Как найти косинус тупого угла в треугольнике

Как найти косинус угла

Косинус – одна из основных тригонометрических функций. Косинусом острого угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе. Определение косинуса привязано к прямоугольному треугольнику, но зачастую угол, косинус которого необходимо определить, в прямоугольном треугольнике не расположен. Как найти значение косинуса любого угла?

Как найти косинус угла

Инструкция

Если необходимо найти косинус угла в прямоугольном треугольнике, необходимо воспользоваться определением косинуса и найти отношение прилежащего катета к гипотенузе:
cos? = a/c, где а – длина катета, с – длина гипотенузы.

Если необходимо найти косинус угла в произвольном треугольнике, необходимо воспользоваться теоремой косинусов:
если угол острый: cos? = (a2 + b2 – c2)/(2ab);
если угол тупой: cos? = (с2 – a2 – b2)/(2ab), где а, b – длины сторон прилежащих к углу, с – длина стороны противолежащей углу.

Если необходимо найти косинус угла в произвольной геометрической фигуре, необходимо определить величину угла в градусах или радианах, а косинус угла найти по его величине с помощью инженерного калькулятора, таблиц Брадиса или любого другого математического приложения.

Полезный совет

Математическое обозначение косинуса – cos.
Значение косинуса не может быть больше 1 и меньше -1.

Источники:

  • как вычислить косинус угла
  • Тригонометрические функции на единичной окружности

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.

4cepure.JPG

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов: 

asinA=bsinB=csinC

(в решении задачи одновременно пишутся две части, они образуют пропорцию).

Теорема синусов используется для вычисления:

  • неизвестных сторон треугольника, если даны два угла и одна сторона;

  • неизвестных углов треугольника, если даны две стороны и один прилежащий угол.

Так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле приведения

sin180°−α=sinα

.

Наиболее часто используемые тупые углы:

sin120°=sin180°−60°=sin60°=32;sin150°=sin180°−30°=sin30°=12;sin135°=sin180°−45°=sin45°=22.

Радиус описанной окружности

Треуг2.jpg

asinA=bsinB=csinC=2R

, где (R) — радиус описанной окружности.

Выразив радиус, получаем

R=a2sinA

, или

R=b2sinB

, или

R=c2sinC

.

Для вычисления элементов прямоугольного треугольника достаточно (2) данных величин (две стороны или сторона и угол).

Для вычисления элементов произвольного треугольника необходимо хотя бы (3) данных величины.

4cepure.JPG

Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Также теорема исполняется для любой стороны треугольника:

Теорема косинусов используется для вычисления:

  • неизвестной стороны треугольника, если даны две стороны и угол между ними;

  • вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.

Значение косинуса тупого угла находится по формуле приведения

cos180°−α=−cosα

.

Наиболее часто используемые тупые углы:

cos120°=cos180°−60°=−cos60°=−12;cos150°=cos180°−30°=−cos30°=−32;cos135°=cos180°−45°=−cos45°=−22. 

Если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.

Источники:

Рис. 1-3. Треугольник, окружность, © ЯКласс.

Выразим косинус тупого угла от 90 до 180 градусов через косинус острого угла.

kosinus tupogo ugla

На единичной окружности отметим точку P(1;0).

При повороте вокруг точки O (начала координат) на угол альфа отметим точку A(x;y), при повороте на угол 180º-α — точку C.

Опустим перпендикуляры AB и CD на ось Ox.

Рассмотрим прямоугольные треугольники OAB и OCD.

1) OA=OC (как радиусы).

2) ∠AOB=∠COD=α (по построению).

Следовательно, треугольники OAB и OCD равны по гипотенузе и острому углу.

Из равенства треугольников следует равенство соответствующих сторон: OD=OB=x.

По определению косинуса на единичной окружности, косинусом угла альфа называется абсцисса точки A, то есть

    [cos alpha  = x.]

Абсцисса точки C отличается только знаком, поэтому

    [cos ({180^o} - alpha ) =  - cos alpha .]

Это — одна из формул приведения.

Косинус тупого угла от 0 до 180 градусов вводится в курсе геометрии 8 класса.

В курсе алгебры 10 класса рассматриваются и другие формулы приведения. С их помощью через косинус или синус острого угла можно выразить косинус любого тупого угла.

Косинус тупого угла

Выразим косинус тупого угла от 90 до 180 градусов через косинус острого угла.

На единичной окружности отметим точку P(1;0).

При повороте вокруг точки O (начала координат) на угол альфа отметим точку A(x;y), при повороте на угол 180º-α — точку C.

Опустим перпендикуляры AB и CD на ось Ox.

Рассмотрим прямоугольные треугольники OAB и OCD.

1) OA=OC (как радиусы).

2) ∠AOB=∠COD=α (по построению).

Следовательно, треугольники OAB и OCD равны по гипотенузе и острому углу.

Из равенства треугольников следует равенство соответствующих сторон: OD=OB=x.

По определению косинуса на единичной окружности, косинусом угла альфа называется абсцисса точки A, то есть

Абсцисса точки C отличается только знаком, поэтому

Это — одна из формул приведения.

Косинус тупого угла от 0 до 180 градусов вводится в курсе геометрии 8 класса.

В курсе алгебры 10 класса рассматриваются и другие формулы приведения. С их помощью через косинус или синус острого угла можно выразить косинус любого тупого угла.

2 Comments

Неправда!
В 8 классе проходят только косинус острого угла!

Теорема косинусов и синусов

О чем эта статья:

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 — 2bc cos α

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:

  • Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 — a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 — (b × cos α) 2
  • h 2 = a 2 — (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
  • a 2 = b 2 + c 2 — 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 — 2ac × cos β;
  • c 2 = a 2 + b 2 — 2ab × cos γ.

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 — 2bc cos α

b 2 = c 2 + a 2 — 2ca cos β

c 2 = a 2 + b 2 — 2ab cos γ

Теорема косинусов может быть использована для любого вида треугольника.

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Из треугольника СМВ по теореме косинусов найдём СМ:

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

  • Если c 2 2 + b 2 , то ∠C — острый.


Теорема косинусов. Доказательство теоремы косинусов.

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.

Теорема косинусов:

Для плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

h 2 = a 2 — (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 — (b cos α) 2 = a 2 — (c — b cos α) 2

a 2 = b 2 + c 2 — 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

источники:

http://skysmart.ru/articles/mathematic/teorema-kosinusov-i-sinusov

http://www.calc.ru/Teorema-Kosinusov-Dokazatelstvo-Teoremy-Kosinusov.html

Примеры:

(cos{⁡30^°}=)(frac{sqrt{3}}{2})
(cos⁡)(frac{π}{3})(=)(frac{1}{2})
(cos⁡2=-0,416…)

Содержание:

  • Аргумент и значение

  • Коcинус острого угла

  • Косинус числа

  • Косинус любого угла

  • Знаки по четвертям

  • Связь с другими функциями

  • Функция
     

Аргумент и значение

аргумент и значение косинуса

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе.

Пример:

1) Пусть дан угол и нужно определить косинус этого угла.

угол

2) Достроим на этом угле любой прямоугольный треугольник.

нужно найти отношение прилежащего катета на гипотенузу

3) Измерив, нужные стороны, можем вычислить косинус.

косинус - это отношение прилежащего катета на гипотенузу

Косинус острого угла больше (0) и меньше (1)

Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.

Косинус числа

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с Пи: (frac{π}{2}), (frac{3π}{4}), (-2π).

Например, для числа (frac{π}{6}) — косинус будет равен (frac{sqrt{3}}{2}). А для числа (-)(frac{3π}{4}) он будет равен (-)(frac{sqrt{2}}{2}) (приблизительно (-0,71)).

как определить косинус числа

Косинус для других часто встречающихся в практике чисел смотри в тригонометрической таблице.

Значение косинуса всегда лежит в пределах от (-1) до (1). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать — проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.

как определить косинус тупого угла

Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.

как определить косинус отрицательного угла

И, наконец, угол больше (360°) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).

как определить косинус угла больше 360 градусов

Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) — целых семь.

Стоит запомнить, что:

Косинус прямого угла равен нулю. Косинус тупого угла — отрицателен.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по четвертям числовой (тригонометрической) окружности:

— там, где значения на оси от (0) до (1), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
— там, где значения на оси от (0) до (-1), косинус будет иметь знак минус (II и III  четверти – фиолетовая область).

знаки косинуса в разных четвертях

Пример. Определите знак (cos 1).
Решение: Найдем (1) на тригонометрическом круге. Будем отталкиваться от того, что (π=3,14). Значит единица, примерно, в три раза ближе к нулю (точке «старта»).

1 на числовой окружности

Если провести перпендикуляр к оси косинусов, то станет очевидно, что (cos⁡1) – положителен.
Ответ: плюс.

Связь с другими тригонометрическими функциями:

— синусом того же угла (или числа): основным тригонометрическим тождеством (sin^2⁡x+cos^2⁡x=1)
— тангенсом того же угла (или числа): формулой (1+tg^2⁡x=)(frac{1}{cos^2⁡x})
— котангенсом и синусом того же угла (или числа): формулой (ctgx=)(frac{cos{x}}{sin⁡x})
Другие наиболее часто применяемые формулы смотри здесь.

Функция (y=cos{x})

Если отложить по оси (x) углы в радианах, а по оси (y) — соответствующие этим углам значения косинуса, мы получим следующий график:

косинусоида

График данной функции называется косинусоида и обладает следующими свойствами:

      — область определения – любое значение икса:   (D(cos{⁡x} )=R)
      — область значений – от (-1) до (1) включительно:    (E(cos{x} )=[-1;1])
      — четная:   (cos⁡(-x)=cos{x})
      — периодическая с периодом (2π):   (cos⁡(x+2π)=cos{x})
      — точки пересечения с осями координат:
             ось абсцисс:   (()(frac{π}{2})(+πn),(;0)), где (n ϵ Z)
             ось ординат:   ((0;1))
      — промежутки знакопостоянства:
             функция положительна на интервалах:   ((-)(frac{π}{2})(+2πn;) (frac{π}{2})(+2πn)), где (n ϵ Z)
             функция отрицательна на интервалах:   (()(frac{π}{2})(+2πn;)(frac{3π}{2})(+2πn)), где (n ϵ Z)
      — промежутки возрастания и убывания:
             функция возрастает на интервалах:    ((π+2πn;2π+2πn)), где (n ϵ Z)
             функция убывает на интервалах:    ((2πn;π+2πn)), где (n ϵ Z)
       — максимумы и минимумы функции:
             функция имеет максимальное значение (y=1) в точках (x=2πn), где (n ϵ Z)
             функция имеет минимальное значение (y=-1) в точках (x=π+2πn), где (n ϵ Z).

Смотрите также:

Синус
Тангенс
Котангенс
Решение уравнения (cos⁡x=a)

Понравилась статья? Поделить с друзьями:
  • Как найти диаметр основания конуса решение
  • Как найти дисперсию если известна плотность
  • Как найти акустическую гитару
  • Часто включается насосная станция причины неисправности как исправить
  • Как найти статую сундука в террарии