Как найти кпд через напряжение

В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом случае источник тока перемещает заряды во внешней цепи, совершая при этом работу, а во втором случае – заряды перемещаются во всей цепи. В этом процессе большое значение имеет КПД источника тока, определяемого, как соотношение внешнего и полного сопротивления цепи. При равенстве внутреннего сопротивления источника и внешнего сопротивления нагрузки, половина всей мощности будет потеряна в самом источнике, а другая половина выделится на нагрузке. В этом случае коэффициент полезного действия составит 0,5 или 50%.

КПД электрической цепи

Рассматриваемый коэффициент полезного действия в первую очередь связан с физическими величинами, характеризующими скорость преобразования или передачи электроэнергии. Среди них на первом месте находится мощность, измеряемая в ваттах. Для ее определения существует несколько формул: P = U x I = U2/R = I2 x R.

В электрических цепях может быть различное значение напряжения и величина заряда, соответственно и выполняемая работа тоже отличается в каждом случае. Очень часто возникает необходимость оценить, с какой скоростью передается или преобразуется электроэнергия. Эта скорость представляет собой электрическую мощность, соответствующую выполненной работе за определенную единицу времени. В виде формулы данный параметр будет выглядеть следующим образом: P=A/∆t. Следовательно, работа отображается как произведение мощности и времени: A=P∙∆t. В качестве единицы измерения работы используется джоуль (Дж).

Для того чтобы определить, насколько эффективно какое-либо устройство, машина электрическая цепь или другая аналогичная система, в отношении мощности и работы используется КПД – коэффициент полезного действия. Данная величина определяется как отношение полезно израсходованной энергии, к общему количеству энергии, поступившей в систему. Обозначается КПД символом η, а математически определяется в виде формулы: η = A/Q x 100% = [Дж]/[Дж] х 100% = [%], в которой А – работа выполненная потребителем, Q – энергия, отданная источником. В соответствии с законом сохранения энергии, значение КПД всегда равно или ниже единицы. Это означает, что полезная работа не может превышать количество энергии, затраченной на ее совершение.

Таким образом, определяются потери мощности в какой-либо системе или устройстве, а также степень их полезности. Например, в проводниках потери мощности образуются, когда электрический ток частично превращается в тепловую энергию. Количество этих потерь зависит от сопротивления проводника, они не являются составной частью полезной работы.

Существует разница, выраженная формулой ∆Q=A-Q, наглядно отображающей потери мощности. Здесь очень хорошо просматривается зависимость между ростом потерь мощности и сопротивлением проводника. Наиболее ярким примером служит лампа накаливания, КПД у которой не превышает 15%. Остальные 85% мощности превращаются в тепловое, то есть в инфракрасное излучение.

Что такое КПД источника тока

Рассмотренный коэффициент полезного действия всей электрической цепи, позволяет лучше понять физическую суть КПД источника тока, формула которого также состоит из различных величин.
КПД источника тока
В процессе перемещения электрических зарядов по замкнутой электрической цепи, источником тока выполняется определенная работа, которая различается как полезная и полная. Во время совершения полезной работы, источника тока перемещает заряды во внешней цепи. При полной работе, заряды, под действием источника тока, перемещаются уже по всей цепи.

В виде формул они отображаются следующим образом:

  • Полезная работа — Аполез = qU = IUt = I2Rt.
  • Полная работа – Аполн = qε = Iεt = I2(R +r)t.

На основании этого, можно вывести формулы полезной и полной мощности источника тока:

  • Полезная мощность – Рполез = Аполез /t = IU = I2R.
  • Полная мощность – Рполн = Аполн/t = Iε = I2(R + r).

В результате, формула КПД источника тока приобретает следующий вид:

  • η = Аполез/ Аполн = Рполез/ Рполн = U/ε = R/(R + r).

Максимальная полезная мощность достигается при определенном значении сопротивления внешней цепи, в зависимости от характеристик источника тока и нагрузки. Однако, следует обратить внимание на несовместимость максимальной полезной мощности и максимального коэффициента полезного действия.

Исследование мощности и КПД источника тока

Коэффициент полезного действия источника тока зависит от многих факторов, которые следует рассматривать в определенной последовательности.

Для определения величины тока в электрической цепи, в соответствии с законом Ома, существует следующее уравнение: i = E/(R + r), в котором Е является электродвижущей силой источника тока, а r – его внутренним сопротивлением. Это постоянные величины, которые не зависят от переменного сопротивления R. С их помощью можно определить полезную мощность, потребляемую электрической цепью:

  • W1 = i x U = i2 x R. Здесь R является сопротивлением потребителя электроэнергии, i – ток в цепи, определяемый предыдущим уравнением.

Таким образом, значение мощности с использованием конечных переменных будет отображаться в следующем виде: W1 = (E2 x R)/(R + r).

Поскольку сила тока представляет собой промежуточную переменную, то в этом случае функция W1(R) может быть проанализирована на экстремум. С этой целью нужно определить значение R, при котором величина первой производной полезной мощности, связанная с переменным сопротивлением (R) будет равной нулю: dW1/dR = E2 x [(R + r)2 – 2 x R x (R + r)] = E2 x (Ri + r) x (R + r – 2 x R) = E2(r – R) = 0 (R + r)4 (R + r)4 (R + r)3

Из данной формулы можно сделать вывод, что значение производной может быть нулевым лишь при одном условии: сопротивление приемника электроэнергии (R) от источника тока должно достичь величины внутреннего сопротивления самого источника (R => r). В этих условиях значение коэффициента полезного действия η будет определяться как соотношение полезной и полной мощности источника тока – W1/W2. Поскольку в максимальной точке полезной мощности сопротивление потребителя энергии источника тока будет таким же, как и внутреннее сопротивление самого источника тока, в этом случае КПД составит 0,5 или 50%.

Задачи на мощность тока и КПД

Что такое КПД источника тока и как его вычислить

Содержание

  • 1 Электрический ток
  • 2 Работа электрического тока
  • 3 КПД, которым обладает источник тока
  • 4 От чего зависит эффективность
  • 5 Видео по теме

Чтобы оценить эффективность работы электрического прибора, нужно знать его коэффициент полезного действия. Он представляет собой соотношение той энергии, которая создала положительный эффект и потраченной. Обычно это соотношение указывается в процентах. Такой подход применим и при рассмотрении электрических цепей.

Источники электрического тока

Электрический ток

Атом состоит из ядра и вращающихся вокруг него электронов. Ядро имеет положительный заряд, а электроны — отрицательный. Ядро состоит из протонов — положительно заряженных частиц, и нейтронов, у которых нет электрического заряда.

Электроны могут находиться на одной или нескольких орбитах в зависимости от того, о каком веществе идёт речь. Случайным образом некоторые из них могут покидать свои орбиты и хаотически двигаться. При наличии электрического поля их движение становится упорядоченным, они перемещаются от отрицательной клеммы к положительной. Это называется электрическим током.

Ток существует не только во внешней электрической цепи, но и внутри источника питания. Можно считать, что электроны двигаются по замкнутому кругу. Электрическое поле необходимо для перемещения частиц, но только часть его работы называют полезной. Здесь имеется в виду та, которая способствует движению электронов во внешней цепи.

КПД источника тока

Работа электрического тока

Источник питания тока вырабатывает электрическую энергию, которая в дальнейшем может быть преобразована в другие формы, в какие именно, зависит от назначения электрических приборов. Например, в нагревателе электрическая энергия переходит в тепловую, электродвигателе в механическую, а в лампочке в световую.

Работа измеряется в джоулях (Дж). Ещё одна используемая величина — это ватт-сек (Вт*с). Обе этих величины равны. Очень распространена единица измерения киловатт-час (кВт*час), которая равна 3 600 000 джоулей.

Соотношение единиц измерения работы

Если напряжение создаётся разностью потенциалов U и при этом перемещается заряд q, то формула выполненной работы выглядит следующим образом:

Работа электрического тока

Чтобы произвести вычисления, необходимо определить входящие в формулу величины. Обычно разность потенциалов известна. Для определения величины перемещаемого заряда понадобится сила тока. Ее следует умножить на длительность соответствующего промежутка времени:

Формула для вычисления произведенной работы

Воспользовавшись законом Ома можно этому выражению придать другой вид. Как известно, U = I * R. Подставив это выражение в ранее приведённую формулу, получаем:

Формула для вычисления работы с использованием силы тока и сопротивления

Для определения работы можно воспользоваться еще и такой формулой:

Вычисление работы через напряжение и сопротивление

Необходимо учитывать, что рассматривать движение электронов можно как в отдельной схеме, так и во всей цепи, включая батарею питания. Сказанное можно пояснить на следующем примере.

Пусть используется аккумулятор с напряжением, например, 12 В. Он применяется для питания электрической лампочки на протяжении 1 часа. В приводимом примере сила тока составляет 2.3 А. Чтобы узнать, какая работа была произведена в рассматриваемом случае, достаточно воспользоваться формулой, представленной на рисунке выше. Подставив в неё все известные значения и перемножив их, можно увидеть, что искомая величина равна 27.6 Вт*час.

Этот результат можно выразить в джоулях, воспользовавшись формулой для соотношения единиц измерения: 27.6 Вт * час = 27.6 Вт * сек * 3600 = 99360 Вт * сек = 99360 Дж.

Ещё одной важной характеристикой является мощность. Она определяется как работа по перемещению электрических зарядов, которая была выполнена на протяжении единицы времени. Нужно учитывать, что рассматривается не только полная, но и полезная мощность.

Закон Ома для полной электрической цепи

КПД, которым обладает источник тока

Иногда возникает необходимость оценить, насколько эффективно может работать источник тока. Для этого нужно знать коэффициент полезного действия источника тока. Он равен соотношению полезной и всей сделанной работы. Обычно его выражают в процентах.

Формула коэффициента полезного действия

Полезной считается работа, связанная с перемещением электрического заряда в цепи. Чтобы вычислить ее, необходимо знать напряжение между клеммами батареи, силу тока и время, в течение которого происходил процесс.

Вся сделанная работа, обеспечивающая перемещение зарядов, включает в себя и ту, которая выполняется в цепи, и внутри источника. Определение полной работы источника осуществляется по формуле, аналогичной той, что используется для нахождения полезной работы электротока. Разница заключается в следующем:

  • Вместо разности потенциалов рассматривается ЭДС.
  • В новой формуле рассматривается сумма, которая состоит из сопротивления внешней цепи, а также внутреннего сопротивления источника.

Приведённые выше формулы будут выглядеть так.

Формулы для определения-полезной и полной работы

Чтобы найти КПД источника тока, надо эти выражения подставить в формулу для определения коэффициента:

Определение коэффициента полезного действия

В приведённой формуле применены обозначения:

  • С левой стороны стоит КПД.
  • После первого знака равенства записано отношение полезной и полной работы по перемещению электрических зарядов.
  • После второго знака равенства присутствует отношение разности потенциалов на клеммах источника и электродвижущей силы.
  • С правой стороны в формуле представлено частное от деления сопротивления внешней цепи и полного сопротивления.

Такая формула позволяет легко определить величину, которую называют коэффициентом полезного действия источника постоянного тока. При расчёте КПД также можно рассматривать не соотношение работ по перемещению зарядов, а соотношение мощностей.

Формулы связывающие между собой различные характеристики электрического тока

На этом изображении используются следующие обозначения:

  • Во внутреннем круге указаны обозначения определяемого параметра.
  • В секторах перечислены формулы, с помощью которых это можно сделать.

Рассматриваются следующие величины:

  • V — напряжение.
  • P — мощность.
  • I — сила тока.
  • R — сопротивление.

От чего зависит эффективность

Как было выяснено ранее, коэффициент полезного действия будет тем выше, чем меньше внутреннее сопротивление источника. При этом также нужно учитывать следующее:

  • Если сопротивление источника велико, то по цепи будет проходить небольшой ток. В результате её полезная работа станет меньше.
  • При относительно большом сопротивлении основная часть энергии будет потрачена на работу источника, что может вызвать его перегрев.

Принято считать, что оптимальным будет примерное равенство внутреннего сопротивления источника и сопротивления внешней цепи.

Важно понимать, что при работе электрических приборов эффективность можно рассматривать с различных точек зрения. Каждый электрический прибор предназначен для выполнения определённых функций, и вывод зависит от того, как он их выполняет.

Для примера можно рассмотреть лампочку накаливания. В ней электрическая энергия расходуется не только на обычное освещение, но и на такое, которое происходит в диапазонах, не воспринимаемых человеческим глазом. Последнее представляет собой непроизводительную трату энергии в рабочем режиме. Таким образом, КПД может быть вычислен в зависимости от того, что именно необходимо оценить.

Хотя при рассмотрении эффективности работы источника тока речь идёт об относительно высоком коэффициенте полезного действия, на выполнение полезных функций лампочки тратится не более 5% энергетических затрат. Однако следует заметить, что анализ КПД источника в таких случаях является существенной частью расчётов по определению эффективности работы конкретного электрического устройства.

Также нужно учитывать, что при высоком коэффициенте полезного действия, согласно приведённым здесь формулам, внутреннее сопротивление источника тока должно иметь минимальную величину. Но в результате будет получена большая сила тока, которая спровоцирует преобразование части электрической энергии в тепловую. А это, в свою очередь, уменьшит величину работы по перемещению электрических зарядов.

Зависимость мощности от сопротивления

Таким образом, можно отметить одну особенность коэффициента полезного действия источника тока при перемещении электрических зарядов. Это важно для понимания того, что такое КПД. Его наибольшее значение не приводит к получению максимальной полезной мощности. Получается, что если добиваться максимальной мощности во внешней цепи, то получим КПД работы всего 50%, то есть половина затраченной мощности источника расходуется бесполезно — переходит в тепло, нагревая источник тока. Источник тока может работать с максимальной мощностью только при условии, что его внутреннее сопротивление имеет примерно такое же значение, что и сопротивление нагрузки.

Видео по теме

Что такое источник тока

Это устройство или элемент, в общем понимании – двухполюсник, у которого проходящий через него ток не зависит от величины напряжения на полюсах. Основные характеристики источника тока (ИТ):

  • величина;
  • внутренняя проводимость (импеданс).

Внутреннее сопротивление такого двухполюсника очень мало. У идеального источника (ИИТ) оно приближается к нулю.

Графическое обозначение и вольт-амперная характеристика (ВАХ) ИТ

Генераторы движения электронов могут быть как независимыми, так и зависимыми.

Первые представляют собой идеальный двухполюсник, с двумя зажимами. У них ток, движущийся от одного зажима к другому, не зависит от формы и величины разности потенциалов на зажимах. Его изменения происходят по своим законам.

Второй тип ИТ – идеальный двухполюсник, с двумя зажимами, у которого движение зарядов от одного зажима к другому зависит от формы и величины напряжения на этих зажимах.

Существует управляемый зависимый ИТ. Он представляет собой идеальный двухполюсник, имеющий 2 зажима на входе и 2 зажима на выходе. Его особенность в том, что выходное значение тока на выходе зависит от его величины на входе. В таком ИТ происходит усиление мощности. Изменяя нулевое значение мощности на его входе, управляют величину мощности на выходных зажимах.

Информация. Управление производителем энергии может осуществляться напряжением (ИТУН) или током (ИТУТ). Одни находят применение для полевых триодов и электровакуумных ламп, вторые – для транзисторов биполярного типа.

В реальности генераторы тока имеют определённые ограничения по напряжению. Они далеки от идеальных ИТ и создают движение электричества в таком интервале напряжений, где их верхняя граница зависит от Uпит ИТ. Следовательно, у реального источника тока есть существенные пределы по нагрузке.

Работа электрического тока

Источник питания тока вырабатывает электрическую энергию, которая в дальнейшем может быть преобразована в другие формы, в какие именно, зависит от назначения электрических приборов. Например, в нагревателе электрическая энергия переходит в тепловую, электродвигателе в механическую, а в лампочке в световую.

Работа измеряется в джоулях (Дж). Ещё одна используемая величина — это ватт-сек (Вт*с). Обе этих величины равны. Очень распространена единица измерения киловатт-час (кВт*час), которая равна 3 600 000 джоулей.

Соотношение единиц измерения работы

Если напряжение создаётся разностью потенциалов U и при этом перемещается заряд q, то формула выполненной работы выглядит следующим образом:

Работа электрического тока

Чтобы произвести вычисления, необходимо определить входящие в формулу величины. Обычно разность потенциалов известна. Для определения величины перемещаемого заряда понадобится сила тока. Ее следует умножить на длительность соответствующего промежутка времени:

Формула для вычисления произведенной работы

Воспользовавшись законом Ома можно этому выражению придать другой вид. Как известно, U = I * R. Подставив это выражение в ранее приведённую формулу, получаем:

Формула для вычисления работы с использованием силы тока и сопротивления

Для определения работы можно воспользоваться еще и такой формулой:

Вычисление работы через напряжение и сопротивление

Необходимо учитывать, что рассматривать движение электронов можно как в отдельной схеме, так и во всей цепи, включая батарею питания. Сказанное можно пояснить на следующем примере.

Пусть используется аккумулятор с напряжением, например, 12 В. Он применяется для питания электрической лампочки на протяжении 1 часа. В приводимом примере сила тока составляет 2.3 А. Чтобы узнать, какая работа была произведена в рассматриваемом случае, достаточно воспользоваться формулой, представленной на рисунке выше. Подставив в неё все известные значения и перемножив их, можно увидеть, что искомая величина равна 27.6 Вт*час.

Этот результат можно выразить в джоулях, воспользовавшись формулой для соотношения единиц измерения: 27.6 Вт * час = 27.6 Вт * сек * 3600 = 99360 Вт * сек = 99360 Дж.

Ещё одной важной характеристикой является мощность. Она определяется как работа по перемещению электрических зарядов, которая была выполнена на протяжении единицы времени. Нужно учитывать, что рассматривается не только полная, но и полезная мощность.

Закон Ома для полной электрической цепи

КПД электрической цепи

Формула мощности электрического тока

Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.

Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи.

Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт).

Формулы мощности:

P = U * I = U2/R = I2 * R,

где:

  • U – напряжение на нагрузке, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом.

Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной. Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:

P = A/∆t,

Читайте также:  Производство и использование электрической энергии

где:

  • P – мощность, Вт;
  • A – работа, Дж;
  • ∆t – временной интервал, с.

Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:

A=P∙∆t

Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:

η = A/Q *100%,

где:

  • А – проделанная потребителем работа, Дж;
  • Q – количество энергии, взятой от источника, Дж.

Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её. Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.

Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.

Как найти КПД источника тока?
КПД электрической цепи

Для чего нужен расчет КПД

Коэффициент полезного действия электрической цепи – это отношение полезного тепла к полному. Для ясности приведем пример. При нахождении КПД двигателя можно определить, оправдывает ли его основная функция работы затраты потребляемого электричества. То есть его расчет даст ясную картину, насколько хорошо устройство преобразовывает получаемую энергию. Обратите внимание! Как правило, коэффициент полезного действия не имеет величины, а представляет собой процентное соотношение либо числовой эквивалент от 0 до 1. КПД находят по общей формуле вычисления, для всех устройств в целом. Но чтобы получить его результат в электрической цепи, вначале потребуется найти силу электричества.

По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу. Дадим значения каждому элементу цепи: сопротивление – r; сила тока – Е; резистор (внешняя нагрузка) – R. Полная цепь Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt. Рассчитать работу источника тока можно по следующей формуле: A = Eq = EIt. В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца: Q = I2 + I2 rt = I2 (R + r) t.

Как найти КПД источника тока?
Формулы расчета КПД.

Затем приравниваются правые части формулы: EIt = I2 (R + r) t. Осуществив сокращение, получается расчет: E = I(R + r). Произведя у формулы перестановку, в итоге получается: I = E R + r. Данное итоговое значение будет являться электрической силой в данном устройстве. Произведя таким образом предварительный расчет, теперь можно определить КПД.

Расчет КПД электрической цепи Мощность, получаемая от источника тока, называется потребляемой, определение ее записывается – P1. Если эта физическая величина переходит от генератора в полную цепь, она считается полезной и записывается – Р2. Чтобы определить КПД цепи, необходимо вспомнить закон сохранения энергии.

В соответствии с ним, мощность приемника Р2 будет всегда меньше потребляемой мощности Р1. Это объясняется тем, что в процессе работы в приемнике всегда происходит неизбежная пустая трата преобразуемой энергии, которая расходуется на нагревание проводов, их оболочки, вихревых токов и т.д. Чтобы найти оценку свойств превращения энергии, необходим КПД, который будет равен отношению мощностей Р2 и Р1.

Как найти КПД источника тока?

Итак, зная все значения показателей, составляющих электроцепи, находим ее полезную и полную работу: А полезная. = qU = IUt =I2Rt; А полная = qE = IEt = I2(R+r)t. В соответствии этих значений, найдем мощности источника тока: Р2 = А полезная /t = IU = I2 R; P1 = А полная /t = IE = I2 (R + r). Произведя все действия, получаем формулу КПД: n = А полезная / А полная = Р2 / P1 =U / E = R / (R +r). У этой формулы получается, что R выше бесконечности, а n выше 1, но при всем этом ток в цепи остается в низком положении, и его полезная мощность мала.

Каждый желает найти КПД повышенного значения. Для этого необходимо найти условия, при которых P2 будет максимален. Оптимальные значения будут: dP2 / dR = 0. Далее определить КПД можно формулами: P2 = I2 R = (E / R + r)2 R; dP2 / dR = (E2 (R + r)2 — 2 (r + R) E2 R) / (R + r)4 = 0; E2 ((R + r) -2R) = 0. В данном выражении Е и (R + r) не равны 0, следовательно, ему равно выражение в скобках, то есть (r = R). Тогда получается, что мощность имеет максимальное значение, а коэффициент полезного действия = 50 %. Как видно, найти коэффициент полезного действия электрической цепи можно самостоятельно, не прибегая к услугам специалиста. Главное –соблюдать последовательность в расчетах и не выходить за рамки приведенных формул.

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу.

Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

Как найти КПД источника тока?
Расчет коэффициента полезного действия.

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

Часто задаваемые вопросы

Почему коэффициент полезного действия всегда меньше 100%?

КПД 100% означает, что вся энергия, затраченная на получение мощности двигателя, используется им в работе. В природе такого, в принципе, никогда не бывает, и поэтому КПД всех двигателей всегда меньше 100 процентов.

Как повысить коэффициент полезного действия механизма?

КПД механизмов можно увеличить, снижая трение в подвижных узлах и вес всех составных элементов конструкции. Для этого нужны новые смазочные вещества и лёгкие, но прочные конструкционные материалы.

Чему равен коэффициент полезного действия неподвижного блока?

Например, поднимая груз с помощью подвижного блока, приходится вместе с грузом поднимать и блок, а при этом необходимо совершать «дополнительную» работу. Отношение полезной работы Апол к совершенной Асов, выраженное в процентах, обозначают η и называют коэффициентом полезного действия (КПД): η = Апол/Асов · 100%.

Что такое КПД ИТ

Мощность электрического тока

Когда речь идёт о кпд источника тока, также рассматривают полезную и полную работу, совершаемую двухполюсником. Перемещая электроны во внешней цепи, он выполняет полезную работу, двигая их по всей цепи, включая и свою внутреннюю, он производит полную работу.

В виде формул это выглядит так:

  • А полезн. = q*U = I*U*t = I2*R*t;
  • А полн. = q*ε = I* ε*t = I2*(R+r)*t.

где:

  • q – количество энергии, Дж;
  • U – напряжение, В;
  • ε – ЭДС, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом;
  • r – импеданс источника, Ом;
  • t – время, за которое совершается работа, с.

С учётом этого можно выразить мощности двухполюсника:

  • Р полезн. = А полезн./t = I*U = I2*R;
  • P полн. = А полн./t = I*ε = I2*(R+r).

Формула кпд источников тока имеет вид:

η = Р полезн./P полн.= U/ε = R/ R+r.

Как найти КПД источника тока?

КПД, которым обладает источник тока

При совершении работы электрическим током происходят преобразования энергии. Полная работа, совершаемая источником, идет на энергопреобразования во всем электрическом контуре, а полезная – только в присоединенной к ИП цепи.

Количественная оценка КПД источника тока производится по самому значимому показателю, определяющему скорость совершения работы,–мощности:

P = A/t.

Далеко не вся выходная мощность ИП используется энергопотребителем. Соотношение потребленной энергии и выданной источником представляет собой формулу коэффициента полезного действия:

η = полезная мощность/выходная мощность = Pпол./Рвых.

Важно! Так как Pпол. практически в любом случае меньше, чем Рвых, η не может быть больше 1.

Расчет КПД источника тока
Расчет КПД источника тока

Эту формулу можно преобразовать, подставляя выражения для мощностей:

  1. Выходная мощность источника:

Рвых. = I x E = I² x (R + r) x t;

  1. Потребленная энергия:

Рпол. = I x U = I² x R x t;

  1. Коэффициент:

η = Рпол./Рвых. = (I² x R x t)/( I² x (R + r) x t) = R/(R + r).

То есть у источника тока КПД определяется соотношением сопротивлений: внутреннего и нагрузочного.

Часто показателем КПД оперируют в процентах. Тогда формула примет вид:

η = R/(R + r) x 100%.

Из полученного выражения видно, что при соблюдении условия согласования (R = r) коэффициент η = (R/2 x R) х 100% = 50%. Когда передаваемая энергия наиболее эффективна, КПД самого ИП оказывается равным всего 50%.

Пользуясь этим коэффициентом, оценивают эффективность различных ИП и потребителей электроэнергии.

Примеры значений КПД:

  • газовая турбина – 40%;
  • солнечная батарея – 15-20%;
  • литий-ионный аккумулятор – 89-90%;
  • электронагреватель – приближается к 100%;
  • лампа накаливания – 5-10%;
  • светодиодная лампа – 5-50%;
  • холодильные установки – 20-50%.

Показатели полезной мощности рассчитываются для разных потребителей в зависимости от вида совершаемой работы.

Иногда возникает необходимость оценить, насколько эффективно может работать источник тока. Для этого нужно знать коэффициент полезного действия источника тока. Он равен соотношению полезной и всей сделанной работы. Обычно его выражают в процентах.

Формула коэффициента полезного действия

Полезной считается работа, связанная с перемещением электрического заряда в цепи. Чтобы вычислить ее, необходимо знать напряжение между клеммами батареи, силу тока и время, в течение которого происходил процесс.

Вся сделанная работа, обеспечивающая перемещение зарядов, включает в себя и ту, которая выполняется в цепи, и внутри источника. Определение полной работы источника осуществляется по формуле, аналогичной той, что используется для нахождения полезной работы электротока. Разница заключается в следующем:

  • Вместо разности потенциалов рассматривается ЭДС.
  • В новой формуле рассматривается сумма, которая состоит из сопротивления внешней цепи, а также внутреннего сопротивления источника.

Приведённые выше формулы будут выглядеть так.

Формулы для определения-полезной и полной работы

Чтобы найти КПД источника тока, надо эти выражения подставить в формулу для определения коэффициента:

Определение коэффициента полезного действия

В приведённой формуле применены обозначения:

  • С левой стороны стоит КПД.
  • После первого знака равенства записано отношение полезной и полной работы по перемещению электрических зарядов.
  • После второго знака равенства присутствует отношение разности потенциалов на клеммах источника и электродвижущей силы.
  • С правой стороны в формуле представлено частное от деления сопротивления внешней цепи и полного сопротивления.

Такая формула позволяет легко определить величину, которую называют коэффициентом полезного действия источника постоянного тока. При расчёте КПД также можно рассматривать не соотношение работ по перемещению зарядов, а соотношение мощностей.

Формулы связывающие между собой различные характеристики электрического тока

На этом изображении используются следующие обозначения:

  • Во внутреннем круге указаны обозначения определяемого параметра.
  • В секторах перечислены формулы, с помощью которых это можно сделать.

Рассматриваются следующие величины:

  • V — напряжение.
  • P — мощность.
  • I — сила тока.
  • R — сопротивление.

Исследование мощности и КПД генератора тока

Источник тока

Максимальная полезная Pmax и максимальный КПДmax – несовместимые понятия. Нельзя добиться максимального КПД источника при максимальной мощности. Это обусловлено тем, что Р, отдаваемая двухполюсником, достигнет своего максимального значения только при условии согласования сопротивления нагрузки и внутреннего импеданса ИТ:

R = r.

В этом случае КПД источника будет:

η = R/ R+r = r/ r+r = 1/2, что составляет всего 50%.

Для согласования двухполюсника и нагрузки применяют электронные схемы или согласующие блоки, для того чтобы добиться максимального отбора мощности от источника.

Прямой и косвенный методы определения коэффициента полезного действия

Прямой метод определения к. п. д. по экспериментальным значениям P1 и P2 согласно формуле (1) может дать существенную неточность, поскольку, во-первых, P1 и P2 являются близкими по значению и, во-вторых, их экспериментальное определение связано с погрешностями. Наибольшие трудности и погрешности вызывает измерение механической мощности.

Если, например, истинные значения мощности P1 = 1000 кВт и P2 = 950 кВт могут быть определены с точностью 2%, то вместо истинного значения к. п. д.

η = 950/1000 = 0,95

можно получить

или

Поэтому ГОСТ 25941-83, «Машины электрические вращающиеся. Методы определения потерь и коэффициента полезного действия», предписывает для машин с η% ≥ 85% косвенный метод определения к. п. д., при котором по экспериментальным данным определяется сумма потерь pΣ.

Подставив в формулу (1) P2 = P1 — pΣ, получим

Применив здесь подстановку P1 = P2 + pΣ, получим другой вид формулы:

Так как более удобно и точно можно измерять электрические мощности (для двигателей P1 и для генераторов P2), то для двигателей более подходящей является формула (3) и для генераторов формула (4). Методы экспериментального определения отдельных потерь и суммы потерь pΣ описываются в стандартах на электрические машины и в руководствах по испытанию и исследованию электрических машин. Если даже pΣ определяется со значительно меньшей точностью, чем P1 или P2, при использовании вместо выражения (1) формул (3) и (4) получаются все же значительно более точные результаты.

Взаимосвязь полезной мощности и КПД

Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.

Формула имеет вид:

η = А/Q,

где:

  • А – полезная работа (энергия);
  • Q – затраченная энергия.

По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:

  • электродвигатель – до 98%;
  • ДВС – до 40%;
  • паровая турбина – до 30%.

Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.

Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого

Получение максимальной энергии на выходе ИП

К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.

Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.

Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.

Как найти КПД источника тока?
График зависимости Рпол и η от тока в цепи

Достижение максимального КПД

Формула КПД источника тока имеет вид:

η = Pн/Pобщ = R/Rн+r,

где:

Читайте также:  Эволюция систем управления пылесосов LG (часть 1)

  • Pн – мощность нагрузки;
  • Pобщ – общая мощность;
  • R – полное сопротивление цепи;
  • Rн – сопротивление нагрузки;
  • r – внутреннее сопротивление ИТ.

Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.

Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:

  • изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
  • приближения их значений к параметрам окружающей среды по окончании расширения.

Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.

К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.

Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:

  • некоторая часть давления уходит на внешнюю среду;
  • достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
  • нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
  • использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.

Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:

  • ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
  • наиболее полно перед расширением использовать оба вида энергии рабочего тела;
  • осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.

Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.

Как найти КПД источника тока?
КПД двигателя внутреннего сгорания

От чего зависит эффективность

Как было выяснено ранее, коэффициент полезного действия будет тем выше, чем меньше внутреннее сопротивление источника. При этом также нужно учитывать следующее:

  • Если сопротивление источника велико, то по цепи будет проходить небольшой ток. В результате её полезная работа станет меньше.
  • При относительно большом сопротивлении основная часть энергии будет потрачена на работу источника, что может вызвать его перегрев.

Принято считать, что оптимальным будет примерное равенство внутреннего сопротивления источника и сопротивления внешней цепи.

Важно понимать, что при работе электрических приборов эффективность можно рассматривать с различных точек зрения. Каждый электрический прибор предназначен для выполнения определённых функций, и вывод зависит от того, как он их выполняет.

Для примера можно рассмотреть лампочку накаливания. В ней электрическая энергия расходуется не только на обычное освещение, но и на такое, которое происходит в диапазонах, не воспринимаемых человеческим глазом. Последнее представляет собой непроизводительную трату энергии в рабочем режиме. Таким образом, КПД может быть вычислен в зависимости от того, что именно необходимо оценить.

Хотя при рассмотрении эффективности работы источника тока речь идёт об относительно высоком коэффициенте полезного действия, на выполнение полезных функций лампочки тратится не более 5% энергетических затрат. Однако следует заметить, что анализ КПД источника в таких случаях является существенной частью расчётов по определению эффективности работы конкретного электрического устройства.

Также нужно учитывать, что при высоком коэффициенте полезного действия, согласно приведённым здесь формулам, внутреннее сопротивление источника тока должно иметь минимальную величину. Но в результате будет получена большая сила тока, которая спровоцирует преобразование части электрической энергии в тепловую. А это, в свою очередь, уменьшит величину работы по перемещению электрических зарядов.

Зависимость мощности от сопротивления

Таким образом, можно отметить одну особенность коэффициента полезного действия источника тока при перемещении электрических зарядов. Это важно для понимания того, что такое КПД. Его наибольшее значение не приводит к получению максимальной полезной мощности. Получается, что если добиваться максимальной мощности во внешней цепи, то получим КПД работы всего 50%, то есть половина затраченной мощности источника расходуется бесполезно — переходит в тепло, нагревая источник тока. Источник тока может работать с максимальной мощностью только при условии, что его внутреннее сопротивление имеет примерно такое же значение, что и сопротивление нагрузки.

Мощность ИТ и внутреннее сопротивление

Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.

Как найти КПД источника тока?
Простая схема для исследования зависимости Рполезн. от R

Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.

Оно выглядит так:

Читайте также:  Что такое изолированная нейтраль и где она используется

Rэкв. = R + r.

Движение электричества в цепи находится по формуле:

I = E/(R + r).

В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).

Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:

Pr = I² * r = E² * r/(R + r)².

На следующем этапе определяются с мощностью, отбираемой нагрузкой:

PR = I² * R = E² * R/(R + r)².

Общая Р на выходе двухполюсника будет равна сумме:

Рвых. = Рr + PR.

Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.

Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.

При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.

Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R < r значительная доля энергии превращается в тепло в самом двухполюснике.

Наиболее наглядный пример согласования можно увидеть в радиотехнике при согласовании выходного сопротивления УНЧ (усилителя низкой частоты) и звуковых динамиков. На выходе усилителя сопротивление находится в пределах от 4 до 8 Ом, в то время как Rвх динамика составляет 8 Ом. Устройство позволяет подключить к своему выходному каскаду, как один динамик на 8 Ом, так и параллельно два по 4 Ома. И в том, и в другом случае УНЧ будет работать в заданном режиме, без потерь мощности.

В процессе разработок тех или иных реальных источников тока пользуются представлением его в виде эквивалентного блока. В его состав входят два компонента, с которыми ведётся работа: это идеальный источник и его импеданс.

Предыдущая

ТеорияЭлектрический шок

Следующая

ТеорияКуда течет ток и как определить его направление?

КПД источника тока

Для работы электронных и электрических устройств необходимо подключать их к источникам питания. Источники питания могут быть как стационарные, так и автономные. В качестве питающих устройств используются гальванические элементы или преобразователи электроэнергии. И те, и другие являются источниками тока или напряжения.

Что такое источник тока

Это устройство или элемент, в общем понимании – двухполюсник, у которого проходящий через него ток не зависит от величины напряжения на полюсах. Основные характеристики источника тока (ИТ):

  • величина;
  • внутренняя проводимость (импеданс).

Внутреннее сопротивление такого двухполюсника очень мало. У идеального источника (ИИТ) оно приближается к нулю.

Генераторы движения электронов могут быть как независимыми, так и зависимыми.

Первые представляют собой идеальный двухполюсник, с двумя зажимами. У них ток, движущийся от одного зажима к другому, не зависит от формы и величины разности потенциалов на зажимах. Его изменения происходят по своим законам.

Второй тип ИТ – идеальный двухполюсник, с двумя зажимами, у которого движение зарядов от одного зажима к другому зависит от формы и величины напряжения на этих зажимах.

Существует управляемый зависимый ИТ. Он представляет собой идеальный двухполюсник, имеющий 2 зажима на входе и 2 зажима на выходе. Его особенность в том, что выходное значение тока на выходе зависит от его величины на входе. В таком ИТ происходит усиление мощности. Изменяя нулевое значение мощности на его входе, управляют величину мощности на выходных зажимах.

Информация. Управление производителем энергии может осуществляться напряжением (ИТУН) или током (ИТУТ). Одни находят применение для полевых триодов и электровакуумных ламп, вторые – для транзисторов биполярного типа.

В реальности генераторы тока имеют определённые ограничения по напряжению. Они далеки от идеальных ИТ и создают движение электричества в таком интервале напряжений, где их верхняя граница зависит от Uпит ИТ. Следовательно, у реального источника тока есть существенные пределы по нагрузке.

КПД электрической цепи

Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.

Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи.

Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт).

Формулы мощности:

где:

  • U – напряжение на нагрузке, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом.

Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной. Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:

  • P – мощность, Вт;
  • A – работа, Дж;
  • ∆t – временной интервал, с.

Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:

Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:

  • А – проделанная потребителем работа, Дж;
  • Q – количество энергии, взятой от источника, Дж.

Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её. Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.

Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.

Что такое КПД ИТ

Когда речь идёт о кпд источника тока, также рассматривают полезную и полную работу, совершаемую двухполюсником. Перемещая электроны во внешней цепи, он выполняет полезную работу, двигая их по всей цепи, включая и свою внутреннюю, он производит полную работу.

В виде формул это выглядит так:

  • А полезн. = q*U = I*U*t = I2*R*t;
  • А полн. = q*ε = I* ε*t = I2*(R+r)*t.
  • q – количество энергии, Дж;
  • U – напряжение, В;
  • ε – ЭДС, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом;
  • r – импеданс источника, Ом;
  • t – время, за которое совершается работа, с.

С учётом этого можно выразить мощности двухполюсника:

  • Р полезн. = А полезн./t = I*U = I2*R;
  • P полн. = А полн./t = I*ε = I2*(R+r).

Формула кпд источников тока имеет вид:

η = Р полезн./P полн.= U/ε = R/ R+r.

Исследование мощности и КПД генератора тока

Максимальная полезная Pmax и максимальный КПДmax – несовместимые понятия. Нельзя добиться максимального КПД источника при максимальной мощности. Это обусловлено тем, что Р, отдаваемая двухполюсником, достигнет своего максимального значения только при условии согласования сопротивления нагрузки и внутреннего импеданса ИТ:

В этом случае КПД источника будет:

η = R/ R+r = r/ r+r = 1/2, что составляет всего 50%.

Для согласования двухполюсника и нагрузки применяют электронные схемы или согласующие блоки, для того чтобы добиться максимального отбора мощности от источника.

Мощность ИТ и внутреннее сопротивление

Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.

Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.

Оно выглядит так:

Движение электричества в цепи находится по формуле:

В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).

Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:

На следующем этапе определяются с мощностью, отбираемой нагрузкой:

Общая Р на выходе двухполюсника будет равна сумме:

Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.

Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.

При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.

Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R Видео

Источник

Формула КПД

Для оценки эффективности расхода энергии на выполнение работы необходимо выяснить, как найти КПД. Полученные сведения пригодятся для оптимизации параметров электрических компонентов цепи, рычагов и других передаточных механизмов. С помощью предварительных вычислений можно увеличить длительность действия автономного источника питания, решить другие практические задачи.

Что такое КПД источника тока

Неподвижный заряд не выполняет работу. Уменьшение энергетического запаса в аккумуляторе происходит за счет химических реакций. Фактически это свидетельство несовершенства конструкции.

После подключения источника к проводникам с подключенной нагрузкой заряды перемещаются по цепи, выполняя определенную работу. Полезная составляющая мощности (Pпол) определяется параметрами внешнего контура. Полная (Pп) – содержит совокупные затраты. Если электротехник пользуется привычными терминами, он быстро установит для коэффициента полезного действия формулу:

Для чего нужен расчет КПД

Наглядный пример недостаточно эффективного устройства – классическая лампа накаливания. Пропускание тока через вольфрамовую спираль повышает температуру проводника. В рабочем режиме значительное количество потребляемой мощности расходуется на генерацию излучения. Однако к видимой части диапазона относится только небольшая часть спектра. Так как вырабатываемая теплота не выполняет полезного действия, соответствующие энергетические затраты следует узнавать по излишним.

Если выразить КПД через мощность в этом случае, следует одновременно учесть долговечность. Эта методика повышает точность оценки, так как подразумевает необходимость периодической замены испорченного излучателя.

В типовом рабочем режиме лампа накаливания нагревает нить до 2600-2800К. При таком значении срок службы составляет 900-1200 часов, КПД – от 5 до 7%. Увеличить эффективность в 2-5 раз можно повышением температуры до 3400-3600К. Однако в этом варианте долговечность уменьшается до 5-6 часов. Подобные практические характеристики нельзя признать удовлетворительными.

Эта таблица демонстрирует превосходство экономичных источников света. Срок службы современных светодиодов измеряется десятками тысяч часов. Даже на завершающих этапах рабочих циклов обеспечиваются высокая яркость и качественное распределение спектральных составляющих.

Нахождение тока в полной цепи

Для изучения эффективности потребления энергии в электротехнике можно использовать базовые формулы. В полной цепи по базовому определению рассматривают источник тока (I) с внутренним сопротивлением (r). Подключенная нагрузка потребляет определенную мощность. Она характеризуется электрическим сопротивлением R.

Прохождение тока по такой цепи обеспечивает энергия источника, которая определена значением электродвижущей силы (ЭДС – E). Ее можно выразить как отношение выполненной сторонними силами работы (A) по передвижению заряда (q) с положительным знаком по соответствующему контуру. С учетом известной формулы I= q/t несложно определить зависимость между рассматриваемыми величинами:

где t – контрольный временной интервал.

Отдельно можно рассмотреть участки с внутренним и внешним сопротивлением. Каждый из них выделяет определенное законом Джоуля-Ленца количество теплоты Q = I2 * R * t. Так как энергия не пропадает бесследно, можно сделать правильный вывод о равенстве Q = A. Подставив значения в исходное выражение, получают:

ЭДС полной цепи вычисляется сложением двух падений напряжений на внутреннем и внешнем участке. Элементарное преобразование позволяет узнать силу тока в соответствующем проводнике:

Расчет КПД электрической цепи

После определения основных параметров можно перейти к изучению эффективности системы. Для вычисления КПД обозначение потребления электроэнергии удобно сделать по стандартным формулам.

Выполняемая работа в цепи определяется количеством перемещенных зарядов, а также скоростью данного процесса. Для объективной оценки последнего параметра измерения выполняют с учетом определенных временных интервалов (Δt). Работу и мощность можно определить следующими формулами:

Как и в классической механике, работу можно измерить в джоулях (Дж). Мощность, по стандартам СИ, указывают в ваттах (Вт). Зависимость между отмеченными единицами:

Вт = Дж/ с (для электрических цепей вольт * ампер).

Для обозначения КПД символ «η» применяют в типовых формулах. Базовое определение с учетом приведенных замечаний можно преобразовать следующим образом:

  • A – выполненная работа;
  • Q – энергия, полученная из источника.

Любое подключенное устройство характеризуется определенными потерями. Резистор выделяет тепло. Трансформатор тратит часть энергии на преобразование электромагнитных волн. На примере лампы накаливания показана низкая эффективность изделия. С применением КПД увеличивают объективность оценки разных систем, подключаемых потребителей, генераторов. В следующем пункте представлена технология проверки силовых агрегатов.

Методика и порядок измерений

Идеальные условия можно рассматривать только в теории. Для корректной оценки замкнутой системы необходимо учитывать энергетические потери на выполнение необходимой работы. Ниже показано, как определить КПД механических силовых агрегатов с применением разных исходных данных.

Движению поршня в блоке цилиндров двигателя внутреннего сгорания препятствует сила трения. Поступательно-возвратные движения в ходе стандартного цикла преобразуются во вращение вала с дополнительными потерями. Высокая температура не выполняет в данном случае полезные функции. Чтобы не допустить разрушения агрегата, необходимо поддерживать определенный тепловой режим. Приходится обеспечить циркуляцию охлаждающей жидкости с помощью помпы.

Понятно, что в подобном случае сделать общий КПД расчет с учетом каждого компонента конструкции непросто. Однако можно узнать в ходе эксперимента с высокой точностью, какое количество топлива (масса – m) придется затратить на 100 км пробега машины за соответствующее время (t). Далее нужно взять из сопроводительной документации (справочников) следующие данные:

  • мощность мотора – Рм;
  • удельную теплоту бензина – У.

В этом варианте для расчета КПД двигателя формула преобразуется следующим образом:

Для отображения результата в % итоговое значение умножают на 100.

Если мощность силового агрегата не известна, определять эффективность можно по массе авто (Mа). Измерять ее несложно с помощью промышленных весов (на станции техосмотра, элеваторе). В ходе эксперимента разгоняются с места до контрольной скорости (v). Массу топлива вычисляют по объему (переведенному из литров в м кв.), который умножают на плотность (справочная величина в кг на куб. м).

В этом случае КПД расчет находят по формуле:

Следует перевести предварительно скорость из км/час в м/с.

Проще измеряется эффективность электродвигателя с паспортной мощностью (P). Его подключают к источнику питания с известным напряжением (U). После выхода на стабильную частоту вращения фиксируют значение тока (I) в цепи. Далее применяют классическую формулу:

Если сопроводительная документация отсутствует, технические параметры берут с официального сайта производителя. Однако и в этом случае следует понимать ограниченную точность подобных данных. В процессе эксплуатации характеристики могут ухудшиться за счет естественного износа. Погрешность увеличивается после длительной интенсивной эксплуатации, при подключении редуктора или другого переходного устройства.

Значительно улучшить точность можно с применением простой методики:

  • устанавливают на вал шкив с закрепленным тросом;
  • поднимают на контрольную высоту (h) груз c массой m;
  • секундомером фиксируют время (t) на выполнение этой работы;
  • мультиметром измеряют напряжение (U) и силу тока (I) на клеммах источника питания и в разрыве цепи, соответственно.

Для нахождения КПД в физике формула выглядит следующим образом:

где g – это гравитационная постоянная (9,80665).

Эффективность любого силового агрегата определяют по соотношению полезной работы к расходованной энергии. Чтобы корректно определять класс техники, пользуются переводом в проценты. Следует подчеркнуть, что значение больше 100% обозначает ошибку в расчетах. Создатель подобного агрегата станет «властелином мира», так как изобретет вечный двигатель.

Видео

Источник

Кпд источника тока.

Перемещая
электрические заряды по замкнутой цепи,
источник тока совершает работу. Различают
полезную
и полную
работу
источника тока. Полезная
работа

– это та, которую совершает источник
по перемещению зарядов во
внешней

цепи; полная
работа

это работа источника по перемещению
зарядов во всей
цепи:


полезная работа;


полная работа.

Соответственно
этому, различают полезную
и
полную
мощность

источника тока:

Коэффициентом
полезного действия

(КПД) источника тока называют отношение:

Выясним,
при каком сопротивлении внешней цепи
полезная мощностьмаксимальна.

Имеем:
,
где;

откуда
.

Условие
называетсяусловием
согласования

источника и нагрузки. В этом случае
мощность, выделяемая источником во
внешней цепи, максимальна.
Отметим, что при выполнении условия
согласования

КПД источника тока
,
то есть
максимальная

полезная мощность и максимальный
КПД несовместимы.
Из приведенного графика видно также,
что одну и ту же полезную мощность можно
получить при двух
различных

сопротивлениях внешней нагрузки
.

3.2. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.

Для
протекания электрического тока в
проводнике необходимо, чтобы на его
концах поддерживалась разность
потенциалов. Очевидно, для этой цели не
может быть использован заряженный
конденсатор. Действительно, если
включить в цепь проводника заряженный
конденсатор и замкнуть цепь, то под
действием сил электростатического поля
заряды придут в движение, возникнет
кратковременный ток, после чего
установится равновесное распределение
зарядов, при котором потенциалы концов
проводника выравниваются и ток
прекращается. Другими словами,
электростатическое поле конденсатора
не может осуществить постоянную
циркуляцию зарядов в цепи (то есть
электрический ток), что является
следствием потенциальности
электростатического поля – равенства
нулю работы сил электростатического
поля по замкнутому контуру. Таким
образом, для поддержания постоянного
тока в замкнутой цепи необходимо действие
сторонних
сил

неэлектростатического
происхождения и не являющихся
потенциальными
силами.

Эти
силы могут быть обусловленыхимическими
процессами, диффузией
носителей заряда через границу двух
разнородных проводников, магнитными
полями, другими причинами.

Сторонние
силы можно охарактеризовать работой,
которую они совершают по перемещению
зарядов в замкнутой цепи. Величина,
равная
работе

сторонних
сил

Аст,
отнесенная к единице
положительного
заряда
,
называется электродвижущей
силой

(ЭДС).
Единицей
измерения ЭДС в СИ

(как и напряжения) является В
(Вольт).

Работа
сторонних сил по замкнутому контуру не
равна

нулю:

Участок
цепи, содержащий источник ЭДС, называется
неоднородным.
Всякий источник ЭДС характеризуется
величиной
ЭДС

ε
и
внутренним
сопротивлением

r.


напряжение на концах участка цепи.

Закон
Ома

для
неоднородного
участка

цепи имеет вид:

При
соединении концов неоднородного участка
цепи идеальным
проводником образуется замкнутая цепь,
в которойпотенциалыφ1
и
φ2
выравниваются и мы приходим к закону
Ома

для замкнутой
(или
полной)
цепи
:

Если
сопротивление внешней цепи
,
то имеем случайкороткого
замыкания
.
В этом случае в цепи течет максимальный
ток:

При
имеем
разомкнутую

цепь.
В этом случае ток в цепи равен
нулю
:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти скрытые разделы сайта
  • Как найти камеру по айпи адресу
  • Как найти процент выраженных в дробях
  • Как найти свою двойника бесплатно
  • Как составить фабулу произведения