произведение двух или нескольких множителей, а в правой части — ноль. Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю. Сложное уравнение, таким образом, распадается в совокупность более простых.
4. а) Решите уравнение:
б) Найдите все корни уравнения на отрезке
Решение:
а) Применяем формулу синуса двойного угла:
Ни в коем случае не сокращайте на косинус! Ведь может случиться, что cos x обратится в нуль, и мы потеряем целую серию решений. Переносим всё в одну часть, и общий множитель выносим за скобки:
Полученное уравнение равносильно совокупности двух уравнений: cosx = 0 и 2sinx — 1 = 0.
Получим:
Все эти три серии решений являются ответом в части (а).
б) Отметим отрезок и найденные серии решений на единичной окружности.
Видим, что данному отрезку принадлежат точки
Ответ: а)
б)
5. а) Решите уравнение:
б) Найдите все корни уравнения на отрезке
Решение:
Применим формулу суммы синусов:
Дальше действуем так же, как и в предыдущей задаче:
Решаем уравнение :
(1) |
Решаем уравнение :
(2) |
Ну что, перечисляем обе серии (1) и (2) в ответе через запятую? Нет! Серия (2) является в данном случае частью серии (1). Действительно, если в формуле (1) число n кратно 5, то мы получаем все решения серии (2).
Поэтому ответ в пункте (а):
б) Найдем корни уравнения, принадлежащие отрезку с помощью двойного неравенства:
Этот промежуток содержит 8 целых чисел: -2; -1; 0; 1; 2; 3; 4; 5.
Для каждого из этих n найдем x. Получим 8 решений на данном промежутке:
Ответ: а)
б)
6. В следующей задаче также применяется метод разложения на множители. Но это заметно не сразу.
а) Решите уравнение:
б) Найдите все корни уравнения на отрезке
Решение:
Используем формулу понижения степени:
Получаем:
Применяем формулу суммы косинусов:
Получаем:
Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:
б) Найдем корни уравнения, принадлежащие отрезку с помощью двойного неравенства:
1)
Решив неравенство, получим:
Так как n ∈ Z, получим для n целые значения: 0, 1, 2.
Им соответствуют решения:
2) Из серии решений на указанном отрезке лежит только корень Но он уже входит в первую серию решений.
Можно также заметить, что вся вторая серия решений является подмножеством первой.
Ответ: а)
б)
к оглавлению ▴
Однородные уравнения
7. а) Решите уравнение:
б) Найдите все корни уравнения на отрезке
Решение:
Такое уравнение называется однородным.
Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене степень каждого слагаемого равна двум. Мы помним, что степень одночлена — это сумма степеней входящих в него сомножителей.
Для однородных уравнений существует стандартный приём решения — деление обеих его частей на .
Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?
Следующий абзац предлагаем выучить наизусть и всегда прописывать его при решении однородных уравнений.
Предположим, что cosx = 0. Тогда в силу уравнения и sinx = 0, что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию cosx 0, и мы можем поделить обе его части на .
В результате деления приходим к равносильному квадратному уравнению относительно тангенса:
Сделаем замену: получим:
б) Отметим отрезок и найденные серии решений на единичной окружности.
О том, как отметить на единичной окружности точки из первой серии решений, то есть арктангенс минус трех, читайте здесь: Простейшие тригонометрические уравнения, часть 2.
Видим, что данному отрезку принадлежат точки:
Ответ: а)
б)
8. а) Решите уравнение:
б) Найдите все корни уравнения на отрезке
Если бы в правой части стоял нуль, уравнение было бы однородным. Мы поправим ситуацию изящным приёмом: заменим число 3 на выражение
Получили однородное уравнение второй степени.
Так как не существует такой точки на единичной окружности, в которой одновременно синус и косинус равнялись бы нулю, мы разделим обе части уравнения на .
Получим:
Выполним замену: tgx = y, получим:
Обратная замена:
Ответом в пункте (а) являются две серии решений.
б) Найдем корни уравнения, принадлежащие отрезку с помощью единичной окружности. Для этого отметим на ней данный отрезок и найденные серии решений.
Видим, что данному отрезку принадлежит только точка
Ответ: а)
б)
к оглавлению ▴
Введение дополнительного угла
Этот метод применяется для уравнений вида acosx + bsinx=c. Он присутствует в школьных учебниках. Правда, в них рассматриваются только частные случаи — когда числа a и b являются значениями синуса и косинуса углов в 30°, 45° или 60°.
9. а) Решим уравнение:
б) Найдите все корни уравнения на отрезке
Решение:
Делим обе части на 2:
Замечаем, что
В левой части получили синус суммы:
отсюда
б) Отметим на единичной окружности отрезок и найденные серии решений.
Обратите внимание, что в этой задаче отрезок больше, чем полный круг. Как нам поступить? Один из способов – нарисовать рядом две окружности.
Видим, что данному отрезку принадлежат точки:
Ответ: а)
б)
Другой пример.
10. а) Решите уравнение:
б) Найдите все корни уравнения на отрезке
Решение:
Делим обе части на
Сделаем теперь для разнообразия в левой части косинус разности:
б) Найдем корни уравнения, принадлежащие отрезку с помощью единичной окружности. Отметим на ней данный отрезок и найденные серии решений.
Видим, что данному отрезку принадлежат точки 0 и
Ответ: а)
б)
Покажем, как применяется метод введения дополнительного угла в общем случае.
Рассмотрим уравнение
Делим обе части на
(4) |
Для чего мы выполнили это деление? Всё дело в получившихся коэффициентах при косинусе и синусе. Легко видеть, что сумма их квадратов равна единице:
Это означает, что данные коэффициенты сами являются косинусом и синусом некоторого угла :
Соотношение (4) тогда приобретает вид:
или
Исходное уравнение сведено к простейшему. Теперь понятно, почему рассматриваемый метод называется введением дополнительного угла. Этим дополнительным углом как раз и является угол
к оглавлению ▴
Универсальная подстановка
Запомним две важные формулы:
Их ценность в том, что они позволяют выразить синус и косинус через одну и ту же функцию — тангенс половинного угла. Именно поэтому они получили название универсальной тригонометрической подстановки.
Единственная неприятность, о которой не надо забывать: правые части этих формул не определены при . Поэтому если применение универсальной подстановки приводит к сужению ОДЗ, то данную серию нужно проверить непосредственно.
11. а) Решите уравнение:
б) Найдите все корни уравнения на отрезке
Решение:
Выражаем , используя универсальную тригонометрическую подстановку:
Делаем замену :
Получаем кубическое уравнение:
Оно имеет единственный корень .
Стало быть, , откуда .
Сужения ОДЗ в данном случае не было, так как уравнение с самого начала содержало .
б) Найдем корни уравнения, принадлежащие отрезку с помощью двойного неравенства:
Получим, что
Ответ: а)
б)
Универсальная тригонометрическая подстановка может также пригодиться при решении задач по планиметрии из второй части ЕГЭ. Поэтому формулы лучше выучить.
к оглавлению ▴
Учет ОДЗ уравнения
12. а) Рассмотрим уравнение:
б) Найдите все корни уравнения на отрезке
Решение:
Перепишем уравнение в виде, пригодном для возведения в квадрат:
Тогда наше уравнение равносильно системе:
Решаем уравнение системы:
,
,
Второе уравнение данной совокупности не имеет решений, а первое даёт две серии:
Теперь нужно произвести отбор решений в соответствии с неравенством . Серия не удовлетворяет этому неравенству, а серия удовлетворяет ему. Следовательно, решением исходного уравнения служит только серия .
Ответ в пункте (а): .
б) Найдем корни уравнения, принадлежащие отрезку с помощью двойного неравенства:
Неравенство имеет единственное целое решение
Тогда
Ответ: а)
б)
Мы рассмотрели основные методы решения тригонометрических уравнений, которые применяются в задаче 12 ЕГЭ.
Где же еще нам могут встретиться тригонометрические уравнения? Конечно, в задачах с параметрами. Или на олимпиадах по математике. Сейчас мы увидим еще несколько полезных приемов решения.
к оглавлению ▴
Метод оценки
В некоторых уравнениях на помощь приходят оценки .
13. Рассмотрим уравнение:
Так как оба синуса не превосходят единицы, данное равенство может быть выполнено лишь в том случае, когда они равны единице одновременно:
Таким образом, должны одновременно выполняться следующие равенства:
Обратите внимание, что сейчас речь идёт о пересечении множества решений (а не об их объединении, как это было в случае разложения на множители). Нам ещё предстоит понять, какие значения x удовлетворяют обоим равенствам. Имеем:
Умножаем обе части на 90 и сокращаем на π:
;
;
Правая часть, как видим, должна делиться на 5. Число n при делении на 5 может давать остатки от 0 до 4; иначе говоря, число n может иметь один из следующих пяти видов: 5n, 5m + 1, 5m + 2, 5m + 3 и 5m + 4, где. Для того, чтобы 9n+ 1 делилось на 5, годится лишь n = 5m + 1.
Искать k, в принципе, уже не нужно. Сразу находим x:
Ответ:
14. Рассмотрим уравнение:
Ясно, что данное равенство может выполняться лишь в двух случаях: когда оба синуса одновременно равны 1 или −1. Действуя так, мы должны были бы поочерёдно рассмотреть две системы уравнений.
Лучше поступить по-другому: умножим обе части на 2 и преобразуем левую часть в разность косинусов:
;
Тем самым мы сокращаем работу вдвое, получая лишь одну систему:
Имеем:
Ищем пересечение:
Умножаем на 21 и сокращаем на π:
Данное равенство невозможно, так как в левой части стоит чётное число, а в правой — нечётное.
Ответ: решений нет.
Это был тренировочный пример. А в задачах ЕГЭ решения есть всегда.
Посмотрите, как применяется метод оценки в задачах с параметрами.
15. Страшное с виду уравнение также решается методом оценок.
В самом деле, из неравенства следует, что .
Следовательно, , причём равенство возможно в том и только в том случае, когда
Остаётся решить полученную систему. Это не сложно.
Перенесем в левую часть и вынесем общий множитель за скобки , получим:
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл.
Каждое уравнение равносильно совокупности:
Это значит, что синус угла х равен нулю, а его косинус равен 0, 1 или -1.
Или синус угла х равен 1, а косинус этого угла равен 0, 1 или -1.
Такие углы легко найти на тригонометрическом круге. Найденные серии решений запишем в ответ.
Ответ:
к оглавлению ▴
Тригонометрические уравнения повышенной сложности.
Приемы решения
16. Рассмотрим такое уравнение:
Сделаем замену .
Как выразить через t? Имеем:
,
откуда . Получаем:
Начнем со второго уравнения.
Так как и то их сумма может быть равна 2, только оба слагаемых равны 1. Но на единичной окружности не существует точки, в которой одновременно синус и косинус равен единице. Значит, второе уравнение корней не имеет.
Решим первое уравнение методом введения дополнительного угла.
Для этого разделим обе части уравнения на и получим:
Ответ:
17. Помним формулы косинуса и синуса тройного угла:
,
Вот, например, уравнение:
Оно сводится к уравнению относительно :
,
,
Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:
Решим второе уравнение с помощью замены sinx = t.
Получим: или
Обратная замена:
А решением первого уравнения sinx = 0 являются числа вида
Ответ:
Интересно, что формулы синуса и косинуса тройного угла также могут пригодиться вам в решении задач по планиметрии из второй части ЕГЭ.
18. Как бороться с суммой четвёртых степеней синуса и косинуса?
Рассмотрим уравнение:
Выделяем полный квадрат!
;
;
;
;
;
;
19. А как быть с суммой шестых степеней?
Рассмотрим такое уравнение:
Раскладываем левую часть на множители как сумму кубов: .
Получим:
;
С суммой четвёртых степеней вы уже умеете обращаться.
Мы рассмотрели основные методы решения тригонометрических уравнений. Знать их нужно обязательно, это — необходимая база.
В более сложных и нестандартных задачах нужно ещё догадаться, как использовать те или иные методы. Это приходит только с опытом. Именно этому мы и учим на наших занятиях.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Тригонометрические уравнения» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023
Привет, самый лучший ученик во Вселенной!
Сегодня мы с тобой изучим, как решать одну из разновидностей уравнений – тригонометрические. Мы решим 39(!) примеров, от самых простых, до самых сложных.
И станем на шаг ближе к заветной цели – сдать ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!
Поехали!
Тригонометрические уравнения — коротко о главном
Тригонометрическое уравнение – это уравнение, в котором неизвестная находится строго под знаком тригонометрической функции.
Существует два способа решения тригонометрических уравнений:
Первый способ – с использованием формул.
Второй способ – через тригонометрическую окружность.
Тригонометрическая окружность позволяет измерять углы, находить их синусы, косинусы и прочее.
Чтобы уметь решать тригонометрические уравнения необходимо знать как минимум следующее:
- что такое синус, косинус, тангенс, котангенс;
- какие знаки принимает та или иная тригонометрическая функция в разных четвертях тригонометрической окружности;
- какие из этих функций нечётные, а какие – чётные;
- знание значений тригонометрических функций в основных углах 1 четверти.
Если ты что-то не знаешь, повтори следующие разделы:
- Синус, косинус, тангенс и котангенс угла и числа
- Тригонометрическая окружность
- Формулы тригонометрии
Этого будет вполне достаточно. Если это по ходу моего повествования окажется не так, то не сердись, придётся вспомнить что-нибудь ещё, не упомянутое здесь.
Простейшие тригонометрические уравнения
Что же это такое, как ты думаешь? Является ли, например, уравнение
( displaystyle frac{2}{2{x}-11}=frac{1}{3})
тригонометрическим?
Ты и сам прекрасно понимаешь, что нет! Потому что ни одной тригонометрической функции ( displaystyle left( sin x,cos x,tg x,ctg x right)) в нём и в помине нет!
А что насчёт вот такого уравнения?
( displaystyle sin2x+3x=2)
И опять ответ отрицательный!
Это так называемое уравнение смешанного типа.
Оно содержит как тригонометрическую составляющую, так и линейную (( displaystyle 3x)).
Некоторые типы подобных уравнений мы будем с тобой решать в следующих раздела этой статьи.
Но вернёмся к вопросу: «Что же такое тригонометрические уравнения?»
Тригонометрические уравнения –это уравнения, в которых неизвестная находится строго под знаком тригонометрической функции!
Например:
- ( displaystyle 6co{{s}^{2}}x+5sin{x}-7=0)
- ( displaystyle sinpi sqrt{x}=-1)
- ( displaystyle frac{3}{5}sinx+frac{4}{5}cosx=1) и т.д.
Однако для начала мы не будем решать сложные и иногда неприступные тригонометрические уравнения, а ограничимся самыми простыми уравнениями вида:
- ( displaystyle sinfleft( x right)=a)
- ( displaystyle cosfleft( x right)=a)
- ( displaystyle tgfleft( x right)=a)
- ( displaystyle ctgfleft( x right)=a)
Где ( displaystyle a) – некоторое постоянное число.
Например: ( displaystyle 0,5;~1;~-1;pi ; ~1-sqrt{3};~1000) и т. д.
( displaystyle fleft( x right)) – некоторая функция, зависящая от искомой переменной ( displaystyle x), например ( displaystyle fleft( x right)=x,~fleft( x right)=2-x,~fleft( x right)=frac{pi x}{7}) и т. д.
Такие уравнения называются простейшими!
Основная цель решения ЛЮБОГО тригонометрического уравнения – это свести его к виду простейшего!
Для этого, как правило, используют аппарат, который я описал в разделе «Формулы тригонометрии«
Так что очень важно, я бы даже сказал, жизненно необходимо научиться решать простейшие уравнения, ибо они – фундамент для решения сложных примеров.
Как часто тригонометрические уравнения встречаются на ЕГЭ?
Тригонометрические уравнения могут встретиться до четырех раз в заданиях ЕГЭ. Это может быть:
- Задача №5 (простейшее тригонометрическое уравнение – встречается время от времени);
- Задача №10 (задача с прикладным содержанием, которая включает в себя решение тригонометрического уравнения – встречается изредка);
- Задача №12 (она на производную, но в конечном счёте сводится к решению простейшего тригонометрического уравнения – ЧАСТО ВСТРЕЧАЕТСЯ В ЕГЭ)
- Задача №13 – даёт 2 первичных балла – (решение тригонометрического уравнения средней или высокой сложности – ОЧЕНЬ ЧАСТО, ПРАКТИЧЕСКИ ВСЕГДА!)
Так что, как ты понимаешь, при некоторых раскладах, навык решения данного вида уравнений может добавить в твою копилку аж 5 первичных баллов из 32!
Два способа решения тригонометрических уравнений – через формулы и по кругу
В принципе, я не могу сказать, что легче: держать в голове, как строится круг, или помнить 4 формулы.
Тут решать тебе самому, однако я всё же предпочитаю решать данные уравнения через формулы, поэтому здесь я буду описывать именно этот метод.
Вначале мы начнём с «самых простейших» из простейших уравнений вида:
- ( displaystyle text{sinx}=text{a}),
- ( displaystyle text{cosx}=text{a}),
- ( displaystyle text{tgx}=text{a}),
- ( displaystyle text{ctgx}=text{a}).
Я хочу сразу оговориться вот о чем, будь внимателен:
Уравнения вида: ( displaystyle sinfleft( x right)=a), ( displaystyle cosfleft( x right)=a) имеют смысл только тогда, когда ( displaystyle -1le text{a}le 1)
Уравнения вида: ( displaystyle text{tgx}=text{a}), ( displaystyle text{ctgx}=text{a}) имеют смысл уже при всех значениях ( displaystyle text{a}).
То есть, тебе не надо знать вообще никаких формул, чтобы спокойно ответить, что уравнения, например:
( displaystyle sinx=1000)
( displaystyle cosleft( 3{x}-sinleft( x right) right)=2)
( displaystyle sinleft( 2{{x}^{2}}-2x+1 right)=-3)
Корней не имеют!!!
Почему?
Потому что они «не попадают» в промежуток от минус единицы до плюс единицы.
Ещё раз скажу: внимательно обдумай эти слова, они уберегут тебя от многих глупых ошибок!!!
Для остальных же случаев тригонометрические формулы такие как в этой таблице.
( displaystyle A) | ( displaystyle a) | ( displaystyle -1) | ( displaystyle 0) | ( displaystyle 1) |
---|---|---|---|---|
( displaystyle sin x=A) | ( displaystyle {{left( -1 right)}^{n}}arcsin alpha +pi n) | ( displaystyle -frac{pi }{2}+2pi n) | ( displaystyle pi n) | ( displaystyle frac{pi }{2}+2pi n) |
( displaystyle cos x=A) | ( displaystyle pm arccos alpha +2pi n) | ( displaystyle pi +2pi n) | ( displaystyle frac{pi }{2}+pi n) | ( displaystyle 2pi n) |
( displaystyle tgx=A) | ( displaystyle arctgalpha +pi n) | ( displaystyle -frac{pi }{4}+pi n) | ( displaystyle pi n) | ( displaystyle frac{pi }{4}+pi n) |
( displaystyle ctgx=A) | ( displaystyle arcctgalpha +pi n) | ( displaystyle frac{3pi }{4}+pi n) | ( displaystyle frac{pi }{2}+pi n) | ( displaystyle frac{pi }{4}+pi n) |
На самом деле в этой таблице данных немного больше, чем нужно.
Тебе нужно лишь запомнить первые два её столбца, другие столбцы – частные случаи решения тригонометрических уравнений.
Я, допустим, никогда не утруждаю себя их запоминанием, а вывожу ответ из основных формул.
Глядя на таблицу, не возникло ли у тебя пары вопросов?
У меня бы возникли вот какие:
Что такое ( displaystyle n) и что такое, например ( displaystyle arcsinalpha ~left( arccosalpha ,~arctgalpha ,~arcctgalpha right))?
Отвечаю на все по порядку:
( displaystyle n) – это любое целое число ( displaystyle left( 0,text{ }1,text{ }-1,text{ }2,text{ }-2,text{ }ldots .text{ } right)).
В чем уникальная особенность тригонометрических уравнений перед всеми остальными, которые ты изучал?
ОНИ ИМЕЮТ БЕСКОНЕЧНОЕ КОЛИЧЕСТВО КОРНЕЙ!!!
И число ( displaystyle n) и служит для обозначения этой «бесконечности».
Конечно, вместо ( displaystyle n) можно писать любую другую букву, только не забывай добавить в ответе: ( displaystyle nin Z) – что означает, что ( displaystyle n) – есть любое целое число.
Теперь насчёт арксинуса и других «арок». Вообще, так записываются обратные тригонометрические функции и понимать, скажем, ( displaystyle arcsinalpha ) надо как «угол, синус которого равен ( displaystyle alpha )«
- ( displaystyle arcsinalpha)– угол, синус которого равен ( displaystyle alpha)
- ( displaystyle arccosalpha)– угол, косинус которого равен ( displaystyle alpha)
- ( displaystyle alpha)( displaystyle arctgalpha)– угол, тангенс которого равен ( displaystyle alpha)
- ( displaystyle alpha)( displaystyle arcctgalpha) – угол, котангенс которого равен ( displaystyle alpha)
Например,
- ( displaystyle arcsin left( 0 right)=0,)
- ( displaystyle arccos left( frac{sqrt{2}}{2} right)=frac{pi }{4},)
- ( displaystyle arctgleft( 1 right)=frac{pi }{4},)
- ( displaystyle arcsin left( 0,5 right)=frac{pi }{6},)
- ( displaystyle arccos left( frac{sqrt{3}}{2} right)=frac{pi }{6},)
- ( displaystyle arctgleft( sqrt{3} right)=frac{pi }{3})
то есть,
Алгоритм вычисления арксинусов и других «арок»
- Смотрим на то, что стоит под «аркой» – какое там число
- Смотрим, какая у нас «арка» – для синуса ли, или для косинуса, тангенса или котангенса
- Смотрим, чему равен угол (1 четверти), для которого синус, косинус, тангенс, котангенс равен числу, стоящему под аркой
- Записываем ответ
Вот простой пример вычисления аркосинуса:
( displaystyle arccos left( frac{sqrt{3}}{2} right))
Решение:
- Под аркой число ( displaystyle frac{sqrt{3}}{2})
- Арка для функции – косинус!
- Косинус какого угла равен ( displaystyle frac{sqrt{3}}{2})? Угла ( displaystyle frac{pi }{6}) (или ( displaystyle 30) градусов!)
- Тогда ( displaystyle arccos left( frac{sqrt{3}}{2} right)=frac{pi }{6})
Сам посчитай:
- ( displaystyle arctgleft( frac{1}{sqrt{3}} right))
- ( displaystyle arcsin left( frac{sqrt{3}}{2} right))
Ответы:
( displaystyle frac{pi }{6}) и ( displaystyle frac{pi }{3}).
Если «арка» берется от отрицательного числа?
Всё ли я сказал про «арки»? Почти что да! Остался вот какой момент.
Что делать, если «арка» берётся от отрицательного числа?
Лезть в таблицу – как бы не так! Для арок выполняются следующие формулы:
- ( displaystyle text{arcsin}left( -alpha right)=-text{arcsin}alpha )
- ( displaystyle text{arctg}left( -alpha right)=-text{arctg}alpha )
И внимание!!!
- ( displaystyle text{arcctg}left( -alpha right)=text{ }!!pi!!text{ }-text{arcctg}alpha )
- ( displaystyle text{arccos}left( -alpha right)=text{ }!!pi!!text{ }-text{arccos}alpha )
Чтобы запомнить, ориентируемся на обычные тригонометрические функции: грубо говоря, синус и тангенс мы смотрим на тригонометрической окружности по вертикальной оси, а косинус и котангенс – по горизонтальной.
Соответственно, для арксинуса и арктангенса выбираем две четверти по вертикали: первую и четвёртую (минусик выносится из аргумента и ставится перед функцией), а для арккосинуса и арккотангенса – по горизонтали: первую и вторую.
В первой и второй четвертях аргумент уже не может быть отрицательным, поэтому и получаются формулы не совсем похожими.
Ну всё, теперь мы можем приступать к решению простейших уравнений!
Решение 11-ти простейших тригонометрических уравнений
Уравнение 1. ( displaystyle sinleft( x right)=0,5)
Запишу по определению:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( 0,5 right)+pi n,~nin Z)
Всё готово, осталось только упростить, посчитав значение арксинуса.
Уравнение 2. ( displaystyle sinleft( x right)=-frac{sqrt{3}}{2})
Снова по определению:
Тогда запишу
( displaystyle x={{left( -1 right)}^{n}}arcsin left( -frac{sqrt{3}}{2} right)+pi n,~nin Z)
Так оставлять нельзя! Вначале вынесу «минус» из арксинуса!
Уравнение 3. ( displaystyle sinleft( x right)=frac{pi }{2})
Пример-ловушка! Невнимательный ученик бы записал ответ в лоб:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( frac{pi }{2} right)+pi n,~nin Z)
Или того хуже:
( displaystyle x={{left( -1 right)}^{n}}cdot 1+pi n,~nin Z)
Так как ( displaystyle sin left( frac{pi }{2} right)=1)
Но ты же внимательно читал мои пространные рассуждения, не так ли? И ты ведь не напишешь такую чушь? И ты понял, в чем здесь подвох?
А подвох вот в чем:
Уравнение 4. ( displaystyle sinleft( x right)=-0,1)
По определению:
( displaystyle x={{left( -1 right)}^{n}}arcsin left( -0,1 right)+pi n,~nin Z)
Или вынесем минус (как в примере 2):
( displaystyle x={{left( -1 right)}^{n+1}}arcsin left( 0,1 right)+pi n,~nin Z)
На этом стоп! Такого числа как 0,1 нет в таблице значений тригонометрических функций, поэтому оставим всё как есть:
Ответ: ( displaystyle x={{left( -1 right)}^{n+1}}arcsin left( 0,1 right)+pi n,~nin Z)
Уравнение 5. ( displaystyle cosleft( x right)=1)
И снова по определению (теперь для уравнения другого вида)
( displaystyle x=pm arccos1+2pi n,~nin Z)
Чему равен угол, косинус которого равен ( displaystyle 1)?
Этот угол равен( displaystyle 0)!
( displaystyle x=pm 0+2pi n,~nin Z)
Тогда нет смысла прибавлять или вычитать ноль, всё равно это ноль.
( displaystyle x=2pi n,~nin Z)
Получили формулу, которая есть в таблице решений тригонометрических уравнений!
Ответ: ( displaystyle x=2pi n,~nin Z)
Уравнение 6. ( displaystyle cosleft( x right)=-frac{1}{sqrt{2}})
По определению:
( displaystyle x=pm arccos left( -frac{1}{sqrt{2}} right)+2pi n,~nin Z)
Прежде всего вынесем «минус» по правилам для арккосинуса:
( displaystyle x=pm left( pi -arccos left( frac{1}{sqrt{2}} right) right)+2pi n,~nin Z)
Вот так и никак иначе выносится минус, запомни это!
Теперь арккосинус.
Не во всех таблицах есть значение ( displaystyle frac{1}{sqrt{2}}), но во всех есть ( displaystyle frac{sqrt{2}}{2})!!!
А теперь, внимание, ловкость рук и никакого мошенничества!
Уравнение 7. ( displaystyle cosleft( x right)=frac{pi }{4})
( displaystyle cosleft( x right)=frac{pi }{4})
Ещё один пример-обманка! Хотя данное уравнение решения имеет, ибо:
( displaystyle frac{pi }{4}=frac{3,14}{4}<1)
Тогда по определению:
( displaystyle x=pm arccos left( frac{pi }{4} right)+2pi n,~nin Z)
Но из этого никак не следует, что ( displaystyle arccos left( frac{text{ }!!pi!!text{ }}{4} right)=frac{sqrt{2}}{2})!!!!!!
Запомни, арккосинус – это угол, его аргумент (начинка) – это число, а выход – угол!!!
Ты когда-нибудь встречал в своей практике такой странный угол как ( displaystyle frac{sqrt{2}}{2})?!
Вот и я нет. Поэтому оставим как есть!
Ответ: ( displaystyle x=pm arccos left( frac{pi }{4} right)+2pi n,~nin Z)
Уравнение 8. ( displaystyle cosleft( x right)=-sqrt{2})
Всё просто: ( displaystyle -sqrt{2}<-1)
… и решений данное уравнение не имеет.
Уравнение 9. ( displaystyle tgleft( x right)=sqrt{2})
Запишем по определению:
( displaystyle x=arctgsqrt{2}+pi n,~nin Z)
( displaystyle arctgsqrt{2}) – не табличное значение, поэтому ответ сохраняем неизменным.
Обрати внимание, что в отличие от уравнений с синусом и косинусом, здесь мне не уже важно, какое у меня число стоит в правой части уравнения.
Уравнение 10. ( displaystyle ctgleft( x right)=-sqrt{3})
Снова по определению:
( displaystyle x=arсctgleft( -sqrt{3} right)+pi n,~nin Z)
Без проблем выносим минус из арккотангенса:
Уравнение 11. ( displaystyle ctgleft( x right)=1)
По формуле: ( displaystyle x=arcctg1+pi n,~nin Z).
Котангенс какого угла равен ( displaystyle 1)?
Это угол ( displaystyle frac{pi }{4}).
Ответ: ( displaystyle x=frac{pi }{4}+pi n,~nin Z).
Ну как, материал не кажется тебе слишком сложным? Я надеюсь, что нет. Теперь давай порешаем для закрепления чуть более сложные задачки.
Решение 3-х более сложных уравнений
Уравнение 12. Найдите корни уравнения: ( displaystyle cosfrac{8pi x}{6}=frac{sqrt{3}}{2}). В ответе запишите наибольший отрицательный корень.
Логика простая: будем поступать так, как поступали раньше не взирая на то, что теперь у тригонометрических функций стал более сложный аргумент!
Если бы мы решали уравнение вида:
( displaystyle cost=frac{sqrt{3}}{2})
То мы бы записали вот такой ответ:
( displaystyle t=pm arccosfrac{sqrt{3}}{2}+2pi n,~nin Z)
Или (так как ( displaystyle arccosfrac{sqrt{3}}{2}=frac{pi }{6}))
( displaystyle t=pm frac{pi }{6}+2pi n,~nin Z)
Но теперь в роли ( displaystyle t) у нас выступаем вот такое выражение: ( displaystyle t=frac{8pi x}{6})
Тогда можно записать:
( displaystyle frac{8pi x}{6}=pm frac{pi }{6}+2pi n)
Наша с тобою цель – сделать так, чтобы слева стоял просто ( displaystyle x), без всяких «примесей»!
Давай постепенно от них избавляться!
Вначале уберём знаменатель при ( displaystyle x): для этого домножим наше равенство на ( displaystyle 6):
( displaystyle frac{6cdot 8pi x}{6}=6cdot left( pm frac{pi }{6}+2pi n right))
( displaystyle 8pi x=pm frac{6pi }{6}+12pi n)
( displaystyle 8pi x=pm pi +12pi n)
Теперь избавимся от ( displaystyle pi ), разделив на него обе части:
( displaystyle 8x=pm 1+12n)
Теперь избавимся от восьмёрки:
( displaystyle frac{8x}{8}=pm frac{1}{8}+frac{12n}{8})
( displaystyle x=pm frac{1}{8}+frac{3n}{2})
Полученное выражение можно расписать как 2 серии решений (по аналогии с квадратным уравнением, где мы либо прибавляем, либо вычитаем дискриминант)
( displaystyle x=frac{1}{8}+frac{3n}{2})
или
( displaystyle x=-frac{1}{8}+frac{3n}{2})
Нам нужно найти наибольший отрицательный корень! Ясно, что надо перебирать ( displaystyle n).
Рассмотрим вначале первую серию:
Уравнение 13. Найдите корни уравнения: ( displaystyle cosfrac{pi left( {x}-7 right)}{3}=frac{1}{2}). В ответ запишите наибольший отрицательный корень.
Опять решаем, не взирая на сложный аргумент косинуса:
( displaystyle frac{pi left( {x}-7 right)}{3}=pm arccosfrac{1}{2}+2pi n,~nin Z)
( displaystyle frac{pi left( {x}-7 right)}{3}=pm frac{pi }{3}+2pi n,~nin Z)
Теперь снова выражаем ( displaystyle x) слева:
Умножаем обе стороны на ( displaystyle 3)
( displaystyle frac{3pi left( {x}-7 right)}{3}=pm frac{3pi }{3}+2cdot 3pi n,~nin Z)
( displaystyle pi left( {x}-7 right)=pm pi +6pi n,~nin Z)
Делим обе стороны на ( displaystyle pi)
( displaystyle frac{pi left( {x}-7 right)}{pi }=pm frac{pi }{pi }+frac{6pi n}{pi },~nin Z)
( displaystyle ~{x}-7=pm 1+6n,~nin Z)
Всё, что осталось, – это перенести ( displaystyle 7) вправо, изменив её знак с минуса на плюс.
( displaystyle x=7pm 1+6n,~nin Z)
У нас опять получается 2 серии корней, одна с ( displaystyle +1), а другая с ( displaystyle -1).
( displaystyle x=8+6n,~nin Z)
или
( displaystyle x=6+6n,~nin Z)
Нам нужно найти наибольший отрицательный корень. Рассмотрим первую серию:
Уравнение 14. Решите уравнение ( displaystyle tgfrac{pi x}{4}=-1). В ответе напишите наибольший отрицательный корень.
Решаем, не взирая на сложный аргумент тангенса.
Вот, вроде бы ничего сложного, не так ли?
( displaystyle frac{pi x}{4}=arctgleft( -1 right)+pi n)
( displaystyle frac{pi x}{4}=-arctgleft( 1 right)+pi n)
( displaystyle frac{pi x}{4}=-frac{pi }{4}+pi n)
Как и раньше, выражаем ( displaystyle x) в левой части:
( displaystyle frac{4pi x}{4}=-frac{4pi }{4}+4pi n)
( displaystyle pi x=-pi +4pi n)
( displaystyle frac{pi x}{pi }=-frac{pi }{pi }+frac{4pi n}{pi })
( displaystyle x=-1+4n)
Ну вот и замечательно, здесь вообще всего одна серия корней! Опять найдём наибольший отрицательный.
Ясно, что он получается, если положить ( displaystyle n=0). И корень этот равен ( displaystyle -1).
Ответ: ( displaystyle -1)
Теперь попробуй самостоятельно решить следующие задачи.
Решение 3-х примеров для самостоятельной работы
- Решите уравнение ( displaystyle sinfrac{pi x}{3}=0,5). В ответе напишите наименьший положительный корень.
- Решите уравнение ( displaystyle tgfrac{pi left( {x}-6 right)}{6}=frac{1}{sqrt{3}}). В ответе напишите наименьший положительный корень.
- Решите уравнение ( displaystyle sinfrac{pi left( 2{x}-3 right)}{6}=-0,5). В ответе напишите наименьший положительный корень.
Готов? Проверяем. Я не буду подробно описывать весь алгоритм решения, мне кажется, ему и так уделено достаточно внимания выше.
Ну что же, теперь ты умеешь решать простейшие тригонометрические уравнения! Сверься с решениями и ответами:
Ну что, всё правильно? Ох уж эти гадкие синусы, с ними всегда какие-то беды!
Эти знания помогут тебе решать многие задачи, с которыми ты столкнёшься в экзамене.
Если же ты претендуешь на оценку «5», то тебе просто необходимо перейти к чтению статьи для среднего уровня, которая будет посвящена решению более сложных тригонометрических уравнений.
СРЕДНИЙ УРОВЕНЬ СЛОЖНОСТИ
В этой части статьи я опишу решение тригонометрических уравнений более сложного типа и объясню, как производить отбор их корней. Здесь я буду опираться на следующие темы:
- Тригонометрические уравнения для начального уровня (см. выше)
- Формулы тригонометрии
Рекомендую тебе прежде ознакомиться с ними, прежде чем приступать к чтению и разбору этого чтива. Итак, все готово? Прекрасно. Тогда вперед.
Более сложные тригонометрические уравнения – это основа задач повышенной сложности. В них требуется как решить само уравнение в общем виде, так и найти корни этого уравнения, принадлежащие некоторому заданному промежутку.
Решение тригонометрических уравнений сводится к двум подзадачам:
- Решение уравнения
- Отбор корней
Следует отметить, что второе требуется не всегда, но все же в большинстве примеров требуется производить отбор. А если же он не требуется, то тебе скорее можно посочувствовать – это значит, что уравнение достаточно сложное само по себе.
Мой опыт разбора задач повышенной сложности показывает, что они как правило делятся на вот такие 4 категории.
Четыре категории задач повышенной сложности
- Уравнения, сводящиеся к разложению на множители.
- Уравнения, сводящиеся к виду ( displaystyle tgx=a).
- Уравнения, решаемые заменой переменной.
- Уравнения, требующие дополнительного отбора корней из-за иррациональности или знаменателя.
Говоря по-простому: если тебе попалось одно из уравнений первых трех типов, то считай, что тебе повезло. Для них как правило дополнительно нужно подобрать корни, принадлежащие некоторому промежутку.
Если же тебе попалось уравнение 4 типа, то тебе повезло меньше: с ним нужно повозиться подольше и повнимательнее, зато довольно часто в нем не требуется дополнительно отбирать корни.
Тем не менее данный тип уравнений я буду разбирать в разделе для продвинутых, а эту посвящу решению уравнений первых трех типов.
Уравнения, сводящихся к разложению на множители
Самое важное, что тебе нужно помнить, чтобы решать уравнения этого типа, это:
- Формулы приведения
- Синус, косинус двойного угла
Как показывает практика, как правило, этих знаний достаточно. Давай обратимся к примерам.
Уравнения, сводящиеся к разложению с помощью синуса двойного угла:
Уравнение 18. Решите уравнение ( displaystyle sin2x=text{sin}left( frac{pi }{2}+x right)). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -frac{7pi }{2},-frac{5pi }{2} right])
Здесь, как я и обещал, работают формулы приведения:
( displaystyle sin left( frac{pi }{2}+x right)=cosx)
Тогда мое уравнение примет вот такой вид:
( displaystyle sin2x=cosx)
Что дальше? А дальше обещанный мною второй пункт программы – синус двойного угла:
( displaystyle sin2x=2sinxcosx)
Тогда мое уравнение примет следующую форму:
( displaystyle 2sinxcosx=cosx)
Недальновидный ученик мог бы сказать: а теперь я сокращу обе части на ( displaystyle cosx), получаю простейшее уравнение ( displaystyle 2sinx=1) и радуюсь жизни! И будет горько заблуждаться!
Запомни!
Никогда нельзя сокращать обе части тригонометрического уравнения на функцию, содержащую неизвестную! Таки образом ты теряешь корни!
Так что же делать? Да все просто, переносить все в одну сторону и выносить общий множитель:
( displaystyle 2sinxcosx-cosx=0)
( displaystyle cosxleft( 2sinx-1 right)=0)
Ну вот, на множители разложили, ура! Теперь решаем:
( displaystyle cosx=0) или ( displaystyle 2sinx=1)
Первое уравнение имеет корни:
( displaystyle x=frac{pi }{2}+pi n).
А второе:
( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n)
На этом первая часть задачи решена. Теперь нужно отобрать корни.
Уравнения, сводящиеся к разложению на множители с помощью формул приведения
Уравнение 19. Решите уравнение ( displaystyle 2si{{n}^{2}}x=cos left( frac{3pi }{2}-x right)). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -frac{5pi }{2},-pi right]).
Решение:
Опять пресловутые формулы приведения:
( displaystyle cos left( frac{3pi }{2}-x right)=-sinx)
( displaystyle 2si{{n}^{2}}x=-sinx)
Опять не вздумай сокращать!
( displaystyle 2si{{n}^{2}}x+sinx=0)
( displaystyle sinxleft( 2sinx+1 right)=0)
Откуда:
( displaystyle sinx=0) или ( displaystyle 2sinx+1=0,~sinx=-frac{1}{2})
Первое уравнение имеет корни:
( displaystyle x=pi n)
А второе:
( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n)
Теперь снова поиск корней.
Уравнение 20. Решите уравнение ( displaystyle sqrt{2}sin left( frac{3pi }{2}-x right)cdot sinx=cosx)
Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle left[ frac{pi }{2},frac{3pi }{2} right]).
И снова формула приведения:
( displaystyle ~sin left( frac{3pi }{2}-x right)=-cosx)
( displaystyle -sqrt{2}cosxsinx=cosx)
( displaystyle -sqrt{2}cosxsinx-cosx=0)
( displaystyle sqrt{2}cosxsinx+cosx=0)
( displaystyle cosxleft( sqrt{2}sinx+1 right)=0)
( displaystyle cosx=0) или ( displaystyle sqrt{2}sinx+1=0)
( displaystyle sinx=-frac{1}{sqrt{2}})
Первая серия корней:
( displaystyle x=frac{pi }{2}+pi n).
Вторая серия корней:
Уравнение 20. Решите уравнение ( displaystyle 2sin2x=4cosx-sinx+1)
Укажите корни уравнения, принадлежащие отрезку ( displaystyle left[ -5pi ,-4pi right])
Довольно хитрая группировка на множители (применю формулу синуса двойного угла):
( displaystyle 2cdot 2sinxcosx=4cosx-sinx+1)
( displaystyle 4sinxcosx-4cosx+sinx-1=0)
( displaystyle 4cosxleft( sinx-1 right)+left( sinx-1 right)=0)
( displaystyle left( 4cosx+1 right)left( sinx-1 right)=0)
тогда ( displaystyle 4cosx+1=0) или ( displaystyle left( sinx-1 right)=0)
( displaystyle cosx=-frac{1}{4}) или ( displaystyle sinx=1)
( displaystyle x=pm left( pi -arccosfrac{1}{4} right)+2pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{2}+pi n)
Это общее решение. Теперь надо отбирать корни. Беда в том, что мы не можем сказать точное значение угла, косинус которого равен одной четверти. Поэтому я не могу просто так избавиться от арккосинуса – вот такая досада!
Что я могу сделать?
Я могу прикинуть, что так как ( displaystyle frac{1}{4}<0,5), то ( displaystyle arccosfrac{1}{4}>frac{pi }{3}).
( displaystyle frac{pi }{2}>arccosfrac{1}{4}>frac{pi }{3})
Составим таблицу: промежуток: ( displaystyle left[ -5pi ;~-4pi right])
Уравнение 21. Решите уравнение ( displaystyle sin2x-2sqrt{3}si{{n}^{2}}x+4cosx-4sqrt{3}sinx=0). Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle ~left[ -frac{pi }{2},pi right]).
Уравнение пугающего вида. Однако решается довольно просто путем применения формулы синуса двойного угла:
( displaystyle 2sinxcosx-2sqrt{3}si{{n}^{2}}x+4cosx-4sqrt{3}sinx=0)
Сократим на 2:
( displaystyle sinxcosx-sqrt{3}si{{n}^{2}}x+2cosx-2sqrt{3}sinx=0)
Сгруппируем первое слагаемое со вторым и третье с четвертым и вынесем общие множители:
( displaystyle sinxleft( cosx-sqrt{3}sinx right)+2left( cosx-sqrt{3}sinx right)=0)
( displaystyle left( sinx+2 right)left( cosx-sqrt{3}sinx right)=0)
( displaystyle sinx+2=0) или ( displaystyle cosx-sqrt{3}sinx=0)
Ясно, что первое уравнение корней не имеет, а теперь рассмотрим второе:
( displaystyle cosx-sqrt{3}sinx=0)
Вообще я собирался чуть позже остановиться на решении таких уравнений, но раз уж подвернулось, то делать нечего, надо решать…
Уравнения, сводящиеся к виду tgx=a
Ну вот, теперь самое время переходить ко второй порции уравнений, тем более, что я уже и так проболтался в чем состоит решение тригонометрических уравнений нового типа.
Но не лишним будет повторить, что уравнение вида
( displaystyle text{acosx}+text{bsinx}=0text{ }!!~!!text{ }left( text{a},text{b}ne 0 right))
Решается делением обеих частей на косинус:
( displaystyle text{a}frac{text{cosx}}{text{cosx}}+text{b}frac{text{sinx}}{text{cosx}}=0)
( displaystyle text{a}+text{btgx}=0)
( displaystyle text{tgx}=-frac{text{a}}{text{b}})
Таким образом, решить уравнение вида
( displaystyle text{acosx}+text{bsinx}=0 )
все равно, что решить
( displaystyle text{tgx}=-frac{text{a}}{text{b}})
Мы только что рассмотрели, как это происходит на практике. Однако давай решим еще и вот такие примеры.
Разбор 3-х примеров для закрепления материала
Уравнение 22. Решите уравнение ( displaystyle sinx+si{{n}^{2}}frac{x}{2}=co{{s}^{2}}frac{x}{2}). Укажите корни уравнения, принадлежащие отрезку ( displaystyle left[ -2pi ,-frac{pi }{2} right]).
Решение:
Ну совсем простое. Перенесем ( displaystyle si{{n}^{2}}frac{x}{2}) вправо и применим формулу косинуса двойного угла:
( displaystyle sinx=co{{s}^{2}}frac{x}{2}-si{{n}^{2}}frac{x}{2})
( displaystyle sinx=cosx)
Ага! Уравнение вида:
( displaystyle acosx+bsinx=0).
Делю обе части на ( displaystyle cosx)
( displaystyle frac{sinx}{cosx}=frac{cosx}{cosx})
( displaystyle tgx=1)
( displaystyle x=frac{pi }{4}+pi n)
Делаем отсев корней:
Уравнение 23. Решите уравнение ( displaystyle cosx={{left( cosfrac{x}{2}-sinfrac{x}{2} right)}^{2}}-1). Укажите корни уравнения, принадлежащие промежутку ( displaystyle left[ frac{pi }{2},2pi right]).
Все тоже довольно тривиально: раскроем скобки справа:
( displaystyle cosx=co{{s}^{2}}frac{x}{2}-2sinfrac{x}{2}cosfrac{x}{2}+si{{n}^{2}}frac{x}{2}-1)
Основное тригонометрическое тождество:
( displaystyle co{{s}^{2}}frac{x}{2}+si{{n}^{2}}frac{x}{2}=1)
Синус двойного угла:
( displaystyle 2sinfrac{x}{2}cosfrac{x}{2}=sinx)
Окончательно получим:
Уравнение 24. Решите уравнение ( displaystyle sqrt{3}sin2x+3cos2x=0). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ frac{3pi }{2},3pi right]).
Уравнение решается сразу же, достаточно поделить обе части на ( displaystyle cos2x):
( displaystyle sqrt{3}tg2x+3=0)
( displaystyle sqrt{3}tg2x=-3)
( displaystyle tg2x=-frac{3}{sqrt{3}})
( displaystyle 2x=-frac{pi }{3}+pi n)
( displaystyle x=-frac{pi }{6}+frac{pi n}{2})
Отсев корней:
( displaystyle n) | ( displaystyle x=-frac{pi }{6}+frac{pi n}{2}) |
---|---|
( displaystyle 3) | ( displaystyle -frac{pi }{6}+frac{3pi }{2}) — маленький недолет на ( displaystyle frac{pi }{6}) |
( displaystyle 4) | ( displaystyle -frac{pi }{6}+2pi =frac{11pi }{6}) — попал! |
( displaystyle 5) | ( displaystyle -frac{pi }{6}+frac{5pi }{2}=frac{7pi }{3}) — снова в яблочко! |
( displaystyle 6) | ( displaystyle -frac{pi }{6}+3pi =frac{17pi }{6}) — и снова удача на нашей стороне! |
( displaystyle 7) | ( displaystyle -frac{pi }{12}+frac{7pi }{2}) — на сей раз уже перелет! |
Ответ: ( displaystyle frac{11pi }{6};frac{14pi }{6};frac{17pi }{6}).
Так или иначе, нам еще предстоит встретиться с уравнениями того вида, которые мы только что разобрали. Однако нам еще рано закругляться: остался еще один «пласт» уравнений, которые мы не разобрали. Итак:
Решение тригонометрических уравнений заменой переменной
Здесь все прозрачно: смотрим пристально на уравнение, максимально его упрощаем, делаем замену, решаем, делаем обратную замену!
На словах все очень легко. Давай посмотрим на деле:
Уравнение 25. Решить уравнение: ( displaystyle 4co{{s}^{4}}x-4co{{s}^{2}}x+1=0). Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -2pi ,-pi right]).
Ну что же, здесь замена сама напрашивается к нам в руки!
( displaystyle t=co{{s}^{2}}x)
Тогда наше уравнение превратится вот в такое:
Уравнение 26. Решите уравнение ( displaystyle 6si{{n}^{2}}x+sin2x=2). Укажите корни данного уравнения, принадлежащие промежутку ( displaystyle left[ frac{3pi }{2},frac{5pi }{2} right]).
Решение:
Здесь замена сразу не видна, более того, она не очень очевидна. Давай вначале подумаем: а что мы можем сделать?
Можем, например, представить
( displaystyle sin2x=2sinxcosx)
А заодно и
( displaystyle 2=2si{{n}^{2}}x+2co{{s}^{2}}x)
Тогда мое уравнение примет вид:
( displaystyle 6si{{n}^{2}}x+2sinxcosx=2si{{n}^{2}}x+2co{{s}^{2}}x)
( displaystyle 4si{{n}^{2}}x+2sinxcosx-2co{{s}^{2}}x=0)
( displaystyle 2si{{n}^{2}}x+sinxcosx-co{{s}^{2}}x=0)
А теперь внимание, фокус:
Давай разделим обе части уравнения на ( displaystyle co{{s}^{2}}x):
( displaystyle 2frac{si{{n}^{2}}x}{co{{s}^{2}}x}+frac{sinxcosx}{co{{s}^{2}}x}-frac{co{{s}^{2}}x}{co{{s}^{2}}x}=0)
( displaystyle 2t{{g}^{2}}x+tgx-1=0)
Внезапно мы с тобой получили квадратное уравнение относительно ( displaystyle tgx)!
Сделаем замену ( displaystyle t=tgx), тогда получим:
( displaystyle 2{{t}^{2}}+t-1=0)
Уравнение имеет следующие корни:
( displaystyle {{t}_{1}}=-1,{{t}_{2}}=frac{1}{2})
Отсюда:
( displaystyle tgx=-1).
( displaystyle x=-frac{pi }{4}+pi n)
Или
( displaystyle tgx=frac{1}{2}).
( displaystyle x=arctgfrac{1}{2}+pi n)
Неприятная вторая серия корней, но ничего не поделаешь!
Производим отбор корней на промежутке ( displaystyle left[ frac{3pi }{2},frac{5pi }{2} right]).
Нам также нужно учитывать, что:
Уравнение 27. Решите уравнение ( displaystyle frac{1}{t{{g}^{2}}x}+frac{3}{sinx}+3=0). Найдите все корни этого уравнения, принадлежащие промежутку ( displaystyle left[ 2pi ,frac{7pi }{2} right]).
Решение:
Здесь нужно держать ухо востро: у нас появились знаменатели, которые могут быть нулевыми! Поэтому надо быть особо внимательными к корням!
Прежде всего, мне нужно преобразовать уравнение так, чтобы я мог сделать подходящую замену. Я не могу придумать сейчас ничего лучше, чем переписать тангенс через синус и косинус:
( displaystyle t{{g}^{2}}x=frac{si{{n}^{2}}x}{co{{s}^{2}}x})
( displaystyle frac{co{{s}^{2}}x}{si{{n}^{2}}x}+frac{3}{sinx}+3=0)
Теперь я перейду от косинуса к синусу по основному тригонометрическому тождеству:
( displaystyle frac{1-si{{n}^{2}}x}{si{{n}^{2}}x}+frac{3}{sinx}+3=0)
И, наконец, приведу все к общему знаменателю:
( displaystyle frac{1-si{{n}^{2}}x}{si{{n}^{2}}x}+frac{3sinx}{si{{n}^{2}}x}+frac{3si{{n}^{2}}x}{si{{n}^{2}}x}=0)
( displaystyle frac{1-si{{n}^{2}}x+3sinx+3si{{n}^{2}}x}{si{{n}^{2}}x}=0)
( displaystyle frac{2si{{n}^{2}}x+3sinx+1}{si{{n}^{2}}x}=0)
Теперь я могу перейти к уравнению:
( displaystyle 2si{{n}^{2}}x+3sinx+1=0)
Но при ( displaystyle si{{n}^{2}}xne 0) (то есть при ( displaystyle xne pi n)).
Теперь все готово для замены: ( displaystyle t=sin x)
Уравнение 28. Решите уравнение ( displaystyle 4si{{n}^{2}}x+8sin left( frac{3pi }{2}+x right)+1=0)
Найдите все корни этого уравнения, принадлежащие отрезку ( displaystyle left[ -3pi ,-frac{3pi }{2} right]).
Работаем по формулам приведения:
( displaystyle sin left( frac{3pi }{2}+x right)=-cosx)
Подставляем в уравнение:
( displaystyle 4si{{n}^{2}}x+8left( -cosx right)+1=0)
Перепишем все через косинусы, чтобы удобнее было делать замену:
( displaystyle 4left( 1-co{{s}^{2}}x right)-8cosx+1=0)
( displaystyle -4co{{s}^{2}}x-8cosx+5=0)
( displaystyle 4co{{s}^{2}}x+8cosx-5=0)
Теперь легко сделать замену:
( displaystyle t=cosx)
( displaystyle 4{{t}^{2}}+8t-5=0)
( displaystyle {{t}_{1}}=-frac{5}{2},{{t}_{2}}=frac{1}{2})
Ясно, что ( displaystyle {{t}_{1}}=-frac{5}{2}) — посторонний корень, так как уравнение ( displaystyle cosx=-frac{5}{2}) решений не имеет.
Уравнение 30. Решите уравнение ( displaystyle t{{g}^{2}}x+left( 1+sqrt{3} right)tgx+sqrt{3}=0)
Укажите корни этого уравнения, принадлежащие отрезку ( displaystyle left[ frac{5pi }{2},4pi right]).
Здесь замена видна сразу: ( displaystyle t=tgx)
( displaystyle {{t}^{2}}+left( 1+sqrt{3} right)t+sqrt{3}=0)
( displaystyle {{t}_{1}}=-1,~{{t}_{2}}=-sqrt{3})
Тогда ( displaystyle tgx=-1) или ( displaystyle tgx=-sqrt{3})
( displaystyle x=-frac{pi }{4}+pi n)
или
( displaystyle x=-frac{pi }{3}+pi n)
Отбор корней на промежутке ( displaystyle left[ frac{5pi }{2},4pi right]):
( displaystyle n)
( displaystyle x=-frac{pi }{4}+pi n)
( displaystyle x=-frac{pi }{3}+pi n)
( displaystyle 3)
( displaystyle x=frac{11pi }{4}) — подходит!
( displaystyle x=frac{8pi }{3}) — подходит!
( displaystyle 4)
( displaystyle x=frac{15pi }{4}) — подходит!
( displaystyle x=frac{11pi }{3}) — подходит!
( displaystyle 5)
( displaystyle x=frac{19pi }{4}) — много!
( displaystyle x=frac{14pi }{3}) — тоже много!
Ответ: ( displaystyle frac{11pi }{4}; frac{8pi }{3}; frac{15pi }{4}; frac{11pi }{3})
Ну вот, теперь все! Но решение тригонометрических уравнений на этом не заканчивается, за бортом у нас остались самые сложные случаи: когда в уравнениях присутствует иррациональность или разного рода «сложные знаменатели».
Как решать подобные задания мы рассмотрим далее в разделе для продвинутого уровня.
ПРОДВИНУТЫЙ УРОВЕНЬ СЛОЖНОСТИ
Уравнения, требующие дополнительного отбора корней из-за иррациональности и знаменателя
В дополнение к рассмотренным в предыдущих двух статьях тригонометрическим уравнениям, рассмотрим еще один класс уравнений, которые требуют еще более внимательного анализа.
Данные тригонометрические примеры содержат либо иррациональность, либо знаменатель, что делает их анализ более сложным.
Тем не менее ты вполне можешь столкнуться с данными уравнениями на ЕГЭ (и получить за них максимальное количество баллов!).
Однако нет худа без добра: для таких уравнений уже, как правило, не ставится вопрос о том, какие из его корней принадлежат заданному промежутку.
Давай не будем ходить вокруг да около, а сразу тригонометрические примеры.
Уравниние 31. Решить уравнение ( displaystyle frac{2si{{n}^{2}}x+sinx}{2cosx-sqrt{3}}=0~) и найти те корни, которые принадлежат отрезку ( displaystyle left[ -frac{3pi }{2},0 right]).
Решение:
У нас появляется знаменатель, который не должен быть равен нулю! Тогда решить данное уравнение – это все равно, что решить систему
( displaystyle left{ begin{array}{l}2si{{n}^{2}}x+sinx=0\2cosx-sqrt{3}ne 0end{array} right.)
Решим каждое из уравнений:
( displaystyle 2si{{n}^{2}}x+sinx=0)
( displaystyle sinxleft( 2sinx+1 right)=0)
( displaystyle sinx=0) или ( displaystyle sinx=-frac{1}{2})
( displaystyle x=pi n) или ( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n)
А теперь второе:
( displaystyle 2cosx-sqrt{3}ne 0)
( displaystyle xne pm frac{pi }{6}+2pi n)
или ( displaystyle xne frac{pi }{6}+2pi n), ( displaystyle xne -frac{pi }{6}+2pi n)
Теперь давай посмотрим на серию:
Уравнение 32. Решите уравнение: ( displaystyle left( sinx-frac{sqrt{3}}{2} right)sqrt{3{{x}^{2}}-7x+4}=0)
Решение:
Ну хотя бы не надо отбирать корни и то хорошо! Давай вначале решим уравнение, не взирая на иррациональность:
( displaystyle sinx=frac{sqrt{3}}{2})
( displaystyle x={{left( -1 right)}^{n}}frac{pi }{3}+pi n)
( displaystyle 3{{x}^{2}}-7x+4=0)
( displaystyle {{x}_{1}}=1,{{x}_{2}}=frac{4}{3})
И что, это все? Нет, увы, так было бы слишком просто! Надо помнить, что под корнем могут стоять только неотрицательные числа. Тогда:
( displaystyle 3{{x}^{2}}-7x+4ge 0)
Решение этого неравенства:
Уравнение 33. ( displaystyle left( 2{{x}^{2}}-5x+2 right)sqrt{cosx-sqrt{3}sinx}=0)
Как и раньше: вначале решим каждое отдельно, а потом подумаем, что же мы наделали.
( displaystyle 2{{x}^{2}}-5x+2=0)
( displaystyle {{x}_{1}}=2,~{{x}_{2}}=0,5)
Теперь второе уравнение:
( displaystyle cosx-sqrt{3}sinx=0)
( displaystyle tgx=frac{1}{sqrt{3}})
( displaystyle x=frac{pi }{6}+pi n)
Теперь самое сложное – выяснить, не получаются ли отрицательные значения под арифметическим корнем, если мы подставим туда корни из первого уравнения:
( displaystyle cos2-sqrt{3}sin2)
Число ( displaystyle 2) надо понимать как ( displaystyle 2) радианы.
Так как ( displaystyle 1) радиана – это примерно ( displaystyle 57) градусов, то ( displaystyle 2) радианы – порядка ( displaystyle 114) градусов. Это угол второй четверти.
Косинус второй четверти имеет какой знак? Минус. А синус? Плюс. Так что можно сказать про выражение
( displaystyle cos2-sqrt{3}sin2)?
Оно меньше нуля!
( displaystyle cos2-sqrt{3}sin2<0)
А значит ( displaystyle 2) – не является корнем уравнения.
Теперь черед ( displaystyle frac{1}{2}).
( displaystyle cosfrac{1}{2}-sqrt{3}sinfrac{1}{2})
Сравним это число с нулем.
Уравнение 34. ( displaystyle left( 4co{{s}^{2}}x-4cosx-3 right)sqrt{-6sinx}=0)
Решение:
( displaystyle 4co{{s}^{2}}x-4cosx-3=0)
( displaystyle t=cosx)
( displaystyle 4{{t}^{2}}-4t-3=0)
( displaystyle {{t}_{1}}=-0,5;{{t}_{2}}=1,5) – корень ( displaystyle {{t}_{2}}) не годится, ввиду ограниченности косинуса
( displaystyle cosx=-0,5)
( displaystyle x=pm frac{2pi }{3}+2pi n)
Теперь второе:
Уравнение 35. ( displaystyle frac{cos2x+sinx}{sqrt{text{sin}left( x-frac{pi }{4} right)}}=0)
Ну, ничего не поделаешь – поступаем так, как и раньше.
( displaystyle cos2x+sinx=0)
( displaystyle 1-2si{{n}^{2}}x+sinx=0)
( displaystyle 2si{{n}^{2}}x-sinx-1=0)
( displaystyle t=sinx)
( displaystyle 2{{t}^{2}}-t-1=0)
( displaystyle {{t}_{1}}=-0,5,{{t}_{2}}=1)
( displaystyle sinx=-0,5) или ( displaystyle sinx=1)
( displaystyle x={{left( -1 right)}^{n+1}}frac{pi }{6}+pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{2}+pi n)
Теперь работаем со знаменателем:
( displaystyle text{sin}left( x-frac{pi }{4} right)ge 0)
Я не хочу решать тригонометрическое неравенство, а потому поступлю хитро: возьму и подставлю в неравенство мои серии корней:
Уравнение 36. ( displaystyle sqrt{9-{{x}^{2}}}cosx=0)
Первое уравнение: ( displaystyle 9-{{x}^{2}}=0)
( displaystyle x=3) или ( displaystyle x=-3)
ОДЗ корня:
( displaystyle 9-{{x}^{2}}ge 0)
( displaystyle xin left[ -3;3 right])
Второе уравнение:
Уравнение 37. ( displaystyle frac{2si{{n}^{2}}x-sinx}{2cosx-sqrt{3}}=0)
( displaystyle 2si{{n}^{2}}x-sinx=0)
( displaystyle sinxleft( 2sinx-1 right)=0)
( displaystyle sinx=0) или ( displaystyle sinx=0,5)
( displaystyle x=pi n) или ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n)
Но ( displaystyle 2cosx-sqrt{3}ne 0)
( displaystyle cosxne frac{sqrt{3}}{2})
( displaystyle xne pm frac{pi }{6}+2pi n)
Рассмотрим ( displaystyle x={{left( -1 right)}^{n}}frac{pi }{6}+pi n).
Если ( displaystyle n) – четное, то
( displaystyle x=frac{pi }{6}+2pi k) – не подходит!
Если ( displaystyle n) – нечетное, ( displaystyle n=2k+1):
( displaystyle x=-frac{pi }{6}+2pi k+pi =frac{5pi }{6}+2pi k) – подходит!
Значит, наше уравнение имеет такие серии корней:
( displaystyle x=pi n) или ( displaystyle x=frac{5pi }{6}+2pi n)
Отбор корней на промежутке ( displaystyle left[ frac{3pi }{2},3pi right]):
( displaystyle n) | ( displaystyle 1) | ( displaystyle 2) | ( displaystyle 3) |
---|---|---|---|
( displaystyle x=pi n) | ( displaystyle pi )— не подходит | ( displaystyle 2pi ) – подходит | ( displaystyle 3pi ) – подходит |
( displaystyle x=frac{5pi }{6}+2pi n) | ( displaystyle frac{5pi }{6}+2pi =frac{17pi }{6}) – подходит | ( displaystyle frac{5pi }{6}+4pi ) – много | много |
Ответ: ( displaystyle 3pi ), ( displaystyle 2pi ), ( displaystyle frac{17pi }{6}).
Уравнение 38. ( displaystyle left( 2co{{s}^{2}}x-cosx right)sqrt{-11tgx}=0)
( displaystyle 2co{{s}^{2}}x-cosx=0)
( displaystyle cosxleft( 2cosx-1 right)=0)
( displaystyle cosx=0~)или ( displaystyle 2cosx-1=0)
Так как ( displaystyle tgx=frac{sinx}{cosx}), то при ( displaystyle cosx=0~) тангенс не определен. Тут же отбрасываем эту серию корней!
( displaystyle 2cosx-1=0)
( displaystyle cosx=0,5)
( displaystyle x=pm frac{pi }{3}+2pi n)
Вторая часть:
( displaystyle -11tgx=0)
( displaystyle x=pi n)
В то же время по ОДЗ требуется, чтобы
( displaystyle tgxle 0)
Проверяем найденные в первом уравнении корни:
( displaystyle tgleft( pm frac{pi }{3}+2pi n right)le 0)
Если знак ( displaystyle +):
( displaystyle tgleft( frac{pi }{3}+2pi n right)le 0)
( displaystyle frac{pi }{3}+2pi n) – углы первой четверти, где тангенс положительный. Не подходит!
Если знак ( displaystyle —):
( displaystyle tgleft( -frac{pi }{3}+2pi n right)le 0)
( displaystyle -frac{pi }{3}+2pi n) – угол четвертой четверти. Там тангенс отрицательный. Подходит. Записываем ответ:
Ответ: ( displaystyle x=pi n), ( displaystyle x=-frac{pi }{3}+2pi n).
Мы вместе разобрали в этой статье сложные тригонометрические примеры, но тебе стоит прорешать уравнения самому.
Подготовка к ЕГЭ на 90+
Алексей Шевчук — ведущий мини-групп
математика, информатика, физика
+7 (905) 541-39-06 — WhatsApp/Телеграм для записи
alexei.shevchuk@youclever.org — email для записи
- тысячи учеников, поступивших в лучшие ВУЗы страны
- автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
- закончил МФТИ, преподавал на малом физтехе;
- репетиторский стаж — c 2003 года;
- в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
- отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».
Всероссийский конкурс для школьных педагогов на лучшую образовательную статью «Просто о сложном»
Автор Лисицына Елена Федоровна.
учитель математики
МБОУ «Гимназия№11»
г. Бийска Алтайского кр.
Методы отбора корней в тригонометрических уравнениях
или
Ох уж эта тригонометрия!
Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку — это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен в течение уже более 10лет. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Необходимо также знать тригонометрические формулы, табличные значения тригонометрических функций для решения еще целого ряда заданий Единого Государственного Экзамена по математике. Постоянно работая в 10-11 классах, я регулярно сталкивалась с определенными проблемами при работе с вышеуказанным разделом тригонометрии: долго не могла установить баланс между доступностью изложения материала и достаточностью обоснований развернутого решения этой категории заданий. В моей практике были случаи, когда вполне успевающие по математике учащиеся начинали испытывать неуверенность и просто страх при решении тригонометрических уравнений с отбором корней, будь то принадлежность корней области допустимых значений переменной или указанному в задании промежутку. В результате целенаправленной многолетней работы в этом направлении у меня сложилась определенная методика работы с данным разделом, которая оказалась довольно успешной, что подтверждает следующая таблица результатов выполнения учащимися задания №13 профильного ЕГЭ по математике с 2015 по 2021 г.г. ( в % от общего количества учеников 11-х классов гимназии, сдающих профильный ЕГЭ по математике)
Баллы за задание №13(С-1) |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
1 балл |
52,5% |
55,1% |
59,0% |
68,8% |
76,4% |
85.8% |
92,2% |
2 балла |
43,6% |
47.2№ |
51,1% |
57,2% |
63,3% |
77,0% |
83,5% |
В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.
Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.
Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.
Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрического круга или числовой прямой. Тригонометрический круг более удобен, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого превосходит полный оборот или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.
Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.
Моя практика показала, что чаще всего можно обойтись применением тригонометрического круга при отборе корней , а в случае, если промежуток превышает по длине полный оборот- алгебраическим способом. При этом, безусловно, следует познакомить учащихся и с остальными способами. Таким образом, работа над данным разделом разделилась у меня на следующие этапы:
1)Знакомство с устройством тригонометрического круга и отработка умений находить числа и промежутки на нем в ходе выполнения следующих упражнений:
2)Отработка навыков работы с тригонометрическим кругом при решении простейших тригонометрических уравнений с отбором корней , которая предполагает выполнение большого количества упражнений по типу приведенных ниже:
3)Отбор корней в одном и том же уравнении разными способами, чтобы учащиеся имели возможность выбора в соответствии со своими предпочтениями, например
Например,
а) Решить уравнение cos2x=sin(π/2+x).
б) Найдите все корни этого уравнения, принадлежащие промежутку [–7π/2; –2π].
Решим пункт а)Воспользуемся формулой приведения для синуса sin(π/2+x) = cos(x);cos2x = cosx ;
cos2x – cosx = 0; cosx(cosx – 1) = 0, т.е.
cosx = 0 |
cosx – 1 = 0 cosx = 1/ ; cosx = /2 x = arccos(/2) + 2πk, k ∈ Z x = –arccos(/2) + 2πm, m ∈ Z x = π/4 + 2πk, k ∈ Z x = —π/4 + 2πm, m ∈ Z |
Решим пункт б).
I . Отбор корней с помощью неравенств
Здесь все делается просто, полученные корни подставляем в заданный нам промежуток [–7π/2; –2π], находим целые значения для n.
–7π/2 ≤ π/2 + πn ≤ –2π;
Сразу делим все на π или умножаем на 1/ π
–7/2 ≤ 1/2 + n ≤ –2;
–7/2 – 1/2 ≤ n ≤ –2 – 1/2 ;
–4 ≤ n ≤ –5/2.
Целые n в этом промежутке это: n=–4 n= –3.
Значит, корни, принадлежащие этому промежутку, будут следующие:
х= π/2 + π(–4) = –7π/2; х=π/2 + π(–3) = –5π/2.
Аналогично решаем еще два неравенства:
–7π/2 ≤ π/4 + 2πk ≤ –2π;
–15/8 ≤ k ≤ –9/8.
Получили, что целых k в этом промежутке нет.
–7π/2 ≤ –π/4 + 2πm ≤ –2π;
–13/8 ≤ m ≤ –7/8.
Получили одно целое n в этом промежутке, m =–1. Значит, отобранный корень на этом промежутке имеет вид: х= –π/4 + 2π·(–1) = –9π/4.
Ответ: –7π/2, –5π/2, –9π/4.
II. Отбор корней с помощью тригонометрической окружности.
Чтобы использовать этот способ надо понимать, как работать с окружностью. Так как функции синус, косинус, тангенс и котангенс периодичны, то окружность, можно обходить бесконечное число раз.
«Обойдем» окружность один раз против часовой стрелки (положительное направление, т.е. значения будут положительные)
«Обойдем» окружность два раза против часовой стрелки (положительное направление т.е. значения будут положительные)
«Обойдем» 1 раз по часовой стрелки (отрицательное направление, т.е. значения будут отрицательные)
Вернемся к вопросу об отборе корней на промежутке
[–7π/2; –2π].
Чтобы попасть к числам –7π/2 и –2π надо «обойти» окружность против часовой стрелки два раза. Для того, чтобы найти корни уравнения на этом промежутке надо прикидывать и подставлять.
Рассмотри x = π/2 + πn. Какой приблизительно должен быть n, чтобы значение x было где–то в этом промежутке? Предположим n= –2, получаем х=π/2 – 2π = –3π/2, очевидно, это не входит в наш промежуток. Значит, берем меньше n=–3, то х= π/2 – 3π = –5π/2, это подходит. Попробуем еще n=–4, то х=π/2 – 4π = –7π/2, также подходит.
Рассуждая аналогично для х=π/4 + 2πk, k ∈ Z и х=–π/4 + 2πm, m ∈ Z находим еще один корень x=–9π/4.
После того, как отбор корней произвели разными способами, прошу проанализировать преимущества каждого из них, получились, в частности такие итоги: первый способ (с помощью неравенств) гораздо надежнее и намного проще для понимания, но нужно уметь решать простейшие неравенства. Если действительно серьезно разобраться с тригонометрической окружностью, то отбор корней по второму методу будет гораздо быстрее. Плюс экономия времени на экзамене.
4)Проведение смотра знаний по данной теме в форме математической игры «Своя игра»
(идея заимствована здесь https://kopilkaurokov.ru/matematika/uroki/okh-uzh-eta-trighonomietriia )
5)Рассмотрение реальных работ участников ЕГЭ прошлых лет, оцененных экспертами, с целью нахождения ошибок при выполнении отбора корней в тригонометрических уравнениях, например оценка эксперта-1 балл. Почему не засчитано решение п.б)?
Вывод: отбор корней нельзя назвать обоснованным, так как перебор остановлен на корне принадлежащем отрезку.
Вывод: при отборе корней отсутствует решение и ошибочно указано число, которое не является корнем тригонометрического уравнения.
В заключение отмечу, что поскольку задание № 13 (или №12 в модели профильного ЕГЭ 2022 года) является самым простым из заданий с развернутым решением, то целенаправленная работа над ним дает возможность большему числу выпускников успешно справиться с ним и получить высокий результат на экзамене.
Список используемых ресурсов:
1. Виленкин Н. Я. Алгебра и математический анализ 10 класс. Учебник для углубленного изучения математики в общеобразовательных учреждениях, Издательство Мнемозина, 13-е изд. стереотипное, 2006. — 336с.
2. Гельфанд И.М., Львовский С.М., Тоом А.Л. Тригонометрия, М. : МЦНМО, 2003.-7-16 с.
3. Захарова, И. Г. Информационные технологии в образовании: учебное пособие для студ. пед. учеб. заведений/ И. Г. Захарова,– М.: Издательский центр «Академия», 2003. – 192 с.
4. Звавич В.И., Пигарев Б.П. Тригонометрические уравнения (решение уравнений + варианты самостоятельных работ)//Математика в школе.№3, С.18-27.
5. А.Н. Колмагорова Алгебра и начала анализа. Учебник для 10-11 классов общеобразовательных учреждений, 17-е изд. – М. : Просвещение, 2008. — 384 с.
6. Королев С.В. Тригонометрия на экзамене по математике, изд. Экзамен, 2006. – 254 с.
7. Марасанов А.Н. О методологическом подходе в обучении тригонометрии/ Н.И. Попов, А.Н. Марасанов// Знание и понимание. Умение. -2008. — №4. — 139-141 с.
8. Марасанов А.Н. Тригонометрия: учебное пособие, 2-е изд., испр и доп. (Н.И. Попов, А.Н. Марасанов.-Йошкар-Ола; Мар. гос. Ун-т, 2009.-114с.)
9. Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Тригонометрия. 10 класс, М. : Просвещение, 2008. – 61 с.
10. Мордкович А.Г. Алгебра и начала анализа.10-11 классы. Часть 1.Учебник для учащихся общеобразовательных учреждений(базовый уровень). – 10-е изд., стер. – М. : Мнемозина, 2009. – 399 с.:ил.
11. Мордкович А.Г. Алгебра и начала анализа.10-11 классы. Часть 2. Задачник для учащихся общеобразовательных учреждений(базовый уровень), – 10-е изд., стер. – М. : Мнемозина, 2009. – 399 с.:ил. 69
12. Мирошин В. Отбор корней в тригонометрических уравнениях.//Математика. Приложение к газете «Первое сентября» №17, 2006г.
13. Просветов Г.И. Тригонометрия. Задачи и решения, Альфа-Пресс, 2010. – 72 с.
14. Решетников Н.Н. Тригонометрия в школе: М. Педагогический университет «Первое сентября», 2006, лк 1.
15. Смоляков А.Н., Севрюков П.Ф. Приемы решения тригонометрических уравнений//Математика в школе. 2004. №1. С.24-26.
16. Шабашова О.В. Приемы отбора корней в тригонометрических уравнениях//Математика в школе. 2004. №1. С.20-24.
17. https://ppt-online.org/491236
18. Методические материалы для председателей и членов предметных комиссий субъектов Российской Федерации по проверке выполнения заданий с развёрнутым ответом экзаменационных работ ЕГЭ 2022 года. МАТЕМАТИКА. Федеральный институт педагогических измерений, 2022
19. https://kopilkaurokov.ru/matematika/uroki/okh-uzh-eta-trighonomietriia