Как найти кпд машины через мощность

Мощность по своей сути является скоростью выполнения работы. Чем больше мощность совершаемой работы, тем больше работы выполняется за единицу времени.

Среднее значение мощности — это работа, выполненная за единицу времени.

Величина мощности прямо пропорциональна величине совершённой работы (A) и обратно пропорциональна времени (t), за которое работа была совершена.

Мощность (N) определяют по формуле:

Единицей измерения мощности в системе (СИ) является (Ватт) (русское обозначение — (Вт), международное — (W)).

Для определения мощности двигателя автомобилей и других транспортных средств используют исторически более древнюю единицу измерения — лошадиная сила (л.с.), 1 л.с. = 736 Вт.

Пример:

Мощность двигателя автомобиля равна примерно (90 л.с. = 66240 Вт).

Мощность автомобиля или другого транспортного средства можно рассчитать, если известна сила тяги автомобиля (F) и скорость его движения (v).

N=F⋅v

Эту формулу получают, преобразуя основную формулу определения мощности.

Ни одно устройство не способно использовать (100) % от начально подведённой к нему энергии на совершение полезной работы. Поэтому важной характеристикой любого устройства является не только мощность, но и коэффициент полезного действия, который показывает, насколько эффективно используется энергия, подведённая к устройству.  

Пример:

Для того чтобы автомобиль двигался, должны вращаться колёса. А для того чтобы вращались колёса, двигатель должен приводить в движение кривошипно-шатунный механизм (механизм, который возвратно-поступательное движение поршня двигателя преобразует во вращательное движение колёс). При этом приводятся во вращение шестерни и большая часть энергии выделяется в виде тепла в окружающее пространство, в результате чего происходит потеря подводимой энергии. Коэффициент полезного действия двигателя автомобиля находится в пределах (40 — 45) %. Таким образом, получается, что только около (40) % от всего бензина, которым заправляют автомобиль, идёт на совершение необходимой нам полезной работы — перемещение автомобиля.

Если мы заправим в бак автомобиля (20) литров бензина, тогда только (8) литров будут расходоваться на перемещение автомобиля, а (12) литров сгорят без совершения полезной работы.

Коэффициент полезного действия обозначается буквой греческого алфавита («эта») 

η

, он является отношением полезной мощности (N) к полной или общей мощности

Nполная

.

Для его определения используют формулу:

η=NNполная

. Поскольку по определению коэффициент полезного действия является отношением мощностей, единицы измерения он не имеет.

Часто его выражают в процентах. Если коэффициент полезного действия выражают в процентах, тогда используют формулу:

η=NNполная⋅100%

.

Так как мощность является работой, проделанной за единицу времени, тогда коэффициент полезного действия можно выразить как отношение полезной проделанной работы (A) к общей или полной проделанной работе

Aполная

. В этом случае формула для определения коэффициента полезного действия будет выглядеть так:

Коэффициент полезного действия всегда меньше (1), или (100) % (

η

 < 1, или

η

 < (100) %).

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

5. Асинхронные машины

ности при увеличении полезной нагрузки P2 (рис. 5.24). Ток и потребляемая мощность при значении полезной мощности, равном нулю, отличны от нуля и определяются величиной тока и мощности холостого хода.

Коэффициент полезного действия электродвигателя

η =1

рΣ

=1

рΣ

,

(5.115)

Р +

р

Р

Σ

1

2

где p– суммарные потери мощности; P1 – потребляемая асинхронным двигателем (его статорной обмоткой) активная электрическая мощность; P2 – полезная механическая мощность (снимаемая с вала двигателя).

КПД современных асинхронных двигателей при номинальной нагрузке для машин мощностью свыше 100 кВт составляет 0,920,96, мощностью 1100 кВт – 0,70,9, а микромашин – 0,40,6 (большие значения относятся к машинам большей мощности).

Так же, как в трансформаторе, потери мощности асинхронного двигателя следует разделить на потери постоянные и переменные (или потери холостого хода и короткого замыкания). Постоянные потери не зависят от нагрузки. Это потери магнитные, механические, электрические холостого хода.

Магнитные потери определяются аналогично магнитным потерям трансформатора с помощью формулы Штейнметца:

р

= k

p

B

2

f

1,3

G ,

(5.116)

мг

d 1,0 / 50

50

с

где p1,0/50 – удельные потери в стали на единицу массы при частоте 50 Гц и индукции 1,0 Тл; B – индукция на участке магнитопровода; Gc – масса

сердечника (магнитопровода) или его участка.

Частота перемагничивания в роторе f2 = f1s в рабочем режиме двигателя существенно меньше частоты магнитной индукции в статоре; масса магнитопровода ротора также меньше аналогичной массы статора. Обычно в практических расчетах асинхронных двигателей общепромышленного применения пренебрегают магнитными потерями в роторе.

Механические потери pмх состоят из потерь в подшипниках pподш, потерь на трение щеток о кольца pтр.щ (только для фазного ротора), вентиля-

220

5. Асинхронные машины

ционных потерь pвент, включающих в себя потери на трение частей машины о воздух и потери в крыльчатке вентилятора, установленной на валу машины:

рмх = рподш + рвент + ртр.щ .

(5.117)

Механические потери зависят только от частоты вращения и составляют не более 2 % от номинальной мощности машины. Поскольку частота вращения асинхронного двигателя при изменении нагрузки от нуля до номинальной изменяется мало, то механические потери считают постоянными.

В отличие от трансформатора в асинхронном двигателе учитывают электрические потери холостого хода, поскольку ток холостого хода в нем существенно больше, чем в трансформаторе, и составляет от 20 до 50 % от номинального тока (причины такого значения I0 объяснены в п. 5.1):

р

эл0

= m r I 2 .

(5.118)

1 1 0

Таким образом, потери холостого хода

р0 = рмх + рмг + рэл0 .

(5.119)

К потерям переменным (короткого замыкания) относят электрические потери в обмотках статора и ротора:

рэл1 = m1r1I12; рэл2 = m1r2(I2)2 .

(5.120)

К переменным потерям относят и добавочные потери, вызванные различными причинами: неравномерностью зазора, технологическими погрешностями, вытеснением тока в проводниках обмотки, пульсациями магнитного потока и т. д. Обычно эти потери рассчитывают как определенный процент от номинальной мощности по формуле (5.73).

Итак, переменные потери, как следует из формул (5.120), (5.73), зависят от второй степени тока или второй степени коэффициента нагрузки kнг = I/Iн (отношения тока текущей нагрузки к номинальному его значению):

pк = pэл2 + pд = m1rк(I2)2 +(I Iн )2 pд = kнг2 ркн,

(5.121)

где pкн – потери короткого замыкания при номинальном токе.

Таким образом, суммарные потери мощности можно представить в следующем виде:

pΣ = p0 + pк = p0 + kнг2 pкн .

(5.122)

221

5. Асинхронные машины

р,%

η,%

η

12

80

ηmax

рΣ

8

60

рк

6

40

р0

4

20

kнг

0

0,2

0,4

0,6

0,8

1,0

Iкр

Рис. 5.23. Зависимость КПД двигателя и его потерь от коэффициента нагрузки

Формулу (5.115) запишем с учетом выражения (5.122):

р

+ k 2

р

η =1

0

нг

кн

.

(5.123)

k

нг

Р + р + k 2

р

2

0

нг

кн

Характер зависимости КПД от коэффициента нагрузки такой же, как

иу трансформатора. При увеличении нагрузки КПД возрастает за счет уве-

личения Р2, но одновременно быстрее, чем Р2, возрастают переменные потери рк, поэтому при некотором токе Iкр рост КПД прекращается и в дальнейшем начинает уменьшаться (рис. 5.23). Если исследовать функцию

(5.123) на экстремум (взять производную dη/dkнг и приравнять ее к нулю), то получим условие максимума КПД: он наступает при равенстве переменных

ипостоянных потерь рк = р0. При проектировании электрической машины стремятся так распределить потери мощности, чтобы указанное условие выполнялось при наиболее вероятной нагрузке машины, несколько мень-

шей номинальной. Во вращающихся электрических машинах средней и большой мощности это условие выполняется при нагрузках 6080 % от номинальной (коэффициент нагрузки kнг = 0,60,8). На рис. 5.23 приведены зависимости изменения КПД и потерь мощности от коэффициента нагрузки.

Коэффициент мощности асинхронной машины определяют как отношение активного тока к полному току или активной потребляемой мощности к полной мощности по выражению

I

P1

P1

cos ϕ =

1а

=

=

.

(4.53)

1

I1

S

m1U1I1

222

5. Асинхронные машины

cosϕ

I2

cosψ2

1,0

cosϕ

1,0

I2

0,8

0,6

0,5

0,4

I2а

cosψ2

0,2

kнг

s

0

0

0,5

1,0

0,5

1,0

Рис. 5.24. Характеристика

Рис. 5.25. Зависимости тока

коэффициента мощности

роторной обмотки и cosψ2

от скольжения

Асинхронный двигатель, так же как и трансформатор, независимо от нагрузки потребляет из сети отстающий ток, поэтому его cos φ1 всегда меньше единицы.

При холостом ходе асинхронного двигателя коэффициент мощности мал и составляет cos φ0 = 0,080,15 (рис. 5.24). Это объясняется малой величиной активной составляющей тока, идущего на покрытие лишь достаточно небольших потерь активной мощности. В то же время реактивная составляющая тока холостого хода сравнительно велика, поскольку потребляется двигателем для создания основного магнитного потока, практически не зависящего от нагрузки. При увеличении нагрузки cos φ1 сначала довольно быстро растет при увеличении момента на валу, затем рост его замедляется и достигает максимума при мощности, близкой к номинальной (рис. 5.24). Но при увеличении момента уменьшается частота вращения и растет скольжение. При этом увеличивается частота тока в роторе f2 = f1s, его индуктивное сопротивление. Снижается и cos φ1, как правило, при нагрузках, выше номинальных.

Вследствие массового использования асинхронных двигателей для рационального электроснабжения предприятий следует так организовывать технологический процесс, чтобы асинхронные двигатели были загружены в соответствии сихноминальной мощностью инеработали нахолостомходу.

Величина коэффициента мощности для двигателей с короткозамкнутым ротором мощностью до 100 кВт достигает 0,70,9, а для двигателей свыше 100 кВт cos φ1 = 0,90,95. В двигателях с фазным ротором cos φ1 и КПД несколько ниже, что объясняется дополнительными потерями на трение щеток, худшим использованием объема ротора из-за наличия изоляции в его пазах и увеличением намагничивающего тока в результате уменьшения сечения зубцов ротора.

223

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.

кпд электродвигателя

Каждая система обладает каким-либо коэффициентом полезного действия, который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.

КПД электродвигателей

Электрическими двигателями переменного или постоянного тока комплектуются приводы станков, насосов и вентиляторов, а также других механизмов, используемых на предприятиях тяжелой и легкой промышленности. Рентабельность производства напрямую зависит от себестоимости продукции, на которую в большой степени влияет эффективность эксплуатации оборудования, поэтому КПД и мощность электродвигателя являются основными параметрами, на основании которых выполняется подбор привода.

Определение КПД электродвигателя

Принцип работы любой электрической машины основан на преобразовании энергии тока, протекающего по обмоткам статора и создающего магнитное поле, во вращение ротора. Коэффициент полезного действия (КПД) электродвигателя определяется соотношением вырабатываемой им механической мощности на валу (p2) к полной мощности, потребляемой из сети (p1) и выражается в процентах:

Исходя из формулы, следует, что чем ближе этот параметр к единице, тем выше будет эффективность использования оборудования.

Факторы, влияющие на величину КПД

Коэффициент полезного действия никогда не может быть равным единице, так как существуют неизбежные потери, снижающие полезную мощность. Они делятся на три группы:

  • электрические;
  • магнитные;
  • механические.

Электрические потери зависят от степени нагрузки двигателя и являются следствием нагрева обмоток статора, вызванного работой тока по преодолению электрического сопротивления проводников, из которых они выполнены. Поэтому максимальный КПД электродвигателя достигается, когда нагрузка на двигатель составляет 75% от максимальной расчетной величины.

Магнитные потери происходят из-за неизбежного перемагничивания активного железа статора и ротора, а также возникновения в нем вихревых токов.

Третья группа обусловлена наличием трения в подшипниках, на которых вращается вал, а также сопротивлением, оказываемым воздухом крыльчатке вентилятора и самому ротору (якорю). Из-за наличия щеточно-коллекторного узла КПД электродвигателя постоянного тока несколько ниже коэффициента полезного действия машин с короткозамкнутым ротором. Это также относится к асинхронным электродвигателям с фазным ротором из-за дополнительного трения щеток об контактные кольца.

Способы повысить КПД двигателя

Следует помнить, что реальный коэффициент полезного действия может несколько отличатся от паспортных величин, указанных на шильдике двигателя. Чтобы выполнить расчет КПД электродвигателя в реальных условиях эксплуатации, необходимо учитывать неравномерность распределения питающего напряжения в фазах. В зависимости от величины асимметрии падение полезной мощности может достигать 5-7%.

Увеличение КПД электрической машины возможно только за счет снижения потерь и контроля качества силовой сети.

Механические потери можно уменьшить благодаря более качественным подшипникам, установки крыльчатки вентилятора, выполненной из современных материалов для уменьшения сопротивлению воздуху. Нагрев обмоток можно уменьшить благодаря использованию обмоточных проводов, выполненных из очищенной меди, имеющих меньшее сопротивление.

Снизить потери на перемагничивание активного железа и минимизировать влияние вихревых токов можно используя для набора сердечника необходимо использовать качественную электромагнитную сталь с надежной изоляцией. Кроме того, ведутся работы по разработке наилучшей геометрии зубцов статора, благодаря которым будет увеличена концентрация магнитного поля.

В реальности КПД асинхронного электродвигателя можно несколько увеличить за счет использования частотного преобразователя, позволяющего оптимизировать расход электроэнергии. Следует помнить, что эффективность эксплуатации двигателя с КПД 98% сильно упадет, если его использовать для приведения в движения механизма, имеющего более низкий коэффициент полезного действия.

Источник

Расчет мощности электродвигателя для насоса

Выбор электродвигателя для насосной установки зависит от конкретных условий, прежде всего – от схемы водоснабжения. В большинстве случаев подача воды производится с помощью водонапорного бака или водонапорного котла. Для приведения в действие всей системы используются центробежные насосы с асинхронными двигателями.

Выбор оптимальной мощности насоса осуществляется в зависимости от потребности в подаче и напоре жидкости. Подача насоса QH измеряется в литрах, подаваемых в 1 час, и обозначается как л/ч. Данный параметр определяется по следующей формуле: Qн = Qmaxч = (kч х kсут х Qср.сут) / (24 η), где Qmaxч — возможный максимальный часовой расход воды, л/ч, kч – коэффициент неравномерности часового расхода, kсут — коэффициент неравномерности суточного расхода (1,1 – 1,3), η — КПД насосной установки, с учетом потерь воды), Qср.сут — значение среднесуточного расхода воды (л/сут).

Оптимальный напор воды должен обеспечивать ее подачу в установленное место при условии необходимого давления. Требуемые параметры напора насоса (Ннтр) зависят от высоты всасывания (Нвс) и высоты нагнетания (Ннг), которые в сумме определяют показатели статического напора (Нс), потери в трубопроводах (Hп) и разность давлений верхнего (Рву) и нижнего (Рну) уровней.

Исходя из того, что значение напора будет равно H = P/ρg, где Р — давление (Па), ρ — плотность жидкости (кг/м 3 ), g = 9,8 м/с2 — ускорение свободного падения, g — удельный вес жидкости (кг/м 3 ), получается следующая формула: Ннтр = Hc + Hп + (1/ρ) х (Рву – Рну).

После вычисления расхода воды и напора по каталогу уже можно выбрать насос с наиболее подходящими параметрами. Чтобы не ошибиться с мощностью электродвигателя, ее нужно определить по формуле: Pдв = (kз х ρ х Qн х Нн) / (ηн х ηп), где kз является коэффициентом запаса, зависящим от мощности электродвигателя насоса и составляет 1,05 – 1,7. Этот показатель учитывает возможные утечки воды из трубопровода из-за неплотных соединений, разрывов трубопровода и прочих факторов, поэтому электродвигатели для насосов должны иметь некоторый запас мощности. Чем больше мощность, тем меньше коэффициент запаса можно принять.

Характеристики КПД в электродвигателях

Электрические двигатели относятся к категории устройств, выполняющих преобразование электрической энергии в механическую. Коэффициент полезного действия для данных устройств определяет их эффективность в деле выполнения основной функции.

Формула КПД электродвигателя

Как найти кпд двигателя? Формула КПД электродвигателя выглядит так: ƞ = Р2/Р1. В этой формуле Р1 является подведенной электрической мощностью, а Р2 – полезной механической мощностью, вырабатываемой двигателем. Значение электрической мощности (Р) определяется формулой Р = UI, а механической – Р = А/t, как отношение работы к единице времени.

Основные характеристики работы моторов

Главная функция двигателя — превращение электрической энергии в механическую. КПД является показателем продуктивности выполнения данной функции. Формула КПД электродвигателя строится так:

n = p2/p1,

где p1 — это подведенная электрическая мощность, а p2 — полезная механическая мощность, вырабатываемая электромотором.

Однако, не всё так просто. Функции двигателя и область его использования, многие другие переменные будут уточнять расчет и делать его более индивидуальным.

Падение КПД и общие потери в электродвигателе

Существует множество негативных факторов, под влиянием которых складывается количество общих потерь в электрических двигателях. Существуют специальные методики, позволяющие заранее их определить. Например, можно определить наличие зазора, через который мощность частично подается из сети к статору, и далее – на ротор.

Потери мощности, возникающие в самом стартере, состоят из нескольких слагаемых. В первую очередь, это потери, связанные с вихревыми токами и частичным перемагничиванием сердечника статора. Стальные элементы оказывают незначительное влияние и практически не принимаются в расчет. Это связано со скоростью вращения статора, которая значительно превышает скорость магнитного потока. В этом случае ротор должен вращаться в строгом соответствии с заявленными техническими характеристиками.

Значение механической мощности вала ротора ниже, чем электромагнитная мощность. Разница составляет количество потерь, возникающих в обмотке. К механическим потерям относятся трения в подшипниках и щетках, а также действие воздушной преграды на вращающиеся части.

Источник

Немного истории и современности

Главным толчком к развитию электрических двигателей послужило открытие закона электромагнитной индукции. Он гласит, что индукционный ток двигается так, чтобы оказать противодействие тому, что его вызвало. На этой основе и появился первый электрический двигатель.

Сегодняшнее производство электромоторов происходит согласно этой же теории, но теперешние модели имеют много отличий от первоначальных. Мощность электродвигателей возросла, они стали меньше в размерах, и, что немаловажно, коэффициент полезного действия повысился. Если сравнить его с КПД двигателя внутреннего сгорания, то результат будет далеко не в пользу последнего. Самый большой КПД такого мотора составляет не более 45%.

Устройство электромотора

КПД двигателя внутреннего сгорания располагается в пределах от 40 до 60%. В то время как у электрического он достигает 96%. Это довольно высокий показатель которого добиваются с помощью усовершенствования конструкции и использования сверхпроводниковых материалов. Существует несколько типов двигателей, работающих от электричества. Но в их конструкции используются одинаковые основные части.

Так, в состав устройства электрического двигателя входит:

Неподвижная часть двигателя называется стартером, а вращающаяся — ротором. В пазы сердечника укладывают согнутые в форме рамки провода. Их концы соединяют с коллектором. К его пластинам поджимают через пружины две положительные щётки, подключённые через обмотки возбуждения и две отрицательные, соединённые с массой стартера. В задней крышке последнего устанавливаются щёткодержатели и втулка якоря.

От плюсовой клеммы источника питания провод идёт на входной контакт стартера. Ток проходит по нему, поступает на обмотку возбуждения и попадает на положительную щётку. С коллектора заряды переходят на рамки якоря, а после — на отрицательную щётку и на минус источника тока. В результате взаимодействия магнитного поля с обмотками возбуждения и рамками с током якорь начинает вращаться.

Это классическое устройство электродвигателя. Но техника не стоит на месте.

Поэтому в современных электрических моторах не используют обмотки возбуждения. А ток сразу подаётся на отрицательные щётки якоря. Это позволяет избежать дополнительного нагрева, что приводит в целом к увеличению качества системы.

В чем плюсы электромотора

Существует много преимуществ электрических двигателей над двигателями внутреннего сгорания. Вот некоторые из них:

  1. Высокий КПД.
  2. ДВС тратит примерно половину энергии на нагрев мотора. В случае с электрическим двигателем на это затрачивается совсем небольшое количество энергии.
  3. Электромотор гораздо меньше весит и более компактен. Новый двигатель фирмы Yasa Motors весит всего двадцать пять кг, при этом являясь достаточно мощным.
  4. Долгий срок эксплуатации.
  5. Автомобилям с электрическим двигателем не нужна коробка передач.
  6. Экологичность: машина не производит вредных выбросов в атмосферу. Однако это лишь отчасти правдиво, потому что для получения энергии электростанции используют природные ресурсы — газ, уголь, атомные реакции, и это является вредоносным фактором.

Потеря энергии при нагревании движка

Важную роль в работе электродвигателя играют потери энергии при нагревании двигателя. Наиболее часто падение КПД происходит от естественной теплоотдачи при работе механизма.

Электродвигатель обычно нагревается от трения, а еще из-за электрических и магнитных сил, действующих на него в процессе работы. К примеру, энергозатраты работы мотора составили 100 рублей, а механическая энергия была оценена в 80 рублей. В данном случае КПД электродвигателя будет равен 80%.

Чтобы охладить электрический двигатель, существуют специальные вентиляторы, прогоняющие воздух через работающий мотор и тем самым создающие более оптимальную температуру для его работы.

Степень нагрузки оказывает огромное влияние на работу электродвигателя. Без нагрузки мотор работает с КПД, равным 0%. Если нагрузить двигатель на 25%, то КПД будет равняться 83%. В режиме стопроцентной нагрузки КПД будет равен 87%.

Средний КПД электрических двигателей

Стоит отметить, что КПД электродвигателя постоянного тока (и переменного тоже) изменяется в зависимости от нагрузки:

  1. При холостом ходе КПД равен 0%.
  2. При нагрузке 25% КПД равен 83%.
  3. При нагрузке 50% КПД равен 87%.
  4. При нагрузке 75% КПД равен 88%.
  5. При нагрузке 100% КПД равен 87%.

Одна из причин падения коэффициента полезного действия — асимметрия токов, когда подается разное напряжение на каждой из трех фаз. Если, к примеру, на первой фазе будет напряжение 410 В, на второй — 403 В, а на третьей — 390 В, то среднее значение будет равно 401 В. Асимметрия в данном случае будет равна разнице между максимальным и минимальным напряжением на фазах (410-390), то есть 20 В. Формула КПД электродвигателя для расчета потерь будет иметь вид в нашей ситуации: 20/401*100 = 4.98%. Это значит, что мы теряем 5% КПД при работе из-за разности напряжений на фазах.

Причины падения эффективности

Существует много показателей, уменьшающих КПД электродвигателя. К счастью, есть способы определить, из-за чего именно упал коэффициент полезного действия. Например, можно отследить наличие зазора, который частично сообщает мощность от электросети к статору, а потом передает на ротор. В стартере также могут быть потери энергии.

Также встречается утечка энергии из-за вихревых токов и перемагничивания сердечников статора. В асинхронном двигателе также встречаются потери из-за зубцов в роторе и статоре. В некоторых узлах мотора могут появиться вихревые токи. По таким причинам КПД может понизиться на половину процента. Асинхронные двигатели строятся с учетом этих особенностей, и КПД в таких моторах составляет от 80 до 90 процентов.

Подписка на рассылку

Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.

Элементы, влияющие на мощность

Электродвигатели имеют некоторые минусы, которые неудовлетворительно влияют на производительность работы. К числу особо неприятных моментов относят:

  • слабый электропусковой механизм,
  • сильный уровень пускового тока;
  • неслаженность машинного вала с нагрузкой.

Перечисленное приводит к тому, что полезное действие приспособления понижается. Для увеличения результативности стремятся обеспечить нагрузку движка до 75 процентов и повышать пропорции мощности. Также существуют специальные аппараты для регулирования диапазонов подаваемого тока и его мощности, что также ведёт к росту эффективности и КПД.

Одним из наиболее известных устройств для роста отдачи электродвигателя считается механизм мягкого пуска, который ограничивает быстроту роста стартерного тока. Также можно применять и преобразователи частоты для перемены скорости вращения двигателя посредством перемены частоты напряжения. Перечисленное ведёт к уменьшению трат электроэнергии и осуществляет мягкий старт движка, высокую точность балансировки. Кроме того возрастает пусковой момент, а при неустойчивой нагрузке стабилизируется быстрота движения. В итоге производительность двигателя возрастает.

Предельный показатель функциональности

Исходя из разновидности конструкции, коэффициент ПД в электродвигателях может колебаться в пределах 10 — 99 процентов. Все зависит от конкретного типа двигателя. К примеру, отдача двигателя насоса поршневого вида достигает 70−90%. Окончательный эффект зависит от изготовителя, структуры устройства и проч.

То же самое справедливо будет отнести и к КПД двигателя подъемного крана. Когда это значение повышается до 90%, означает, что 90% расходуемой электроэнергии уходит на совершение машинной работы, а оставшиеся проценты — на нагревание деталей. Все же есть особенно успешные модели двигателей, коэффициент ПД которых доходит практически до 100%, однако не равен указанному значению.

Бывает ли значение выше 100%

Всем известно, что электродвигатели, эффективность которых превосходит 100%, невозможны согласно законам природы, поскольку это противоречит главному закону сохранении энергии. Все объясняется тем, что энергия не берется из ниоткуда и никуда не исчезает. Поэтому каждый двигатель имеет необходимость в источнике энергии. Ими могут быть:

  • топливо;
  • электричество;
  • солнечный свет и т. д.

Но при этом ни один из перечисленных источников не вечен, к тому же запасы каждого необходимо аккумулировать. Однако если бы имелся источник энергии, нуждающийся в сборе и аккумуляции, то вполне вероятно было бы создание движка, полезное действие которого было бы более 100%.

Гидроэлектростанция — прототип вечного механизма

Если рассмотреть принцип работы гидроэлектростанции, то можно увидеть, что электричество вырабатывается в ней за счет воды, которая падает с большой высоты. Электроэнергия производится турбиной, которую вращает падающая вода. Вода стремится вниз благодаря земному притяжению.

Оно действует постоянно, не ослабевая и не пропадая. После того как вода выработала некоторое количество энергии, она превращается в пар и естественным образом возвращается в водохранилище. Это может повторяться много раз. Как следствие — электрическая энергия вырабатывается без потери ресурсов.

Солнце нагревает землю, участвуя в испарении воды, гравитация совершает двойную работу, участвуя в падении воды, а также в производстве осадков — ведь именно из-за притяжения земли вода из облаков стремится упасть вниз. В целом получается, что гидроэлектростанция — это механизм, преобразующий энергию падения воды в электрическую с коэффициентом полезного действия больше ста процентов.

Из этого видно, что поиски двигателя с КПД больше 100% небеспочвенны, потому что есть и другие ресурсы, кроме гравитации, которые невозможно исчерпать.

Постоянные магниты как источники энергии для двигателей

Второй интересный источник — постоянный магнит, который ниоткуда не получает энергию, а магнитное поле не расходуется даже при совершении работы. Например, если магнит что-либо притянет к себе, то он выполнит работу, а его магнитное поле слабее не станет. Это свойство уже не раз пытались использовать для создания так называемого вечного двигателя, но пока что ничего более-менее нормального из этого не получилось. Любой механизм износится рано или поздно, но сам источник, которым является постоянный магнит, практически вечен.

Впрочем, есть специалисты, которые утверждают, что со временем постоянные магниты теряют свои силы в результате старения. Это неправда, но даже если бы и было правдой, то вернуть его к жизни можно было бы всего лишь одним электромагнитным импульсом. Двигатель, который бы требовал перезарядку раз в 10-20 лет, хоть и не может претендовать на роль вечного, но очень близко к этому подходит.

Уже было много попыток создать вечный двигатель на базе постоянных магнитов. Пока что не было удачных решений, к сожалению. Но учитывая тот факт, что спрос на такие двигатели есть (его просто не может не быть), вполне возможно, что в скором будущем мы увидим что-то, что очень близко подойдет к модели вечного мотора, который будет работать на возобновляемой энергии.

Как находить КПД двигателя

Чтобы найти КПД любого двигателя, найдите отношение выполненной им работы к затраченной на это энергии. Известно два основных типа двигателей, используемых человеком – двигатель внутреннего сгорания и электродвигатель. Измеряя КПД первого, полезную работу поделите на общую теплоту, выделившуюся при сгорании топлива, а для второго подсчитайте затраченную на выполнение полезной работы электроэнергию и найдите их отношение.

Как находить КПД двигателя

Вам понадобится

  • характеристики двигателя внутреннего сгорания, груз известной массы и тестер.

Инструкция

Определение КПД двигателя внутреннего сгоранияНайдите в технической документации мощность данного двигателя внутреннего сгорания. Залейте в него топливо, это может быть бензин или дизельное топливо, и заставьте проработать на максимальных оборотах некоторое время, которое замеряйте с помощью секундомера, в секундах. Слейте остатки и определите объем сгоревшего топлива, отняв от первоначального объема конечный. Найдите его массу, умножив объем, переведенный в м³, на его плотность в кг/ м³.

Для определения КПД мощность двигателя умножьте на время и поделите на произведение массы затраченного топлива на его удельную теплоту сгорания КПД=P•t/(q•m). Чтобы получить результат в процентах, получившееся число умножьте на 100.

Если нужно измерить КПД двигателя автомобиля, а мощность его неизвестна, но известна масса, для определения полезной работы разгонитесь на нем из состояния покоя до скорости 30 м/с (если это возможно), измерив массу затраченного топлива. Затем массу автомобиля умножьте на квадрат его скорости, и поделите на удвоенное произведение массы затраченного топлива на удельную теплоту его сгорания КПД=М•v²/(2•q•m).

Определение КПД электродвигателя Если известна мощность электродвигателя, то подключите его к источнику тока с известным напряжением, добейтесь максимальных оборотов и тестером, измерьте ток в цепи. Затем мощность поделите на произведение силы тока и напряжения КПД=P/(I•U).

Если мощность двигателя неизвестна, прикрепите к его валу шкив, и поднимите на известную высоту, груз известной массы. Измерьте тестером напряжение и силу тока на двигателе, а так же время подъема груза. Затем произведение массы груза на высоту подъема и число 9,81 поделите на произведение напряжения, силы тока и времени подъема в секундах КПД=m•g•h/(I•U•t).

Обратите внимание

Во всех случаях КПД должен быть меньше 1 в дольных величинах или 100 %.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как найти площадь круга в метрах квадратных
  • Как найти мощность излучения света
  • Как найти растворимость соли в граммах
  • Как составить режим кормления ребенка
  • Как найти белую лошадь rdr 2