Как найти котангенс тупого угла трапеции

Геометрия. Урок 1. Тригонометрия

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .

Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .

Координата по оси x – косинус угла , координата по оси y – синус угла .

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

0 °
30 °
45 °
60 °
90 °

sin α
0
1 2
2 2
3 2
1

cos α
1
3 2
2 2
1 2
0

tg α
0
3 3
1
3
нет

ctg α
нет
3
1
3 3
0

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин :-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
  2. С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла катет а будет прилежащим.Получаем, что . Иными словами, .
  3. Возьмем теорему Пифагора: . Поделим обе части на : Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на , получим: Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус. Аналогично,

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

2 . В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы.

Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Котангенс

Котангенс – одна из тригонометрических функций. Как и для всех других функций, значение котангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность).

Аргумент и значение

Аргументом может быть:
— как число или выражение с Пи: (1,3), (frac<π><4>), (π), (-frac<π><3>) и т.п.
— так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

Для обоих случаев значение котангенса вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

Котангенс острого угла

Котангенс можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к противолежащему.

1) Пусть дан угол и нужно определить (ctgA).

2) Достроим на этом угле любой прямоугольный треугольник.

3) Измерив, нужные стороны, можем вычислить (ctg;A).

Вычисление котангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших (360°) котангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите (ctg: frac<5π><6>).
Решение: Найдем сначала (frac<5π><6>) на круге. Затем найдем (cos:⁡frac<5π><6>) и (sin:frac<5π><6>), а потом поделим одно на другое.

Решение: Чтобы найти котангенс пи на (2) нужно найти сначала косинус и синус (frac<π><2>). И то, и другое найдем с помощью тригонометрического круга :

Точка (frac<π><2>) на числовой окружности совпадает с (1) на оси синусов, значит (sin:frac<π><2>=1). Если из точки (frac<π><2>) на числовой окружности провести перпендикуляр к оси косинусов, то мы попадем в точку (0), значит (cos:⁡frac<π><2>=0). Получается: (ctg:frac<π><2>=) (frac<2>><2>>) (=)(frac<0><1>)(=0).

Пример. Вычислите (ctg:(-765^circ)).
Решение: (ctg: (-765^circ)=) (frac)
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

Однако можно определять значение котангенса и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:

Прямая проходящая через (frac<π><2>) на числовой окружности и параллельная оси абсцисс (косинусов) называется осью котангенсов. Направление оси котангенсов и оси косинусов совпадает.

Ось котангенсов – это фактически копия оси косинусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси косинусов.

Чтобы определить значение котангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу котангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси котангенсов.
3) Найти координату пересечения этой прямой и оси.

2) Проводим через данную точку и начало координат прямую.

3) В данном случае координату долго искать не придется – она равняется (1).

Пример. Найдите значение (ctg: 30°) и (ctg: (-60°)).
Решение:
Для угла (30°) ((∠COA)) котангенс будет равен (sqrt<3>) (приблизительно (1,73)), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось котангесов.
(ctg;(-60°)=frac<sqrt<3>><<3>>) (примерно (-0,58)).

Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

В отличие от синуса и косинуса значение котангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

При этом котангенс не определен для:
1) всех точек (C) (значение в Пи: …(0), (2π), (4π), (-2π), (-4π) …; и значение в градусах: …(0°),(360°), (720°),(-360°),(-720°)…)
2) всех точек (D) (значение в Пи: …(π), (3π), (5π), (-π), (-3π), (-5π) …; и значение в градусах: …(180°),(540°),(900°),(-180°),(-540°),(-900°)…) .

Так происходит потому, что в этих точках синус равен нулю. А значит, вычисляя значение котангенса мы придем к делению на ноль, что запрещено. И прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось котангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках котангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений он может быть найден).

Из-за этого при решении тригонометрических уравнений и неравенств с котангенсом необходимо учитывать ограничения на ОДЗ .

Знаки по четвертям

С помощью оси котангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак котангенса для нее описанным выше способом. У всей четверти знак будет такой же.

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение котангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Связь с другими тригонометрическими функциями:

тангенсом того же угла: формулой (tg⁡:x=) (frac<1>)
Другие наиболее часто применяемые формулы смотри здесь .

источники:

http://ege-study.ru/ru/ege/materialy/matematika/sinus/

http://cos-cos.ru/math/187/

Основания равнобедренной трапеции равны 114 и 186. Высота трапеции равна 45. Найдите котангенс острого угла трапеции.

1. Из точки C опустим перпендикуляр на сторону AD. Получится вторая высота  CK. 

2. Рассмотрим треугольники ABH и DCK. У них AD=CDAD=CD, боковые стороны равнобедренной трапеции равны, ∠BAH=∠CDKangle BAH =angle CDK как углы при основании равнобедренной трапеции.  ∠BHA=∠CKD=90∘angle BHA =angle CKD =90 ^{circ}  поскольку эти углы образованы перпендикуоярами.  Если у нас равны 2 угла, то значит равны и третьи углы, ибо третий угол 
 ∠ABH=180−∠BAH−∠BHAangle ABH = 180-angle BAH — angle BHA
∠DCK=180−∠CDK−∠CKDangle DCK = 180-angle CDK — angle CKD
∠ABH=∠DCKangle ABH = angle DCK

То есть треугольники ABH и DCK равные по двум углам и стороне между ними. Значит AH=KDAH=KD
3. HBCK — правильный прямоугольник.
У него основания BC и AD параллельны, а боковые стороны BH и CK перпендикулярны одному основанию AD, так как это высоты, а значит они параллельны между собой.  Значит это параллелограмм. Параллелограмм в котором хотя бы один угол прямой — прямоугольник. У нас даже 2 прямых угла BHK и CKH.
Значит у нас BC=HKBC=HK

AH+HK+KD=ADAH+HK +KD = AD
BC=HKBC=HK
2AH+BC=AD2AH+BC = AD
AH=AD−BC2=186−1142=36displaystyle { AH = frac {AD -BC}{2} = frac {186-114}{2}=36 }

4. В прямоугольном треугольнике ABH нам известны катеты BH=45 и AH=36. Тангенс это отношение противолежащего катета BH к прилежащему AH

tgA=BHAHdisplaystyle { tg A = frac{BH}{AH} }

ctg⁡A=1tg⁡A=AHBHdisplaystyle { ctg A = frac {1}{ tg A} = frac {AH}{ BH} }

ctg⁡A=3645=45=0,8
displaystyle { ctg A = frac {36}{ 45} =frac {4}{ 5}=0,8 }

Чему равен тангенс тупого угла? Такого типа угол может означать только одно — тангенс его будет отрицательным. Всего-то и нужно, что найти тангенс смежного с ним (он будет, естественно, острым) угла, а перед полученным значением поставить минус. Разберем пример, как найти тангенс тупого угла на клетчатой бумаге:

Пример 1.

Луч, который и образует угол смежный, будет ни чем иным, как — гипотенузой (угол прямой) и будет проходить по решетке, ее узлам. Образуемые им катеты равны, и так будет всегда в подобном случае. Значит, тангенс будет иметь значение 1, а, следовательно, у тупого угла он будет -1.

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол
— это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол
— меньший 90 градусов.

Тупой угол
— больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза
прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты
— стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим
(по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим
.

Синус
острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус
острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс
острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс
острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна
.

Знаем соотношение между сторонами
прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла
— дают соотношения между сторонами
и углами
треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1.
В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2
. В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы
.

Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом — в следующей статье.

Понятия синуса (), косинуса (), тангенса (), котангенса () неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

Понятие угла: радиан, градус

Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол
.

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен.

То есть на рисунке выше изображён угол, равный, то есть этот угол опирается на круговую дугу размером длины окружности.

Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

Итак, на рисунке изображён угол, равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги). Таким образом, длина дуги вычисляется по формуле:

Где — центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен. То есть, соотнеся величину в градусах и радианах, получаем, что. Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

А сколько радиан составляют? Всё верно!

Уловил? Тогда вперёд закреплять:

Возникли трудности? Тогда смотри ответы
:

Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза — это сторона, которая лежит напротив прямого угла (в нашем примере это сторона); катеты — это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла, то катет — это прилежащий катет, а катет — противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла
— это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике.

Косинус угла
— это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике.

Тангенс угла
— это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике.

Котангенс угла
— это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике.

Эти определения необходимо запомнить
! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе
и котангенсе
сидят только катеты, а гипотенуза появляется только в синусе
и косинусе
. А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла. По определению, из треугольника: , но ведь мы можем вычислить косинус угла и из треугольника: . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника, изображённого ниже на рисунке, найдём.

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла.

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным. Такая окружность называется единичной
. Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что — это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и — это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла — координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора — вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы
, а при вращении по часовой стрелке — отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где — любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где — любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

Не существует;

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

Не существует

Не существует

Не существует

Не существует

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить
:

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений
:

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота
?

Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки
.

Вот, к примеру, перед нами такая окружность:

Нам дано, что точка — центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

Тогда имеем, что для точки координата.

По той же логике находим значение координаты y для точки. Таким образом,

Итак, в общем виде координаты точек определяются по формулам:

Координаты центра окружности,

Радиус окружности,

Угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

4. Точка — центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

5. Точка — центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

Возникли проблемы в нахождении координот точки на окружности?

Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

1.

Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

2.
Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

Синус и косинус — это табличные значения. Вспоминаем их значения и получаем:

Таким образом, искомая точка имеет координаты.

3.
Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

Таким образом, искомая точка имеет координаты.

4.

Угол поворота радиуса вектора (по условию,)

Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

Как можно заметить, значение, то есть положительно, а значение, то есть — отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

Подставим полученные значения в нашу формулу и найдём координаты:

Таким образом, искомая точка имеет координаты.

5.
Для решения данной задачи воспользуемся формулами в общем виде, где

Координаты центра окружности (в нашем примере,

Радиус окружности (по условию,)

Угол поворота радиуса вектора (по условию,).

Подставим все значения в формулу и получим:

и — табличные значения. Вспоминаем и подставляем их в формулу:

Таким образом, искомая точка имеет координаты.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Синус угла
— это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла
— это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла
— это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла
— это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Примечание
. В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби — символ «/».

См. также
полезные материалы:

Для определения значения тригонометрической функции
, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов — ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой «30 градусов», на их пересечении считываем результат — одна вторая. Аналогично находим косинус 60
градусов, синус 60
градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других «популярных» углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах
. Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180
.

Примеры
:
1. Синус пи
.
sin π = sin 180 = 0
таким образом, синус пи — это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи
.
cos π = cos 180 = -1
таким образом, косинус пи — это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи

tg π = tg 180 = 0
таким образом, тангенс пи — это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 — 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin

(синус)

cos

(косинус)

tg

(тангенс)

ctg

(котангенс)

sec

(секанс)

cosec

(косеканс)

0
0
0 1 0 1
15
π/12
2 — √3 2 + √3
30
π/6
1/2 √3/2 1/√3 √3 2/√3 2
45
π/4
√2/2 √2/2 1 1 √2 √2
60
π/3
√3/2 1/2 √3 1/√3 2 2/√3
75
5π/12
2 + √3 2 — √3
90
π/2
1 0 0 1
105
7π/12
— 2 — √3 √3 — 2
120
2π/3
√3/2 -1/2 -√3 -√3/3
135
3π/4
√2/2 -√2/2 -1 -1 -√2 √2
150
5π/6
1/2 -√3/2 -√3/3 -√3
180
π
0 -1 0 -1
210
7π/6
-1/2 -√3/2 √3/3 √3
240
4π/3
-√3/2 -1/2 √3 √3/3
270
3π/2
-1 0 0 -1
360

0 1 0 1

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет — клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 … 360 градусов
(цифровые значения «как по таблицам Брадиса»)

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Вводный урок по тригонометрии был представлен в предыдущей презентации. Школьники ознакомились с понятиями синус, косинус и тангенс, как они обозначаются, как их находить. Рассматривался острый угол некоторого прямоугольного треугольника. Также, они ознакомились с основным тригонометрическим тождеством, что составляет основу для многочисленных формул, с которыми ученики ознакомятся несколько позже.

Данный урок предлагает рассмотреть определенные углы: 45, 30 и 60 градусов. Необходимо найти их синус, косинус и тангенс. Все эти три угла являются острыми. Подразумевается, что мы работаем с прямоугольными треугольниками, как и в предыдущем уроке.

слайды 1-2 (Тема презентации «Значение синуса, косинуса и тангенса для углов 30, 45 и 60 градусов», пример)

Первый слайд презентации «Значение синуса, косинуса и тангенса для углов 30, 45 и 60 градусов» продемонстрирует учащимся некоторый прямоугольный треугольник, острый угол которого равен 30 градусов. Зная о том, что один из углов является прямым, можем легко вычислить значение третьего угла. Сумма всех углов любого треугольника составляет 180 градусов. Об этом свойстве ученики восьмого класса уже должны знать. Итак, для того, чтобы найти третий неизвестный угол, необходимо отнять от 180и градусов 120 градусов, что составляет сумму остальных двух сторон. Третий неизвестный угол равен 60 градусов. Это отмечено на чертеже.

Автор отмечает, что отношение катетов прямоугольного треугольника ABС равно одной второй. Откуда автор получил такое число? Дело в том, что катет, который лежит напротив угла 30 градусов, что можно увидеть на рисунке, равняется половине гипотенузы данного треугольника. Это является одним из важных свойств прямоугольных треугольников. Данное отношение является синусом угла 30 градусов. Таким образом, синус угла 30 градусов найден.

слайды 3-4 (пример, таблица синусов, косинусов, тангенсов)

Данное отношение является также и косинусом для угла прилежащего к катету, то есть для угла 60 градусов. Далее, исходя из информации, которая была получена на предыдущем уроке, можно посчитать оставшийся тангенс, поделив найденный синус определенного угла на найденный косинус того же угла.

Следующий слайд аналогичным образом исследует синус, косинус и тангенс угла 45 градусов. Для начала находится третий неизвестный угол. Выясняется, что углы при гипотенузе равны, то есть треугольник, помимо того, что является прямоугольным, еще и равнобедренный. По теореме Пифагора выразим гипотенузу через катеты. Так как они равны, как выяснилось, то можно заменить один катет другим и получить простое произведение числа 2 на квадрат одного из катетов. Далее, автор избавляется от иррациональности и выражает катет. Таким образом, находятся два катета. Далее, пользуясь изученными формулами можно найти и синус, и косинус, и тангенс угла 45 градусов.

На последнем слайде приводятся данные значения в виде таблицы. Желательно, чтобы школьники записали таблицу себе с тетради. Можно сказать, она является аналогом таблицы умножения, только тригонометрическая. Желательно, чтобы школьники знали о том, откуда появились данные значения и запомнили таблицы.

Каждой тригонометрической функции для данного угла соответствует определенное значение этой функции. Из определений синуса, косинуса, тангенса и котангенса ясно, что значением синуса угла является ордината точки, в которую переходит начальная точка единичной окружности после ее поворота на угол , значением косинуса – абсцисса этой точки, значением тангенса – отношение ординаты к абсциссе, а значением котангенса – отношение абсциссы к ординате.

Достаточно часто при решении задач возникает необходимость в нахождении значений синусов, косинусов, тангенсов и котангенсов указанных углов. Для некоторых углов, например в 0, 30, 45, 60, 90, … градусов, есть возможность найти точные значения тригонометрических функций, для других углов нахождение точных значений оказывается проблематичным и приходится довольствоваться приближенными значениями.

В этой статье мы разберемся, какими принципами следует руководствоваться при вычислении значения синуса, косинуса, тангенса или котангенса. Перечислим их по порядку.

Теперь рассмотрим каждый из перечисленных принципов вычисления значений синусов, косинусов, тангенсов и котангенсов подробно.

Навигация по странице.

    Нахождение значений синуса, косинуса, тангенса и котангенса по определению. Линии синусов, косинусов, тангенсов и котангенсов. Значения синусов, косинусов, тангенсов и котангенсов углов 30, 45 и 60 градусов. Сведение к углу из интервала от 0 до 90 градусов. Достаточно знать значение одной из тригонометрических функций. Нахождение значений с помощью тригонометрических формул. Что делать в остальных случаях?

Нахождение значений синуса, косинуса, тангенса и котангенса по определению

Отталкиваясь от определения синуса и косинуса, можно найти значения синуса и косинуса данного угла . Для этого нужно взять единичную окружность, повернуть начальную точку А(1, 0) на угол , после чего она перейдет в точку А1. Тогда координаты точки А1 дадут соответственно косинус и синус данного угла . После этого можно вычислить тангенс и котангенс угла , вычислив отношения ординаты к абсциссе и абсциссы к ординате соответственно.

По определению мы можем вычислить точные значения синуса, косинуса, тангенса и котангенса углов 0, ±90, ±180, ±270, ±360, … градусов (0, ±р/2, ±р, ±3р/2, ±2р, …радиан). Разобьем эти углы на четыре группы: 360·z градусов (2р·z радиан),90+360·z градусов (р/2+2р·z радиан), 180+360·z градусов (р+2р·z радиан) и270+360·z градусов (3р/2+2р·z радиан), где z – любое целое число. Изобразим на рисунках, где будет располагаться точка А1, получающаяся при повороте начальной точки А на эти углы (при необходимости изучите материал статьи угол поворота).

Для каждой из этих групп углов найдем значения синуса, косинуса, тангенса и котангенса, используя определения.

Что касается остальных углов, отличных от 0, ±90, ±180, ±270, ±360, … градусов, то по определению мы можем найти лишь приближенные значения синуса, косинуса, тангенса и котангенса. Для примера найдем синус, косинус, тангенс и котангенс угла−52 градуса.

Выполним построения.

По чертежу находим, что абсцисса точки А1 приближенно равна 0,62, а ордината приближенно равна −0,78. Таким образом, и . Остается вычислить значения тангенса и котангенса, имеем и .

Понятно, что чем точнее будут выполнены построения, тем точнее будут найдены приближенные значения синуса, косинуса, тангенса и котангенса данного угла. Также понятно, что нахождение значений тригонометрических функций по определению не удобно на практике, так как неудобно выполнять описанные построения.

К началу страницы

Линии синусов, косинусов, тангенсов и котангенсов

Вкратце стоит остановиться на так называемых линиях синусов, косинусов, тангенсов и котангенсов. Линиями синусов, косинусов, тангенсов и котангенсов называют линии, изображаемые совместно с единичной окружностью, имеющие начало отсчета и , равную единицы во введенной прямоугольной системе координат, на них наглядно представляются все возможные значения синусов, косинусов, тангенсов и котангенсов. Изобразим их на чертеже ниже.

К началу страницы

Значения синусов, косинусов, тангенсов и котангенсов углов 30, 45 и 60 градусов

Для углов 30, 45 и 60 градусов известны точные значения синуса, косинуса, тангенса и котангенса. Они могут быть получены по определениям синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике с использованием теоремы Пифагора.

Чтобы получить значения тригонометрических функций для углов 30 и 60 градусов рассмотрим прямоугольный треугольник с этими углами, причем его возьмем таким, чтобы длина гипотенузы равнялась единице. Известно, что катет, лежащий напротив угла 30 градусов вдвое меньше гипотенузы, следовательно, его длина равна 1/2. Длину другого катета находим по теореме Пифагора: .

Так как синус угла – это отношение противолежащего катета к гипотенузе, то и . В свою очередь косинус – это отношение прилежащего катета к гипотенузе, тогда и . Тангенс – это отношение противолежащего катета к прилежащему, а котангенс – это отношение прилежащего катета к противолежащему, следовательно, и , а также и .

Осталось получить значения синуса, косинуса, тангенса и котангенса для угла 45градусов. Обратимся к прямоугольному треугольнику с углами 45 градусов (он будет равнобедренным) и гипотенузой, равной единице. Тогда по теореме Пифагора несложно проверить, что длины катетов равны . Теперь мы можем вычислить значения синуса, косинуса, тангенса и котангенса как отношение длин соответствующих сторон рассматриваемого прямоугольного треугольника. Имеем и .

Полученные значения синуса, косинуса, тангенса и котангенса углов 30, 45 и 60градусов будут очень часто использоваться при решении различных геометрических и тригонометрических задач, так что рекомендуем их запомнить. Для удобства занесем их в таблицу основных значений синуса, косинуса, тангенса и котангенса.

В заключение этого пункта приведем иллюстрацию значений синуса, косинуса, тангенса и котангенса углов 30, 45 и 60 с использованием единичной окружности и линий синуса, косинуса, тангенса и котангенса.

К началу страницы

Сведение к углу из интервала от 0 до 90 градусов

Сразу заметим, что удобно находить значения тригонометрических функций, когда угол находится в интервале от 0 до 90 градусов (от нуля до пи пополам радиан). Если же аргумент тригонометрической функции, значение которой нам нужно найти, выходит за пределы от 0 до 90 градусов, то мы всегда при помощи формул приведения можем перейти к нахождению значения тригонометрической функции, аргумента которой будет в указанных пределах.

Для примера найдем значение синуса 210 градусов. Представив 210 как 180+30 или как 270−60, соответствующие формулы приведения сводят нашу задачу от нахождения синуса 210 градусов к нахождению значения синуса 30 градусов , или косинуса 60 градусов .

Давайте на будущее условимся при нахождении значений тригонометрических функций всегда с помощью формул приведения переходить к углам из интервала от0 до 90 градусов, если конечно угол уже не находится в этих пределах.

К началу страницы

Достаточно знать значение одной из тригонометрических функций

Основные тригонометрические тождества устанавливают связи между синусом, косинусом, тангенсом и котангенсом одного и того же угла. Таким образом, с их помощью мы можем по известному значению одной из тригонометрических функций найти значение любой другой функции этого же угла.

Рассмотрим решение примера.

Определите, чему равен синус угла пи на восемь, если .

Сначала найдем чему равен котангенс этого угла:

Теперь, используя формулу , мы можем вычислить, чему равен квадрат синуса угла пи на восемь, а следовательно, и искомое значение синуса. Имеем

Осталось лишь найти значение синуса. Так как угол пи на восемь является углом первой координатной четверти, то синус этого угла положителен (при необходимости смотрите раздел теории знаки синуса, косинуса, тангенса и котангенса по четвертям). Таким образом, .

.

К началу страницы

Нахождение значений с помощью тригонометрических формул

В двух предыдущих пунктах мы уже начали освещение вопроса по нахождению значений синуса, косинуса, тангенса и котангенса с использованием формул тригонометрии. Здесь мы лишь хотим сказать, что иногда возможно вычислить требуемое значение тригонометрической функции, используя тригонометрические формулы и известные значения синуса, косинуса, тангенса и котангенса (например, для углов 30, 45 и 60 градусов).

Для примера, используя тригонометрические формулы, вычислим значение тангенса угла пи на восемь, которое мы использовали в предыдущем пункте для нахождения значения синуса.

Найдите значение .

Воспользовавшись формулой тангенса половинного угла, мы можем записать следующее равенство . Значения косинуса угла пи на четыре нам известны, поэтому мы можем сразу вычислить значение квадрата искомого тангенса: .

Угол пи на восемь является углом первой координатной четверти, поэтому тангенс этого угла положителен. Следовательно, .

.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол
— это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол
— меньший 90 градусов.

Тупой угол
— больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза
прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты
— стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим
(по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим
.

Синус
острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус
острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс
острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс
острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна
.

Знаем соотношение между сторонами
прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла
— дают соотношения между сторонами
и углами
треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1.
В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , .

2
. В треугольнике угол равен , , . Найдите .

Найдем по теореме Пифагора.

Задача решена.

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы
.

Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом — в следующей статье.

– уж наверняка встретятся задания по тригонометрии. Тригонометрию часто не любят за необходимость зубрить огромное количество трудных формул, кишащих синусами, косинусами, тангенсами и котангенсами. На сайте уже когда-то давались советы, как вспомнить забытую формулу, на примере формул Эйлера и Пиля .

А в этой статье мы постараемся показать, что достаточно твёрдо знать всего пять простейших тригонометрических формул, а об остальных иметь общее представление и выводить их по ходу дела. Это как с ДНК: в молекуле не хранятся полные чертежи готового живого существа. Там содержатся, скорее, инструкции по его сборке из имеющихся аминокислот. Так и в тригонометрии, зная некоторые общие принципы, мы получим все необходимые формулы из небольшого набора тех, которые нужно обязательно держать в голове.

Будем опираться на следующие формулы:

Из формул синуса и косинуса сумм, зная о чётности функции косинуса и о нечётности функции синуса, подставив -b вместо b, получаем формулы для разностей:

  1. Синус разности
    : sin
    (a-b)
    = sin
    a
    cos
    (-b)
    +cos
    a
    sin
    (-b)
    = sin
    a
    cos
    b
    cos
    a
    sin
    b
  2. Косинус разности
    : cos
    (a-b)
    = cos
    a
    cos
    (-b)
    sin
    a
    sin
    (-b)
    = cos
    a
    cos
    b
    +sin
    a
    sin
    b

Поставляя в эти же формулы a = b, получаем формулы синуса и косинуса двойных углов:

  1. Синус двойного угла
    : sin
    2a
    = sin
    (a+a)
    = sin
    a
    cos
    a
    +cos
    a
    sin
    a
    = 2sin
    a
    cos
    a
  2. Косинус двойного угла
    : cos
    2a
    = cos
    (a+a)
    = cos
    a
    cos
    a
    sin
    a
    sin
    a
    = cos
    2 a
    sin
    2 a

Аналогично получаются и формулы других кратных углов:

  1. Синус тройного угла
    : sin
    3a
    = sin
    (2a+a) = sin
    2a
    cos
    a
    +cos
    2a
    sin
    a
    = (2sin
    a
    cos
    a
    )cos
    a
    +(cos
    2 a
    sin
    2 a
    )sin
    a
    = 2sin
    a
    cos
    2 a
    +sin
    a
    cos
    2 a
    sin
    3 a = 3sin
    a
    cos
    2 a
    sin
    3 a = 3sin
    a
    (1-sin
    2 a
    )-sin
    3 a = 3sin
    a
    -4sin
    3 a
  2. Косинус тройного угла
    : cos
    3a
    = cos
    (2a+a) = cos
    2a
    cos
    a
    sin
    2a
    sin
    a
    = (cos
    2 a
    sin
    2 a
    )cos
    a
    -(2sin
    a
    cos
    a
    )sin
    a
    = cos
    3 a-sin
    2 a
    cos
    a
    -2sin
    2 a
    cos
    a
    = cos
    3 a-3sin
    2 a
    cos
    a
    = cos
    3 a-3(1-cos
    2 a
    )cos
    a
    = 4cos
    3 a-3cos
    a

Прежде чем двигаться дальше, рассмотрим одну задачу.
Дано: угол — острый.
Найти его косинус, если
Решение, данное одним учеником:
Т.к. , то sin
a
= 3,а cos
a
= 4.
(Из математического юмора)

Итак, определение тангенса связывает эту функцию и с синусом, и с косинусом. Но можно получить формулу, дающую связь тангенса только с косинусом. Для её вывода возьмём основное тригонометрическое тождество: sin
2
a
+cos
2
a
= 1 и разделим его на cos
2
a
. Получим:

Так что решением этой задачи будет:

(Т.к. угол острый, при извлечении корня берётся знак +)

Формула тангенса суммы – ещё одна, тяжело поддающаяся запоминанию. Выведем её так:

Сразу выводится и

Из формулы косинуса двойного угла можно получить формулы синуса и косинуса для половинного. Для этого к левой части формулы косинуса двойного угла:
cos
2
a
= cos
2
a
sin
2
a

прибавляем единицу, а к правой – тригонометрическую единицу, т.е. сумму квадратов синуса и косинуса.
cos
2a
+1 = cos
2 a
sin
2 a
+cos
2 a
+sin
2 a

2cos
2
a
= cos
2
a
+1
Выражая cos
a
через cos
2
a
и выполняя замену переменных, получаем:

Знак берётся в зависимости от квадранта.

Аналогично, отняв от левой части равенства единицу, а от правой — сумму квадратов синуса и косинуса, получим:
cos
2a
-1 = cos
2 a
sin
2 a
cos
2 a
sin
2 a

2sin
2
a
= 1-cos
2
a

И, наконец, чтобы преобразовать сумму тригонометрических функций в произведение, используем следующий приём. Допустим, нам нужно представить в виде произведения сумму синусов sin
a
+sin
b
. Введём переменные x и y такие, что a = x+y, b+x-y. Тогда
sin
a
+sin
b
= sin
(x+y)+sin
(x-y) = sin
xcos
y+cos
xsin
y+sin
xcos
y-cos
xsin
y = 2sin
xcos
y. Выразим теперь x и y через a и b.

Поскольку a = x+y, b = x-y, то . Поэтому

Сразу же можно вывести

  1. Формулу для разбиения произведения синуса и косинуса
    в сумму
    : sin
    a
    cos
    b
    = 0.5(sin
    (a+b)
    +sin
    (a-b))

Рекомендуем потренироваться и вывести самостоятельно формулы для преобразования в произведение разности синусов и суммы и разности косинусов, а также для разбиения в сумму произведений синусов и косинусов. Проделав эти упражнения, вы досконально освоите мастерство вывода тригонометрических формул и не потеряетесь даже на самой сложной контрольной, олимпиаде или тестировании.

Примечание
. В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби — символ «/».

См. также
полезные материалы:

Для определения значения тригонометрической функции
, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов — ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой «30 градусов», на их пересечении считываем результат — одна вторая. Аналогично находим косинус 60
градусов, синус 60
градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других «популярных» углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах
. Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180
.

Примеры
:
1. Синус пи
.
sin π = sin 180 = 0
таким образом, синус пи — это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи
.
cos π = cos 180 = -1
таким образом, косинус пи — это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи

tg π = tg 180 = 0
таким образом, тангенс пи — это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 — 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin

(синус)

cos

(косинус)

tg

(тангенс)

ctg

(котангенс)

sec

(секанс)

cosec

(косеканс)

0
0
0 1 0 1
15
π/12
2 — √3 2 + √3
30
π/6
1/2 √3/2 1/√3 √3 2/√3 2
45
π/4
√2/2 √2/2 1 1 √2 √2
60
π/3
√3/2 1/2 √3 1/√3 2 2/√3
75
5π/12
2 + √3 2 — √3
90
π/2
1 0 0 1
105
7π/12
— 2 — √3 √3 — 2
120
2π/3
√3/2 -1/2 -√3 -√3/3
135
3π/4
√2/2 -√2/2 -1 -1 -√2 √2
150
5π/6
1/2 -√3/2 -√3/3 -√3
180
π
0 -1 0 -1
210
7π/6
-1/2 -√3/2 √3/3 √3
240
4π/3
-√3/2 -1/2 √3 √3/3
270
3π/2
-1 0 0 -1
360

0 1 0 1

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет — клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 … 360 градусов
(цифровые значения «как по таблицам Брадиса»)

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Yandex.RTB R-A-339285-1

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) — отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) — отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) — отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) — отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от — ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α — это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α — это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α — это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α — это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , — 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t
называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t
радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t
ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности — точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t
соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t
— ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t
— абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t
— отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t
, совпадает с точкой, в которую переходит начальная точка после поворота на угол t
радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α — это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t
соответствует определенное значение синуса или косинуса числа t
. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс — основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В этой статье мы покажем, как даются определения синуса, косинуса, тангенса и котангенса угла и числа в тригонометрии
. Здесь же мы поговорим об обозначениях, приведем примеры записей, дадим графические иллюстрации. В заключение проведем параллель между определениями синуса, косинуса, тангенса и котангенса в тригонометрии и геометрии.

Навигация по странице.

Определение синуса, косинуса, тангенса и котангенса

Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.

Острого угла в прямоугольном треугольнике

Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.

Определение.

Синус острого угла в прямоугольном треугольнике
– это отношение противолежащего катета к гипотенузе.

Определение.

Косинус острого угла в прямоугольном треугольнике
– это отношение прилежащего катета к гипотенузе.

Определение.

Тангенс острого угла в прямоугольном треугольнике
– это отношение противолежащего катета к прилежащему.

Определение.

Котангенс острого угла в прямоугольном треугольнике
– это отношение прилежащего катета к противолежащему.

Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin
, cos
, tg
и ctg
соответственно.

Например, если АВС
– прямоугольный треугольник с прямым углом С
, то синус острого угла A
равен отношению противолежащего катета BC
к гипотенузе AB
, то есть, sin∠A=BC/AB
.

Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC
равен 3
, а гипотенуза AB
равна 7
, то мы могли бы вычислить значение косинуса острого угла A
по определению: cos∠A=AC/AB=3/7
.

Угла поворота

В тригонометрии на угол начинают смотреть более широко — вводят понятие угла поворота . Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0
до 90
градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞
до +∞
.

В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины — угла поворота. Они даются через координаты x
и y
точки A 1
, в которую переходит так называемая начальная точка A(1, 0)
после ее поворота на угол α
вокруг точки O
– начала прямоугольной декартовой системы координат и центра единичной окружности .

Определение.

Синус угла поворота
α
— это ордината точки A 1
, то есть, sinα=y
.

Определение.

Косинусом угла поворота
α
называют абсциссу точки A 1
, то есть, cosα=x
.

Определение.

Тангенс угла поворота
α
— это отношение ординаты точки A 1
к ее абсциссе, то есть, tgα=y/x
.

Определение.

Котангенсом угла поворота
α
называют отношение абсциссы точки A 1
к ее ординате, то есть, ctgα=x/y
.

Синус и косинус определены для любого угла α
, так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α
. А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α
, при которых начальная точка переходит в точку с нулевой абсциссой (0, 1)
или (0, −1)
, а это имеет место при углах 90°+180°·k
, k∈Z
(π/2+π·k
рад). Действительно, при таких углах поворота выражение tgα=y/x
не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α
, при которых начальная точка переходит к в точку с нулевой ординатой (1, 0)
или (−1, 0)
, а это имеет место для углов 180°·k
, k∈Z
(π·k
рад).

Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k
, k∈Z
(π/2+π·k
рад), а котангенс – для всех углов, кроме 180°·k
, k∈Z
(π·k
рад).

В определениях фигурируют уже известные нам обозначения sin
, cos
, tg
и ctg
, они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan
и cot
, отвечающие тангенсу и котангенсу). Так синус угла поворота 30
градусов можно записать как sin30°
, записям tg(−24°17′)
и ctgα
отвечают тангенс угла поворота −24
градуса 17
минут и котангенс угла поворота α
. Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π
.

В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.

Также скажем, что определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике согласуются с только что данными определениями синуса, косинуса, тангенса и котангенса угла поворота величиной от 0
до 90
градусов. Это мы обоснуем .

Числа

Определение.

Синусом, косинусом, тангенсом и котангенсом числа
t
называют число, равное синусу, косинусу, тангенсу и котангенсу угла поворота в t
радианов соответственно.

Например, косинус числа 8·π
по определению есть число, равное косинусу угла в 8·π
рад. А косинус угла в 8·π
рад равен единице, поэтому, косинус числа 8·π
равен 1
.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Он состоит в том, что каждому действительному числу t
ставится в соответствие точка единичной окружности с центром в начале прямоугольной системы координат, и синус, косинус, тангенс и котангенс определяются через координаты этой точки. Остановимся на этом подробнее.

Покажем, как устанавливается соответствие между действительными числами и точками окружности:

  • числу 0
    ставится в соответствие начальная точка A(1, 0)
    ;
  • положительному числу t
    ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении против часовой стрелки и пройдем путь длиной t
    ;
  • отрицательному числу t
    ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении по часовой стрелке и пройдем путь длиной |t|
    .

Теперь переходим к определениями синуса, косинуса, тангенса и котангенса числа t
. Допустим, что числу t
соответствует точка окружности A 1 (x, y)
(например, числу &pi/2;
отвечает точка A 1 (0, 1)
).

Определение.

Синусом числа
t
называют ординату точки единичной окружности, соответствующей числу t
, то есть, sint=y
.

Определение.

Косинусом числа
t
называют абсциссу точки единичной окружности, отвечающей числу t
, то есть, cost=x
.

Определение.

Тангенсом числа
t
называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t
, то есть, tgt=y/x
. В другой равносильной формулировке тангенс числа t
– это отношение синуса этого числа к косинусу, то есть, tgt=sint/cost
.

Определение.

Котангенсом числа
t
называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t
, то есть, ctgt=x/y
. Другая формулировка такова: тангенс числа t
– это отношение косинуса числа t
к синусу числа t
: ctgt=cost/sint
.

Здесь отметим, что только что данные определения согласуются с определением, данным в начале этого пункта. Действительно, точка единичной окружности, соответствующая числу t
, совпадает с точкой, полученной в результате поворота начальной точки на угол в t
радианов.

Еще стоит прояснить такой момент. Допустим, перед нами запись sin3
. Как понять, о синусе числа 3
или о синусе угла поворота в 3
радиана идет речь? Обычно это ясно из контекста, в противном случае это скорее всего не имеет принципиального значения.

Тригонометрические функции углового и числового аргумента

Согласно данным в предыдущем пункте определениям, каждому углу поворота α
соответствуют вполне определенное значение sinα
, как и значение cosα
. Кроме того, всем углам поворота, отличным от 90°+180°·k
, k∈Z
(π/2+π·k
рад) отвечают значения tgα
, а отличным от 180°·k
, k∈Z
(π·k
рад) – значения ctgα
. Поэтому sinα
, cosα
, tgα
и ctgα
— это функции угла α
. Другими словами – это функции углового аргумента.

Аналогично можно говорить и про функции синус, косинус, тангенс и котангенс числового аргумента. Действительно, каждому действительному числу t
отвечает вполне определенное значение sint
, как и cost
. Кроме того, всем числам, отличным от π/2+π·k
, k∈Z
соответствуют значения tgt
, а числам π·k
, k∈Z
— значения ctgt
.

Функции синус, косинус, тангенс и котангенс называют основными тригонометрическими функциями
.

Из контекста обычно понятно, с тригонометрическими функциями углового аргумента или числового аргумента мы имеем дело. В противном случае мы можем считать независимую переменную как мерой угла (угловым аргументом), так и числовым аргументом.

Однако, в школе в основном изучаются числовые функции, то есть, функции, аргументы которых, как и соответствующие им значения функции, являются числами. Поэтому, если речь идет именно о функциях, то целесообразно считать тригонометрические функции функциями числовых аргументов.

Связь определений из геометрии и тригонометрии

Если рассматривать угол поворота α
величиной от 0
до 90
градусов, то данные в контексте тригонометрии определения синуса, косинуса, тангенса и котангенса угла поворота полностью согласуются с определениями синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике, которые даются в курсе геометрии. Обоснуем это.

Изобразим в прямоугольной декартовой системе координат Oxy
единичную окружность. Отметим начальную точку A(1, 0)
. Повернем ее на угол α
величиной от 0
до 90
градусов, получим точку A 1 (x, y)
. Опустим из точки А 1
на ось Ox
перпендикуляр A 1 H
.

Легко видеть, что в прямоугольном треугольнике угол A 1 OH
равен углу поворота α
, длина прилежащего к этому углу катета OH
равна абсциссе точки A 1
, то есть, |OH|=x
, длина противолежащего к углу катета A 1 H
равна ординате точки A 1
, то есть, |A 1 H|=y
, а длина гипотенузы OA 1
равна единице, так как она является радиусом единичной окружности. Тогда по определению из геометрии синус острого угла α
в прямоугольном треугольнике A 1 OH
равен отношению противолежащего катета к гипотенузе, то есть, sinα=|A 1 H|/|OA 1 |=y/1=y
. А по определению из тригонометрии синус угла поворота α
равен ординате точки A 1
, то есть, sinα=y
. Отсюда видно, что определение синуса острого угла в прямоугольном треугольнике эквивалентно определению синуса угла поворота α
при α
от 0
до 90
градусов.

Аналогично можно показать, что и определения косинуса, тангенса и котангенса острого угла α
согласуются с определениями косинуса, тангенса и котангенса угла поворота α
.

Список литературы.

  1. Геометрия. 7-9 классы
    : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. М.: Просвещение, 2010. — 384 с.: ил. — ISBN 978-5-09-023915-8.
  2. Погорелов А. В.
    Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений/ А. В. Погорелов. — 2-е изд — М.: Просвещение, 2001. — 224 с.: ил. — ISBN 5-09-010803-X.
  3. Алгебра и элементарные функции
    : Учебное пособие для учащихся 9 класса средней школы / Е. С. Кочетков, Е. С. Кочеткова; Под редакцией доктора физико-математических наук О. Н. Головина.- 4-е изд. М.: Просвещение, 1969.
  4. Алгебра:
    Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  5. Алгебра
    и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  6. Мордкович А. Г.
    Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразовательных учреждений (профильный уровень)/ А. Г. Мордкович, П. В. Семенов. — 4-е изд., доп. — М.: Мнемозина, 2007. — 424 с.: ил. ISBN 978-5-346-00792-0.
  7. Алгебра
    и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни /[Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. — 3-е изд. — И.: Просвещение, 2010.- 368 с.: ил.- ISBN 978-5-09-022771-1.
  8. Башмаков М. И.
    Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. — 3-е изд. — М.: Просвещение, 1993. — 351 с.: ил. — ISBN 5-09-004617-4.
  9. Гусев В. А., Мордкович А. Г.
    Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
§ 4. Синус, косинус, тангенс и котангенс тупого угла

Синус тупого угла равен синусу смежного с ним острого угла.

Косинус тупого угла равен косинусу смежного с ним острого угла, взятому со знаком «минус».

Пример. Выберите верное равенство:

Видеорешение

Тангенс (котангенс) тупого угла равен тангенсу (котангенсу) смежного с ним острого угла, взятому со знаком «минус».

Значения синуса, косинуса, тангенса и котангенса углов 30°, 45°, 60°.

Понравилась статья? Поделить с друзьями:
  • Как найти энергию света падающего на поверхность
  • Как найти предмет от которой порча
  • Как найти плитку огэ 2020
  • Как найти длину высоту в равнобедренном треугольнике
  • Как найти сопротивление резистора если известно сопротивление