Как найти критичные точки

Содержание:

  1. Критические точки и экстремумы функции
  2. Теорема Ферма (Необходимое условие существовании экстремумов)
  3. Достаточное условие существования экстремума
  4. Задача пример №117
  5. Задача пример №118
  6. Задача пример №119
  7. Задача пример №120
  8. Задача пример №121

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

1. Для значений Критические точки и экстремумы функции равных Критические точки и экстремумы функцииКритические точки и экстремумы функции угловой коэффициент касательной к графику равен 0. Т.e. Критические точки и экстремумы функции. Эти точки являются критическими точками функции.

2. В точках Критические точки и экстремумы функции функция не имеет производной. Эти тоже критические точки функции.

Критические точки и экстремумы функции

3. Для рассматриваемой нами функции критические точки Критические точки и экстремумы функцииКритические точки и экстремумы функции делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Критические точки и экстремумы функции— критические точки, которые не изменяют возрастание и убывание (или наоборот).

По графику видно, что в точках внутреннего экстремума Критические точки и экстремумы функции производная функции равна нулю, а в точке Критические точки и экстремумы функции производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Критические точки и экстремумы функции

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Критические точки и экстремумы функции производная функции Критические точки и экстремумы функции равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т.е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Достаточное условие существования экстремума

Пусть функция Критические точки и экстремумы функции непрерывна на промежутке Критические точки и экстремумы функции и Критические точки и экстремумы функции. Если Критические точки и экстремумы функции является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

1 ) Критические точки и экстремумы функции слева от точки Критические точки и экстремумы функции положительна, а справа — отрицательна, то точка Критические точки и экстремумы функции является точкой максимума.

2) Критические точки и экстремумы функции слева от Критические точки и экстремумы функции отрицательна, а справа — положительна, то точка Критические точки и экстремумы функции является точкой минимума

3) Критические точки и экстремумы функции с каждой стороны от точки Критические точки и экстремумы функции имеет одинаковые знаки, то точка Критические точки и экстремумы функции не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Критические точки и экстремумы функции на отрезке Критические точки и экстремумы функции записываются как Критические точки и экстремумы функции и Критические точки и экстремумы функции.

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Критические точки и экстремумы функции

Задача пример №117

Для функции Критические точки и экстремумы функции определите максимумы и минимумы и схематично изобразите график.

Решение:

Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки функции: Критические точки и экстремумы функции

3. Точки Критические точки и экстремумы функции и Критические точки и экстремумы функции разбивают область определения функции на три промежутка.

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки:

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание и убывание Критические точки и экстремумы функции

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции. (-1;3) — максимум

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции (1;-1) — минимум

4. Используя полученные для функции Критические точки и экстремумы функции данные и найдя координаты нескольких дополнительных точек, построим график функции.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Задача пример №118

Найдите наибольшее и наименьшее значение функции Критические точки и экстремумы функции на отрезке [-1;2].

Решение:

Сначала найдем критические точки. Так как Критические точки и экстремумы функции, то критические точки можно найти из уравнения Критические точки и экстремумы функции. Критическая точка Критические точки и экстремумы функции не принадлежит данному отрезку [-1; 2], и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Критические точки и экстремумы функции и на концах отрезка.

Критические точки и экстремумы функции

Из этих значений наименьшее — 4, наибольшее 12. Таким образом: Критические точки и экстремумы функции

Задача пример №119

Найдите экстремумы функции Критические точки и экстремумы функции.

Решение:

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки: Критические точки и экстремумы функции, Критические точки и экстремумы функции

3. Интервалы, на которые критические точки делят область определения функции: Критические точки и экстремумы функции

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки.

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Для промежутка (0; 1,5) возьмем Критические точки и экстремумы функции

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции

Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание-убывание Критические точки и экстремумы функции

Используя полученную для функции Критические точки и экстремумы функции информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Критические точки и экстремумы функции и Критические точки и экстремумы функции касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Критические точки и экстремумы функции Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

• Точка Критические точки и экстремумы функции критическая точка функции Критические точки и экстремумы функции, но не является экстремумом.

• Функция Критические точки и экстремумы функции на промежутке [0; 1,5] возрастает.

• Функция Критические точки и экстремумы функциина промежутке Критические точки и экстремумы функции убывает.

Критические точки и экстремумы функции

Задача пример №120

Найдите экстремумы функции Критические точки и экстремумы функции

Решение:

1. Производная Критические точки и экстремумы функции

2. Критические точки: для этого надо решить уравнение Критические точки и экстремумы функции или найти точки, в которых производная не существует. В точке Критические точки и экстремумы функции функция не имеет конечной производной. Однако точка Критические точки и экстремумы функции принадлежит области определения. Значит, точка Критические точки и экстремумы функции является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Критические точки и экстремумы функции и Критические точки и экстремумы функции

Определим знак Критические точки и экстремумы функции, выбрав пробные точки для каждого промежутка:

Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции

Возрастание-убывание Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции убывает.

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

Критические точки и экстремумы функции

Задача пример №121

По графику функции производной Критические точки и экстремумы функции схематично изобразите график самой функции.

Критические точки и экстремумы функции

Решение:

Производная Критические точки и экстремумы функции в точке Критические точки и экстремумы функции равна нулю, а при Критические точки и экстремумы функции отрицательна, значит, на интервале Критические точки и экстремумы функции функция убывающая. При Критические точки и экстремумы функции производная положительна, а это говорит о том, что функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает. Точкой перехода от возрастания к убыванию функции является точка Критические точки и экстремумы функции. Соответствующий график представлен на рисунке.

Критические точки и экстремумы функции

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Другие темы которые вам помогут понять математику:

  • Объемы подобных фигур
  • Нахождение промежутков возрастания и убывания функции
  • Построение графиков функции с помощью производной
  • Задачи на экстремумы. Оптимизации

Лекции:

  • Экстремумы функции двух переменных. Производная по направлению
  • Доказательство неравенств
  • Системы уравнений
  • Максимальные и минимальные значения функции
  • Действия с корнями
  • Отрицательное биномиальное распределение
  • Длина дуги кривой
  • Вычислить несобственный интеграл
  • Градиент функции: пример решения
  • Интеграл натурального логарифма

(схема 31)

Точка x0 называется точкой максимума (минимума)  функции y=(x), если существует такая δокрестность точки x0, что для всех   из этой окрестности
выполняется неравенство 
.


Точки максимума и минимума функции называются
точками экстремума (рис. 3.5).

Теорема 3.15 (необходимое условие существования точек экстремума функции одной переменной). Если дифференцируемая
функция y=(x) имеет
экстремум в точке x0,
то её производная в этой точке равна
нулю или не существует

Точки, в которых производная  функции 
либо равна  нулю, либо не
существует, называют критическими точками 1-го  рода

Критические точки, в которых производная функции равна
нулю, называются точками стационарности.

Функция y=(x) называется возрастающей
на некотором интервале (a;b), если на этом интервале большему значению
аргумента x соответствует большее
значение  переменной y, и убывающей, если большему
значению аргумента x соответствует меньшее значение
переменной  y.

 Для
дальнейшего исследования критические точки помещают на числовую ось, которая
делится этими точками на интервалы, после чего 
поверяют выполнение следующих достаточных условий.

Теорема 3.16 (достаточное условие возрастания и убывания
функции 
одной переменной). Если
на некотором интервале (a;b) функция y=(x) дифференцируема и при этом ее производная 
 положительна (отрицательна), то функция на данном
интервале возрастает (убывает)

Теорема 3.17 (достаточное условие существования точек экстремума функции ). Если функция y=(x) непрерывна и
дифференцируема в некоторой δ окрестности критической точки x0 и при переходе через нее
производная 
 меняет знак  с плюса на минус, то точка x0 является точкой максимума; если
с минуса на плюс, то точка x0 является точкой минимума функции

Те критические
точки функции, для которых достаточное условие не выполняется, остаются просто
критическими точками 1-го рода.

        Критические точки 1-го рода, в которых
производная не существует, делятся на классы:

– точки, в которых функция непрерывна, но при выполнении теоремы 3.17 имеет в этих точках  «острый» экстремум (угловые
точки или точки излома) (рис. 3.6);

– точки, в которых функция непрерывна, но касательная в них к графику
функции параллельна оси 0y (угловой коэффициент такой касательной

, то есть не существует); например, для функции  такой точкой является x0=0;

– точки, в которых функция терпит разрыв (всегда переходят в класс
критических точек 2-го рода).

Но проведенное таким образом исследование, не дает ответ на очень важный
вопрос: как возрастает (убывает) функция – выпукло или вогнуто? Ответ на
поставленный вопрос дает дальнейшее рассмотрение функции с помощью второй
производной. Дадим ряд необходимых определений.

Функция называется выпуклой (выпуклой вверх) на некотором интервале (a;b), если касательная, проведенная к графику 
функции в каждой точке этого интервала, лежит выше графика функции.

Функция называется вогнутой (выпуклой вниз) на некотором интервале (a;b), если касательная, проведенная к графику  функции в каждой точке этого интервала, лежит
ниже графика функции.

Точки, отделяющие участки выпуклости от участков вогнутости функции,
называются ее точками перегиба (см. рис. 3.5).

Теорема 3.18 (необходимое
условие существования точек перегиба 
функции). Если дважды дифференцируемая функция y=(x) имеет перегиб в точке x0,
то в этой точке вторая производная
равна нулю или не существует

Точки, в которых вторая производная функции либо равна нулю, либо не
существует, называют критическими точками 2-го рода.

Для дальнейшего исследования критические точки 2-го
рода помещают на числовую ось, которая делится этими точками на интервалы,
после чего  поверяют выполнение следующих
достаточных условий.

Теорема 3.19 (достаточное
условие выпуклости и вогнутости 
функции).
Если на некотором интервале (a;b) функция y=f(x) дважды
дифференцируема и при этом ее вторая производная 
 положительна (отрицательна), то функция на данном интервале вогнута
(выпукла)

Примечание. Очевидно,
что на интервале выпуклости функция имеет точку максимума, а на интервале
вогнутости – точку минимума (см. рис. 3.5).

Теорема 3.20 (достаточное условие существования точек
перегиба функции).
Если функция y=f(x) непрерывна и дважды дифференцируема в некоторой окрестности критической
точки 2-го рода  и при переходе через нее
вторая производная меняет знак, то данная точка 
является точкой перегиба функции

Те критические точки функции, для которых достаточное условие 3.19 не
выполняется, остаются просто критическими точками 2-го рода. Критические точки
2-го рода, в которых вторая производная не существует, делятся на классы:


точки,
в которых функция непрерывна и при выполнении теоремы 3.20 имеет в этих точках
«острый» перегиб,  – в них можно провести
к графику функции бесконечное множество касательных (рис.
3.7);

– угловые точки (переходят из критических точек первого рода);

точки,  в которых функция терпит разрыв  (в точках разрыва 2-го рода график  функции имеет вертикальную асимптоту).

Для окончательного перечисления точек экстремума и перегиба функции
необходимо найти их ординаты, после чего выписать указанные точки двумя
координатами.

Для завершения исследования функции и построения графика необходимо
проверить наличие у нее асимптот. Напомним,
что асимптотой кривой называется прямая, расстояние до
которой от точки, лежащей на кривой, стремится к нулю при неограниченном
удалении от начала координат точки по кривой (рис. 3.8).

Асимптоты могут быть вертикальными, наклонными,
горизонтальными.

Говорят, что прямая x=a является вертикальной асимптотой графика

.

Например, кривая  имеет вертикальную
асимптоту x=-1
,  так как  .

Уравнение наклонной асимптоты  ищем в виде 
y=kx+b (рис. 3.8).

Коэффициенты
k и b находятся
по формулам:
  

                                                                                                         (3.41)

 и     .                                                                                      (3.42)

  Верно и
обратное: если существуют конечные пределы (3.41) и (3.42), то прямая  y=kx+b является
наклонной асимптотой.

  Если хотя бы
один из пределов (3.41) или (3.42) не существует или равен бесконечности, то
кривая y=(x) наклонной
асимптоты не имеет.

  В частности,
если k=0, то 
. Поэтому y=b
– уравнение горизонтальной асимптоты.

  Примечание. Асимптоты графика функции y=(x) при x+∞ и x∞  могут быть разными. Поэтому при нахождении
пределов (3.41) и (3.42) следует отдельно рассматривать случай, когда x+∞ и когда x∞.

 Пример 3.16.
 Исследовать методами дифференциального
исчисления и построить график функции 
.

Решение.

1.      Область
определения: 
.

2.     Исследуем функцию на непрерывность и классифицируем
ее точки разрыва. Заданная функция непрерывна всюду, кроме точки x=4. Вычислим
односторонние пределы в этой точке:

.

Таким образом, точка x=4 является для заданной функции точкой разрыва второго
рода, а прямая x=4 – вертикальной асимптотой графика.

3.     Проведем исследование функции методами
дифференциального вычисления. Для исследования на экстремум и промежутки
монотонности вычислим первую производную:
. На основании теоремы 3.15 найдем критические точки
первого рода, в которых производная равна нулю или не существует

.

Результаты исследования заданной функции с помощью
первой производной занесем в таблицу 3.1,
основываясь на теоремах  3.16, 3.17.

Таблица 3.1                             

Исследование
функции с помощью первой производной

    . Следовательно, (2; 4) – точка максимума, а B(10; 20) –
точка минимума функции.

4.     Исследуем функцию на выпуклость, вогнутость и точки
перегиба с помощью второй производной, основываясь на теоремах 3.23, 3.24:

.

Так как , то график заданной функции точек перегиба не имеет.
Остается выяснить вопрос об интервалах его выпуклости и вогнутости. Результаты
исследования занесем в следующую таблицу 3.2.

Таблица 3.2                                         

Исследование
функции с помощью второй производной

5.  Исследуем график
функции на наличие наклонных и горизонтальных асимптот, уравнение которых как
прямых линий y=kx+b.

Согласно (3.41) . Так как , то горизонтальных асимптот не существует.

Согласно (3.42) .

Таким образом, прямая y=x+4 –
наклонная асимптота графика.

Очевидно, график заданной функции пересекает ось 0y в точке (0; 5) и, на основе обобщения
результатов всех предыдущих исследований, имеет вид, представленный на рисунке 3.9

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум при условии, что функция f(x) здесь непрерывна.

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна – то минимум.

О случае f??(а) = 0 можно прочитать в Справочнике по высшей математике М.Я. Выгодского.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной: нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы.

Функция                                 y(x) = 3x2 + 2x – 50.

Производная функции:        y?(x) = 6x + 2

Решаем уравнение:              y?(x) = 0

6х + 2 = 0,      6х = -2,           х=-2/6 = -1/3

В данном случае критическая точка – это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум. Чтобы его найти, подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) – 50 = 3*1/9 – 2/3 – 50 = 1/3 – 2/3 – 50 = -1/3 – 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак – «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак – «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка – в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

а) [-9; 9]

б) [-6; -3]

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

3cos(x) = 0,5

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = —arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = —arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = —arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = —arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88,        у = 5,398,

а наименьшее – при х = 4,88:

x = 4,88,          у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f  ?  (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна – то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0,     fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

f(x,y) – f(a,b)

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный – то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.

Источники:

  • Выгодский М.Я. Справочник по высшей математике
  • Черненко В.Д. Высшая математика в примерах и задачах. В 3-х томах. Том 1.

найти экстремумы функции 

f(x)=x2x−1

.

Производная этой функции —

f′(x)=xx−2(x−1)2

, значит, критические точки функции — это (x=0) и (x=2). Точка (x=1) не принадлежит области определения функции.

Они делят реальную числовую прямую на четыре интервала:

−∞;0∪0;1∪1;2∪2;+∞

. Знак первого интервала положительный  (например,

f′

((-1)=0.75)). Второго — отрицательный, третьего — отрицательный, четвёртого — положительный.

−∞;0

0;1

1;2

2;+∞

(+)

(-)

(-)

(+)

ekstremi.bmp

Значит, производная меняет знак только в точках (x=0) и (x=2).

В точке (x=0) она меняет знак с положительного на отрицательный, значит, это точка локального максимума со значением функции (f(0)=0).

В точке (x=2) она меняет знак с отрицательного на положительный, значит, это точка локального минимума со значением функции (f(2)=4).

Критические точки – это точки в которых производная функции равна нулю или не существует. Если производная равна 0 то функция в этой точке принимает локальный минимум или максимум. На графике в таких точках функция имеет горизонтальную асимптоту, то есть касательная параллельна оси Ох.

критические точки

Такие точки называют стационарными. Если видите на графике непрерывной функции «горб» или «яму» помните, что максимум или минимум достигается в критической точке. Рассмотрим для примера следующее задание.

Пример 1. Найти критические точки функции y=2x^3-3x^2+5 .
Решение. Алгоритм нахождения критических точек следующий:

Итак функция имеет две критические точки.

Далее, если нужно провести исследование функции то определяем знак производной слева и справа от критической точки. Если производная при переходе через критическую точку меняет знак с «-» на «+», то функция принимает локальный минимум. Если с «+» на «-» должны локальный максимум.

Второй тип критических точек это нули знаменателя дробных и иррациональных функций
критические точки

Функции с логарифмами и тригонометрические, которые не определены в этих точках
критические точки
критические точки
Третий тип критических точек имеют кусочно-непрерывные функции и модули.
Например любая модуль-функция имеет минимум или максимум в точке излома.

Например модуль y = | x -5 | в точке x = 5 имеет минимум (критическую точку).
Производная в ней не существует, а справа и слева принимает значение 1 и -1 соответственно.

Попробуйте определить критические точки функций

1) функция
2) функция
3) функция
4) функция
5)

Если в ответе у Вы получите значение
1) x=4;
2) x=-1;x=1;
3) x=9;
4) x=Pi*k;
5) x=1.
то Вы уже знаете как найти критические точки и сможете справиться с простой контрольной или тестами.

Понравилась статья? Поделить с друзьями:
  • Как найти человека когда он в тюрьме
  • Как найти область сходимости степенного ряда онлайн
  • Как найти номера домашних телефонов по адресу
  • Как найти знаменитость которая на тебя похожа
  • Как составить тест для приема на работу