Как найти кпд ньютоны

Каждый механизм, совершающий работу, затрачивает на её выполнение определённую энергию. Её разница с потребляемой для этого мощностью называется коэффициентом полезного действия. Для физики формула, определяющая это значение, является фундаментальной. С её помощью рассчитывают эффективность энергетических процессов. Можно утверждать, что этот параметр занимает важное место в характеристиках любого технического устройства.

Оглавление:

  • Общие сведения и определения
  • Нахождение полезного действия
  • Тепловые и электродвигатели
  • Решение задач

Кпд что это

Общие сведения и определения

Энергия — это характеристика, являющаяся скалярной величиной и служащая мерой различного перемещения и взаимодействия материи при переходе в ту или иную форму. С фундаментальной точки зрения, она состоит из импульса и его момента, связанных с неоднородностью времени. В физике понятие «энергия» применяется для замкнутых систем.

Как было установлено опытным путём из-за независимости физических законов от момента времени, энергия не исчезает и не появляется из ничего, она просто есть и переходит из одного состояния в другое. Это утверждение называется Законом сохранения. В математике это правило эквивалентно системе дифференциальных уравнений, описывающих их динамику и обладающих первым интегралом движения, симметричного относительно сдвига во времени.

Коэффициент полезного действия формула

Чтобы система совершила работу, она должна получить энергию снаружи. То есть на неё должен воздействовать импульс. Но не вся получаемая энергия идёт на достижение нужной цели. По факту она разделяется на два вида:

  • затрачиваемая — полная величина, которая была взята извне;
  • полезная — та, что не затрачивается на преодоление различных сил.

Например, пусть необходимо поднять груз. Другими словами, совершить работу. Для того чтобы достичь заданной цели, нужно преодолеть ряд сил: тяжести, трения. Эти затраты и считаются неполезными. Так, для механических устройств энергия затрачивается на преодоление сил, возникающих при контакте поверхностей, в электричестве — на сопротивление проводников. Вот такого типа потери и называют затратными.

Физика кпд это

В соответствии с Законом сохранения, взятая системой энергия не может просто исчезнуть. Поэтому и рассчитывают, какое количество её было трансформировано в другую «побочную» форму. Если общую работу обозначить за A, то можно записать равенство: A = Aп + Aз, где Aз — работа затраченная, а Aп — полезная. Так как идеальных систем не существует, то всегда Aз > Aп.

Научное общество с давних времён занимается проблемой уравнивания этих величин. Периодически появляются сведения об изобретении «вечного двигателя». Это устройство, у которого вся потребляемая энергия идёт на выполнение полезного действия. К сожалению, сегодняшние возможности и знания не позволяют полностью исключить затраты. Поэтому все такие изобретения являются ложными, а перед учёными стоит задача свести потери к минимуму.

Нахождение полезного действия

Если затраченную работу увеличить в несколько раз, то на это же число возрастёт и взятая полезная энергия. Если бы механизм был идеальный, то их отношение равнялось единице. Но так как в реальности оно всегда меньше, то соотношение Ап к Аз используется для описания качества. Этому параметру и присвоили название КПД. Расшифровка этой аббревиатуры звучит как «коэффициент полезного действия».

Формула кпд

Другими словами, если нужно найти КПД по формуле, то следует просто вычислить отношение: η = Ап / Аз. Для обозначения характеристики применяют букву греческого алфавита η (эта). Таким образом, полезным действием называют физическую величину, равную отношению работы, выполненной самим механизмом, к затраченной энергии по приведению его в действие. Измерять КПД принято в процентах.

Если система тел способна совершить работу, то говорят, что она обладает энергией. Измеряется она в джоулях. Существует несколько видов энергии, с помощью которых можно определять работу, а значит, и вычислять КПД. Наиболее часто приходится исследовать две энергии:

Кпд формула

  1. Потенциальную — ею называется энергия взаимодействия тел или частей одной физической частицы. Её вычисление зависит от принятой системы. Для тела, поднятого над землёй, она будет равна: Eп = mgh. То есть приобретённая потенциальная энергия — это полезная работа. Например, её сообщают телу при поднятии его по наклонной плоскости.
  2. Кинетическую — это та энергия, которой обладает движущееся тело. Она пропорциональна массе тела и квадрату его скорости: Ек = mv2 / 2.

Следует отметить, что при расчёте работы, связанной с потенциальной энергией, имеет значение уровень, от которого она отсчитывается.

На первый взгляд кажется, что эта ситуация приводит к неоднозначностям. Но это не так, потому что работа равняется не самой энергии, а её изменению. При этом существует закономерность, что уменьшение потенциальной энергии приводит к увеличению кинетической. Это правило действует и в обратную сторону.

Тепловые и электродвигатели

Тепловыми машинами называют механизмы, которые преобразовывают внутреннюю энергию в механическую работу. Это ветряные и водяные мельницы, устройства, работающие от всевозможного топлива. К основным частям любого теплового двигателя относят:

  • нагреватель — приспособление с высокой температурой по отношению к окружающей среде;
  • рабочее тело — часть, непосредственно выполняющая поставленную задачу, например, газ или пар;
  • охладитель.

Что такое кпд

Количество теплоты, полученной от нагревателя телом, будет равно совершённой работе плюс изменение внутренней энергии: Q = A + Δ U. Максимальное КПД такого устройства будет, когда ΔU = 0. Внутренняя энергия газов зависит от температуры. Значит, при совершении работы она не должна изменяться. Другими словами, происходящий процесс должен быть изотермическим.

Становится понятным, что для повышения КПД нужно, чтобы работа по сжатию была меньше той, которую совершает тело при расширении. Достичь это можно охлаждением: A = Q1 — Q2. В это время часть энергии будет возвращаться в систему. Значит, КПД равно: η = (Q1 — Q2) / Q1. При этом наибольший коэффициент находится по формуле: η = (T1 — T2) / T2, где T1 и T2 — температуры нагревателя и охладителя соответственно.

У электродвигателей потери энергии обусловлены нагреванием проводников при прохождении по ним электрического тока, а также воздействием паразитных магнитных потоков. Кроме этого, дополнительный расход энергии может затрачиваться на механические потери, вызванные элементами двигателя.

Коэффициент полезного действия

У электромашины КПД может изменяться от 10% до 99%. Находят его через следующее отношение: η = P2 / P1, где P2 — механическая мощность, а P — подводимая к двигателю. Нужно отметить, что эффективность эксплуатации двигателя сильно упадёт, если его применять для обеспечения движения механизма, обладающего более низким коэффициентом полезной энергии.

Повышение КПД электрической машины возможно путём использования качественных деталей, например, подшипников качения, крыльчаток с уменьшенным сопротивлением воздуху. Для снижения нагрева применяют сверхпроводники, обладающие малым сопротивлением. Магнитные потери уменьшают применением электромагнитной стали с высокой степенью изоляции.

Решение задач

Любое вычисление коэффициента полезного действия сводится к нахождению отношений работы. Так как это безразмерная величина, ответ записывают в процентах. Существует ряд типовых задач, позволяющих лучше разобраться в теории и понять, для чего можно использовать знания на практике. Вот некоторые из них:

Как найти кпд

  1. На стройке с помощью рычажного механизма паллету массой 190 кг подняли на один метр. При этом длинное плечо опустилось на два метра. Найти КПД, учитывая, что приложенная сила к рычагу составила 1000 ньютон. Для решения этого задания нужно рассчитать полную и полезную работу. Так как общая энергия характеризуется силой, которая была приложена к плечу рычага, то найти её можно из выражения: Аз = F * S = 1000 Н/кг * 2 м = 2000 Дж. В то же время полезная работа — это та, что позволила поднять груз. Находится она следующим образом: Ап = mgh = 190 кг * 1 м * 10 Н/кг = 1900 Дж. Отсюда искомая сила равна: n = 1900 Дж / 2000 Дж = 0,95 * 100 = 95%.
  2. Производительность насоса составляет 300 литров в минуту при подаче воды на 20 метров. Найти, какая мощность мотора, если КПД устройства составляет 80%. Для того чтобы выполнить расчёт, понадобится знать плотность воды. Она составляет 1000 кг / м3. Решать эту задачу нужно следующим образом. Полезная работа при поднятии воды насосом равняется: Aп = P * s1 = mgh, где m — масса воды, которую можно найти, зная плотность и объём. Тогда Ап = p * V * h = 1000 кг / м3 * 0,3 м3 * 20 м = 60 000 Дж. Полную же затраченную энергию можно найти по формуле: Аз = n * t. Отсюда: n = Ап / Аз = Ап / n * t = 60 000 Дж / 0,8 * 60с = 1250 Вт.
  3. Куб массой 200 кг поднимают по наклонной доске. Высота отклонения от горизонтальной линии составляет полтора метра, а длина пути — десять метров. Определить необходимую силу, если КПД составляет 60%. Полезная работа в этом случае находится из произведения веса куба и высоты: Aп = mgh. Полная же энергия рассчитывается так: Аз = F * l. Эти выражения можно подставить в формулу нахождения КПД и из неё уже выразить искомую силу: F = mgh / n = (200 кг * 10 Н/кг * 1,5 м) / (0,6 * 10 м) = 3000 / 6 = 500 Н.

Таким образом, при решении задач необходимо сначала правильно определить полезную и полную работу. Для этого нужно разобраться, с какой целью используется тот или иной механизм. Ведь за всю энергию принимается та, которая совершается самим устройством.

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

Что такое коэффициент полезного действия, его определение по формуле

Трактовка понятия

Электродвигатель и другие механизмы выполняют определённую работу, которая называется полезной. Устройство, функционируя, частично растрачивает энергию. Для определения эффективности работы применяется формула ɳ= А1/А2×100%, где:

  • А1 — полезная работу, которую выполняет машина либо мотор;
  • А2 — общий цикл работы;
  • η — обозначение КПД.

Показатель измеряется в процентах. Для нахождения коэффициента в математике используется следующая формула: η= А/Q, где А — энергия либо полезная работа, а Q — затраченная энергия. Чтобы выразить значение в процентах, КПД умножается на 100%. Действие не несёт содержательного смысла, так как 100% = 1. Для источника тока КПД меньше единицы.

В старших классах ученики решают задачи, в которых нужно найти КПД тепловых двигателей. Понятие трактуется следующим образом: отношение выполненной работы силового агрегата к энергии, полученной от нагревателя. Расчет производится по следующей формуле: η= (Q1-Q2)/Q1, где:

  • Q1 — теплота, полученная от нагревательного элемента;
  • Q2 — теплота, отданная холодильной установке.

Что такое КПД

Максимальное значение показателя характерно для циклической машины. Она оперирует при заданных температурах нагревательного элемента (Т1) и холодильника (Т2). Измерение осуществляется по формуле: η= (Т1-Т2)/Т1. Чтобы узнать КПД котла, который функционирует на органическом топливе, используется низшая теплота сгорания.

Плюс теплового насоса как нагревательного прибора заключается в возможности получать больше энергии, чем он может затратить на функционирование. Показатель трансформации вычисляется путём деления тепла конденсации на работу, затрачиваемую на выполнение данного процесса.

Мощность разных устройств

По статистике, во время работы прибора теряется до 25% энергии. При функционировании двигателя внутреннего сгорания топливо сгорает частично. Небольшой процент вылетает в выхлопную трубу. При запуске бензиновый мотор греет себя и составные элементы. На потерю уходит до 35% от общей мощности.

При движении механизмов происходит трение. Для его ослабления используется смазка. Но она неспособна полностью устранить явление, поэтому затрачивается до 20% энергии. Пример на автомобиле: если расход составляет 10 литров топлива на 100 км, на движение потребуется 2 л, а остаток, равный 8 л — потеря.

Если сравнивать КПД бензинового и дизельного моторов, полезная мощность первого механизма равна 25%, а второго — 40%. Агрегаты схожи между собой, но у них разные виды смесеобразования:

Применение показателя в физике для цепи, в электродвигателе

  1. Поршни бензинового мотора функционируют на высоких температурах, поэтому нуждаются в хорошем охлаждении. Тепло, которое могло бы перейти в механическую энергию, тратится впустую, что способствует снижению КПД.
  2. В цепи дизельного устройства топливо воспламеняется в процессе сжатия. На основе данного фактора можно сделать вывод, что давление в цилиндрах высокое, при этом мотор экологичнее и меньше первого аналога. Если проверить КПД при низком функционировании и большом объёме, результат превысит 50%.

Асинхронные механизмы

Расшифровка термина «асинхронность» — несовпадение по времени. Понятие используется во многих современных машинах, которые являются электрическими и способны преобразовывать соответствующую энергию в механическую. Плюсы устройств:

  • простое изготовление;
  • низкая цена;
  • надёжность;
  • незначительные эксплуатационные затраты.

Чтобы рассчитать КПД, используется уравнение η = P2 / P1. Для расчёта Р1 и Р2 применяются общие данные потери энергии в обмотках мотора. У большинства агрегатов показатель находится в пределах 80−90%. Для быстрого расчёта используется онлайн-ресурс либо личный калькулятор. Для проверки возможного КПД у мотора внешнего сгорания, который функционирует от разных источников тепла, используется силовой агрегат Стирлинга. Он представлен в виде тепловой машины с рабочим телом в виде жидкости либо газа. Вещество движется по замкнутому объёму.

Принцип его функционирования основан на постепенном нагреве и охлаждении объекта за счёт извлечения энергии из давления. Подобный механизм применяется на косметическом аппарате и современной подводной лодке. Его работоспособность наблюдается при любой температуре. Он не нуждается в дополнительной системе для запуска. Его КПД возможно расширить до 70%, в отличие от стандартного мотора.

Значения показателя

Инженер Карно дал определение КПД

В 1824 году инженер Карно дал определение КПД идеального двигателя, когда коэффициент равен 100%. Для трактовки понятия была создана специальная машина со следующей формулой: η=(T1 — Т2)/ T1. Для расчёта максимального показателя применяется уравнение КПД макс = (T1-T2)/T1x100%. В двух примерах T1 указывает на температуру нагревателя, а T2 — температуру холодильника.

На практике для достижения 100% коэффициента потребуется приравнять температуру охладителя к нулю. Подобное явление невозможно, так как T1 выше температуры воздуха. Процедура повышения КПД источника тока либо силового агрегата считается важной технической задачей. Теоретически проблема решается путём снижения трения элементов двигателя и уменьшения теплопотери. В дизельном моторе подобное достигается турбонаддувом. В таком случае КПД возрастает до 50%.

Мощность стандартного двигателя увеличивается следующими способами:

  • подключение к системе многоцилиндрового агрегата;
  • применение специального топлива;
  • замена некоторых деталей;
  • перенос места сжигания бензина.

Способы нахождения значения, проверка результата

КПД зависит от типа и конструкции мотора. Современные учёные утверждают, что будущее за электродвигателями. На практике работа, которую совершает любое устройство, превышает полезную, так как определённая её часть выполняется против трения. Если используется подвижный блок, совершается дополнительная работа: поднимается блок с верёвкой, преодолеваются силы трения в блоке.

Решение примеров

Задача 1. Поезд на скорости 54 км/ч развивает мощность 720 кВт. Нужно вычислить силу тяги силовых агрегатов. Решение: чтобы найти мощность, используется формула N=F x v. Если перевести скорость в единицу СИ, получится 15 м/с. Подставив данные в уравнение, определяется, что F равно 48 kН.

Задача 2. Масса транспортного средства соответствует 2200 кг. Машина, поднимаясь в гору под уклоном в 0,018, проходит расстояние 100 м. Скорость развивается до 32,4 км/ч, а коэффициент трения соответствует 0,04. Нужно определить среднюю мощность авто при движении. Решение: вычисляется средняя скорость — v/2. Чтобы определить силу тяги мотора, выполняется рисунок, на котором отображаются силы, воздействующие на машину:

  • тяжесть — mg;
  • реакция опоры — N;
  • трение — Ftr;
  • тяга — F.

Второй закон Ньютона

Первая величина вычисляется по второму закону Ньютона: mg+N+Ftr+F=ma. Для ускорения используется уравнение a=v2/2S. Если подставить последние значение и воспользоваться cos, получится средняя мощность. Так как ускорение считается постоянной величиной и равно 9,8 м/с2, поэтому v= 9 м/с. Подставив данные в первую формулу, получится: N= 9,5 kBt.

При решении сложных задач по физике рекомендуется проверить соответствие предоставленных в условиях единиц измерения с международными стандартами. Если они отличаются, необходимости перевести данные с учётом СИ.

п.1. Полезная работа и затраченная работа

Полезной называется работа по подъёму грузов или преодолению какого-либо сопротивления.
Затраченной (полной) называется работа, совершённая приложенной силой.

Примеры полной и полезной работы

Затраченная работа равна сумме:

  • полезной работы;
  • работы против силы трения в различных частях механизма;
  • работы по перемещению различных составных элементов механизма.

Поэтому всегда (A_text{полезная}lt A_text{затраченная})

п.2. КПД механизма

Коэффициент полезного действия механизма – это отношение его полезной работы к затраченной работе. $$ eta=frac{A_text{п}}{A_text{з}}cdot 100text{%} $$

Поскольку в реальных механизмах всегда (A_text{п}lt A_text{з}), $$ frac{A_text{п}}{A_text{з}}lt 1. $$

Следовательно КПД реальных механизмов (etalt 100text{%}).

Только в идеальном механизме, в котором нет потерь на трение, и все составные элементы не имеют веса, (A_text{п}=A_text{з}) и (eta=100text{%}).

КПД никогда не может быть выше (100text{%}).

КПД реальных механизмов можно увеличить за счет снижения трение в подвижных узлах и уменьшения веса всех составных элементов конструкции.

Для этого нужны новые смазочные вещества и лёгкие, но прочные конструкционные материалы.

п.3. Задачи

Задача 1. По наклонной плоскости поднимают груз массой 50 кг, прикладывая к нему силу 250 Н, направленную вдоль плоскости. Чему равен КПД плоскости, если её длина 10 м, а высота 3 м?

Дано:
(m=50 text{кг})
(gapprox 10 text{м/с}^2)
(F=250 text{Н})
(L=10 text{м})
(h=3 text{м})
__________________
(eta-?)

Полезная работа по подъему груза begin{gather*} A_text{п}=mgh. end{gather*} Затраченная работа на перемещение груза вдоль наклонной плоскости begin{gather*} A_text{з}=FL. end{gather*} КПД плоскости: begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{mgh}{FL}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{50cdot 10cdot 3}{250cdot 10}cdot 100text{%}=60text{%} end{gather*} Ответ: 60%

Задача 2. С помощью подвижного блока поднимают груз массой 200 кг, прикладывая силу 1200 Н. Чему равен КПД блока?

Дано:
(m=200 text{кг})
(gapprox 10 text{м/с}^2)
(F=1200 text{Н})
__________________
(eta-?)

Полезная работа по подъему груза на высоту (h): begin{gather*} A_text{п}=mgh. end{gather*} Подвижный блок дает выигрыш в силе в 2 раза и проигрыш в расстоянии. Т.е. при работе нужно вытянуть трос длиной (2h). Затраченная работа: begin{gather*} A_text{з}=Fcdot 2h. end{gather*} КПД блока begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{mgh}{2Fh}cdot 100text{%}=frac{mg}{2F}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{200cdot 10}{2cdot 1200}cdot 100text{%}approx 83,3text{%} end{gather*} Ответ: 83,3%

Задача 3. Груз массой 245 кг с помощью рычага равномерно подняли на высоту 6 см. При этом к длинному плечу рычага была приложена сила 500 Н, а точка приложения силы опустилась на 30 см. Найдите КПД рычага.

Дано:
(m=245 text{кг})
(gapprox 10 text{м/с}^2)
(h_2=6 text{см}=0,6 text{м})
(F_1=500 text{Н})
(h_1=30 text{см}=0,3 text{м})
__________________
(eta-?)

Полезная работа по подъему груза на высоту (h_2): begin{gather*} A_text{п}=mgh_2. end{gather*} Затраченная работа по опусканию длинного плеча рычага: begin{gather*} A_text{з}=F_1h_1. end{gather*} КПД рычага begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{mgh_2}{F_1h_1}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{245cdot 10cdot 0,06}{500cdot 0,3}cdot 100text{%}=frac{147}{150}cdot 100text{%}=98text{%} end{gather*} Ответ: 98%

Задача 4. Чему равен КПД гидравлической машины, если для равномерного подъема груза массой 1,2 т к меньшему поршню прикладывают силу 160 Н? Площади поршней равны 5 см2 и 500 см2.

Дано:
(m=1,2 text{т}=1200 text{кг})
(gapprox 10 text{м/с}^2)
(F_1=160 text{Н})
(S_1=5 text{см}^2=5cdot 10^{-4} text{м}^2)
(S_2=500 text{см}^2=5cdot 10^{-2} text{м}^2)
__________________
(eta-?)

При опускании малого поршня на высоту (h_1) из малого в большой цилиндр вытекает объем жидкости равный $$ V=S_1h_1=S_2h_2Rightarrow frac{h_2}{h_1}=frac{S_1}{S_2} $$ Полезная работа по подъему груза на высоту (h_2): begin{gather*} A_text{п}=mgh_2. end{gather*} Затраченная работа по опусканию поршня малого цилиндра: begin{gather*} A_text{з}=F_1h_1. end{gather*} КПД гидравлической машины begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{mgh_2}{F_1h_1}cdot 100text{%}=frac{mgS_1}{F_1S_2}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{1200cdot 10cdot 5cdot 10^{-4}}{160cdot 5cdot 10^{-2}}cdot 100text{%}=frac{600}{800}cdot 100text{%}=75text{%} end{gather*} Ответ: 75%

Задача 5*. Груз массой 12 кг поднимают с помощью подвижного блока массой 3 кг. Чему равен КПД блока?

Дано:
(M=12 text{кг})
(m=3 text{кг})
__________________
(eta-?)

Полезная работа по подъему груза на высоту (h): begin{gather*} A_text{п}=Mgh. end{gather*} Подвижный блок дает выигрыш в силе в 2 раза. Поэтому достаточно приложить силу, равную половине суммы весов груза и блока: begin{gather*} F=frac 12(M+m)g end{gather*} При этом будет проигрыш в расстоянии. Потребуется вытянуть трос длиной (2h). Затраченная работа, приложенная к тросу: begin{gather*} A_text{з}=Fcdot 2h=frac 12(M+m)gcdot 2h=(M+m)gh. end{gather*} КПД подвижного блока begin{gather*} eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{Mgh}{(M+m)gh}cdot 100text{%}=frac{M}{M+m}cdot 100text{%} end{gather*} Получаем: begin{gather*} eta=frac{12}{12+3}cdot 100text{%}=80text{%} end{gather*} Ответ: 80%

Задача 6. Сколько воды можно поднять из колодца глубиной 36 м за 1 ч, если мощность электродвигателя равна 5 кВт, КПД всей установки равно 70%?
Дано:
(N=5 text{кВт}=5cdot 10^3 text{Вт})
(eta=70text{%}=0,7)
(h=36 text{м})
(t=1 text{ч}=3600 text{с})
(gapprox 10 text{м/с}^2)
__________________
(m-?)

Полезная работа по подъему груза на высоту (h): begin{gather*} A_text{п}=Mgh. end{gather*} Затраченная работа электродвигателя: begin{gather*} A_text{з}=Nt. end{gather*} КПД установки begin{gather*} eta=frac{A_text{п}}{A_text{з}}=frac{mgh}{Nt} end{gather*} Масса воды begin{gather*} m=frac{eta Nt}{gh} end{gather*} Получаем: begin{gather*} m=frac{0,7cdot 5cdot 10^3cdot 3600}{10cdot 36}=35cdot 10^3 (text{кг})=35 text{т} end{gather*} Ответ: 35 т

Задача 7*. КПД подвижного блока при подъеме первого груза равен 80%, а при подъеме второго груза – 90%. Масса какого груза больше и во сколько раз? Трением в блоке можно пренебречь.
Дано:
(eta_1=80text{%}=0,8)
(eta_2=90text{%}=0,9)
__________________
(frac{M_2}{M_1}-?)

КПД подвижного блока массой (m), с помощью которого поднимают груз массой (M) begin{gather*} eta=frac{M}{M+m} end{gather*} (см. Задачу 5 выше). Масса груза begin{gather*} eta(M+m)=MRightarrow eta m=(1-eta)MRightarrow M=frac{eta}{1-eta}m end{gather*} Получаем: begin{gather*} M_1=frac{0,8}{1-0,8}m=4m,\[6pt] M_2=frac{0,9}{1-0,9}m=9m end{gather*} Масса второго груза больше.
Отношение масс begin{gather*} frac{M_2}{M_1}=frac{9m}{4m}=2,25 (text{раз}) end{gather*} Ответ: масса второго груза больше в 2,25 раз

п.4. Лабораторная работа №13. Определение КПД наклонной плоскости

Цель работы
Научиться проводить измерения и рассчитывать КПД простого механизма на примере наклонной плоскости. Исследовать зависимость КПД наклонной плоскости от высоты.

Теоретические сведения

Теоретические сведения
Работа по подъему тела весом (P) вертикально на высоту (h) (из точки C в точку B): $$ A_text{CB}=Ph $$

Работа по перемещению того же тела силой (F), направленной вдоль наклонной плоскости длиной (L) (из точки A в точку B): $$ A_text{AB}=FL $$

В обоих случаях тело перемещается с нулевого уровня AC, где (h_0=0), на уровень с высотой (h) в точку B. Работа сторонних сил в этом случае равна изменению потенциальной энергии тела: $$ A=A_text{CB}=A_text{AB}=Delta E_p $$

Получаем уравнение для идеальной наклонной плоскости (без трения): $$ Ph=FL $$

При наличии трения получаем неравенство: $$ Phlt FL $$

Полезная и затраченная работа для наклонной плоскости: $$ A_text{п}=Ph, A_text{з}=FL $$

КПД наклонной плоскости: $$ eta=frac{A_text{п}}{A_text{з}}cdot 100text{%}=frac{Ph}{FL}cdot 100text{%} $$

Затраченная работа равна сумме полезной работы и работы по преодолению силы трения: $$ A_text{з}=A_text{п}+F_text{тр}L $$

Откуда сила трения равна: $$ F_text{тр}=frac{A_text{з}-A_text{п}}{L}=frac{FL-Ph}{L}=F-Pfrac hL $$

Вес (P) и сила (F) определяются в работе с помощью динамометра с ценой деления (d=0,1 text{Н}).

Абсолютная погрешность прямых измерений $$ Delta_F=Delta_P=frac d2=0,05 text{Н}. $$

Сила (F) определяется в серии из пяти опытов с вычислением средних величин.

Высота наклонной плоскости (h) и длина наклонной плоскости (L) определяются с помощью мерной ленты с ценой деления (d=5 text{мм}). Абсолютная погрешность (Delta_L=2,5 text{мм}).

Относительные погрешности измерений вычисляются как обычно.

Относительная погрешность расчета КПД: $$ delta_eta=delta_F+delta_P+delta_h+delta_L $$

Абсолютная погрешность расчета КПД: $$ Delta_eta=etacdot delta_eta $$

Приборы и материалы
Доска длиной от 70 см, штатив с муфтой и лапкой, брусок массой не менее 300 г, мерная лента, динамометр.

Ход работы
1. Измерьте мерной лентой длину доски (L).
2. Определите вес бруска (P) с помощью динамометра.
3. Соберите наклонную плоскость: закрепите один конец доски в лапке штатива на высоте около (h=frac L3.)
4. Положите брусок на наклонную плоскость, прикрепите к нему динамометр и равномерно тяните по наклонной плоскости. Следите, чтобы динамометр располагался параллельно наклонной плоскости. Запишите измеренное значение (F). Повторите измерение (F) в серии из пяти опытов.
5. Соберите новую наклонную плоскость: закрепите один конец доски в лапке штатива на высоте около (h=frac L4). Перейдите на шаг 4 и повторите серию опытов для определения (F).
6. Рассчитайте КПД для двух исследованных наклонных плоскостей. Найдите относительные и абсолютные погрешности расчетов КПД.
7. Для каждой из наклонных плоскостей укажите величину полезной и затраченной работы, найдите силу трения.
8. Сделайте выводы о зависимости силы трения и КПД от высоты наклонной плоскости.

Результаты измерений и вычислений

Длина наклонной плоскости (доски) begin{gather*} L=80 text{см}=800 text{мм},\[7pt] Delta_L=2,5 text{мм},\[6pt] delta_L=frac{Delta_L}{L}=frac{2,5}{800}approx 0,0031=0,31text{%} end{gather*}

Вес бруска begin{gather*} P=4,4 text{Н},\[7pt] Delta_P=0,05 text{Н},\[6pt] delta_P=frac{Delta_P}{P}=frac{0,05}{4,4}approx 0,0011=1,1text{%} end{gather*}

1. Наклонная плоскость высотой (h=27 text{см})

Высота наклонной плоскости begin{gather*} h=27 text{см}=270 text{мм},\[7pt] Delta_h=2,5 text{мм},\[6pt] delta_h=frac{Delta_h}{h}=frac{2,5}{270}approx 0,0093=0,93text{%} end{gather*}

Определение силы тяги (F) в серии опытов

№ опыта 1 2 3 4 5 Сумма
$$ F, H $$ 2,9 2,8 3,0 2,7 2,8 14,2
$$ Delta_F, H $$ 0,06 0,04 0,16 0,14 0,04 0,44

begin{gather*} F_text{ср}=frac{sum F_i}{5}=frac{14,2}{5}=2,84 (text{Н}),\[6pt] Delta_{Ftext{ср}}=frac{sum Delta_{Fi}}{5}=frac{0,44}{5}approx 0,09 (text{Н}),\[6pt] F=(2,84pm 0,09) text{Н},\[7pt] delta_F=frac{0,09}{2,84}approx 0,032=3,2text{%} end{gather*}

Полезная работа: $$ A_text{П}=Ph=4,4cdot 0,27=1,188 (text{Дж}) $$

Затраченная работа: $$ A_text{З}=FL=2,84cdot 0,8=2,272 (text{Дж}) $$

Сила трения: $$ F_text{тр}=F-Pfrac hL=2,84-4,4cdot frac{0,27}{0,8}approx 1,36 (text{Н}) $$

КПД наклонной плоскости: $$ eta=frac{A_text{П}}{A_text{З}}=frac{1,188}{2,272}approx 0,523=52,3text{%} $$

Погрешности расчета КПД: $$ delta_eta=delta_F+delta_P+delta_h+delta_L=0,032+0,011+0,0093+0,0031=0,0554approx 0,056=5,6text{%} $$

При расчете (delta_eta) использовали округление с избытком. $$ Delta_eta=0,523cdot 0,056approx 0,029=2,9text{%} $$

Окончательно получаем: $$ eta=(52,3pm 2,9)text{%}, delta_eta=5,6text{%} $$

2. Наклонная плоскость высотой (h=20 text{см})

Высота наклонной плоскости begin{gather*} h=20 text{см}=200 text{мм},\[7pt] Delta_h=2,5 text{мм},\[6pt] delta_h=frac{Delta_h}{h}=frac{2,5}{200}approx 0,013=1,3text{%} end{gather*}

Определение силы тяги (F) в серии опытов

№ опыта 1 2 3 4 5 Сумма
$$ F, H $$ 2,4 2,6 2,5 2,6 2,5 12,6
$$ Delta_F, H $$ 0,12 0,08 0,02 0,08 0,02 0,32

begin{gather*} F_text{ср}=frac{sum F_i}{5}=frac{12,6}{5}=2,52 (text{Н}),\[6pt] Delta_{Ftext{ср}}=frac{sum Delta_{Fi}}{5}=frac{0,32}{5}approx 0,06 (text{Н}),\[6pt] F=(2,52pm 0,06) text{Н},\[7pt] delta_F=frac{0,06}{2,52}approx 0,024=2,4text{%} end{gather*}

Полезная работа: $$ A_text{П}=Ph=4,4cdot 0,2=0,88 (text{Дж}) $$

Затраченная работа: $$ A_text{З}=FL=2,52cdot 0,8=2,016 (text{Дж}) $$

Сила трения: $$ F_text{тр}=F-Pfrac hL=2,52-4,4cdot frac{0,2}{0,8}approx 1,42 (text{Н}) $$

КПД наклонной плоскости: $$ eta=frac{A_text{П}}{A_text{З}}=frac{0,88}{2,016}approx 0,437=43,7text{%} $$

Погрешности расчета КПД: $$ delta_eta=delta_F+delta_P+delta_h+delta_L=0,024+0,011+0,013+0,0031=0,0511approx 0,052=5,2text{%} $$

При расчете (delta_eta) использовали округление с избытком. $$ Delta_eta=0,437cdot 0,052approx 0,023=2,3text{%} $$

Окончательно получаем: $$ eta=(43,7pm 2,3)text{%}, delta_eta=5,2text{%} $$

Выводы
На основании полученных результатов можно сделать следующие выводы.

В работе проводился расчет КПД наклонной плоскости постоянной длины, но разной высоты.

Для высоты около (h=frac L3):

  • полезная и затраченная работы: (A_text{П}=1,188 (text{Дж}), A_text{З}=2,272 (text{Дж}))
  • сила трения: (F_text{тр}=1,36 (text{Н}))
  • КПД: (eta=(52,3pm 2,9)text{%}, delta_eta=5,6text{%})

Для высоты около (h=frac L4):

  • полезная и затраченная работы: (A_text{П}=0,88 (text{Дж}), A_text{З}=2,016 (text{Дж}))
  • сила трения: (F_text{тр}=1,42 (text{Н}))
  • КПД: (eta=(43,7pm 2,3)text{%}, delta_eta=5,2text{%})

Таким образом, с уменьшением высоты:

  • сила трения растет;
  • КПД наклонной плоскости падает.

Все задачи, поставленные перед исследованием, успешно выполнены.

Трактовка понятия

Электродвигатель и другие механизмы выполняют определённую работу, которая называется полезной. Устройство, функционируя, частично растрачивает энергию. Для определения эффективности работы применяется формула ɳ= А1/А2×100%, где:

  • А1 — полезная работу, которую выполняет машина либо мотор;
  • А2 — общий цикл работы;
  • η — обозначение КПД.

Показатель измеряется в процентах. Для нахождения коэффициента в математике используется следующая формула: η= А/Q, где А — энергия либо полезная работа, а Q — затраченная энергия. Чтобы выразить значение в процентах, КПД умножается на 100%. Действие не несёт содержательного смысла, так как 100% = 1. Для источника тока КПД меньше единицы.

В старших классах ученики решают задачи, в которых нужно найти КПД тепловых двигателей. Понятие трактуется следующим образом: отношение выполненной работы силового агрегата к энергии, полученной от нагревателя. Расчет производится по следующей формуле: η= (Q1-Q2)/Q1, где:

  • Q1 — теплота, полученная от нагревательного элемента;
  • Q2 — теплота, отданная холодильной установке.

Что такое КПД

Максимальное значение показателя характерно для циклической машины. Она оперирует при заданных температурах нагревательного элемента (Т1) и холодильника (Т2). Измерение осуществляется по формуле: η= (Т1-Т2)/Т1. Чтобы узнать КПД котла, который функционирует на органическом топливе, используется низшая теплота сгорания.

Плюс теплового насоса как нагревательного прибора заключается в возможности получать больше энергии, чем он может затратить на функционирование. Показатель трансформации вычисляется путём деления тепла конденсации на работу, затрачиваемую на выполнение данного процесса.

Для чего нужен расчет КПД

Коэффициент полезного действия электрической цепи – это отношение полезного тепла к полному. Для ясности приведем пример. При нахождении КПД двигателя можно определить, оправдывает ли его основная функция работы затраты потребляемого электричества. То есть его расчет даст ясную картину, насколько хорошо устройство преобразовывает получаемую энергию. Обратите внимание! Как правило, коэффициент полезного действия не имеет величины, а представляет собой процентное соотношение либо числовой эквивалент от 0 до 1. КПД находят по общей формуле вычисления, для всех устройств в целом. Но чтобы получить его результат в электрической цепи, вначале потребуется найти силу электричества.

Будет интересно➡ Что такое плотность тока?

По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу. Дадим значения каждому элементу цепи: сопротивление – r; сила тока – Е; резистор (внешняя нагрузка) – R. Полная цепь Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt. Рассчитать работу источника тока можно по следующей формуле: A = Eq = EIt. В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца: Q = I2 + I2 rt = I2 (R + r) t.

Затем приравниваются правые части формулы: EIt = I2 (R + r) t. Осуществив сокращение, получается расчет: E = I(R + r). Произведя у формулы перестановку, в итоге получается: I = E R + r. Данное итоговое значение будет являться электрической силой в данном устройстве. Произведя таким образом предварительный расчет, теперь можно определить КПД.

Расчет КПД электрической цепи Мощность, получаемая от источника тока, называется потребляемой, определение ее записывается – P1. Если эта физическая величина переходит от генератора в полную цепь, она считается полезной и записывается – Р2. Чтобы определить КПД цепи, необходимо вспомнить закон сохранения энергии.

В соответствии с ним, мощность приемника Р2 будет всегда меньше потребляемой мощности Р1. Это объясняется тем, что в процессе работы в приемнике всегда происходит неизбежная пустая трата преобразуемой энергии, которая расходуется на нагревание проводов, их оболочки, вихревых токов и т.д. Чтобы найти оценку свойств превращения энергии, необходим КПД, который будет равен отношению мощностей Р2 и Р1.

Итак, зная все значения показателей, составляющих электроцепи, находим ее полезную и полную работу: А полезная. = qU = IUt =I2Rt; А полная = qE = IEt = I2(R+r)t. В соответствии этих значений, найдем мощности источника тока: Р2 = А полезная /t = IU = I2 R; P1 = А полная /t = IE = I2 (R + r). Произведя все действия, получаем формулу КПД: n = А полезная / А полная = Р2 / P1 =U / E = R / (R +r). У этой формулы получается, что R выше бесконечности, а n выше 1, но при всем этом ток в цепи остается в низком положении, и его полезная мощность мала.

Каждый желает найти КПД повышенного значения. Для этого необходимо найти условия, при которых P2 будет максимален. Оптимальные значения будут: dP2 / dR = 0. Далее определить КПД можно формулами: P2 = I2 R = (E / R + r)2 R; dP2 / dR = (E2 (R + r)2 — 2 (r + R) E2 R) / (R + r)4 = 0; E2 ((R + r) -2R) = 0. В данном выражении Е и (R + r) не равны 0, следовательно, ему равно выражение в скобках, то есть (r = R). Тогда получается, что мощность имеет максимальное значение, а коэффициент полезного действия = 50 %. Как видно, найти коэффициент полезного действия электрической цепи можно самостоятельно, не прибегая к услугам специалиста. Главное –соблюдать последовательность в расчетах и не выходить за рамки приведенных формул.

Будет интересно➡ Что такое электролиз и где он применяется на практике

Примеры расчета КПД

Пример 1. Нужно рассчитать коэффициент для классического камина. Дано: удельная теплота сгорания березовых дров – 107Дж/кг, количество дров – 8 кг. После сгорания дров температура в комнате повысилась на 20 градусов. Удельная теплоемкость кубометра воздуха – 1,3 кДж/ кг*град. Общая кубатура комнаты – 75 кубометров.

Чтобы решить задачу, нужно найти частное или отношение двух величин. В числителе будет количество теплоты, которое получил воздух в комнате (1300Дж*75*20=1950 кДж ). В знаменателе – количество теплоты, выделенное дровами при горении (10000000Дж*8 =8*107 кДж). После подсчетов получаем, что энергоэффективность дровяного камина – около 2,5%. Действительно, современная теория об устройстве печей и каминов говорит, что классическая конструкция не является энергоэффективной. Это связано с тем, что труба напрямую выводит горячий воздух в атмосферу.

Для повышения эффективности устраивают дымоход с каналами, где воздух сначала отдает тепло кладке каналов, и лишь потом выходит наружу. Но справедливости ради, нужно отметить, что в процессе горения камина нагревается не только воздух, но и предметы в комнате, а часть тепла выходит наружу через элементы, плохо теплоизолированные – окна, двери и т.д.

Пример 2. Автомобиль проделал путь 100 км. Вес машины с пассажирами и багажом – 1400 кг. При этом было затрачено14 литров бензина. Найти: КПД двигателя.

Для решения задачи необходимо отношение работы по перемещению груза к количеству тепла, выделившемуся при сгорании топлива. Количество тепла также измеряется в Джоулях, поэтому не придется приводить к другим единицам. A будет равна произведению силы на путь( A=F*S=m*g*S). Сила равна произведению массы на ускорение свободного падения. Полезная работа = 1400 кг x 9,8м/с2 x 100000м=1,37*108 Дж

Удельная теплота сгорания бензина – 46 МДж/кг=46000 кДж/кг. Восемь литров бензина будем считать примерно равными 8 кг. Тепла выделилось 46*106*14=6.44*108 Дж. В результате получаем η ≈21%.

Часто задаваемые вопросы

Почему коэффициент полезного действия всегда меньше 100%?

КПД 100% означает, что вся энергия, затраченная на получение мощности двигателя, используется им в работе. В природе такого, в принципе, никогда не бывает, и поэтому КПД всех двигателей всегда меньше 100 процентов.

Как повысить коэффициент полезного действия механизма?

КПД механизмов можно увеличить, снижая трение в подвижных узлах и вес всех составных элементов конструкции. Для этого нужны новые смазочные вещества и лёгкие, но прочные конструкционные материалы.

Чему равен коэффициент полезного действия неподвижного блока?

Например, поднимая груз с помощью подвижного блока, приходится вместе с грузом поднимать и блок, а при этом необходимо совершать «дополнительную» работу. Отношение полезной работы Апол к совершенной Асов, выраженное в процентах, обозначают η и называют коэффициентом полезного действия (КПД): η = Апол/Асов · 100%.

Мощность разных устройств

По статистике, во время работы прибора теряется до 25% энергии. При функционировании двигателя внутреннего сгорания топливо сгорает частично. Небольшой процент вылетает в выхлопную трубу. При запуске бензиновый мотор греет себя и составные элементы. На потерю уходит до 35% от общей мощности.

При движении механизмов происходит трение. Для его ослабления используется смазка. Но она неспособна полностью устранить явление, поэтому затрачивается до 20% энергии. Пример на автомобиле: если расход составляет 10 литров топлива на 100 км, на движение потребуется 2 л, а остаток, равный 8 л — потеря.

Если сравнивать КПД бензинового и дизельного моторов, полезная мощность первого механизма равна 25%, а второго — 40%. Агрегаты схожи между собой, но у них разные виды смесеобразования:

Применение показателя в физике для цепи, в электродвигателе

  1. Поршни бензинового мотора функционируют на высоких температурах, поэтому нуждаются в хорошем охлаждении. Тепло, которое могло бы перейти в механическую энергию, тратится впустую, что способствует снижению КПД.
  2. В цепи дизельного устройства топливо воспламеняется в процессе сжатия. На основе данного фактора можно сделать вывод, что давление в цилиндрах высокое, при этом мотор экологичнее и меньше первого аналога. Если проверить КПД при низком функционировании и большом объёме, результат превысит 50%.

Асинхронные механизмы

Расшифровка термина «асинхронность» — несовпадение по времени. Понятие используется во многих современных машинах, которые являются электрическими и способны преобразовывать соответствующую энергию в механическую. Плюсы устройств:

  • простое изготовление;
  • низкая цена;
  • надёжность;
  • незначительные эксплуатационные затраты.

Чтобы рассчитать КПД, используется уравнение η = P2 / P1. Для расчёта Р1 и Р2 применяются общие данные потери энергии в обмотках мотора. У большинства агрегатов показатель находится в пределах 80−90%. Для быстрого расчёта используется онлайн-ресурс либо личный калькулятор. Для проверки возможного КПД у мотора внешнего сгорания, который функционирует от разных источников тепла, используется силовой агрегат Стирлинга. Он представлен в виде тепловой машины с рабочим телом в виде жидкости либо газа. Вещество движется по замкнутому объёму.

Принцип его функционирования основан на постепенном нагреве и охлаждении объекта за счёт извлечения энергии из давления. Подобный механизм применяется на косметическом аппарате и современной подводной лодке. Его работоспособность наблюдается при любой температуре. Он не нуждается в дополнительной системе для запуска. Его КПД возможно расширить до 70%, в отличие от стандартного мотора.

Значения показателя

Инженер Карно дал определение КПД

В 1824 году инженер Карно дал определение КПД идеального двигателя, когда коэффициент равен 100%. Для трактовки понятия была создана специальная машина со следующей формулой: η=(T1 — Т2)/ T1. Для расчёта максимального показателя применяется уравнение КПД макс = (T1-T2)/T1x100%. В двух примерах T1 указывает на температуру нагревателя, а T2 — температуру холодильника.

На практике для достижения 100% коэффициента потребуется приравнять температуру охладителя к нулю. Подобное явление невозможно, так как T1 выше температуры воздуха. Процедура повышения КПД источника тока либо силового агрегата считается важной технической задачей. Теоретически проблема решается путём снижения трения элементов двигателя и уменьшения теплопотери. В дизельном моторе подобное достигается турбонаддувом. В таком случае КПД возрастает до 50%.

Мощность стандартного двигателя увеличивается следующими способами:

  • подключение к системе многоцилиндрового агрегата;
  • применение специального топлива;
  • замена некоторых деталей;
  • перенос места сжигания бензина.

КПД зависит от типа и конструкции мотора. Современные учёные утверждают, что будущее за электродвигателями. На практике работа, которую совершает любое устройство, превышает полезную, так как определённая её часть выполняется против трения. Если используется подвижный блок, совершается дополнительная работа: поднимается блок с верёвкой, преодолеваются силы трения в блоке.

Это интересно

Наукой обосновано, что коэффициент полезного действия любого механизма всегда меньше единицы. Это связано со вторым началом термодинамики.

формула

Для сравнения, коэффициенты полезного действия различных устройств:

  • гидроэлектростанций 93-95%;
  • АЭС – не более 35%;
  • тепловых электростанций – 25-40%;
  • бензинового двигателя – около 20%;
  • дизельного двигателя – около 40%;
  • электрочайника – более 95%;
  • электромобиля – 88-95%.

Наука и инженерная мысль не стоит на месте. постоянно изобретаются способы, как уменьшить теплопотери, снизить трение между частями агрегата, повысить энергоэффективность техники.

Решение примеров

Задача 1. Поезд на скорости 54 км/ч развивает мощность 720 кВт. Нужно вычислить силу тяги силовых агрегатов. Решение: чтобы найти мощность, используется формула N=F x v. Если перевести скорость в единицу СИ, получится 15 м/с. Подставив данные в уравнение, определяется, что F равно 48 kН.

Задача 2. Масса транспортного средства соответствует 2200 кг. Машина, поднимаясь в гору под уклоном в 0,018, проходит расстояние 100 м. Скорость развивается до 32,4 км/ч, а коэффициент трения соответствует 0,04. Нужно определить среднюю мощность авто при движении. Решение: вычисляется средняя скорость — v/2. Чтобы определить силу тяги мотора, выполняется рисунок, на котором отображаются силы, воздействующие на машину:

  • тяжесть — mg;
  • реакция опоры — N;
  • трение — Ftr;
  • тяга — F.

Второй закон Ньютона

Первая величина вычисляется по второму закону Ньютона: mg+N+Ftr+F=ma. Для ускорения используется уравнение a=v2/2S. Если подставить последние значение и воспользоваться cos, получится средняя мощность. Так как ускорение считается постоянной величиной и равно 9,8 м/с2, поэтому v= 9 м/с. Подставив данные в первую формулу, получится: N= 9,5 kBt.

При решении сложных задач по физике рекомендуется проверить соответствие предоставленных в условиях единиц измерения с международными стандартами. Если они отличаются, необходимости перевести данные с учётом СИ.

Расчет расхода отдельных видов топлива

Рассчитаем требуемое количество топлива для здания площадью 250 м2, с высотой потолков 3 м, то есть V=750 м3.

Для России отопительный сезон реально длится не менее 250 дней. За это время газовые котлы и котлы на жидком топливе работают примерно 6 часов в сутки, то есть всего 250×6=1500 ч. Для этих котлов воспользуемся формулой (1), считаем, что γ=0,02 кВт·ч/м3.

  • газовый котел обычный;

Часовой расход равен:

Sг=(750·0,02/(9,45×0,9)=1,764 м3, что за 1500 часов работы составит 2645 м3.

Для газового конденсационного котла объем потребленного газа составит 2480 м3.

  • котел на дизельном топливе;

Часовой расход равен:

Sдт кг=(750·0,02/(11,7×0,85)=1,51 кг, что за 1500 часов работы составит 2262 кг.

Расход дизельного топлива в литрах будет равен:

Sдт л=(750·0,02/(9,33×0,85)=1,89 л, что за 1500 часов работы составит 2837 л.

Для котлов на твердом топливе такой режим работы не подходит. Эти котлы работают непрерывно, только для пиролизных котлов необходимо учитывать перерывы на закладку новой порции дров.

  • обычный котел на дровах;

Работая непрерывно в течение всего отопительного сезона, то есть время работы (в часах) за отопительный сезон составит 250×24=6000 ч. По формуле (1) имеем:

Sдр=(750·0,02/(2,78×0,7)=7,7 кг, что за 6000 ч работы составит 46.2 т.

  • пиролизный котел на дровах.

Обычный пиролизный котел имеет камеру сгорания, объем которой равен 0,1 м3. Требуемый часовой расход дров составит:

Sдр пир=(750·0,02/(4×0,9)=4,17 кг.

Чтобы определить расход за отопительный сезон, необходимо рассчитать время работы котла на одной закладке дров. В камеру объемом в 0,1 м3 войдет примерно 20 кг дров. То есть одной загрузки достаточно на 5 ч работы. Если время на загрузку равно 30 мин, то в течение суток необходимо выполнить 4 загрузки по 20 кг каждая, всего 80 кг в сутки. За отопительный сезон это составит 20 т. То есть пиролизный котел более чем в два раза эффективнее обычного.

Теперь, зная стоимость каждого вида топлива, легко сориентироваться, каким топливом выгодно пользоваться в районе проживания.

Понравилась статья? Поделить с друзьями:
  • Как же хочется найти опору
  • Как составить библиографическое описание на журнал
  • Как исправить ошибку загрузки на андроид
  • Как найти медианное число
  • Как найти клона человека