Как найти кпд колонки описанной в тексте

Что такое коэффициент полезного действия, его определение по формуле

Трактовка понятия

Электродвигатель и другие механизмы выполняют определённую работу, которая называется полезной. Устройство, функционируя, частично растрачивает энергию. Для определения эффективности работы применяется формула ɳ= А1/А2×100%, где:

  • А1 — полезная работу, которую выполняет машина либо мотор;
  • А2 — общий цикл работы;
  • η — обозначение КПД.

Показатель измеряется в процентах. Для нахождения коэффициента в математике используется следующая формула: η= А/Q, где А — энергия либо полезная работа, а Q — затраченная энергия. Чтобы выразить значение в процентах, КПД умножается на 100%. Действие не несёт содержательного смысла, так как 100% = 1. Для источника тока КПД меньше единицы.

В старших классах ученики решают задачи, в которых нужно найти КПД тепловых двигателей. Понятие трактуется следующим образом: отношение выполненной работы силового агрегата к энергии, полученной от нагревателя. Расчет производится по следующей формуле: η= (Q1-Q2)/Q1, где:

  • Q1 — теплота, полученная от нагревательного элемента;
  • Q2 — теплота, отданная холодильной установке.

Что такое КПД

Максимальное значение показателя характерно для циклической машины. Она оперирует при заданных температурах нагревательного элемента (Т1) и холодильника (Т2). Измерение осуществляется по формуле: η= (Т1-Т2)/Т1. Чтобы узнать КПД котла, который функционирует на органическом топливе, используется низшая теплота сгорания.

Плюс теплового насоса как нагревательного прибора заключается в возможности получать больше энергии, чем он может затратить на функционирование. Показатель трансформации вычисляется путём деления тепла конденсации на работу, затрачиваемую на выполнение данного процесса.

Мощность разных устройств

По статистике, во время работы прибора теряется до 25% энергии. При функционировании двигателя внутреннего сгорания топливо сгорает частично. Небольшой процент вылетает в выхлопную трубу. При запуске бензиновый мотор греет себя и составные элементы. На потерю уходит до 35% от общей мощности.

При движении механизмов происходит трение. Для его ослабления используется смазка. Но она неспособна полностью устранить явление, поэтому затрачивается до 20% энергии. Пример на автомобиле: если расход составляет 10 литров топлива на 100 км, на движение потребуется 2 л, а остаток, равный 8 л — потеря.

Если сравнивать КПД бензинового и дизельного моторов, полезная мощность первого механизма равна 25%, а второго — 40%. Агрегаты схожи между собой, но у них разные виды смесеобразования:

Применение показателя в физике для цепи, в электродвигателе

  1. Поршни бензинового мотора функционируют на высоких температурах, поэтому нуждаются в хорошем охлаждении. Тепло, которое могло бы перейти в механическую энергию, тратится впустую, что способствует снижению КПД.
  2. В цепи дизельного устройства топливо воспламеняется в процессе сжатия. На основе данного фактора можно сделать вывод, что давление в цилиндрах высокое, при этом мотор экологичнее и меньше первого аналога. Если проверить КПД при низком функционировании и большом объёме, результат превысит 50%.

Асинхронные механизмы

Расшифровка термина «асинхронность» — несовпадение по времени. Понятие используется во многих современных машинах, которые являются электрическими и способны преобразовывать соответствующую энергию в механическую. Плюсы устройств:

  • простое изготовление;
  • низкая цена;
  • надёжность;
  • незначительные эксплуатационные затраты.

Чтобы рассчитать КПД, используется уравнение η = P2 / P1. Для расчёта Р1 и Р2 применяются общие данные потери энергии в обмотках мотора. У большинства агрегатов показатель находится в пределах 80−90%. Для быстрого расчёта используется онлайн-ресурс либо личный калькулятор. Для проверки возможного КПД у мотора внешнего сгорания, который функционирует от разных источников тепла, используется силовой агрегат Стирлинга. Он представлен в виде тепловой машины с рабочим телом в виде жидкости либо газа. Вещество движется по замкнутому объёму.

Принцип его функционирования основан на постепенном нагреве и охлаждении объекта за счёт извлечения энергии из давления. Подобный механизм применяется на косметическом аппарате и современной подводной лодке. Его работоспособность наблюдается при любой температуре. Он не нуждается в дополнительной системе для запуска. Его КПД возможно расширить до 70%, в отличие от стандартного мотора.

Значения показателя

Инженер Карно дал определение КПД

В 1824 году инженер Карно дал определение КПД идеального двигателя, когда коэффициент равен 100%. Для трактовки понятия была создана специальная машина со следующей формулой: η=(T1 — Т2)/ T1. Для расчёта максимального показателя применяется уравнение КПД макс = (T1-T2)/T1x100%. В двух примерах T1 указывает на температуру нагревателя, а T2 — температуру холодильника.

На практике для достижения 100% коэффициента потребуется приравнять температуру охладителя к нулю. Подобное явление невозможно, так как T1 выше температуры воздуха. Процедура повышения КПД источника тока либо силового агрегата считается важной технической задачей. Теоретически проблема решается путём снижения трения элементов двигателя и уменьшения теплопотери. В дизельном моторе подобное достигается турбонаддувом. В таком случае КПД возрастает до 50%.

Мощность стандартного двигателя увеличивается следующими способами:

  • подключение к системе многоцилиндрового агрегата;
  • применение специального топлива;
  • замена некоторых деталей;
  • перенос места сжигания бензина.

Способы нахождения значения, проверка результата

КПД зависит от типа и конструкции мотора. Современные учёные утверждают, что будущее за электродвигателями. На практике работа, которую совершает любое устройство, превышает полезную, так как определённая её часть выполняется против трения. Если используется подвижный блок, совершается дополнительная работа: поднимается блок с верёвкой, преодолеваются силы трения в блоке.

Решение примеров

Задача 1. Поезд на скорости 54 км/ч развивает мощность 720 кВт. Нужно вычислить силу тяги силовых агрегатов. Решение: чтобы найти мощность, используется формула N=F x v. Если перевести скорость в единицу СИ, получится 15 м/с. Подставив данные в уравнение, определяется, что F равно 48 kН.

Задача 2. Масса транспортного средства соответствует 2200 кг. Машина, поднимаясь в гору под уклоном в 0,018, проходит расстояние 100 м. Скорость развивается до 32,4 км/ч, а коэффициент трения соответствует 0,04. Нужно определить среднюю мощность авто при движении. Решение: вычисляется средняя скорость — v/2. Чтобы определить силу тяги мотора, выполняется рисунок, на котором отображаются силы, воздействующие на машину:

  • тяжесть — mg;
  • реакция опоры — N;
  • трение — Ftr;
  • тяга — F.

Второй закон Ньютона

Первая величина вычисляется по второму закону Ньютона: mg+N+Ftr+F=ma. Для ускорения используется уравнение a=v2/2S. Если подставить последние значение и воспользоваться cos, получится средняя мощность. Так как ускорение считается постоянной величиной и равно 9,8 м/с2, поэтому v= 9 м/с. Подставив данные в первую формулу, получится: N= 9,5 kBt.

При решении сложных задач по физике рекомендуется проверить соответствие предоставленных в условиях единиц измерения с международными стандартами. Если они отличаются, необходимости перевести данные с учётом СИ.

Как поставить символ КПД (η) с помощью клавиатуры?

Напечатать букву n, выделить её одну и нажать Ctrl+Shif+Q. Эта комбинация клавиш переводит выделенный текст из латиницы в шрифт Symbols, где все греческие буквы как раз и живут.

Можно и чисто мышкой — выделить букву и затем выбрать для неё шрифт Symbols через иконку в ленте.

система выбрала этот ответ лучшим

-Lava-
[59.3K]

2 года назад 

Найти и поставить символ КПД — η в программе Ворд можно проследовав по следующему пути: «вставка» → «символ» → η.

Есть и другой способ, который заключается в использовании другого шрифта, нужно перевести текст с латиницы в шрифт Symbols.

Сначала выделяем нужную букву и жмём на сочетание клавиш Ctrl+Shif+Q. Произойдёт перевод текста из латиницы в Symbols.

Oleg7­4
[203K]

2 года назад 

Чтобы поставить символ η, являющийся обозначением КПД и греческой буквой «эта» по совместительству, то в Word можно его получить через вставкасимвол → η.

А можно перейти в шрифт Symbols и набрать в текстовом поле комбинацию из клавиши Alt и числа 104, которая в итоге выдаст нам ту самую букву η, то есть символ КПД.

Чосик
[208K]

более года назад 

Символ «эта» можно найти в стандартной таблице символов Windows. Греческие буквы проще брать из шрифта Symbol, хотя таковой есть и в других, например, Verdana. Они находятся в самом начале, копируем и вставляем.

Или же в самом Word выбрать Вставка — Символы и найти требуемым в греческом алфавите.

Но если требуется вставка именно через клавиатуру, то сначала выбираем шрифт Symbol, затем нажимаем Alt и удерживаем ее, вводим код 104, после чего отпускает Alt. Тогда сразу отобразится требуемый символ. Если выбран иной шрифт, то код не будет принят и будет отображаться как h. В браузере данный код действовать не будет.

владс­андро­вич
[766K]

более года назад 

Для поставке символа η, который обозначает не что иное как КПД, вам надо произвести следующую комбинация, а именно «вставка» → «символ» → «η».

Еще можете осуществить переход на шрифт — Symbols. В нем уже вами впоследствии должна быть набрана комбинация таких клавиш как Alt с числом 104, после чего появится буква η.

Красн­ое облак­о
[248K]

более года назад 

По моему проще «копировать-вставить» быстро и без всяких заморочек.

Ну или уже в самом Ворде найти «вставка» и далее «символы» и затем вот этот символ «η», это и есть КПД.

Или же печатаем букву » n» (выделяем), далее нажимаем комбинацию клавиш » Ctrl+Shif+Q», таким образом переходим на шрифт Symbols, затем жмем комбинацию Alt с числом 104 и получаем искомый символ.

Андре­й 7
[18K]

3 года назад 

[https://unicode-table.com/ru/03B7/][­1]

заходите на этот сайт и там вы увидите эту большую букву наводите мышкой на нее правой клавишей далее «копировать», открываете лист ворд и даете команду «вставить» и вот она вам уже вставлена будет появится как будто она тут и была

Знаете ответ?

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

Как Найти Кпд. Выбирая техническое устройство, всегда обращают внимание на эффективность его работы. Виртуальные танки, отлитые в металле;

как найти Q1 из формулы кпд как

как найти Q1 из формулы кпд как from howtoru88.blogspot.com

Действие не несёт содержательного смысла, так как 100% = 1. Что такое коэффициент полезного действия, или попросту кпд. Чтобы найти кпд источника тока, надо эти выражения подставить в формулу для определения коэффициента:

Для Наглядности На Примере Рассмотрим Упрощенную Схему Преобразователя, И Узнаем, Как Найти Кпд Устройства.

Как повышать кпд теплового двигателя; Действие не несёт содержательного смысла, так как 100% = 1. Часто бывает целесообразно определить кпд не как отношение мощностей, а как отношение работ, особенно в тех случаях, когда работа над телом совершается не одновременно с работой, производимой самим телом, и с другой.

Выбирая Техническое Устройство, Всегда Обращают Внимание На Эффективность Его Работы.

Автомобиль массой 2200 кг трогается с места и поднимается в гору, уклон которой равен 0,018. Бонус код world of tanks раздача кодов. Мы научим вас играть в wot!

Чтобы Узнать Кпд Wot Своего Танка, Необходимо Пройти По Ссылке И Вписать Требующиеся Данные.

N = а полезная / а полная = р2 / p1 =u / e = r / (r +r). С левой стороны стоит кпд. Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение.

Как Определить Кпд В World Of Tanks По Цвету.

В общем случае чтобы найти кпд, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, турбины и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный. И так, это отношение полезной работы к затраченной энергии. Что такое коэффициент полезного действия, или попросту кпд.

Для Источника Тока Кпд Меньше Единицы.

Произведя все действия, получаем формулу кпд: В приведённой формуле применены обозначения: Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива.

Занимательная статья в журнале Радио в номере 10 за 1983 год. Громкоговоритель с повышенным КПД Раздел Звуковоспроизведение.

В соответствии с ГОСТ 24307-80 (ст. СЭВ 1356-75) и стандартом DIN 45500 для громкоговорителей высокой верности воспроизведения категории Hi-Fi дополнительно указывается так называемая рабочая мощность (мощность, создающая номинальное звуковое давление 1,2 Па или 96 дБ на расстоянии 1 м). Оговаривается этот параметр не случайно: он, в сущности, определяет КПД громкоговорителя (меньшей рабочей мощности соответствует более высокий КПД) и уровень, при котором измеряют коэффициент гармоник. Чем меньше, по сравнению с номинальной, рабочая мощность громкоговорителя, тем в более облегчённом режиме будет использовать его слушатель. Все это благоприятно сказывается на качестве звучания, поскольку известно, что при работе головки с мощностью, в два — четыре раза меньшей номинальной, почти вдвое снижаются нелинейные искажения воспроизводимого ею сигнала. Громкоговорители с повышенным КПД за счёт более высокого максимально воспроизводимого уровня имеют более широкий динамический диапазон и большую перегрузочную способность для импульсных сигналов при малых и средних уровнях громкости.

КПД промышленных и любительских громкоговорителей, предназначенных для использования в высококачественной бытовой радиоаппаратуре, сравнительно невысок. Об этом свидетельствует величина рабочей мощности, которая, например, у таких широко распространённых громкоговорителей, как 35AC-1 и 25АС-2 (25АС-9, 25АС-326) равна 16 Вт, что составляет соответственно 0.45 и 0,64 от их номинальной мощности.

Громкоговоритель, описание которого предлагается вниманию читателей, обладает повышенными, по сравнению с указанными выше громкоговорителями, КПД и перегрузочной способностью (его рабочая мощность равна 0,16 от номинальной), широким динамическим диапазоном и достаточно равномерной АЧХ.

Основные технические характеристики:

Номинальная мощность. Вт…………25

Максимальная мощность. Вт………35

Номинальное электрическое сопротивление, Ом …. 8

Эффективно воспроизводимый диапазон

частот, Гц, при неравномерности АЧХ 12 дБ………….35 — 22 000

Среднее стандартное звуковое давление, Па……….0.2

Рабочая мощность, Вт, не более…………….4

Частоты разделения фильтров, Гц……………….500 и 5000

Габариты, мм, (высота х ширина х глубина):

без блока ВЧ головок…………….740x400x385

с блоком ВЧ головок…………….936 х 400X 475

Судя по литературным источникам, далеко не все специалисты считают, что применение разделительных фильтров с линейной ФЧХ для Hi-Fi громкоговорителей является обязательным. Это вытекает из утверждения, что предельная величина групповой задержки может достигать 2 мс, из чего следует, что фильтр любого с первого по третий порядка отвечает этим требованиям. Отсюда можно сделать вывод, что линейность ФЧХ разделительного фильтра для любительских конструкций не очень важна. В то же время, как будет показано далее, автору представляется существенным соблюдение линейности фазы головок при установке их в корпус громкоговорителя.

Схема включения головок и разделительных фильтров громкоговорителя показана на рис. 1. В целях улучшения разделения полос использованы комбинированные разделительные фильтры C2L2C4 (C3L4C6) и C1L1L3C5 с различной крутизной спада АЧХ (соответственно 18 и 12 дБ на октаву). На частоте раздела НЧ и СЧ звеньев с целью проведения экспериментов переключателем S1 может быть включён фильтр C1L1 первого порядка с крутизной спада АЧХ 6 дБ на октаву, обладающий большей линейностью фазовой характеристики. Порядок фильтра устанавливается слушателем в зависимости от желаемого характера звучания.

В данном громкоговорителе предусмотрена возможность перефазирования с помощью переключателей S2 — S4 головок каждой полосы. Исходным считается положение, в котором СЧ головки включены противофазно по отношению к низкочастотным и высокочастотным. Катушки фильтров L1 и L2 намотаны на каркасах из изоляционного материала диаметром 60 мм, намотка рядовая, её длина 30 мм, диаметр щёчек 100 мм. Первая катушка содержит 196, а вторая — 235 витков провода ПЭВ-2 1,84. Катушки L3 и L4 выполнены на каркасах диаметром 24 мм, длина намотки 12 мм, диаметр щёчек 54 мм. Катушка L3 содержит 115, а L4 — 98,5 витка провода ПЭВ-2 1,12.

Головки зашунтированы корректирующими RC-цепями. В результате, благодаря более полному согласованию головок с разделительными фильтрами, уменьшились гармонические и интермодуляционные искажения, и улучшилась линейность АЧХ. В громкоговоритель введены также аттенюаторы, позволяющие регулировать АЧХ СЧ звена в пределах ±4 дБ, а ВЧ звена в пределах +6…-2 дБ относительно уровня, показанного на вкладке.

Громкоговоритель выполнен в виде фазоинвертора. Низкочастотные головки закреплены с наружной стороны лицевой панели 1 в выбранных стамеской углублениях, так что их диффузородержатели размещены заподлицо с панелью. С внутренней стороны отверстий под НЧ головки под углом 45° сняты фаски на глубину 10 мм.

Панель 4, на которой установлены среднечастотные головки, выполнена из алюминия толщиной 3 мм (можно использовать винипласт, органическое стекло или полистирол толщиной 3.5… 5 мм). Перед этими головками на лицевой панели укреплена изготовленная из стальной проволоки диаметром 4 мм декоративная рамка, на неё натянута капроновая сетка (ткань, канва и т. п.). С задней стороны СЧ головок установлена Г-образная перегородка (детали 2,3) из фанеры толщиной 10 мм, отделяющая их от внутреннего объёма корпуса громкоговорителя.

Панель высокочастотных головок изготовлена из алюминия толщиной 2 мм. Чтобы исключить фазовый сдвиг из-за размещения акустических центров среднечастотных и высокочастотных головок в разных плоскостях, высокочастотное звено выполнено в виде отдельного узла, состоящего из четырёх головок 2ГД-36, нагруженных экспоненциальными согласующими рупорами. В пределах угла 90…95° (т. е. ±45° от оси головки) не наблюдается сколь-нибудь заметного снижения звукового давления высокочастотного блока. Имеется возможность перемещения блока по глубине с целью получения наилучшей пространственной линейности фазовых характеристик среднечастотных и высокочастотных головок. Оси среднечастотных головок также развёрнуты (под углом 25°), что способствует расширению диаграммы их направленности и получению более широкой зоны стереоэффекта. Принимать специальные меры по улучшению линейности фазовой характеристики громкоговорителя на частоте раздела среднечастотных и низкочастотных головок нет необходимости, поскольку возможное смещение акустических центров этих звеньев на 7…15 мм много меньше длины волны на частоте раздела (0,68 м на частоте 500 Гц) и вносимый вследствие этого сдвиг фаз очень мал.

Корпус громкоговорители изготовлен из ДСП толщиной 20 мм. Задняя стенка корпуса съёмная. Для заполнения внутреннего объёма корпуса потребуется 1300… 1400 г ваты.

Для предотвращения выкрашивания краёв лицевой панели целесообразно изготовить её из фанеры толщиной 20 мм или из фанерованной с двух сторон ДСП. Если же для изготовления передней панели используется все-таки не фанерованная ДСП, следует наложить её на стенки корпуса, а не вставлять внутрь его. Это увеличит расстояние головок до краёв передней панели и предотвратит возможное выкрашивание ДСП.

В описываемом громкоговорителе используется туннель фазоинвертора переменного сечения. По сравнению с туннелями постоянного сечения (цилиндрическими и прямоугольными) он при меньшей глубине обладает лучшими переходными характеристиками, не создаёт посторонних призвуков и резонансных явлений внутри трубы.

Туннель настроен па частоту 37 Гц. Он выполнен из фанеры (можно гетинакса) толщиной 8 мм в виде усечённой пирамиды с нижним основанием размерами 80×130 мм, верхним 80х80 мм и высотой 70 мм (везде указаны внутренние размеры).

На магнитные системы низкочастотных и среднечастотных головок клеем БФ-2 наклеены феррит-бариевые магниты марки 2БА диаметром 74 ..85 мм. Такие магниты используются в головках 4ГД-8Е, 4ГД-36, 6ГД-2, 6ГД-6, 10ГД-34 и им подобных. Основной и дополнительный магниты ориентируют таким образом, чтобы они взаимно отталкивались и склеивают друг с другом. После этого на дополнительные магниты наклеивают штампованные колпаки диаметром 100 мм (высота зависит от толщины подклеиваемого магнита), изготовленные из стали Ст. 3 толщиной 1.5 мм. Для этой пели, правда, с несколько худшим эффектом, можно использовать металлические банки из-под зелёного горошка («Глобус»).

Описанная доработка головок позволила на 15..25% повысить их номинальное звуковое давление, уменьшить коэффициент гармоник при малых и средних уровнях сигнала, улучшить переходные характеристики СЧ головок.

Для улучшения демпфирования диффузоры СЧ головок пропитаны касторовым маслом.

Как уже указывалось, высокочастотные головки установлены в устьях экспоненциальных рупоров, вертикальное сечение которых показано на рис 4. Вертикальные стенки рупора плоские, горизонтальные – криволинейные. Размеры устьевого отверстия 53хЗ6 мм, выходного — 166×96, глубина рупора — 116 мм. За пределы корпуса громкоговорителя рупор выступает приблизительно на 90 мм. Это расстояние подбирается при прослушивании музыкальных передач.

Применение рупора улучшает характеристику направленности и увеличивает звуковое давление на оси головки приблизительно в 2 раза (до 0,4 — 0,45 Па). В результате высокочастотный блок, состоящий из четырёх головок 2ГД-36, оказывается эквивалентным высокочастотной головке мощностью 50 Вт, электрическим сопротивлением 8 Ом и средним стандартным звуковым давлением 0 2 Па. Громкоговоритель можно эксплуатировать с различными промышленными и любительскими усилителями высокого класса с номинальной мощностью 8…50 Вт.

А. Голунчиков

hi-fi колонка

hi-fi колонка

hi-fi колонка

Понравилась статья? Поделить с друзьями:
  • Как найти обрыв в подогреве сидений
  • Как правильно составить договор купли продажи между физическими лицами
  • Как найти пробу на золоте
  • Как найти сходство по фото в интернете
  • Как составить методический план образец