Как найти косинус если есть котангенс

Как найти синус, если известен тангенс?

Как найти косинус, если известен тангенс?

довольно часто при решении уравнений и упрощении тригонометрических выражений требуется найти синус или косинус через тангенс.

Для этого существуют специальные формулы. Итак, для нахождения косинуса нужно извлечь квадратный корень из дроби в числителе которой единица, а в знаменателе выражение единица плюс тангенс в квадрате.

А вот для того, чтобы найти синус нужно извлечь квадратный корень из выражения один минус дробь

в числителе которой единица, а в знаменателе выражение единица плюс тангенс в квадрате.

Но нужно обратить на знак синуса и косинуса, в зависимости от того в какой четверти находится угол. И если синус находим, то в 3 и 4 четвертях он будет отрицателен, а если косинус, то во второй и третьей.

система выбрала этот ответ лучшим

Ксарф­акс
[156K]

4 года назад 

Косинус через тангенс

Для того, чтобы найти значение косинуса по известному тангенсу, нужно воспользоваться одним из тригонометрических тождеств.

Сумма квадрата тангенса и единицы равна отношению единицы и квадрата косинуса.

Отсюда можно выразить косинус:

Наличие знака ± связано с тем, что в одних четвертях косинус угла может быть положительным, а в других — отрицательным.

То есть в условии задачи должна оговариваться четверть, в которой находится угол.

**

Пример.

tgα = 1/√3, α находится в 1 четверти (0 < α < 90).

Найдём косинус: cosα = √ ( 1 / (1 + 1/3)) = √ ( 1 / (4/3)) = √ (3/4) = √3/2.

Итак, если тангенс равен 1/√3, то косинус равен √3/2.

Нетрудно догадаться, что мы имели дело с углом 30°.


Синус через тангенс

Здесь также понадобятся тригонометрические тождества.

Можно пойти двумя путями:

1) Выразить котангенс через тангенс и найти синус по котангенсу.

2) Найти косинус по тангенсу, а затем воспользоваться основным тригонометрическим тождеством.

**

Пример.

tgα = √3, α находится в 1 четверти (0 < α < 90).

Найдём котангенс: ctga = 1 / tgα = 1 / √3.

Теперь найдём синус: sina = √ ( 1 / (1 + 1/3)) = √ ( 1 / (4/3)) = √ (3/4) = √3/2.

Или:

cosa = √ ( 1 / (1 + 3)) = √ (1/4) = 1/2.

sina = √ (1 — 1/4) = √ (3/4) = √3/2.

Таким образом, если тангенс равен √3, то синус равен √3/2.

Здесь также понятно, что это угол 60°.

Серге­йНико­лаев
[128K]

5 месяцев назад 

Для этого существуют вполне определённые математические тригонометрические формулы. Например, косинус любого угла можно найти, зная его тангенс, исходя из соотношения что он равен корню квадратному из дроби, в числителе которой будет единица, а в знаменателе квадрат тангенса плюс единица. Только надо учитывать момент, что он может быть положительным и отрицательным.

Зная косинус, несложно вычислить и синус любого угла, если вспомнить, что сумма их квадратов всегда равна единице. Также можно найти котангенс этого угла, разделив 1 на тангенс, а дальше воспользоваться аналогичной приведённой в первом абзаце формулой для синуса и котангенса.

Optor­ius
[13.8K]

6 месяцев назад 

Синус и косинус через тангенс можно найти:

1 — По таблице значений тригонометрических функций некоторых углов.

2 — Через вычисления по формулам тригонометрических тождеств. Сначала находим косинус, затем по нему синус.

3 — Через универсальные тригонометрические подстановки (полуугловые подстановки). Такой способ обычно используют при вычислении интегралов, он дает приближенный результат.

Для примера:

Возьмем tg = √3. По таблице sin = √3/2 ≈ 0,866. По второму способу sin = √(1-1/4) ≈ 0,866. По третьему способу sin = √3/(7/4) ≈ 0,9897.

Дмитр­ий Подко­паев
[95]

3 года назад 

Приведу на всякий случай, на мой взгляд, наиболее общий способ нахождения синуса и косинуса по тангенсу. Как говорится определил знак подставил в выражение и получил ответ.

В алгебре и геометрии очень часто при решении задач используются тригонометрические формулы, которые чаще называют тригонометрическими тождествами. Из любого тригонометрического тождества несложно вывести новую формулу, необходимую для нахождения одной из величин, входящих в его состав.

****************­*****************­*****************­*****************­*****

Для того, чтобы найти косинус угла, зная его тангенс, возьмем тригонометрическое тождество:

фото из интернета

.

Из данного тождества выводим новую формулу для вычисления косинуса:

фото из интернета

Не забываем, что косинус может принимать как положительные, так и отрицательные значения в зависимости от четверти нахождения угла.

****************­*****************­*****************­*****************­*****

Для вычисления синуса угла через его тангенс можно действовать по-разному.

Например, вычислить по выведенной выше формуле косинус угла, а затем воспользоваться еще одним тригонометрическим тождеством и вывести из него формулу для вычисления синуса угла:

фото из интернета

Алиса в Стран­е
[364K]

3 года назад 

В тригонометрических тождествах нет, конечно, ничего сложного, вот только запомнить их все так, чтобы не пользоваться справочными материалами, обычному человеку достаточно трудно, поэтому всегда приходится где-то искать эти формулы. Вот одна из них:

Из нее то мы и будем получать формулу для выполнения задания из вопроса, а именно — нахождения косинуса через тангенс, проведя несложные преобразования, получим:

Как видите, действительно все очень просто.

Теперь, найдя косинус, воспользуемся основным тригонометрическим тождеством, преобразуем его, чтобы найти синус через уже найденный косинус, формула такая:

RIOLI­t
[176K]

5 лет назад 

конечно тангенс угла- это отношение синуса этого угла к косинусу того же угла- условно- а/б= с и а= с*в, в= а/с, сразу видно, что, кроме с, что- нибудь еще должно быть дано иначе не расколоть задачку, разве с будет равно 1 или еще какому замечательному значению, позволяющему определить величину угла угла.

Krust­all
[125K]

8 месяцев назад 

Синус, косинус и тангенс являются тригонометрическими функциями. Исторически они возникли как отношения между сторонами прямоугольного треугольника, поэтому их удобнее вычислять через прямоугольный треугольник. Однако через него могут быть выражены только тригонометрические функции острых углов. Для тупых углов вам нужно будет вставить окружность.

Иногда, необходимо найти синус или косинус через тангенс. Для этого существуют специальные формулы. Итак, чтобы найти косинус, нужно извлечь квадратный корень из дроби, в числителе которой единица, а в знаменателе выражение единица плюс тангенс к квадрату.

Но чтобы найти синус, нужно извлечь квадратный корень из выражения один минус дробь в числителе которого единица, а в знаменателе выражение равно единице плюс касательная к квадрату.

Но нужно обращать внимание на знак синуса и косинуса в зависимости от того, в какой четверти находится угол. И если мы найдем синус, то в 3-й и 4-й четвертях он будет отрицательным, а если косинус — во 2 и 3.

Если говорить о тангенсе угла, то является отношением синуса по отношению к косинусу. Так, следует воспользоваться тригонометрическим тождеством. Согласно ему выводится формула, которую используем для того, чтобы вычислить косинус.

Вы можете вычислить по формуле, а также воспользуюсь еще 1 тригонометрическим тождеством, выведя формула вычислить:

Лара Изюми­нка
[59.9K]

2 года назад 

Итак , чтобы найти синус нужно взять корень из выражения 1 деленное на 1 плюс тангенс в квадрате.

Далее по основному тригонометрическому тождесьву можно найти косинус. Для этого нужно извлечь квадратный корень их 1 минус только что найденнный синус в квадрате.

sin=sqrt(1/(1+((1/tg)**2)))

cos=sqrt(1/(1+((1/ctg)**2)))

Знаете ответ?

Смотрите также:

Что такое тангенс, катангенс, синус, косинус, секанс, касеканс?

Как найти тангенс, если известен косинус и синус?

Как выучить значения косинусов, синусов, тангенсов?

Какова этимология слов «тангенс, котангенс, синус, косинус, тон»?

А вам в жизни когда нибудь приходились столкнуться с косинусами, синусами?

Как легко запомнить тригонометрический круг (единичную окружность)?

Как узнать синус угла в треугольнике если известны синусы остальных углов?

Определите знак выражения и как вы нашли?

Sin имеет много рациональных значений, а в таблицах мало, почему (см.)?

Для чего и где нужны математические Sin и Cos?

Прошу, очень надо!! Как найти синус, косинус и тангенс, если известен только котангенс??…

1 Ответ






оставил комментарий

11 Май, 18


от
15Anastasia15_zn
Начинающий

(359 баллов)








оставил комментарий

11 Май, 18


от
bayd_zn
Отличник

(7.5k баллов)








оставил комментарий

11 Май, 18


от
15Anastasia15_zn
Начинающий

(359 баллов)








оставил комментарий

11 Май, 18


от
15Anastasia15_zn
Начинающий

(359 баллов)








оставил комментарий

11 Май, 18


от
bayd_zn
Отличник

(7.5k баллов)








оставил комментарий

11 Май, 18


от
bayd_zn
Отличник

(7.5k баллов)








оставил комментарий

11 Май, 18


от
15Anastasia15_zn
Начинающий

(359 баллов)








оставил комментарий

11 Май, 18


от
bayd_zn
Отличник

(7.5k баллов)








оставил комментарий

11 Май, 18


от
15Anastasia15_zn
Начинающий

(359 баллов)








оставил комментарий

11 Май, 18


от
bayd_zn
Отличник

(7.5k баллов)



Быстрая регистрация

После регистрации вы можете задавать вопросы и отвечать на них, зарабатывая деньги. Ознакомьтесь с правилами, будем рады видеть вас в числе наших экспертов!

Создать аккаунт

  • Заработок на Vamber
  • Интересные факты
  • 10% от рефералов
  • ТОП авторов
  • Работа без опыта

Как найти косинус если известен котангенс?

Пиши ответы и зарабатывай! Вамбер платит до 2.5 руб. за каждый ответ. Всё что нужно — это пройти регистрацию и писать хорошие ответы. Платим каждую неделю на сотовый телефон или yoomoney (Яндекс Деньги). Правила здесь.



  1. leonid

    Здесь следует по теореме Пифагора найти гипотенузу данного треугольника, ведь у нас есть два катета из котангенса. Дальше просто составить отношение прилежащего катета к гипотенузе и найти собственное значение косинуса острого угла…

    • Спасибо
    • Не нравится

    0

Лучшие предложения

  • Кредитные карты
  • Быстрые займы

Совкомбанк

8 800 200-66-96

sovcombank.ru

Лицензия: №963

39 256 заявок

МТС Банк

Без процентов

до 111 дней

8 800 250-0-520

mtsbank.ru

Лицензия: №2268

17 943 заявок

Альфа-банк

Без процентов

до 365 дней

8 800 2000 000

alfabank.ru

Лицензия: №1326

12 162 заявок

ВебЗайм

8-800-700-8706

web-zaim.ru

ВэбБанкир

8 800 775-54-54

webbankir.com

ТурбоЗайм

8 800 200 00 10

turbozaim.ru


Генри Форд прославился прежде всего тем, что поставил производство автомобилей на конвейер. Кстати конвейер изобрёл не он. Но конвейерное производство в области автомобилестроения — это идея Форда.
Идея себя оправдала. Во-первых, число выпускаемой продукции резко возросло. Во-вторых, все авто … Читать далее


Ленин — это гениальный человек. Со дня его смерти прошло почти столетие, но гениальность и его актуальность по-прежнему высоки. Владимир Ильич Ленин известен многими теоретическими положениями. 
Ленин описал теорию социалистической революции и на практике под его руководством была осуществлена … Читать далее


В этом году произошли следующие знаменательные события:

Во Франции была провозглашена Вторая империя. Весь XIX век эта страна претерпевала изменения государственного устройства. Начиная со времен Великой буржуазной революции конца XVIII века  Францию лихорадило. На этот раз государственный … Читать далее


Под Таганрогом находится разветвленная сеть подземных ходов. Никто не может точно сказать, когда они были сооружены. Одни исследователи считают, что их прокопали на рубеже XVII-XVIII вв, когда шло строительство крепости Таганрог. А другие уверены, что они появились гораздо раньше, еще в … Читать далее


Антон Павлович Чехов — великий русский писатель, конца 19, начало 20 вв.. Его произведениями являются, в частности: » Вишнёвый сад», » Дама с собачкой», » Шинель», » Каштанка» и мн. др..
 


По легенде, крестьянин Иван Сусанин был нанят поляками в качестве проводника в село Домнино  Костромского уезда, где скрывался Михаил Федорович Романов, наследник Российского престола во времена  большой смуты и беззаконии в 1612 г. Сусанин завел  поляков в лес, где и был убит сам … Читать далее


Косинус угла — это тригонометрическая функция, которая определяется отношением прилежащего катета прямоугольного треугольника к его гипотенузе.

 
Записать это отношение можно так:
cos (α) = b/с,
 
где α – острый угол прямоугольного треугольника,  b – … Читать далее


Надо использовать основное тригонометрическое тождество, где синус угла в квадрате плюс косинус угла в квадрате равен единице, то есть путём несложных перестановок и математических манипуляций получаем выражение с условием:
Синус угла будет равен положительному и отрицательному значению корня из … Читать далее

Обучающие онлайн-курсы

  • Разработка
  • Маркетинг
  • Аналитика
  • Дизайн
  • Менеджмент

формулы связи.jpg

Внимание! Эти формулы работают только если аргументы у тригонометрических функций одинаковые, т.е.

(sin^2⁡ 776^° +cos^2⁡ 776^° =1)
(tg, 3xcdot ctg, 3x=1)

Но:

(sin^2⁡x+cos^2⁡3x≠1)
(tg, xcdot ctg, y≠1)

Все формулы связи тригонометрических функций учить не надо, потому что они достаточно легко получаются друг из друга несложными преобразованиями (подробности в этих видео). Кроме того, при частом использовании они постепенно запоминаются сами.

Примеры применения формул связи

Зачем нужны формулы связи? Они позволяют найти все тригонометрические функции угла, если известна лишь одна из них, а также дают возможность упрощать выражения, доказывать тождества, решать тригонометрические уравнения, заменяя одну функцию другой и так далее.

Пример. Найдите (5sin⁡,α), если (cos,⁡α=frac{2sqrt{6}}{5}) и (α∈(frac{3π}{2};2π)). 
Решение. Нам известен косинус, найти надо синус. А что связывает синус и косинус? Основное тригонометрическое тождество:

(sin^2α+cos^2⁡α=1).

Подставим вместо косинуса его значение:

(sin^2⁡α+)((frac{2sqrt{6}}{5}))(^2=1)
(sin^2⁡α+)(frac{4cdot 6}{25})(=1)
(sin^2⁡α+)(frac{24}{25})(=1)
(sin^2⁡α=1-)(frac{24}{25})
(sin^2⁡α=)(frac{1}{25})
(sin⁡α=±)(frac{1}{5})

Внимание! Последняя строчка – место, где теряется огромное количество баллов на ЕГЭ! Это одна из самых популярных ошибок – забыть отрицательный корень. Пожалуйста, раз и навсегда запомните, что у неполного квадратного уравнения вида (x^2=a) (при (a>0)) два корня (x_1=sqrt{a})  и (x_2=-sqrt{a}). Пусть двойка над иксом (та которая «квадрат») будет вам вечным маяком, сигнализирующим: «тут ДВА корня! Два! Не забудь!»

Вернемся к задаче. Получилось, что синус может иметь значение (frac{1}{5}), а может (-)(frac{1}{5}). И какое значение нам надо выбрать — с минусом или плюсом? Тут нам на помощь приходит информация, что (α∈(frac{3π}{2};2π)). Давайте нарисуем числовую окружность и отметим отрезок ((frac{3π}{2};2π)).

от 3пи на 2 до 2 пи

Обратите внимание – в этой четверти синус принимает только отрицательные значения (можно провести перпендикуляры до оси синусов и убедиться, что это так).

определяем знак синуса в четвертой четверти

Значит, в нашем случае (sin,⁡α=-frac{1}{5}) т.е. (5sin,⁡α=5cdot(-frac{1}{5})=-1).

Ответ: (-1).

Пример.Найдите (tg,α), если (cos,⁡α=)(frac{sqrt{10}}{10}) и (α∈(frac{3π}{2};2π)). 
Решение. Есть 2 пути решения этой задачи:

— напрямую вычислить тангенс через формулу (tg^2α+1=)(frac{1}{cos^2⁡α});
— сначала с помощью тождества (sin^2⁡α+cos^2⁡α=1) найти (sin⁡,α), а потом через формулу (tg,α=)(frac{sin⁡,α}{cos⁡,α}) получить тангенс.

В учебниках обычно идут первым путем, поэтому мы пойдем вторым.

Вычисляем синус:

(sin^2⁡α+)((frac{sqrt{10}}{10})^2)(=1)
(sin^2⁡α+)(frac{10}{100})(=1)
(sin^2⁡α+)(frac{1}{10})(=1)
(sin^2⁡α=1-)(frac{1}{10})
(sin^2⁡α=)(frac{9}{10});
(sin⁡,α=±)(frac{3}{sqrt{10}})

Опять (α∈(frac{3π}{2};2π)), значит в итоге синус может быть только отрицательным. То есть, (sin⁡,α=-)(frac{3}{sqrt{10}}).
А теперь вычисляем тангенс: (tg,α=-)(frac{3}{sqrt{10}})(:)(frac{sqrt{10}}{10})(=)(-frac{3}{sqrt{10}}cdotfrac{10}{sqrt{10}})(=-)(frac{30}{10})(=-3).

Ответ: (-3).

Пример. Известно, что (tg,α=-frac{3}{4}) и (frac{π}{2}<α<π). Найдите значения трех других тригонометрических функций угла (α).
Решение. Проще всего из тангенса найти котангенс:

(ctg, α=)(frac{1}{tg, α})
(ctg,α=1:(-frac{3}{4})=1cdot(-frac{4}{3})=-frac{4}{3}).

Теперь вычислим косинус по упомянутой выше формуле:

(tg^2 α+1=)(frac{1}{cos^2⁡α})
((-)(frac{3}{4}))(^2+1=)(frac{1}{cos^2⁡α})
(frac{9}{16})(+1=)(frac{1}{cos^2⁡α})
(frac{9+16}{16})(=)(frac{1}{cos^2⁡α})
(frac{25}{16})(=)(frac{1}{cos^2⁡α})
(cos^2⁡α=)(frac{16}{25})
(cos⁡α=±)(frac{4}{5})

Опять перед нами стоит выбор плюс или минус. Отметим отрезок ((frac{π}{2};π)) на тригонометрической окружности и посмотрим какие значения принимает косинус в этой четверти, чтобы определится со знаком.

определяем знак косинуса во второй четверти

Очевидно, что косинус отрицателен в этой четверти, а значит (cos,⁡α=-)(frac{4}{5}).

Осталось найти синус:

(sin^2⁡α+cos^2⁡α=1)
(sin^2⁡α+(-)(frac{4}{5})()^2=1)
(sin^2⁡α+)(frac{16}{25})(=1)
(sin^2⁡α=1-)(frac{16}{25})
(sin^2⁡α=)(frac{9}{25})
(sin,⁡α=±)(frac{3}{5})

Опять используем круг, чтобы определить знак.

определяем знак синуса во второй четверти

Получается, что (sin,⁡α=)(frac{3}{5}).

Ответ: (ctg,α=-)(frac{4}{3});   (cos,⁡α=-)(frac{4}{5});    (sin,α=)(frac{3}{5}).

Пример (ЕГЭ). Найдите (tg^2 α), если (5 sin^2⁡α+13 cos^2⁡α=6).
Решение. Давайте пойдем от того, что известно. В равенстве (5 sin^2⁡α+13 cos^2⁡α=6) синус заменим на косинус:

(5(1-cos^2⁡α)+13 cos^2⁡α=6)
(5-5 cos^2⁡α+13 cos^2⁡α=6)
(5+8 cos^2⁡α=6)
(8 cos^2⁡α=1)
(cos^2⁡α=)(frac{1}{8})

Поняли почему именно синус заменили на косинус, а не наоборот? И почему не надо извлекать корень, досчитывая до «чистого» косинуса? Потому что для нахождения (tg^2α) хорошо подходит формула (tg^2α+1=)(frac{1}{cos^2⁡α}) :

(tg^2 α+1=1:)(frac{1}{8})
(tg^2 α+1=1cdot)(frac{8}{1})
(tg^2 α+1=8)
(tg^2 α=7)

Ответ: (7).

Теперь еще одна задача из ЕГЭ, для наглядности мы ее решение оформили картинкой.

решение сложной 9 задачи ЕГЭ

Пример. Упростите выражение (frac{1}{sin^2 α})(-ctg^2 α-cos^2 β).
Решение.

(frac{1}{sin^2 α})(-ctg^2 α-cos^2 β)

Самое очевидное, что можно сделать – это представить котангенс как отношение косинуса к синусу.

(=)(frac{1}{sin^2 α})(-)(frac{cos^2⁡α}{sin^2 α})(-cos^2 β=)

 

Приводим дроби к общему знаменателю.

(=)(frac{1-cos^2⁡α}{sin^2 α})(-cos^2 β=)

 

(1-cos^2⁡α) можно заменить на (sin^2 α).

(=)(frac{sin^2 α}{sin^2 α})(-cos^2 β=)

 

Сокращаем синусы.

(=1-cos^2 β=sin^2 β).

 

Пример. Докажите тождество (frac{cos^4⁡α-sin^4⁡α}{(1-sin⁡α)(1+sin⁡α)})(+2tg^2 α=)(frac{1}{cos^2 α}).
Решение.

(frac{cos^4⁡α-sin^4⁡α}{(1-sin⁡α)(1+sin⁡α)})(+2tg^2 α=)(frac{1}{cos^2 α})

Чтобы доказать это тождество, будем преобразовывать левую часть, пытаясь свести ее к правой. Поехали. Разложим числитель левой дроби по формуле разности квадратов, а знаменатель, наоборот, соберем по ней же.

(frac{(cos^2⁡α-sin^2⁡α )(cos^2 α+sin^2⁡α)}{1-sin^2⁡α})(+2tg^2 α=)(frac{1}{cos^2 α})

 

Очевидно, что вторая скобка числителя равна (1) (по основному тригонометрическому тождеству), а знаменатель можно заменить на (cos^2 α).

(frac{cos^2⁡α-sin^2⁡α}{cos^2 α})(+2tg^2 α=)(frac{1}{cos^2 α})

 

Теперь разложим тангенс по формуле (tg, α=)(frac{sin⁡,α}{cos,⁡α}).

(frac{cos^2⁡α-sin^2⁡α}{cos^2 α})(+2)(frac{sin^2⁡α}{cos^2⁡α})(=)(frac{1}{cos^2 α})

 

Приводим дроби к общему знаменателю.

(frac{cos^2⁡α-sin^2⁡α+2 sin^2⁡α}{cos^2 α})(=)(frac{1}{cos^2 α})

Приводим подобные слагаемые.

(frac{cos^2⁡α+sin^2⁡α}{cos^2 α})(=)(frac{1}{cos^2 α})

И вновь нас выручает основное тригонометрическое тождество

(frac{1}{cos^2 α}) (=)(frac{1}{cos^2 α})

Левая часть полностью идентична правой, то есть тождество доказано.

Как доказать все формулы связи

Все категории

  • Фотография и видеосъемка
  • Знания
  • Другое
  • Гороскопы, магия, гадания
  • Общество и политика
  • Образование
  • Путешествия и туризм
  • Искусство и культура
  • Города и страны
  • Строительство и ремонт
  • Работа и карьера
  • Спорт
  • Стиль и красота
  • Юридическая консультация
  • Компьютеры и интернет
  • Товары и услуги
  • Темы для взрослых
  • Семья и дом
  • Животные и растения
  • Еда и кулинария
  • Здоровье и медицина
  • Авто и мото
  • Бизнес и финансы
  • Философия, непознанное
  • Досуг и развлечения
  • Знакомства, любовь, отношения
  • Наука и техника


14

Прошу, очень надо!! Как найти синус, косинус и тангенс, если известен только котангенс?? Какие формулы использовать для нахожден

Прошу, очень надо!!
Как найти синус, косинус и тангенс, если известен только котангенс??
Какие формулы использовать для нахождения?

1 ответ:



0



0

Дано: ctg а  

Найти: sin а, cos а, tg а,

Решение:
Сначала найдем tg а: tg а = 1/ctg а.
далее выразим через tgа cosа: 1+ tg² a = 1/cos² a 
извлечем корень из cos² a.
sin а  можно найти разными способами:
1) по основному тригонометрическому тождеству sin² a + cos² a = 1
2) через ctg a: ctg² a +1 = 1/sin² a
3) через tg a : tg а = sin а/cos а

НО нужно помнить, что правильность ответа зависит от четвертей функций, в которых лежат углы, это нужно учитывать.

Читайте также

16ab^2 — 5b^2c-10c^3+32ac^2=16a(b^2+c^2)-5c(b^2+2c^2)=(b^2+c^2)(16a-5c)

2^2х-1=81
4х-1=81
4х=81-1
4х=80
х=80:4
Х=20
Ответ: х=20

Ну вроде вот

………………………

3^{3x+1} -4* 9^{x}=17* 3^{x}  -6

 3^{3x}* 3^{1}  -4*( 3^{2} ) ^{x} -17* 3^{x} +6=0

 3*3^{3x} -4* 3^{2x} -17* 3^{x} +6=0

 3^{x}=t,   t textgreater  0
3t³-4t²-17t+6=0

целые делители 6: +-1; +-2; +-3; +-6
t=-2 корень уравнения, 3t³-4t²-17t+6 разделить «уголком» на t+2. получим разложение на множители:
(t+2)*3*(t-3)*(t-1/3)=0
1.   t+2=0,     t₁=-2. -2<0
2.   t-3=0,     t₂=3
3.   t-1/3=0.  t₃=1/3

обратная замена:
t=3

 3^{x}=3

 3^{x} = 3^{1}  


x=1
t= frac{1}{3}
3^{x}= frac{1}{3}  

 3^{x}= 3^{-1}  

x=-1

ответ: x₁=1, x₂=-1

1 рад = 360 градусов/2 Пи, следовательно 21 рад = (21*360)/(2*3.14)=1203,82 градуса(то есть 1203,82/360 оборотов). Теперь найдем какое число оборотов совершит вал за 1 минуту, то есть за 60 секунд. 1203,82*60/360=200,64 оборота.
Ответ: вал совершит 200 полных оборотов.

Понравилась статья? Поделить с друзьями:
  • Как составить заявление на вымогательство
  • Как найти видеокарту на компе windows 10
  • Как исправить кифоз спины упражнения
  • Гта сан андреас как исправить баг с мышкой
  • Как составить налоговую декларацию на возврат при покупке квартиры