Как найти критические точки для функции

Содержание:

  1. Критические точки и экстремумы функции
  2. Теорема Ферма (Необходимое условие существовании экстремумов)
  3. Достаточное условие существования экстремума
  4. Задача пример №117
  5. Задача пример №118
  6. Задача пример №119
  7. Задача пример №120
  8. Задача пример №121

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

1. Для значений Критические точки и экстремумы функции равных Критические точки и экстремумы функцииКритические точки и экстремумы функции угловой коэффициент касательной к графику равен 0. Т.e. Критические точки и экстремумы функции. Эти точки являются критическими точками функции.

2. В точках Критические точки и экстремумы функции функция не имеет производной. Эти тоже критические точки функции.

Критические точки и экстремумы функции

3. Для рассматриваемой нами функции критические точки Критические точки и экстремумы функцииКритические точки и экстремумы функции делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Критические точки и экстремумы функции— критические точки, которые не изменяют возрастание и убывание (или наоборот).

По графику видно, что в точках внутреннего экстремума Критические точки и экстремумы функции производная функции равна нулю, а в точке Критические точки и экстремумы функции производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Критические точки и экстремумы функции

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Критические точки и экстремумы функции производная функции Критические точки и экстремумы функции равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т.е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Достаточное условие существования экстремума

Пусть функция Критические точки и экстремумы функции непрерывна на промежутке Критические точки и экстремумы функции и Критические точки и экстремумы функции. Если Критические точки и экстремумы функции является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

1 ) Критические точки и экстремумы функции слева от точки Критические точки и экстремумы функции положительна, а справа — отрицательна, то точка Критические точки и экстремумы функции является точкой максимума.

2) Критические точки и экстремумы функции слева от Критические точки и экстремумы функции отрицательна, а справа — положительна, то точка Критические точки и экстремумы функции является точкой минимума

3) Критические точки и экстремумы функции с каждой стороны от точки Критические точки и экстремумы функции имеет одинаковые знаки, то точка Критические точки и экстремумы функции не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Критические точки и экстремумы функции на отрезке Критические точки и экстремумы функции записываются как Критические точки и экстремумы функции и Критические точки и экстремумы функции.

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Критические точки и экстремумы функции

Задача пример №117

Для функции Критические точки и экстремумы функции определите максимумы и минимумы и схематично изобразите график.

Решение:

Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки функции: Критические точки и экстремумы функции

3. Точки Критические точки и экстремумы функции и Критические точки и экстремумы функции разбивают область определения функции на три промежутка.

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки:

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание и убывание Критические точки и экстремумы функции

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции. (-1;3) — максимум

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции (1;-1) — минимум

4. Используя полученные для функции Критические точки и экстремумы функции данные и найдя координаты нескольких дополнительных точек, построим график функции.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Задача пример №118

Найдите наибольшее и наименьшее значение функции Критические точки и экстремумы функции на отрезке [-1;2].

Решение:

Сначала найдем критические точки. Так как Критические точки и экстремумы функции, то критические точки можно найти из уравнения Критические точки и экстремумы функции. Критическая точка Критические точки и экстремумы функции не принадлежит данному отрезку [-1; 2], и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Критические точки и экстремумы функции и на концах отрезка.

Критические точки и экстремумы функции

Из этих значений наименьшее — 4, наибольшее 12. Таким образом: Критические точки и экстремумы функции

Задача пример №119

Найдите экстремумы функции Критические точки и экстремумы функции.

Решение:

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки: Критические точки и экстремумы функции, Критические точки и экстремумы функции

3. Интервалы, на которые критические точки делят область определения функции: Критические точки и экстремумы функции

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки.

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Для промежутка (0; 1,5) возьмем Критические точки и экстремумы функции

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции

Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание-убывание Критические точки и экстремумы функции

Используя полученную для функции Критические точки и экстремумы функции информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Критические точки и экстремумы функции и Критические точки и экстремумы функции касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Критические точки и экстремумы функции Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

• Точка Критические точки и экстремумы функции критическая точка функции Критические точки и экстремумы функции, но не является экстремумом.

• Функция Критические точки и экстремумы функции на промежутке [0; 1,5] возрастает.

• Функция Критические точки и экстремумы функциина промежутке Критические точки и экстремумы функции убывает.

Критические точки и экстремумы функции

Задача пример №120

Найдите экстремумы функции Критические точки и экстремумы функции

Решение:

1. Производная Критические точки и экстремумы функции

2. Критические точки: для этого надо решить уравнение Критические точки и экстремумы функции или найти точки, в которых производная не существует. В точке Критические точки и экстремумы функции функция не имеет конечной производной. Однако точка Критические точки и экстремумы функции принадлежит области определения. Значит, точка Критические точки и экстремумы функции является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Критические точки и экстремумы функции и Критические точки и экстремумы функции

Определим знак Критические точки и экстремумы функции, выбрав пробные точки для каждого промежутка:

Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции

Возрастание-убывание Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции убывает.

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

Критические точки и экстремумы функции

Задача пример №121

По графику функции производной Критические точки и экстремумы функции схематично изобразите график самой функции.

Критические точки и экстремумы функции

Решение:

Производная Критические точки и экстремумы функции в точке Критические точки и экстремумы функции равна нулю, а при Критические точки и экстремумы функции отрицательна, значит, на интервале Критические точки и экстремумы функции функция убывающая. При Критические точки и экстремумы функции производная положительна, а это говорит о том, что функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает. Точкой перехода от возрастания к убыванию функции является точка Критические точки и экстремумы функции. Соответствующий график представлен на рисунке.

Критические точки и экстремумы функции

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Другие темы которые вам помогут понять математику:

  • Объемы подобных фигур
  • Нахождение промежутков возрастания и убывания функции
  • Построение графиков функции с помощью производной
  • Задачи на экстремумы. Оптимизации

Лекции:

  • Экстремумы функции двух переменных. Производная по направлению
  • Доказательство неравенств
  • Системы уравнений
  • Максимальные и минимальные значения функции
  • Действия с корнями
  • Отрицательное биномиальное распределение
  • Длина дуги кривой
  • Вычислить несобственный интеграл
  • Градиент функции: пример решения
  • Интеграл натурального логарифма

Исследовать функцию — это значит установить её свойства: указать её область определения и область значений; промежутки возрастания и убывания; промежутки, на которых функция приобретает положительные значения, на которых — отрицательные; выяснить, не является ли данная функция чётной или нечётной и т. д.

Содержание:

Что такое исследование функции

Одна из важных задач исследования функции — определение промежутков её возрастания и убывания. Как отмечалось, в тех точках, в которых функция возрастает, её производная (угловой коэффициент касательной) положительная, а в точках убывания функции её производная отрицательная {рис. 70).

Применение производной к исследованию функции с примерами решения

Правильными будут следующие утверждения.

  • Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке возрастает.
  • Если производная в каждой точке промежутка отрицательная, то функция на этом промежутке убывает.
  • Если производная в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.

Строгое доказательство этого утверждения достаточно громоздкое, поэтому мы его не приводим. Заметим только, что в нём выражается достаточный признак возрастания или убывания функции, но не необходимый. Поэтому функция может возрастать и на промежутке, в некоторых точках которого она не имеет производной. Например, функция Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Из сказанного следует, что два соседних промежутка, на одном из которых функция возрастает, а на другом — убывает, могут разделяться только такой точкой, в которой производная функции равна нулю или не существует.

Внутренние точки области определения функции, в которых её производная равна нулю или не существует, называют критическими точками функции.

Следовательно, чтобы определить промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения нужно решить неравенства Применение производной к исследованию функции с примерами решения или найти все критические точки функции,разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких — убывает.    

Пример:

Найдите промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения

Уравнение Применение производной к исследованию функции с примерами решения имеет корни Применение производной к исследованию функции с примерами решения Это — критические точки. Область определения данной функции — множество Применение производной к исследованию функции с примерами решения — они разбивают на три промежутка: Применение производной к исследованию функции с примерами решения (рис. 72). Производная функции на этих промежутках имеет соответственно такие знаки: Применение производной к исследованию функции с примерами решения Следовательно, данная функция на промежутках Применение производной к исследованию функции с примерами решения возрастает, а на Применение производной к исследованию функции с примерами решения убывает.

Замечание: Если функция непрерывна в каком-нибудь конце промежутка возрастания или убывания, то эту точку можно присоединить к рассматриваемому промежутку. Поскольку функция Применение производной к исследованию функции с примерами решения в точках 0 и 2 непрерывна, то можно утверждать, что она возрастает на промежутках  Применение производной к исследованию функции с примерами решения на Применение производной к исследованию функции с примерами решения — убывает.

Пример:

Найдите промежутки убывания функции Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Критические точки: Применение производной к исследованию функции с примерами решения Они всю область определения функции разбивают на интервалы: Применение производной к исследованию функции с примерами решения (рис. 73). Производная Применение производной к исследованию функции с примерами решения на этих промежутках имеет соответственно такие знаки: Применение производной к исследованию функции с примерами решения Следовательно, функция убывает на промежутках Применение производной к исследованию функции с примерами решения Поскольку в точках Применение производной к исследованию функции с примерами решения данная функция непрерывна, то ответ можно записать и так: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример:

Найдите критические точки функции Применение производной к исследованию функции с примерами решения 

Решение:

Применение производной к исследованию функции с примерами решения Найдем произвольную функции: Применение производной к исследованию функции с примерами решения
Найдём точки, в которых производная равна нулю или не существует: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения — не существует, если знаменатель равен нулю, отсюда Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Точка Применение производной к исследованию функции с примерами решения не входит в область определения функции. Следовательно, функция имеет две критические точки: Применение производной к исследованию функции с примерами решения

Ответ. 0 и 4.

Пример:

Докажите, что функция Применение производной к исследованию функции с примерами решения возрастает на Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения При любом значении Применение производной к исследованию функции с примерами решения выражение Применение производной к исследованию функции с примерами решения имеет положительное значение. Следовательно, данная функция возрастает на всей области определения, т.е. на множестве Применение производной к исследованию функции с примерами решения

Пример:

Установите, на каком промежутке функция Применение производной к исследованию функции с примерами решения возрастает, а на каком убывает.

Решение:

Способ 1. Применение производной к исследованию функции с примерами решения Найдём производную функции:

Применение производной к исследованию функции с примерами решения

Найдём критические точки функции:

Применение производной к исследованию функции с примерами решения

Эта точка разбивает область определения функции на два промежутка (рис. 74). Определим знак производной на каждом из них. 

Применение производной к исследованию функции с примерами решения

Следовательно, функция Применение производной к исследованию функции с примерами решения возрастает на промежутке Применение производной к исследованию функции с примерами решения а убывает на Применение производной к исследованию функции с примерами решения

Способ 2. Решим неравенство Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Ответ. Возрастает, если Применение производной к исследованию функции с примерами решения убывает если Применение производной к исследованию функции с примерами решения

Применение второй производной к исследованию функций и построению их графиков

При помощи первой производной можно исследовать функцию на монотонность и экстремумы и схематично построить график. Оказывается, что поведение некоторых функций не всегда можно охарактеризовать, используя первую производную. Более детальное исследование проводится при помощи второй производной. Вспомним, что такое вторая производная.

Пусть функция Применение производной к исследованию функции с примерами решения является дифференцируемой, Применение производной к исследованию функции с примерами решения её производная Применение производной к исследованию функции с примерами решения — функция, которая также дифференцируема. Тогда можно найти производную Применение производной к исследованию функции с примерами решения Это производная второго порядка, или вторая производная функции Применение производной к исследованию функции с примерами решения

Например, найти производную 2-го порядка функции Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решенияозначает найти производную этой функции Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения и полученную функцию продифференцировать: Применение производной к исследованию функции с примерами решения

Кривая Применение производной к исследованию функции с примерами решения называется выпуклой на интервале Применение производной к исследованию функции с примерами решения если все её точки, кроме точки касания, лежат ниже произвольной её касательной на этом интервале (на рис. 86 — 1).

Кривая Применение производной к исследованию функции с примерами решения называется вогнутой на интервале Применение производной к исследованию функции с примерами решения если все её точки, кроме точки касания, лежат выше произвольной её касательной на этом интервале (на рис. 86 — 2).

Применение производной к исследованию функции с примерами решения

Точкой перегиба называется такая точка кривой, которая отделяет её выпуклую часть от вогнутой.

Интервалы выпуклости и вогнутости находят при помощи такой теоремы.

Теорема. Если вторая производная дважды дифференцируемой функции Применение производной к исследованию функции с примерами решения отрицательна Применение производной к исследованию функции с примерами решения на интервале Применение производной к исследованию функции с примерами решения то кривая Применение производной к исследованию функции с примерами решениявыпуклая на данном интервале; если вторая производная функции Применение производной к исследованию функции с примерами решенияположительная Применение производной к исследованию функции с примерами решения то кривая вогнутая на Применение производной к исследованию функции с примерами решения

Из теоремы следует, что точками перегиба кривой Применение производной к исследованию функции с примерами решения могут быть только точки, в которых вторая производная Применение производной к исследованию функции с примерами решения равна нулю или не существует. Такие точки называют критическими точками второго рода.

Установим до статочное условие существования точки перегиба.

Теорема. Пусть Применение производной к исследованию функции с примерами решения — критическая точка второго рода функции Применение производной к исследованию функции с примерами решения Если при переходе через точку Применение производной к исследованию функции с примерами решения производная Применение производной к исследованию функции с примерами решения меняет знак, то точка Применение производной к исследованию функции с примерами решенияявляется точкой перегиба кривой Применение производной к исследованию функции с примерами решения

Для нахождения промежутков выпуклости и точек перегиба графика функции целесообразно пользоваться следующей схемой:

  1. найти область определения функции;
  2. найти критические точки второго рода;
  3. определить знак второй производной на образованных интервалах. Если Применение производной к исследованию функции с примерами решения то кривая выпуклая; если Применение производной к исследованию функции с примерами решения — кривая вогнутая;
  4. если производная Применение производной к исследованию функции с примерами решения меняет знак при переходе через точку Применение производной к исследованию функции с примерами решения то точка Применение производной к исследованию функции с примерами решения является точкой перегиба кривой Применение производной к исследованию функции с примерами решения

Пример №1

Найдите интервалы выпуклости, вогнутости и точки перегиба кривой Применение производной к исследованию функции с примерами решения

Решение:

1) Область определения функции: Применение производной к исследованию функции с примерами решения

2) Найдём вторую производную: Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решенияКритические точки второго рода: Применение производной к исследованию функции с примерами решения Других критических точек нет.

3)    Разбиваем область определения на интервалы Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения и определяем знак второй производной на каждом из них.

Если Применение производной к исследованию функции с примерами решения поэтому кривая вогнутая.

Если Применение производной к исследованию функции с примерами решения поэтому кривая выпуклая.

Если Применение производной к исследованию функции с примерами решения — кривая вогнутая.

Следовательно, точки Применение производной к исследованию функции с примерами решения — точки перегиба кривой. Рассмотрим ещё один компонент в исследовании функций, благодаря которому упрощается построение некоторых графиков. Это асимптоты. В предыдущих параграфах рассматривались горизонтальные и вертикальные асимптоты. Повторим, расширим и обобщим это понятие. Асимптоты бывают вертикальные, наклонные и горизонтальные (рис. 87).

Применение производной к исследованию функции с примерами решения

Напомним, что прямая Применение производной к исследованию функции с примерами решения будет вертикальной асимптотой кривой Применение производной к исследованию функции с примерами решения если при Применение производной к исследованию функции с примерами решения (справа или слева) значение функции Применение производной к исследованию функции с примерами решения стремится к бесконечности, т.е. выполняется одно из условий: Применение производной к исследованию функции с примерами решения

Уравнение наклонной асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Если записанные пределы существуют, то существует наклонная асимптота; если хотя бы один из них не существует или равен Применение производной к исследованию функции с примерами решения то кривая наклонной асимптоты не имеет.

Если Применение производной к исследованию функции с примерами решения поэтому Применение производной к исследованию функции с примерами решенияуравнение горизонтальной асимптоты.

Замечание: Рассмотренные пределы могут быть односторонними, а под символом Применение производной к исследованию функции с примерами решения следует понимать и Применение производной к исследованию функции с примерами решения При этом указанные пределы могут быть разными при Применение производной к исследованию функции с примерами решения

Пример №2

Найдите асимптоты кривых:

Применение производной к исследованию функции с примерами решения

Решение:

а) Применение производной к исследованию функции с примерами решения Найдём вертикальные асимптоты. Поскольку функция не определена в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения то прямые Применение производной к исследованию функции с примерами решения — вертикальные асимптоты.

Найдём наклонную асимптоту: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения Кривая имеет горизонтальную асимптоту, её уравнение: Применение производной к исследованию функции с примерами решения

Следовательно, заданная кривая имеет три асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Найдем вертикальные асимптоты.

Поскольку функция не определена в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения то прямые Применение производной к исследованию функции с примерами решения — вергикальные асимптоты.

Для наклонной асимптоты Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Значит прямая Применение производной к исследованию функции с примерами решения — наклонная асимптота. Горизонтальной асимптоты нет.

Итак, асимптоты кривой: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Будем искать наклонные асимптоты:

Применение производной к исследованию функции с примерами решения

Следовательно, Применение производной к исследованию функции с примерами решения — наклонная асимптота, если Применение производной к исследованию функции с примерами решения

2) если Применение производной к исследованию функции с примерами решения (проверьте самостоятельно), отсюда Применение производной к исследованию функции с примерами решения — наклонная асимптота, если Применение производной к исследованию функции с примерами решения

Следовательно, заданная кривая имеет две асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Определение точек перегиба, интервалов выпуклости и асимптот существенно помогает в построении графиков различных функций.

Нахождение промежутков возрастания и убывания функции

Интервалы возрастания и убывания функции

возрастающая функция

Применение производной к исследованию функции с примерами решения

Если для любых Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения из некоторого промежутка области определения при Применение производной к исследованию функции с примерами решения выполняется условие Применение производной к исследованию функции с примерами решения то на этом промежутке функция возрастающая.

убывающая

Применение производной к исследованию функции с примерами решения

Если для любых Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения из некоторого промежутка области определения при Применение производной к исследованию функции с примерами решения выполняется условие Применение производной к исследованию функции с примерами решения на этом промежутке функция убывающая.

Связь промежутков возрастания и убывания функции с угловым коэффициентом секущей можно выразить следующим образом.

Если на заданном промежутке угловой коэффициент любой секущей положителен, то на этом промежутке функция Применение производной к исследованию функции с примерами решения возрастает.

Применение производной к исследованию функции с примерами решения

Если на заданном промежутке угловой коэффициент любой секущей отрицателен, то на этом промежутке функция Применение производной к исследованию функции с примерами решения убывает.

Применение производной к исследованию функции с примерами решения

Промежутки возрастания и убывания функции

Пусть на определенном промежутке производная функции Применение производной к исследованию функции с примерами решения положительна, т. е. Применение производной к исследованию функции с примерами решения Так как Применение производной к исследованию функции с примерами решения то угловой коэффициент касательной будет положительным. А это значит, что касательная с положительным направлением оси абсцисс образует острый угол и на заданном промежутке график «поднимается «, т. е. функция возрастает. Если Применение производной к исследованию функции с примерами решения тогда касательная с положительным направлением оси абсцисс образует тупой угол, график «спускается», т. е. функция убывает.

Теорема. Если функция Применение производной к исследованию функции с примерами решения дифференцируема в каждой точке заданного промежутка, то:

Примечание: если функция Применение производной к исследованию функции с примерами решениянепрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.

По графику функции Применение производной к исследованию функции с примерами решения исследуйте промежутки возрастания и убывания функции.

Применение производной к исследованию функции с примерами решения

На интервалах Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения угловой коэффициент касательной положительный, поэтому на каждом из промежутков Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения функция Применение производной к исследованию функции с примерами решениявозрастает.

На интервале Применение производной к исследованию функции с примерами решения угловой коэффициент касательной отрицателен, поэтому на промежутке Применение производной к исследованию функции с примерами решения функция Применение производной к исследованию функции с примерами решения убывает.

Пример №3

При помощи производной определите промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Решение: 1. Алгебраический метод.

Найдем производную функции

Применение производной к исследованию функции с примерами решения

Функция Применение производной к исследованию функции с примерами решения на промежутке удовлетворяющем неравенству Применение производной к исследованию функции с примерами решения т. е. Применение производной к исследованию функции с примерами решения возрастает.

Для решения неравенства сначала надо решить соответствующее уравнение

Применение производной к исследованию функции с примерами решения

Значит, при Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Точки Применение производной к исследованию функции с примерами решения разбивают область определения функции на три интервала: Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения В каждом из интервалов выберем контрольную точку для проверки и установим знак производной.

Применение производной к исследованию функции с примерами решения

Из таблицы и непрерывности функции Применение производной к исследованию функции с примерами решения видно, что данная функция возрастает на промежутках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения и убывает на промежутке Применение производной к исследованию функции с примерами решения Из графика так же видно, что задания решение верно.

Применение производной к исследованию функции с примерами решения

2. Промежутки возрастания и убывания функции можно определить но графику производной. На рисунке изображен график производной

Применение производной к исследованию функции с примерами решения

График производной Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения расположен выше оси Применение производной к исследованию функции с примерами решения значит, Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения график производной расположен ниже оси Применение производной к исследованию функции с примерами решения значит Применение производной к исследованию функции с примерами решения Так как функция Применение производной к исследованию функции с примерами решения в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения непрерывна, то на промежутках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения она возрастает, а на промежутке Применение производной к исследованию функции с примерами решения убывает.

Пример №4

Изобразите схематично график непрерывной функции согласно еле дующим условиям:

a) при Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

b) при Применение производной к исследованию функции с примерами решения или Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

Решение:

а) при Применение производной к исследованию функции с примерами решения знак производной положительный: Применение производной к исследованию функции с примерами решения значит,

функция возрастает. При Применение производной к исследованию функции с примерами решения знак производной отрицательный: Применение производной к исследованию функции с примерами решения значит, функция убывает, при Применение производной к исследованию функции с примерами решения значение функции равно 5.

Применение производной к исследованию функции с примерами решения

b) При Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения знак производной положительный: Применение производной к исследованию функции с примерами решения значит, функция возрастает. При Применение производной к исследованию функции с примерами решения знак производной отрицательный: Применение производной к исследованию функции с примерами решения значит, функция убывает, при Применение производной к исследованию функции с примерами решения значение функции равно 0.

Применение производной к исследованию функции с примерами решения

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

Применение производной к исследованию функции с примерами решения

1. Для значений Применение производной к исследованию функции с примерами решения равных Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решения угловой коэффициент касательной к графику равен 0. Т. e.Применение производной к исследованию функции с примерами решенияЭти точки являются критическими точками функции.

2. В точках Применение производной к исследованию функции с примерами решения функция не имеет производной. Эти тоже критические точки функции.

3. Для рассматриваемой нами функции критические точки Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Применение производной к исследованию функции с примерами решения — критические точки, которые не изменяют возрастание и убывание (или наоборот).

Применение производной к исследованию функции с примерами решения

По графику видно, что в точках внутреннего экстремума(Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения) производная функции равна нулю, а в точке Применение производной к исследованию функции с примерами решения производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Применение производной к исследованию функции с примерами решения производная функции Применение производной к исследованию функции с примерами решения равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т. е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Применение производной к исследованию функции с примерами решения

Достаточное условие существования экстремума

Пусть функция Применение производной к исследованию функции с примерами решения непрерывна на промежутке Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Если Применение производной к исследованию функции с примерами решения является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

  1. Применение производной к исследованию функции с примерами решения слева от точки Применение производной к исследованию функции с примерами решения положительна, а справа — отрицательна, то точка Применение производной к исследованию функции с примерами решения является точкой максимума.
  2. Применение производной к исследованию функции с примерами решения слева от Применение производной к исследованию функции с примерами решения отрицательна, а справа — положительна, то точка Применение производной к исследованию функции с примерами решения является точкой минимума
  3. Применение производной к исследованию функции с примерами решения с каждой стороны от точки Применение производной к исследованию функции с примерами решения имеет одинаковые знаки, то точка Применение производной к исследованию функции с примерами решения не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Применение производной к исследованию функции с примерами решения на отрезке Применение производной к исследованию функции с примерами решения записываются как Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Применение производной к исследованию функции с примерами решения

Пример №5

Для функцииПрименение производной к исследованию функции с примерами решения определите максимумы и минимумы и схематично изобразите график.

Решение: Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Применение производной к исследованию функции с примерами решения

2. Критические точки функции: Применение производной к исследованию функции с примерами решения

3. Точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения разбивают область определения функции на три промежутка.

Проверим знак Применение производной к исследованию функции с примерами решения на интервалах, выбрав пробные точки:

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решениямаксимум

При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решения минимум

4. Используя полученные для функции Применение производной к исследованию функции с примерами решения данные и найдя координаты нескольких дополнительных точек, построим график функции.

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример №6

Найдите наибольшее и наименьшее значение функции Применение производной к исследованию функции с примерами решения на отрезке Применение производной к исследованию функции с примерами решения

Решение: Сначала найдем критические точки.

Так как Применение производной к исследованию функции с примерами решения то критические точки можно найти из уравнения Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Критическая точка Применение производной к исследованию функции с примерами решения не принадлежит данному отрезку Применение производной к исследованию функции с примерами решения и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Применение производной к исследованию функции с примерами решения и на концах отрезка.

Применение производной к исследованию функции с примерами решения

Из этих значений наименьшее — 4, наибольшее 12. Таким образом:

Применение производной к исследованию функции с примерами решения

Пример №7

Найдите экстремумы функции Применение производной к исследованию функции с примерами решения

Решение: 1. Производная функции: Применение производной к исследованию функции с примерами решения

2. Критические точки: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

3. Интервалы, на которые критические точки делят область определения функции:

Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Проверим знак Применение производной к исследованию функции с примерами решения на интервалах, выбрав пробные точки.

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Используя полученную для функции Применение производной к исследованию функции с примерами решения информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Применение производной к исследованию функции с примерами решения

Пример №8

Найдите экстремумы функции Применение производной к исследованию функции с примерами решения

Решение: 1. Производная Применение производной к исследованию функции с примерами решения

2. Критические точки: для этого надо решить уравнение Применение производной к исследованию функции с примерами решения или найти точки, в которых производная не существует. В точке Применение производной к исследованию функции с примерами решения функция не имеет конечной производной. Однако точка Применение производной к исследованию функции с примерами решения принадлежит области определения. Значит, точка Применение производной к исследованию функции с примерами решения является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Определим знак Применение производной к исследованию функции с примерами решения выбрав пробные точки для каждого промежутка:

Для Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример №9

По графику функции производной Применение производной к исследованию функции с примерами решения схематично изобразите график самой функции.

Применение производной к исследованию функции с примерами решения

Решение:

Производная Применение производной к исследованию функции с примерами решения в точке Применение производной к исследованию функции с примерами решения равна нулю, а при Применение производной к исследованию функции с примерами решения отрицательна, значит, на интервале Применение производной к исследованию функции с примерами решения функция убывающая. При Применение производной к исследованию функции с примерами решения производная положительна, а это говорит о том, что функция/на промежутке Применение производной к исследованию функции с примерами решения возрастает. Точкой перехода от возрастания к убыванию функции является точка Применение производной к исследованию функции с примерами решения Соответствующий график представлен на рисунке.

  • Заказать решение задач по высшей математике

Построение графиков функции с помощью производной

Функция — многочлен определена и непрерывна на всей числовой оси.

Чтобы построить график функции- многочлен надо выполнить следующие шаги.

  • Определите точки пересечения с осями координат.
  • Найдите критические точки.
  • Найдите промежутки возрастания и убывания функции.
  • Найдите максимумы и минимумы.
  • Постройте график.

Пример:

Постройте график функции Применение производной к исследованию функции с примерами решения

1) Точки пересечения с осями координат :

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

2) Критические точки ( точки, в которых производная равна нулю): Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

значит, точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения расположены на графике.

Применение производной к исследованию функции с примерами решения

3) Промежутки возрастания и убывания. Экстремумы.

Критические точки Применение производной к исследованию функции с примерами решения деляг область определения функции на четыре промежутка. Проверим знаки производной Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

4) Используя полученную информацию, построим график функции.

Применение производной к исследованию функции с примерами решения

Чтобы построить график рациональной функции надо выполнить следующие шаги.

  • Найдите область определения.
  • Найдите асимптоты (если они есть).
  • Определите точки пересечения с осями координат.
  • Найдите критические точки.
  • Найдите промежутки возрастания и убывания и экстремумы.
  • Постройте график.

Пример:

Постройте график функции Применение производной к исследованию функции с примерами решения

1) Область определения функции: Применение производной к исследованию функции с примерами решения

2) Асимптоты: Применение производной к исследованию функции с примерами решения

Прямая Применение производной к исследованию функции с примерами решения вертикальная асимптота функции.

Так как степень многочлена в числителе больше степени многочлена в знаменателе, рациональная функция не имеет горизонтальной асимптоты. Однако, записав следующее: Применение производной к исследованию функции с примерами решения

условии Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения т. е. график функции Применение производной к исследованию функции с примерами решения бесконечно приближается к прямой Применение производной к исследованию функции с примерами решения В этом случае прямая Применение производной к исследованию функции с примерами решения является наклонной асимптотой функции Применение производной к исследованию функции с примерами решения Вообще, если степень многочлена Применение производной к исследованию функции с примерами решения на 1 единицу больше степени многочлена Применение производной к исследованию функции с примерами решениято рациональная функция Применение производной к исследованию функции с примерами решения имеет наклонную асимптоту.

3) Точки пересечения с осями координат: Применение производной к исследованию функции с примерами решения

4) Критические точки:

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

5) Промежутки возрастания и убывания: в точке Применение производной к исследованию функции с примерами решения функция не определена, точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения являются критическими точками функции. Определим знаки производной в каждом полученном интервале.

Применение производной к исследованию функции с примерами решения

6) Построим график. Отметим на координатной плоскости точки Применение производной к исследованию функции с примерами решения относящиеся к графику. Проведем вертикальную асимптоту Применение производной к исследованию функции с примерами решения и наклонную асимптоту Применение производной к исследованию функции с примерами решения Используя полученные результаты, изобразим график функции.

Применение производной к исследованию функции с примерами решения

Обратите внимание! В области, близкой к точке Применение производной к исследованию функции с примерами решения график функции ведет себя как парабола Применение производной к исследованию функции с примерами решения

Задачи на экстремумы. Оптимизации

В реальной жизненной ситуации возникает необходимость выбора оптимального варианта и нахождения экстремумов определенной функции. Ежедневно, при решении проблем в различных областях, мы сталкиваемся с терминами наибольшая прибыль, наименьшие затраты, наибольшее напряжение, наибольший объем, наибольшая площадь и т.д. Большое экономическое значение в промышленности, при определении дизайна упаковки, имеет вопрос, как подобрать размеры упаковки с наименьшими затратами. Такого рода задания связаны с нахождением максимального или минимального значения величины. Задачи на нахождение максимального и минимального значения величины называются задачами на оптимизацию. Для решения данных задач применяется производная.

Замечание 1: На интервале Применение производной к исследованию функции с примерами решения должны учитываться предельные значения функции на концах.

Замечание 2: В рассматриваемом интервале может быть одна стационарная точка: или точка максимума, или точка минимума. В этом случае, в точке максимума функция принимает наибольшее значение, а в точке минимума — наименьшее значение.

Пример 1. Максимальный объем. Фирма планирует выпуск коробки без крышки, с квадратным основанием и площадью поверхности Применение производной к исследованию функции с примерами решения Найдите размеры коробки, при которых она будет иметь наибольший объем?

Применение производной к исследованию функции с примерами решения

Решение:

Так как основанием коробки является квадрат, то ее объем можно вычислить по формуле Применение производной к исследованию функции с примерами решения Используя другие данные задачи, выразим объем только через одну переменную Применение производной к исследованию функции с примерами решенияВычислим площадь поверхности коробки. Она равна Применение производной к исследованию функции с примерами решения и состоит из 4 площадей боковых граней + площадь основания.

Применение производной к исследованию функции с примерами решения

Тогда выразим Применение производной к исследованию функции с примерами решения подставим в формулу Применение производной к исследованию функции с примерами решения Зависимость объема коробки от переменной Применение производной к исследованию функции с примерами решения можно выразить следующим образом:

Применение производной к исследованию функции с примерами решения

Теперь найдем область определения функции Применение производной к исследованию функции с примерами решения согласно условию задачи.

Понятно, что длина не может быть отрицательной, т. е. Применение производной к исследованию функции с примерами решения Площадь квадрата в основании коробки должна быть меньше 192, т. е. Применение производной к исследованию функции с примерами решения

или Применение производной к исследованию функции с примерами решенияЗначит, Применение производной к исследованию функции с примерами решения

Найдем максимальное значение функции Применение производной к исследованию функции с примерами решения на интервале Применение производной к исследованию функции с примерами решения

Для этого используем производную первого порядка:

Применение производной к исследованию функции с примерами решения

При Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения имеем, что Применение производной к исследованию функции с примерами решения

Однако. Применение производной к исследованию функции с примерами решения Значит, в рассматриваемом интервале критической точкой является Применение производной к исследованию функции с примерами решения

При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения функция

Применение производной к исследованию функции с примерами решения в точке Применение производной к исследованию функции с примерами решения принимает максимальное значение.

Если длина основания коробки будет 8 см, то высота будет равна

Применение производной к исследованию функции с примерами решения

Значит, максимальный объем будет иметь коробка с размерами Применение производной к исследованию функции с примерами решения

Построив при помощи графкалькулятора график функции Применение производной к исследованию функции с примерами решения также можно увидеть, что при Применение производной к исследованию функции с примерами решения объем имеет максимальное значение. Постройте график функции при помощи производной и убедитесь в правильности решения.

Применение производной к исследованию функции с примерами решения

Пример 2. Минимальное потребление. Два столба высотой 4 м и 12 м находятся на расстоянии 12 м друг от друга. Самые высокие точки столбов соединены с металлической проволокой, каждая из которых, в свою очередь крепится на земле в одной точке. Выберите такую точку на земле, чтобы для крепления использовалось наименьшее количество проволоки.

Решение: 1) Изобразим рисунок, соответствующий условию задачи, и обозначим соответствующие данные на рисунке.

Применение производной к исследованию функции с примерами решения

2) Аналитически выразим зависимость между переменными.

По теореме Пифагора:

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

зависимость функции Применение производной к исследованию функции с примерами решения от переменной Применение производной к исследованию функции с примерами решения будет

Применение производной к исследованию функции с примерами решения

Производная функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Найдем критические точки функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Сравнивая значения функции Применение производной к исследованию функции с примерами решения в точках Применение производной к исследованию функции с примерами решения (это проверьте самостоятельно), получим, что наименьшее количество проволоки используется при Применение производной к исследованию функции с примерами решения (метр)

При решении задач на экстремумы обратите внимание на следующее!

1. Внимательно читайте условие. Сделайте соответствующий рисунок.

2. Задайте список соответствующих переменных и констант, которые менялись и оставались неизменными и какие единицы использовались. Если на рисунке есть размеры, обозначьте их.

3. Выберите соответствующий параметр Применение производной к исследованию функции с примерами решения и выразите искомую величину функцией Применение производной к исследованию функции с примерами решения Найдите экстремумы данной функции.

4. Полученные значения объясните экспериментально.

Пример: Минимальное потребление материала. Для мясных консервов планируется использовать банку в форме цилиндра объемом 250 Применение производной к исследованию функции с примерами решения

a) Каких размеров должна быть банка, чтобы для ее изготовления использовалось как можно меньше материала?

b) Для круглого основания используется материал, цена 1 Применение производной к исследованию функции с примерами решения которого равна 0,05 гяпик, а для боковой поверхности используется материал цена 1 Применение производной к исследованию функции с примерами решения которого равна 0,12 гяпик. Какие размеры должна иметь банка, чтобы затраты на ее изготовление были минимальными?

Решение: а) По условию задачи объем равен 250 Применение производной к исследованию функции с примерами решения Эти данные дают нам возможность найти зависимость между Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Для функции, выражающей площадь поверхности, область определения представляет собой незамкнутый интервал, и мы должны найти, при каком значении Применение производной к исследованию функции с примерами решения где Применение производной к исследованию функции с примерами решения функция имеет наименьшее значение. Найдем производную функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Критическая точка функции: Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

Значит, Применение производной к исследованию функции с примерами решения

Подставим значение Применение производной к исследованию функции с примерами решения в формулу для высоты Применение производной к исследованию функции с примерами решения получим Применение производной к исследованию функции с примерами решения

Итак, минимальные затраты на материал будет иметь банка цилиндрической формы с размерами Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Размеры, при которых затраты на материал будут минимальными

Применение производной к исследованию функции с примерами решения

  • Приложения производной
  • Производные высших порядков
  • Дифференциал функции
  • Дифференцируемые функции
  • Касательная к графику функции и производная
  • Предел и непрерывность функции
  • Свойства функций, непрерывных в точке и на промежутке
  • Предел функции на бесконечности

План урока:

Исследование функций на монотонность

Экстремумы функции

Выпуклость и вогнутость функций

Исследование функций и построение их графиков

Исследование функций на монотонность

Говоря о смысле производной, мы замечали, что у возрастающих функций она принимает положительные значения, а у убывающих – отрицательные. Убедиться в этом можно с помощью графиков. Действительно, если провести касательную к возрастающей ф-кции, то она образует с осью Ох острый угол, а потому тангенс этого угла (а он как раз равен произ-ной) окажется положительным числом:

1hhjkty

Если же ф-кция убывает, то касательная образует с осью Ох тупой угол, чей тангенс будет отрицательным:

2hfhjjg

Рассмотрим более сложный случай, когда ф-кция на каких-то промежутках убывает, а на каких-то возрастает. В качестве примера приведем зависимость у = х2. Она является убывающей на промежутке (– ∞; 0] и возрастающей на промежутке [0; + ∞). Можно заметить, что любая касательная, проведенная на первом из этих промежутков, будет образовывать тупой угол с Ох. И наоборот, любая касательная на втором промежутке имеет острый угол:

3gdfdg

Это означает, что произ-ная ф-кции на первом промежутке должна быть отрицательной, а на втором – положительной (сразу отметим, что граничная точка х = 0 стоит особняком, так как входит в оба промежутка). Попробуем найти произ-ную аналитически. Мы рассматриваем ф-кцию у = х2, её произ-ная равна

4fghfgh

Действительно, произ-ная у′ = 2х принимает отрицательные значения при х∈ (– ∞;0) и оказывается положительной при х∈(0; + ∞). Заметим, что в граничной точке произ-ная равна нулю.

Это наблюдение подсказывает нам, что по знаку произ-ной можно определить, возрастает или убывает ф-кция. Однако сначала надо разобраться с тем случаем, когда произ-ная оказывается равной нулю. Рассмотрим ф-кцию у = х3. Очевидно, что она возрастает на всей числовой прямой. Значит ли это, что её произ-ная на этой прямой строго положительна? Нет, не значит. Запишем у′:

5hfghfgh

Произ-ная положительна во всех точках, кроме х = 0. При х = 0 у′ также оказывается равной нулю. Однако мы можем сказать, что у′ неотрицательна на всей числовой прямой.

Можно привести пример ф-кции

6hghj

ее произ-ная равна

7sdfsdf

Сама ф-кция убывает на всей числовой прямой, а её произ-ная неположительна на ней.

Рассмотрим особый случай, когда у ф-кции произ-ная одновременно и неположительна, и неотрицательна на отрезке. Как ни сложно догадаться, это означает, что производная равна нулю. Мы помним, что нулю равна произ-ная константы:

8khjk

В качестве примера приведем ф-кцию у = 2. Её произ-ная на всей числовой прямой равна нулю:

9yuikjg

При этом ф-кция и не убывает, и не возрастает на числовой прямой:

10yrty

Рассматривая все эти примеры, можно сделать вывод, что для возрастания ф-кции на промежутке достаточно, чтобы её произ-ная принимала на этом отрезке только положительные отрезки:

11ffdfg

Аналогично можно сформулировать и достаточный признак убывания ф-кции:

12fghfgh

Сформулированные признаки не охватывают тех ситуаций, когда произ-ная в отдельных точках промежутка обращается в ноль. Если произ-ная равна нулю на всём промежутке, то ф-кция на нем остается неизменной (как в случае с функцией у = 2). Если же производная обращается в ноль только в отдельных точках (случай у = х3 и у = х2), то эти точки оказываются граничными для промежутков возрастания и промежутков убывания функции. В этих случаях эти граничные точки добавляют в соответствующие промежутки.

Задание. Докажите, что функция

13uytu

возрастает при любом значении аргумента.

Решение. Найдем произ-ную у′:

14yrty

Найдем, при каких значениях х произ-ная у′ оказывается положительной. Для этого запишем неравенство:

15ytry

Множитель (5х2 + 6) при любом х положителен, а потому мы можем поделить обе части неравенства на него и преобразовать его к виду

16fgh

Его решениями являются промежутки (– ∞; 0) и (0; + ∞), а при х = 0 произ-ная оказывается равной нулю, то есть это граничная точка. Значит, промежутками возрастания функции являются (– ∞; 0] и [0; + ∞). Обратите внимание, что мы добавили в каждый из промежутков граничную точку х = 0. Но объединением этих промежутков является вся числовая прямая:

17utyu

Получается, что ф-кция возрастает при любом х.

Теперь попытаемся найти промежутки возрастания и убывания функции

18uyutu

Для их нахождения определим, где произ-ная положительна, а где отрицательна. Для этого сначала найдем произ-ную:

19jghj

Решим неравенство у′ > 0, при этом мы используем метод интервалов:

20jhj

Отмечаем нули на координатной прямой и расставляем знаки промежутков:

21yyu

Напомним, что для определения знаков промежутков можно просто выбрать на каждом из них одну точку и подставить её в неравенство. Например, на интервале х∈(– ∞; – 1) возьмем число – 2:

22gdfg

Итак, произ-ная положительна на промежутках (– ∞; – 1) и (0; + ∞). При х = 0 и х = 1 произ-ная обращается в ноль – это граничные точки, которые надо добавить в промежутки возрастания. То есть ф-кция возрастает на промежутках (– ∞; – 1] и [0; + ∞).

Рассматривая аналогичное неравенство у′ < 0, получаем, что произ-ная отрицательна при х∈(– 1; 0). Тогда промежутком убывания ф-кции является [– 1; 0].

Для наглядности построим график рассматриваемой нами ф-кции:

23yrty

Проведенное нами действие (поиск промежутков возрастания и убывания ф-кции) называется исследованием функции на монотонность. Для его проведения необходимо вычислить производную ф-кцию у′, а потом найти, на каких промежутках она положительна или отрицательна. Если в граничных точках полученных промежутков произво-дная обращается в ноль, то эти точки следует включить в промежутки.

Экстремумы функции

Еще раз посмотрим на график рассмотренной нами ф-кции

24gdfg

На нем есть две особые точки: (– 1; 0) и (0; – 1). Они являются границами для промежутков возрастания и убывания. При этом значение произ-ной в этих точках оказалось равным нулю. Если мы проведем касательные к графику в этих точках, то окажется, что они являются горизонтальными линиями, то есть их угол наклона равен нулю:

25tyyy

Действительно, если произ-ная в точке равна нулю, то тангенс угла наклона должен быть также равен нулю. А это значит, что и сам угол равен нулю, ведь tg 0 = 0. Геометрически это означает, что касательная будет выглядеть как горизонтальная линия, которая либо параллельна оси Ох, либо совпадает с ней.

26yuyu

Ещё одна особенность точек (– 1; 0) и (0; – 1). Первая из них в некоторой, достаточно малой локальной области является точкой максимума функции. Действительно, если взять промежуток [– 1,5; – 0,5], то на нем именно в точке х = –1 ф-кция принимает наибольшее значение:

27uytu

Аналогичную окрестность можно указать и для точки х = 0, только на ней точка (0; – 1) окажется точкой минимума функции, а не максимума:

28uytu

Ни для какой другой точки на графике такую окрестность указать не удастся. Дадим более точное определение таким понятиям, как точка минимума и точка максимума функции:

29uytu

30uytu

Ещё раз заметим, что в таких точках ф-кция достигает наибольшего или наименьшего значения только в определенной локальной области. Поэтому часто их называют локальными максимумами или минимумами. Пусть ф-кция задана следующим графиком:

31yytuyu

На графике можно отметить 5 минимумов функции и 5 максимумов, причем только один максимум и минимум будут соответствовать наибольшему или наименьшему значению на всей области определения (их ещё называют глобальными максимумами и минимумами):

32uuiui

Грубо говоря, точки максимума соответствуют вершинам графика, а точки минимума – впадинам графика.

Для обозначения этих точек используют специальный термин – точки экстремума функции.

33iui

Довольно очевидно, что точки экстремума находятся на границе промежутков возрастания и убывания ф-кции, то есть в тех самых граничных точках. Напомним, что в этих точках произ-ная равна нулю. Однако возможен ещё один случай появления экстремума. Он связан с так называемыми негладкими ф-кциями, пример одной из которых приведен на рисунке:

34uiui

На графике явно видно два экстремума функции. Однако в этих точках ф-кция меняет свое поведение резко, а не плавно. Из-за этого график кажется «зазубренным». Обратите внимание, что построить единственную касательную к графику в экстремумах не получается:

35uii

С точки зрения математического анализа это означает, что произ-ная в таких точках не существует. Заметим, что все элементарные ф-кции, а также сложные ф-кции, получаемые из нескольких элементарных, являются гладкими. Поэтому на практике в школьном курсе такие случаи почти не встречаются.

Итак, можно сформулировать признак существования экстремума:

36uuyi

Задание. Докажите, что у функции вида

37utyu

где a, b, c, d – постоянные числа, есть не более двух экстремумов.

Решение. Чтобы найти экстремумы функции, сначала просто продифференцируем её:

38iyui

Заметим, что производная является квадратичной функцией

39iuo

Эта ф-кция определена при любом значении х. Это значит, что не существует таких экстремумов, в которых произ-ная не существует. Если приравнять произ-ную к нулю, то получим квадратное уравнение:

40uio

Напомним, что квадратное уравнение может иметь не более 2 различных корней. То есть у ф-кции есть не более 2 точек, в которых произ-ная обращается в ноль. Следовательно, и экстремумов у ф-кции не более двух.

Точки, в которых произ-ная обращается в ноль или не существует, называют критическими точками функции.

41uui

Заметим, что не каждая критическая точка обязательно оказывается экстремумом. Можно снова привести пример ф-кции у = х3. Она возрастает на всей области числовой прямой, то есть не имеет экстремумов. Однако ее произ-ная имеет вид у′ = 3х2, и она обращается в ноль при х = 0. В связи с этим встает вопрос – есть ли какой-то метод, позволяющий достоверно определить наличие экстремума у ф-кции? Оказывается, есть. Надо лишь проанализировать поведение производной вблизи критической точки. Если произ-ная в точке меняет знак, то она является экстремумом, а если не меняет – то не является.

Более того, можно определить, является ли экстремум точкой минимума или точкой максимума. Если произ-ная меняет знак с плюса на минус, то это точка максимума, а если с минуса на плюс – то это точка минимума.

42hghfgh

Для примера рассмотрим ф-кцию

43iiu

Попытаемся найти ее экстремумы. Для этого вычислим производную:

44hfgh

Найдем нули произ-ной:

45ui

Теперь отметим на координатной прямой нули ф-кции. Они разобьют числовую прямую на три промежутка. Расставим знаки производной на этих промежутках:

46yryu

Знаки на промежутках можно определить, просто подставив в произ-ную одно из чисел из промежутка:

47tyjh

Получается, что в точке х = 0 произ-ная меняет знак с «+» на (–), а в точке х = 2 знак произ-ной не меняется. Это значит, что точка х = 0 является точкой минимума, а х = 2 – это вообще не экстремум ф-кции:

48iyui

В общем случае для определения экстремумов ф-кции можно руководствоваться следующей схемой:

49iuok

До этого мы рассматривали случаи, когда ф-кция была определена при любом значении аргумента. Теперь изучим ф-кцию

50ikj

Ее особенностью является то, что она не определена при х = 0, так как при таком значении аргумента получается деление на ноль. Вычислим у′:

51hyu

Теперь найдем нули произ-ной:

52iyui

Выражение х2 + 4 при любом х не равно нулю, а потому на него можно поделить уравнение:

53ytu

Теперь на числовой прямой мы должны отметить две найденные критические точки. Но также на ней следует отметить число х = 0, так как в этой точке ф-кция не определена:

54iuyui

Обратите внимание, что точка х = 0 НЕ является экстремумом, хотя кажется, что в ней ф-кция меняет свой знак. Дело в том, ф-кция не существует при таком значении аргумента. Это значит, что х = 0 – это асимптота графика. График ф-кции будет выглядеть примерно так:

55ikj

Выпуклость и вогнутость функций

Нарисуем две немного отличающиеся друг от друга возрастающие ф-кции:

56hyu

Видно, что эти графики будто выгнуты в разные стороны. Оказывается, в математике есть специальное свойство ф-кций, которое указывает на направление, в котором выгнуты их графики. Левая ф-кция является вогнутой функцией, а правая – выпуклой функцией.

Определить, выпукла или вогнута ф-кция, очень просто. Достаточно провести к графику касательную. Если она проходит выше графика, то это указывает на вогнутость функции, а если ниже, то она выпукла:

57jyui

58jhjg

Естественно, встречаются ф-кции, которые на одном промежутке выпуклые, а на другом – вогнутые. Классическим примером является кубическая парабола у = х3. На промежутке (– ∞; 0] она вогнутая, а на промежутке [0; + ∞) она становится выпуклой. При этом в точке х = 0 она меняет свой характер. Такая точка называется точкой перегиба функции:

59kuio

Ранее мы уже заметили, что точка х = 0 для ф-кции у = х3 – этой пример критической точки, которая не является экстремумом. Действительно, произ-ная ф-кции у = х3 имеет вид

60kiuo

и она обращается в ноль при х = 0, однако в этой точке ф-кция возрастает. Это подсказывает нам, что критические точки, в которых ф-кция НЕ меняет своего знака, являются точками перегиба. И это действительно так.

Заметим, однако, что в общем случае точка перегиба может и вовсе не являться критической точкой ф-кции. В рамках школьного курса мы не будем детально изучать выпуклость функций и точки перегиба. Отметим лишь, что для их поиска необходимо вычислять уже не только первую, но и вторую произ-ную функции.

Исследование функций и построение их графиков

Ранее мы строили графики ф-кций в основном «по точкам». То есть мы просто вычисляли значение ф-кции при различных значениях х, отмечали получившиеся точки на координатной плоскости, а потом соединяли их плавной кривой. Однако при этом можно упустить некоторые важные особенности ф-кций – наличие у них минимумов и максимумов, точки их пересечения с осями координат и т.п. Поэтому в математике используют особый алгоритм для построения графиков ф-кции, который называют «исследованием функции».

Последовательность алгоритма следующая:

  1. Находят область определения ф-кции. Здесь нужно учесть такие простые правила, согласно которым нельзя делить на ноль, под знаком квадратного корня не может стоять отрицательное число и т.п.
  2. Выясняют, является ли ф-кция четной или нечетной, периодической или непериодической.
  3. Находят производную ф-кции.
  4. Приравнивая произ-ную к нулю, находят критические точки ф-кции, промежутки ее возрастания и убывания (то есть проводят исследование на монотонность).
  5. Находят точку пересечения графика с осью Оу, для чего подставляют в ф-кцию х = 0. Конечно, это действие совершается только в том случае, если точка х = 0 входит в область определения ф-кции.
  6. Находят точку пересечения графика с горизонтальной осью Ох. Для этого надо составить уравнение у(х) = 0 и решить его. Возможна ситуация, когда решить уравнение точно не получается, тогда этот этап можно пропустить.
  7. Находят промежутки знакопостоянства ф-кции.
  8. Изучают поведение ф-кции вблизи ее особых точек. Обычно это подразумевает поиск пределов ф-кции на бесконечности или в точках, где она не определена.
  9. Определяют область значений ф-кции.
  10. С учетом всех особенностей ф-кции строят ее график.

Заметим, что у ф-кции можно также найти точки перегиба ф-кции, исследовать ее на выпуклость и вогнутость, однако в рамках программы 11 класса это не делается.

Сразу скажем, что исследование ф-кции – это трудоемкая задача. Она не очень сложная, но требует больших затрат времени и бумаги.

Для начала рассмотрим относительно простой пример ф-кции

61hgj

Область ее определения – это вся числовая прямая. Ф-кция не является ни четной, ни нечетной. Доказать это на примере конкретной точки. Возьмем х = 1:

62uikj

Однако у нас это условие явно не выполняется, ведь 0 ≠ 4. Если бы ф-кция была нечетной, то выполнялось бы условие

63iuio

Оно также не выполняется, так как 0 ≠ – 4.

Вычислим произ-ную ф-кции:

64khjk

Произ-ная также определена на всей числовой прямой. Для поиска критических точек приравняем ее к нулю:

65jhj

Получили две критические точки. Отметим их на прямой и расставим знаки:

66kjkh

Итак, мы смогли найти точку максимума функции, равно как и ее точку минимума.

Сразу же вычислим значение ф-кции в ее экстремумах:

67hgfh

Для расстановки знаков возьмем по одному значению из каждого промежутка. Например, можно взять числа (– 2), 0 и 2:

68jghj

Далее находим, где прямая пересекается с осью Оу, для чего подставляем в ф-кцию значение х = 0:

69jhghj

Получили точку (0; 2). Для нахождения точек пересечения графика с горизонтальной остью Ох надо приравнять всю ф-кцию к нулю:

70ghjghj

Это кубическое уравнение. Решить его можно методом подбора корней и последующим делением многочлена на многочлен. Не останавливаясь на подробностях решения, укажем, что его корнями являются числа (– 2) и 1, а других корней. Убедиться в этом можно, просто подставив в уравнение эти числа.

Следующий шаг – определение промежутков знакопостоянства. Для этого надо решить неравенство у(х) > 0:

71jghj

Это неравенство решается методом интервалов. Он сводится к тому, что находятся нули левой части, которые мы уже нашли – это числа (– 2) и 1. Далее они отмечаются на прямой, после чего на образовавшихся промежутках проставляются знаки:

72hgj

Знаки определяем, выбирая по одной точке из каждого промежутка:

73ghg

Достаточно очевидно, что при х→∞ сама ф-кция также стремится к бесконечности. Если же х→ – ∞, то и у→ – ∞.

Представим найденную нами информацию в виде таблицы. В верхней строке будем записывать промежутки и отдельные точки, а ниже – особенности ф-кции на этих промежутках (возрастает ф-кция или убывает, положительна она или отрицательна и т.п.):

74jhgj

В итоге график ф-кции будет иметь следующий вид:

75hjghj

Теперь исследуем более сложную ф-кцию

76jghj

Начнем с области определения. Знаменатель дроби не может равняться нулю, а потому

77iuyi

Итак, аргумент ф-кции может принимать любые значение, кроме 1 и (– 1). Поэтому её область определения (она обычно обозначается как D (x)) можно записать так:

78jhgj

Далее проверяем ф-кцию на четность или нечетность. Напомним, что для этого надо подставить в нее вместо аргумента х аргумент (– х):

79khjk

Мы получили у(х). Это означает, что ф-кция четная, а ее график симметричен относительно оси Оу.

Следующий шаг – находим произ-ную ф-кции:

80khjk

Заметим, что область определения произ-ной полностью совпадает с областью определения самой ф-кции. Поэтому у ф-кции нет таких критических точек, в которых произ-ная не существует.

Теперь произ-ную можно приравнять к нулю:

81hgj

Мы нашли всего одну критическую точку. Отметив ее на координатной прямой, можно выяснить, что она является точкой максимума. При этом стоит также отметить точки х = 1 и х = – 1, в которых ф-кция не определена (их ещё называют точками разрывов):

82yui

Для определения знаков произ-ной достаточно вычислить её значение в одной точке на каждом получившемся промежутке. Возьмем значения (– 2), (– 0,5), 0,5 и 2

83jghj

Найдем точку пересечения графика с осью Оу, для чего подставим в ф-кцию значение х = 0:

84hgh

Получили точку (0; – 1).

Далее находим точку пересечения графика с осью Ох. Для этого подставим в ф-кцию значение у = 0 и решим получившееся уравнение:

85hjghj

Числитель дроби в правой части при любом значении х положителен, то есть не равен нулю. Это значит, что уравнение не имеет решения. Отсюда вывод – график НЕ пересекается с осью Ох.

Следующий шаг – это определение промежутков знакопостоянства функции. Чтобы найти, при каких значениях аргумента ф-кция положительная, составим неравенство:

86jhj

Это дробно-рациональное неравенство. Для его решения надо отметить на координатной прямой те значения х, при которых либо знаменатель, либо числитель обращается в ноль. Числитель при любом аргументе положителен, а нулями знаменателя являются точки х = – 1 и х = 1:

87jhgj

Знаки на промежутках определяем, подставляя точки из промежутков в ф-кцию:

88jhgj

Далее следует исследовать поведение ф-кции вблизи при х →∞ и х→ –∞. Для этого преобразуем ф-кцию, выделив целую часть:

89jhgj

При х→∞ число (х2 – 1) также стремится к бесконечности, а дробь

90mbj

будет стремиться к единице. Аналогично можно убедиться, что при х→ – ∞ ф-кция также стремится к единице.

Все полученные данные можно удобно представить в табличном виде:

91hjj

На основании этих результатов строим график:

92khgh

Из рисунка видно, что область значений ф-кции имеет вид

93dfg

Итак, мы узнали, что с помощью производной можно определять промежутки, на которых функция возрастает и убывает, а также находить ее минимумы и максимумы. Эти навыки помогают при решении многих практических задач, когда требуется найти такое значение некоторых параметров, при которых какая-то величина принимает максимальное или минимальное значение. Например, продавцы товара могут назначать такую цену на свою продукцию, которая принесет им максимальный доход (просто назначить как можно большую цену нельзя, так как слишком дорогой товар никто не купит). Более подробно такие задачи мы рассмотрим подобные задачи в следующих уроках.

Алгебра и начала математического анализа, 11 класс

Урок № 16. Экстремумы функции.

Перечень вопросов, рассматриваемых в теме

1) Определение точек максимума и минимума функции

2) Определение точки экстремума функции

3) Условия достаточные для нахождения точек экстремума функции

Глоссарий по теме

Возрастание функции. Функция y=f(x) возрастает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Максимум функции. Значение функции в точке максимума называют максимумом функции 

Минимум функции. Значение функции в точке минимума называют минимумом функции 

Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).

Точка максимума функции. Точку  х0 называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  .

Точка минимума функции. Точку  х0 называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  .

Точки экстремума функции. Точки минимума и максимума называют точками экстремума.

Убывание функции. Функция y = f(x) убывает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Алгоритм исследования функции на монотонность и экстремумы:

1) Найти область определения функции D(f)

2) Найти f’ (x).

3) Найти стационарные (f'(x) = 0) и критические (f'(x) не

существует) точки функции y = f(x).

4) Отметить стационарные и критические точки на числовой

прямой и определить знаки производной на получившихся

промежутках.

5) Сделать выводы о монотонности функции и точках ее

экстремума.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Точки, в которых происходит изменение характера монотонности функции – это ТОЧКИ ЭКСТРЕМУМА.

  • Точку х = х0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≥ f(x0).
  • Точку х = х0 называют точкой максимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≤ f(x0).

Точки максимума и минимума – точки экстремума.

Функция может иметь неограниченное количество экстремумов.

Критическая точка – это точка, производная в которой равна 0 или не существует.

Важно помнить, что любая точка экстремума является критической точкой, но не всякая критическая является экстремальной.

Алгоритм нахождения максимума/минимума функции на отрезке:

  1. найти экстремальные точки функции, принадлежащие отрезку,
  2. найти значение функции в экстремальных точках из пункта 1 и в концах отрезка,
  3. выбрать из полученных значений максимальное и минимальное.

Примеры и разбор решения заданий тренировочного модуля

№1. Определите промежуток монотонности функции у=х2 -8х +5

Решение: Найдем производную заданной функции: у’=2x-8

2x-8=0

х=4

Определяем знак производной функции и изобразим на рисунке, следовательно, функция возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)

Ответ: возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)

№2. Найдите точку минимума функции у= 2х-ln(х+3)+9

Решение: Найдем производную заданной функции:

Найдем нули производной:

х=-2,5

Определим знаки производной функции и изобразим на рисунке поведение функции:

Ответ: -2,5 точка min

№3. Материальная точка движется прямолинейно по закону x(t) = 10t2 − 48t + 15, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3с.

Решение: Если нас интересует движение автомобиля, то, принимая в качестве функции зависимость пройденного расстояния от времени, с помощью производной мы получим зависимость скорости от времени. 

V=х'(t)= 20t – 48. Подставляем вместо t 3c и получаем ответ. V=12 мc

Ответ: V=12 мc

№4. На рисунке изображен график функции. На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7. Определите количество целых точек, в которых производная функции отрицательна.

Решение: Производная функции отрицательна на тех интервалах, на которых функция убывает. В данном случае это точки х3,х5,х7. Следовательно, таких точек 3

Ответ: 3

(схема 31)

Точка x0 называется точкой максимума (минимума)  функции y=(x), если существует такая δокрестность точки x0, что для всех   из этой окрестности
выполняется неравенство 
.


Точки максимума и минимума функции называются
точками экстремума (рис. 3.5).

Теорема 3.15 (необходимое условие существования точек экстремума функции одной переменной). Если дифференцируемая
функция y=(x) имеет
экстремум в точке x0,
то её производная в этой точке равна
нулю или не существует

Точки, в которых производная  функции 
либо равна  нулю, либо не
существует, называют критическими точками 1-го  рода

Критические точки, в которых производная функции равна
нулю, называются точками стационарности.

Функция y=(x) называется возрастающей
на некотором интервале (a;b), если на этом интервале большему значению
аргумента x соответствует большее
значение  переменной y, и убывающей, если большему
значению аргумента x соответствует меньшее значение
переменной  y.

 Для
дальнейшего исследования критические точки помещают на числовую ось, которая
делится этими точками на интервалы, после чего 
поверяют выполнение следующих достаточных условий.

Теорема 3.16 (достаточное условие возрастания и убывания
функции 
одной переменной). Если
на некотором интервале (a;b) функция y=(x) дифференцируема и при этом ее производная 
 положительна (отрицательна), то функция на данном
интервале возрастает (убывает)

Теорема 3.17 (достаточное условие существования точек экстремума функции ). Если функция y=(x) непрерывна и
дифференцируема в некоторой δ окрестности критической точки x0 и при переходе через нее
производная 
 меняет знак  с плюса на минус, то точка x0 является точкой максимума; если
с минуса на плюс, то точка x0 является точкой минимума функции

Те критические
точки функции, для которых достаточное условие не выполняется, остаются просто
критическими точками 1-го рода.

        Критические точки 1-го рода, в которых
производная не существует, делятся на классы:

– точки, в которых функция непрерывна, но при выполнении теоремы 3.17 имеет в этих точках  «острый» экстремум (угловые
точки или точки излома) (рис. 3.6);

– точки, в которых функция непрерывна, но касательная в них к графику
функции параллельна оси 0y (угловой коэффициент такой касательной

, то есть не существует); например, для функции  такой точкой является x0=0;

– точки, в которых функция терпит разрыв (всегда переходят в класс
критических точек 2-го рода).

Но проведенное таким образом исследование, не дает ответ на очень важный
вопрос: как возрастает (убывает) функция – выпукло или вогнуто? Ответ на
поставленный вопрос дает дальнейшее рассмотрение функции с помощью второй
производной. Дадим ряд необходимых определений.

Функция называется выпуклой (выпуклой вверх) на некотором интервале (a;b), если касательная, проведенная к графику 
функции в каждой точке этого интервала, лежит выше графика функции.

Функция называется вогнутой (выпуклой вниз) на некотором интервале (a;b), если касательная, проведенная к графику  функции в каждой точке этого интервала, лежит
ниже графика функции.

Точки, отделяющие участки выпуклости от участков вогнутости функции,
называются ее точками перегиба (см. рис. 3.5).

Теорема 3.18 (необходимое
условие существования точек перегиба 
функции). Если дважды дифференцируемая функция y=(x) имеет перегиб в точке x0,
то в этой точке вторая производная
равна нулю или не существует

Точки, в которых вторая производная функции либо равна нулю, либо не
существует, называют критическими точками 2-го рода.

Для дальнейшего исследования критические точки 2-го
рода помещают на числовую ось, которая делится этими точками на интервалы,
после чего  поверяют выполнение следующих
достаточных условий.

Теорема 3.19 (достаточное
условие выпуклости и вогнутости 
функции).
Если на некотором интервале (a;b) функция y=f(x) дважды
дифференцируема и при этом ее вторая производная 
 положительна (отрицательна), то функция на данном интервале вогнута
(выпукла)

Примечание. Очевидно,
что на интервале выпуклости функция имеет точку максимума, а на интервале
вогнутости – точку минимума (см. рис. 3.5).

Теорема 3.20 (достаточное условие существования точек
перегиба функции).
Если функция y=f(x) непрерывна и дважды дифференцируема в некоторой окрестности критической
точки 2-го рода  и при переходе через нее
вторая производная меняет знак, то данная точка 
является точкой перегиба функции

Те критические точки функции, для которых достаточное условие 3.19 не
выполняется, остаются просто критическими точками 2-го рода. Критические точки
2-го рода, в которых вторая производная не существует, делятся на классы:


точки,
в которых функция непрерывна и при выполнении теоремы 3.20 имеет в этих точках
«острый» перегиб,  – в них можно провести
к графику функции бесконечное множество касательных (рис.
3.7);

– угловые точки (переходят из критических точек первого рода);

точки,  в которых функция терпит разрыв  (в точках разрыва 2-го рода график  функции имеет вертикальную асимптоту).

Для окончательного перечисления точек экстремума и перегиба функции
необходимо найти их ординаты, после чего выписать указанные точки двумя
координатами.

Для завершения исследования функции и построения графика необходимо
проверить наличие у нее асимптот. Напомним,
что асимптотой кривой называется прямая, расстояние до
которой от точки, лежащей на кривой, стремится к нулю при неограниченном
удалении от начала координат точки по кривой (рис. 3.8).

Асимптоты могут быть вертикальными, наклонными,
горизонтальными.

Говорят, что прямая x=a является вертикальной асимптотой графика

.

Например, кривая  имеет вертикальную
асимптоту x=-1
,  так как  .

Уравнение наклонной асимптоты  ищем в виде 
y=kx+b (рис. 3.8).

Коэффициенты
k и b находятся
по формулам:
  

                                                                                                         (3.41)

 и     .                                                                                      (3.42)

  Верно и
обратное: если существуют конечные пределы (3.41) и (3.42), то прямая  y=kx+b является
наклонной асимптотой.

  Если хотя бы
один из пределов (3.41) или (3.42) не существует или равен бесконечности, то
кривая y=(x) наклонной
асимптоты не имеет.

  В частности,
если k=0, то 
. Поэтому y=b
– уравнение горизонтальной асимптоты.

  Примечание. Асимптоты графика функции y=(x) при x+∞ и x∞  могут быть разными. Поэтому при нахождении
пределов (3.41) и (3.42) следует отдельно рассматривать случай, когда x+∞ и когда x∞.

 Пример 3.16.
 Исследовать методами дифференциального
исчисления и построить график функции 
.

Решение.

1.      Область
определения: 
.

2.     Исследуем функцию на непрерывность и классифицируем
ее точки разрыва. Заданная функция непрерывна всюду, кроме точки x=4. Вычислим
односторонние пределы в этой точке:

.

Таким образом, точка x=4 является для заданной функции точкой разрыва второго
рода, а прямая x=4 – вертикальной асимптотой графика.

3.     Проведем исследование функции методами
дифференциального вычисления. Для исследования на экстремум и промежутки
монотонности вычислим первую производную:
. На основании теоремы 3.15 найдем критические точки
первого рода, в которых производная равна нулю или не существует

.

Результаты исследования заданной функции с помощью
первой производной занесем в таблицу 3.1,
основываясь на теоремах  3.16, 3.17.

Таблица 3.1                             

Исследование
функции с помощью первой производной

    . Следовательно, (2; 4) – точка максимума, а B(10; 20) –
точка минимума функции.

4.     Исследуем функцию на выпуклость, вогнутость и точки
перегиба с помощью второй производной, основываясь на теоремах 3.23, 3.24:

.

Так как , то график заданной функции точек перегиба не имеет.
Остается выяснить вопрос об интервалах его выпуклости и вогнутости. Результаты
исследования занесем в следующую таблицу 3.2.

Таблица 3.2                                         

Исследование
функции с помощью второй производной

5.  Исследуем график
функции на наличие наклонных и горизонтальных асимптот, уравнение которых как
прямых линий y=kx+b.

Согласно (3.41) . Так как , то горизонтальных асимптот не существует.

Согласно (3.42) .

Таким образом, прямая y=x+4 –
наклонная асимптота графика.

Очевидно, график заданной функции пересекает ось 0y в точке (0; 5) и, на основе обобщения
результатов всех предыдущих исследований, имеет вид, представленный на рисунке 3.9

Понравилась статья? Поделить с друзьями:
  • Как составить реквизиты ооо образец
  • Как найти ул дорожную в воронеже
  • Как найти относительную погрешность физика формула
  • Порвали линолеум как исправить чем заклеить
  • Как найти объем если знаешь массу химия