Как найти красивое число

Красота чисел. Антипростые числа

Время на прочтение
4 мин

Количество просмотров 31K

У числа 60 двенадцать делителей: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60

Все знают об удивительных свойствах простых чисел, которые делятся только на самих себя и на единицу. Эти числа исключительно полезны. Относительно большие простые числа (примерно от 10300) используются в криптографии с открытых ключом, в хеш-таблицах, для генерации псевдослучайных чисел и т.д. Кроме огромной пользы для человеческой цивилизации, эти особенные числа поразительно красивы:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199…

Все остальные натуральные числа больше единицы, которые не являются простыми, называются составными. У них несколько делителей. Так вот, среди составных чисел выделяется особая группа чисел, которые можно назвать «суперсоставными» или «антипростыми», потому что у них особенно много делителей. Такие числа почти всегда являются избыточными (кроме 2 и 4).

Избыточными называются положительное целое число N, у которого сумма собственных делителей (кроме N) превышает N.

Например, у числа 12 сразу шесть делителей: 1, 2, 3, 4, 6, 12.

Это избыточное число, потому что

1 + 2 + 3 + 4 + 6 = 16 (16 > 12)

Неудивительно, что именно число 12 используется в огромном количестве практических областей, начиная с религии: 12 богов в греческом пантеоне и столько же в пантеоне скандинавских богов, не считая Одина, 12 учеников Христа, 12 ступеней колеса буддистской сансары, 12 имамов в исламе и т.д. Двенадцатиричная система счисления — одна из самых удобных на практике, поэтому её используют в календаре, чтобы разделить год на 12 месяцев и 4 времени года, а также чтобы разделить день и ночь на 12 часов. Сутки составляют 2 круга часовой стрелки по кругу, разделённому на 12 отрезков; кстати, количество в 60 минут тоже выбрано неспроста — это ещё одно антипростое число с большим количеством делителей.

Удобная двенадцатиричная система используется в нескольких денежных системах, в том числе в древнерусских княжествах (12 полушек = 1 алтын = 2 рязанки = 3 новгородки = 4 тверских деньги = 6 московок). Как видим, большое количество делителей является критически важным качеством в условиях, когда монеты из разных систем нужно свести к одному номиналу.

Большие избыточные числа полезны в других областях. К примеру, возьмём число 5040. Это в каком-то смысле уникальное число, вот первые из списка его делителей:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10…

То есть число 5040 делится на все простые числа от 1 до 10. Другими словами, если мы возьмём группу из 5040 людей или предметов, то мы можем поделить её на 2, 3, 4, 5, 6, 7, 8, 9 или 10 равных групп. Это просто великолепное число. Вот полный список делителей 5040:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040

Чёрт побери, да мы можем поделить это число практически на что угодно. У него 60 делителей!

5040 — идеальное число для урбанистики, политики, социологии и т.д. На это обратил внимание ещё афинский мыслитель Платон 2300 лет назад. В своём фундаментальном труде «Законы» Платон писал, что в идеальной аристократической республике должно быть 5040 граждан, потому что такое количество граждан можно разделить на любое количество равных групп до десяти, без исключения. Соответственно, в такой системе удобно планировать управленческую и представительскую иерархию.

Конечно, это идеализм и утопия, но использование числа 5040 в самом деле исключительно удобно. Если в городе 5040 жителей, то его удобно делить на равные районы, планировать определённое количество объектов обслуживания для равного количества граждан, выбирать представительные органы на голосовании.

Такие высокосоставные, крайне избыточные числа и называются «антипростыми». Если мы хотим дать чёткое определение, то можно сказать, что антипростое число — такое положительное целое число, у которого больше делителей, чем у любого целого числа меньше его.

По такому определению, самым маленьким антипростым числом кроме единицы будет 2 (два делителя), 4 (три делителя). Далее следуют:

6 (четыре делителя), 12 (шесть делителей), 24, 36, 48, 60 (количество минут в часе), 120, 180, 240, 360 (количество градусов в круге), 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400

Именно эти числа удобно использовать в настольных играх с картами, фишками, деньгами и т.д. Например, они позволяют раздавать одинаковое количество карт, фишек, денег на разное количество игроков. По этой же причине их удобно использовать для составления классов школьников или студентов — например, чтобы разделить их на равное количество одинаковых групп для выполнения заданий. Для количества игроков в спортивной команде. Для количества команд в лиге. Для количество жителей в городе (о чём уже говорилось выше). Для административных единиц в городе, области, стране.

Как видно из примеров, многие из антипростых чисел уже де-факто используется в практических устройствах и системах счисления. Например, числа 60 и 360. Это было довольно предсказуемо, учитывая удобство наличия большого количества делителей.

О красоте антипростых чисел можно спорить. Если простые числа неоспоримо красивы, то антипростые числа, возможно, кому-то покажутся отвратительными. Но это поверхностное впечатление. Давайте посмотрим на них с другой стороны. Ведь фундаментом этих чисел являются простые числа. Именно из простых чисел, словно из строительных блоков, составлены составные числа, избыточные числа и венец творения — антипростые числа.

Основная теорема арифметики утверждает, что любое составное число можно представить как произведение нескольких простых множителей. Например,

30 = 2 × 3 × 5
550 = 2 × 52 × 11,

При этом составное число не будет делиться больше ни на какое другое простое число, кроме своих простых множителей. Антипростые числа по определению отличаются максимальным произведением степеней простых множителей, из которых они состоят.

5040 = 24 × 32 × 5 × 7

При этом их простые множители — это всегда последовательные простые числа. И степени в ряду простых множителей никогда не увеличиваются.

Так что в антипростых числах тоже есть своя особая красота.

Условие задачи:

Красивое число — это число, состоящее из уникальных цифр. Например, 222, 8, 5555 —
красивые числа, а 34, 5505 и 12345 — нет.
Ваша задача по данным двум целым числам l и r найти количество красивых чисел в
интервале [l..r].
Входные данные
В единственной строке даны два целых числа l и r
Выходные данные
Выведите одно целое число — ответ на задачу

Помогите откорректировать код или при нужде поменять его полностью!! Спасибо большое заранее!!!
Мой код:

l, r = input('Введите диапозон чисел например 42 100, т.е. 42-100: ').split(' ')

l = int(l)
r = int(r)
count = 0

for i in range(l, r):
  i = str(i)
  amount_of_words = len(i)
  for k in range(0, amount_of_words):
    if i[k] == i[k+1]:
      

print(count)

задан 25 окт 2022 в 7:36

Санжар Турсунов's user avatar

7

Нужно из числа сделать строку, ведь её легче будет проверить, и твой код тоже имеет хоть какое-то значение, в твой код я чуть-чуть добавил поправок, и вот что вышло

l, r = input().split(' ')
l = int(l)
r = int(r)

count = 0

for i in range(l, r, 1): # step не обязательно, просто я уже к нему привык
  i = str(i)
  if i.count(i[0]) == len(i):
    count += 1
  else:
    continue

print(count)

То есть мы проверяем, если количество первого знака строки совпадает с его длиной, то это и есть красивое число, иначе мы его пропускаем, если мы не напишем

  else:
    continue

То будет выдаваться ошибка (SyntaxError)

ответ дан 25 окт 2022 в 13:29

Амир Ризаев's user avatar

1

алгоритм простой — как я понял вам надо определить, что число состоит из одних и тех же цифр?

есть несколько способов решения:

в этом случае с числом лучше всего работать как со строкой

вариант 1:

проверяйте сколько раз в строке встречается первый символ — для этого есть метод .count()

вариант 2:

можно посмотреть какие вообще уникальные символы (по сути цифры) есть в строке — для этого есть объект «множество» (set) — переведите строку в множество

ну а если работать с числом — то можно получить цифры числа по следующему алгоритму

вариант 1:

пока число не будет равно 0:

  • определяем остаток от деления числа на 10 (через %)
  • делим нацело число на 10 (через //)

ответ дан 25 окт 2022 в 10:55

Zhihar's user avatar

ZhiharZhihar

36.9k4 золотых знака25 серебряных знаков67 бронзовых знаков

В общих чертах так: можно задать целочисленную маску вида 111 (единицы, не путать с переменной l) со стартовым количеством разрядов как у l (начального числа), потом в цикле умножать маску на числа от 1 до 9 — это и будут красивые числа (умножать маску на 0 нужно только в одном случае — если стартовое число == 0). После достижения 9 нарастить маску на один разряд — и снова умножать маску на числа от 1 до 9 — и так до тех пор, пока красивое число не превосходит r. Считать только те КЧ, которые не менее l (начального числа).
При таком подходе перебирать числа и проверять цифры в них не придётся, они сразу генерируются «красивыми», нужно только проверять границы.

Разница в производительности на больших числах будет существенной:

  • чтобы с помощью for i in range(l, r): найти следующее красивое число после, например, 11111, нужно будет перебрать более 11 тысяч чисел (22222-11111).
  • по данному алгоритму следующее подходящее красивое число формируется за две операции: умножение (11111*2 = 22222) плюс проверка на предмет нахождения числа внутри установленных границ.
left, right = 213, 1234
mask = int('1' * len(str(left)))  # маска вида 111, которая при умножении на число 0..9 дает "красивое число"

counter, num = 0, 0
while num <= right:
    for d in range(0 if num == 0 else 1,10):  # начинаем с нуля только первый цикл
        num = mask * d
        if left <= num <= right:
            counter += 1
            print(num)
    mask = mask * 10 + 1

print(f'`Красивых чисел` в диапазоне [{left} ... {right}]: {counter}')
222
333
444
555
666
777
888
999
1111
`Красивых чисел` в диапазоне [213 ... 1234]: 9

ответ дан 25 окт 2022 в 11:48

Алексей Р's user avatar

Алексей РАлексей Р

7,1422 золотых знака4 серебряных знака17 бронзовых знаков

Самое большое простое число

Самого большого простого числа не существует. Достаточно интригующе?
Представьте, что вы любите мороженое. Родители приносят вам советский пломбир и говорят: «Это самое вкусное мороженое в мире». Вы становитесь взрослее и пробуете новые вкусы, и тот пломбир больше не кажется вам самым лучшим, находятся новые пристрастия – клубничное, шоколадное, с карамельной капелькой в нижней части рожка… В поиске идеального мороженого самое главное – не прекращать искать. Ряд больших простых чисел, судя по тому, что науке известно сейчас, можно продолжать бесконечно, а значит, мир будет бесконечно искать самое большое простое число.

Вообще, какое число называют простым? Целое положительное, имеющее только два натуральных делителя – единицу и само себя. То есть число 6, например, которое делится на 1, 2, 3 и 6, простым числом не является, оно относится к разряду составных. Всем нужным характеристикам соответствуют цифры 5 или 3. Делители пятерки – только она сама и единица. Простота числа как раз и определяется перебором делителей. С двузначными это довольно легко, а вот с трехзначными уже начинаются проблемы. Самое большое простое число, известное миру сейчас, длиннее девяти романов «Война и мир». Вручную к нему делитель точно не подобрать, но зато с этим справятся компьютеры, которые могут провести сложнейшие вычисления за нас. Последнее известное нам самое большое простое число обнаружил 7 декабря 2018 года компьютер Патрика Лароша (Patrick Larochelle). Число, которому дали «имя» M82589933, содержит 24 862 048 цифр в составе, и это самое большое простое число, пока не найдут побольше. Но поисковые отряды явно не собираются останавливаться!

Простые числа используются в математике, в информационных технологиях и в криптографии. Криптографическая система с открытым ключом основана на использовании больших простых чисел. Представьте, что два шпиона не договариваются о шифре и дешифровщике, чтобы не поставить под угрозу операцию. Они поступают умнее. Тот, кто отправляет шифр, выбирает два числа, рассчитывает их произведение и сообщает его напрямую. Второй шпион шифрует свою информацию при помощи произведения и отправляет ее напарнику. Тот, кто их переписку перехватит, не сможет определить начальные числа, они известны только первому шпиону. Компьютер, для которого любезно напишут алгоритм, с задачей может справиться, но что если мы сделаем цифры настолько масштабными, что само их написание у компьютера займет много дней? Разумеется, данные шпионов будут вне опасности, а для дешифровки задействуют суперкомпьютер. Грубо говоря, единственное, что стоит между хакером и номером вашей кредитки, – это сложность числа.

Поиском подобных чисел занимается программа Great Internet Mersenne Prime Search. Это крупный вычислительный проект, в котором программное обеспечение запускают добровольцы. Самый подходящий аналог в данном случае – проект SETI, занимающийся поисками признаков внеземной жизни. Найти самое большое простое число – примерно то же самое, что найти инопланетянина. Только в GIMPS открытия случаются все же чаще, чем контакты с пришельцами. За все время своего существования GIMPS обнаружил 15 самых больших простых чисел. Но проект ищет не только большие простые числа. GIMPS ищет числа Мерсенна.

Числа Мерсенна

Математики буквально охотятся за простыми числами Мерсенна. Эта погоня не слишком отличается от поисков самого большого простого числа, но в случае с числами Мерсенна она уточнена формулой Mn = 2n – 1, где n – другое простое число. Подставим конкретные числа и получим М2
= 22 – 1 = 3. Эта формула – лакмусовая бумажка для простых и составных чисел. Если n – составное, то и M будет составным. И M будет простым, только если n – простое. Самое большое простое число M82589933 вычисляется путем умножения 82 589 933 двоек, а затем вычитания одного. Это 51-е известное число Мерсенна.

Простые числа Мерсенна назвали в честь французского монаха Марена Мерсенна, который изучал их в XVII веке и посвятил жизнь поиску уникальных и интересных чисел. Такие забавы всегда захватывали математиков и захватывают до сих пор. В 1648 году Мерсенн выпустил трактат Cogitata Physica-Mathematica, в котором с помощью своей формулы Мр
= 2p – 1 вывел, что двойка в степенях 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 даст в конце простое число, а все остальные будут составными. В XVII веке никто не потребовал от него весомых доказательств, и теорема быстро стала популярной. Оказалось, что требованиям простоты в уравнении Мерсенна отвечают далеко не все цифры. Математики начали искать подходящие.

Марен Мерсенн

Great Internet Mersenne Prime Search, о котором сказано выше, был создан в январе 1996 года математиком Джорджем Вольтманом (George Woltman) для открытия новых простых чисел Мерсенна. Большинство членов GIMPS присоединились к поиску не ради развития криптографии или математики, а чтобы почувствовать сопричастность к рекордам. Программист Патрик Ларош, обнаруживший самое большое на данный момент простое число, использовал программное обеспечение GIMPS, чтобы бесплатно протестировать мощность компьютеров, сборкой которых он увлекается. Через четыре месяца и всего с четвертой попытки он обнаружил самое большое простое число. Для сравнения, некоторые ищут уже 20 лет и предприняли тысячи попыток. Доказательство простоты числа Лароша заняло 12 дней безостановочных вычислений на машине с процессором Intel i5-4590T. Чтобы доказать отсутствие ошибок в основном процессе обнаружения, новое простое число было независимо проверено с использованием трех разных программ на трех разных аппаратных конфигурациях. Возможно, пока вы читаете эту статью, компьютер в другой части света находит новое число Мерсенна, а может – и самое большое простое число тоже.


Количество атомов во Вселенной оценивается в число не больше чем с сотней знаков.

Число Шелдона Купера

В 73-й серии ситкома «Теория Большого взрыва» физик-теоретик Шелдон Купер рассказывает друзьям о необычных свойствах числа 73. Во-первых, 73 – 21-е простое число. Его зеркальное отражение 37 является 12-м простым числом, а его отражение 21 – это результат умножения 7 и 3. Во-вторых, в двоичной системе 73 – палиндром 1001001, то есть справа налево читается одинаково.

Шелдон и самое замечательное число 73. The Big Bang Theory / CBS

Убежденность Шелдона в уникальных свойствах числа 73 оставалась просто выдумкой создателей сериала, пока математики Крис Спайсер (Chris Spicer) из Морнингсайд колледжа и Карл Померанс (Carl Pomerance) из Университета Джорджии не решили проверить его характеристики. Они доказали, что 73 – единственное число, обладающее свойствами зеркальности (mirror) и произведения (product). Простое число они обозначили как p(n), а его зеркало – как m(x). Эти обозначения нужны не для того, чтобы всех запутать, а чтобы выводить формулы и подставлять в них числа, потому что Спайсер и Померанс воспользовались методом от противного. Математики не могли навскидку прикинуть контрпримеры: если аналоги числа Шелдона и существуют, лежат они далеко за пределами вычислений, которые можно сделать вручную. В первую очередь ученые доказали, что число Шелдона не превосходит 1045, а вслед за этим утверждением вывели еще парочку ограничений. Например, пришли к тому, что простое число n будет 7-гладким числом, то есть его простые делители не больше 7; первая цифра числа p(m(n))
совпадут с числом цифр p(n); n не будет делиться на 625; если p(n) будет больше 1019, то n не удастся разделить на 125; и, наконец, что n не делится на 100. Десятичная запись числа p(n), как выяснили исследователи, не будет содержать нуля, а единица может стоять только в самом его начале; первая цифра p(m(n))
.

В теории чисел гладким называют целое число, все простые делители которого малы. Поскольку условие «делители малы» можно понимать по-разному, чаще всего гладким числом называют такое, чьи простые делители не превосходят 10 (то есть, по сути, равны 2, 3, 5 или 7).

Ученые проверили все эти свойства для возможных кандидатов в диапазоне между 1019 и 1045. Среди простых чисел они обнаружили примерно 1865251, имеющее 7-гладкий номер. Исключив все, делителем к которым может быть 100 или 125, Спайсер и Померанс оставили только 213449 вариантов. Из них начинались на 1, 3, 7 и 9 лишь 112344 кандидата. Всего лишь сто тысяч числовых значений! Делов-то – еще на пару проверок. После всех фильтраций у математиков осталась фантастическая пятерка претендентов – 97496326163, 97841660857, 99024780191, 316109730941 и 785009387557. Первому числу в десятичной системе не хватало единицы на начальной позиции, а все остальные содержали ноль.

Профессор математики Карл Померанс объясняет, почему число 73 – самое уникальное среди простых чисел Фото: Eli Burakian www.phys.org

Доказательством от противного – как в школе, но только с формулами, явно превосходящими по сложности школьный уровень, – Спайсер и Померанс вычислили, что 78 – это единственное число со свойствами, обозначенными Шелдоном Купером. Они назвали его «числом Шелдона Купера» и успокоились. Практического значения эта находка не имеет. Но, вопреки распространенному мнению о рационализме ученых математического профиля, очень многие вещи они делают просто потому, что это красиво. Число Шелдона Купера – красивое.

Число Пи

Понять, что такое число Пи, довольно легко – примерно как посчитать до одного, двух, 3,1415926535… Математик Уильям Шааф (William L. Schaaf) в книге «Природа и история числа Пи» говорит, что ни один символ в математике не вызывал столько загадок, романтизма, заблуждений и интереса, как число Пи. π – это 16-я буква греческого алфавита, и она используется для представления наиболее широко известной математической константы. По определению число Пи – это отношение длины окружности к ее диаметру. Иными словами, если разделить окружность (c) на диаметр (d), то мы получим заветное Пи. Формула такая: π = c/d. Казалось бы, ничего сложного или романтичного. Но одна загадка все же найдется. Число Пи – это математическая постоянная. Независимо от того, насколько большой или маленький круг мы рассматриваем, Пи всегда будет одинаковым. Можем взять планету, а можем кружку, из которой вы пьете чай на работе. Кое-что у них будет общим, и это – Пи.

Уже в Древнем Египте площадь круга вычисляли по формуле, дающей приблизительное значение 3,1605. Существует также библейский стих, в котором, кажется, речь идет о числе Пи: Хирам сделал Море – литое, круглое; в десять локтей от края до края; высота его – пять локтей; окружность, если померить шнурком, – тридцать локтей (Царств 7:23, современный перевод RBO-2015).

Пи – иррациональное число, а это значит, что для него не подойдет простая дробь. Математики называют Пи «бесконечным десятичным числом» – после запятой (или десятичной точки) цифры продолжаются вечно. Одним из первых расчет Пи выполнил Архимед Сиракузский. Математик аппроксимировал площадь круга на основе площади правильного многоугольника, вписанного в круг, и площади многоугольника, внутри которого была помещена окружность. У Архимеда получилась верхняя и нижняя граница для площади круга, и он нашел приблизительное значение для числа Пи – между 3 1/7 и 3 10/71. Хотя точного значения числа Пи нет до сих пор, профессиональные математики и любители пытаются вычислить его до максимально возможного числа. Рекорд 2019 года принадлежит сотруднице компании Google, вычислившей с помощью написанного алгоритма число с точностью до 31,4 трлн знаков после запятой.

Международный день числа Пи отмечается 14 марта в 1:59:26. Эту дату предложил физик Ларри Шоу (Larry Shaw). Он заметил, что именно 14 марта – если записывать в американской системе месяц/день – в 1:59:26 цифровой ряд совпадает с числом π = 3,1415926… Европейцы, пользующиеся 12-часовой системой, отмечают праздник днем, в России настаивают на его «ночном» формате. В этот день любители числа Пи со всего мира традиционно соревнуются в его повторении. Запомнить такого гиганта сложно. Мировой рекорд Гиннесса по чтению большинства цифр числа Пи принадлежит Раджвиру Минау из Индии. В 2015 году он с завязанными глазами прочел число Пи с точностью до 70 тыс. знаков после запятой! Попробуйте запомнить тоже. Первые сто цифр числа Пи: 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 7067… На сайте piday.org число Пи указано в первом миллионе цифр.

Физик Ларри Шоу. www.pi314.net

Число Эйлера

У числа Эйлера тоже есть своя буква, как и у Пи, их вообще довольно часто сравнивают. e, число Эйлера – тоже константа, и равна она 2,7182818284590… е – основание натурального логарифма, уже одно это подсказывает, что, в отличие от Пи, число Эйлера используют не в геометрии, а в алгебре. Самым известным примером того, как работает число Эйлера, обычно служит мыслительный эксперимент швейцарского математика Якоба Бернулли о процентном доходе. Он обнаружил, что если процентный доход по вложенному в банк капиталу (1 единица) начисляется один раз в конце года, то итоговая сумма будет равна двум единицам. Но если те же проценты будут начислять два раза в год, то получать по итогу вы будете 2,25 рубля. А если каждый месяц, то ≈2,4414. Бернулли решил посчитать, что будет, если начисление процентов бесконечно увеличивать, и обнаружил, что у этого числа есть предел. И этот предел как раз равен ≈2,7182818. Но этот иррациональный показатель назвали не числом Бернулли, а числом Эйлера. Дело в том, что именно Леонард Эйлер ввел величину в обиход и рассчитал целых 23 знака после запятой. По тем временам нешуточное достижение, он-то делал все вручную, безо всяких суперкомпьютеров. е используют для того, чтобы считать интегралы и исследовать функции.

Чтобы запомнить длинный ряд e, используют забавное правило: «два, семерка и два раза Лев Толстой». Автор «Войны и мира» родился в 1828 году.

В честь самого большого простого числа называется российская группа СБПЧ. «Теория Большого взрыва» помогла доказать уникальность 73, а числа Мерсенна ищут энтузиасты по всему миру. Иногда не обязательно искать числа силы или высчитывать черты характера по дате рождения. Тайны и загадки могут скрываться в реальной математике, нужно лишь почаще к ней обращаться.


This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters

Show hidden characters

(Время: 1 сек. Память: 16 Мб Сложность: 26%)
Будем называть число красивым, если сумма его цифр в десятичной системе счисления делится на количество цифр в нем (в десятичной системе счисления).
Необходимо найти N-ое в порядке возрастания красивое число.
Входные данные
Входной файл INPUT.TXT содержит целое число N. (1 ≤ N ≤ 100 000)
Выходные данные
В выходной файл OUTPUT.TXT выведите ответ на задачу.
def polindrom(s):
s = list(s)
for i in range(len(s)):
s[i] = int(s[i])
s_n = sum(list(s))
if s_n % len(s) == 0:
return False
else:
return True
def main():
input_file = open(«input.txt», «r»)
output_file = open(«output.txt», «w»)
line = input_file.readline().split()
n = int(line[0])
a = []
i = 1
while len(a) < n:
if i >= 10:
s = str(i)
if polindrom(s) == False:
a.append(i)
if i < 10:
a.append(i)
i += 1
ans = a[-1]
print(a)
print(len(a))
print(ans)
output_file.write(str(ans) + ‘n’)
if __name__ == «__main__»:
main()

Студворк — интернет-сервис помощи студентам

Маша рассказала Толе, что считает трехзначное число красивым, если в нём полусумма максимальной и минимальной по значению цифр равна оставшейся цифре числа. Помогите Толе впечатлить Машу – написать программу, которая будет определять красивые числа. Выведите для красивого числа фразу «Вы ввели красивое число», а для остальных — «Жаль, вы ввели обычное число».

Формат ввода
Строка, содержащая трехзначное число.

Формат вывода
Вердикт программы-строка.

Пример 1
Ввод
135
Вывод
Вы ввели красивое число
Пример 2
Ввод
468
Вывод
Вы ввели красивое число
Пример 3
Ввод
884
Вывод
Жаль, вы ввели обычное число

Понравилась статья? Поделить с друзьями:
  • Как можно найти наушники через айфон
  • Как найти скважину с водой на участке
  • Как составить рассказ по истории 5 класс вигасин
  • Как исправить панель языка
  • Как найти проекцию вектора скорости формула