Как найти квадрат диагонали прямоугольника


Загрузить PDF


Загрузить PDF

Диагональ — это отрезок, который соединяет две противолежащие вершины прямоугольника.[1]
В прямоугольнике две равные диагонали.[2]
Если известны стороны прямоугольника, диагональ можно найти по теореме Пифагора, потому что диагональ делит прямоугольник на два прямоугольных треугольника. Если стороны не даны, но известны другие величины, например, площадь и периметр или отношение сторон, можно найти стороны прямоугольника, а затем по теореме Пифагора вычислить диагональ.

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 1

    1

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 2

    2

  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 3

    3

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 4

    4

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[5]
    Вы найдете c, то есть гипотенузу треугольника, а значит и диагональ прямоугольника.

    Реклама

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 5

    1

    Запишите формулу для вычисления площади прямоугольника. Формула: S=lw, где S — площадь прямоугольника, l — длина прямоугольника, w — ширина прямоугольника.[6]
    (На рисунке вместо S использовано обозначение А.)

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 6

    2

    В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо S.

    • Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула запишется так: 35=lw.
  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 7

    3

    Перепишите формулу так, чтобы обособить w. Для этого разделите обе стороны уравнения на l. Затем полученное выражение нужно подставить в формулу для вычисления периметра.

  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 8

    4

    Запишите формулу для вычисления периметра прямоугольника. Формула: P=2(w+l), где l — длина прямоугольника, w — ширина прямоугольника.[7]

  5. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 9

    5

    В формулу подставьте значение периметра прямоугольника. Это значение подставляется вместо P.

    • Например, если периметр прямоугольника равен 24 сантиметра, формула запишется так: 24=2(w+l).
  6. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 10

    6

    Разделите обе стороны уравнения на 2. Вы получите сумму сторон прямоугольника, а именно w+l.

  7. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 11

    7

    В формулу подставьте выражение для вычисления w. Это выражение, полученное при обособлении w.

  8. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 12

    8

    Избавьтесь от дроби. Для этого обе части уравнения умножьте на l.

  9. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 13

    9

    Приравняйте уравнение к 0. Для этого из обеих сторон уравнения вычтите член с переменной первого порядка.

  10. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 14

    10

    Упорядочьте члены уравнения. Первым членом будет член с переменной второго порядка, затем член с переменной первого порядка, а затем свободный член. При этом не забудьте про знаки («плюс» и «минус»), которые стоят перед членами. Обратите внимание, что уравнение запишется в виде квадратного уравнения.

  11. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 15

    11

    Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.

  12. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 16

    12

    Найдите l. Для этого приравняйте каждый множитель к нулю и вычислите l. Вы получите два значения (это корни уравнения), которые в случае прямоугольника являются его длиной и шириной.

  13. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 17

    13

  14. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 18

    14

  15. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 19

    15

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  16. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 20

    16

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[10]
    Вы найдете c, то есть гипотенузу треугольника, а значит, и диагональ прямоугольника.

    Реклама

  1. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 21

    1

  2. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 22

    2

  3. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 23

    3

    В формулу подставьте значение площади прямоугольника. Это значение подставляется вместо S.

    • Например, если площадь прямоугольника равна 35 квадратных сантиметров, формула примет вид: 35=lw.
  4. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 24

    4

    В формулу подставьте выражение, характеризующее отношение сторон. В случае прямоугольника можно подставить выражение для вычисления l или w.

  5. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 25

    5

    Запишите квадратное уравнение. Для этого раскройте скобки и приравняйте уравнение к нулю.

  6. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 26

    6

    Разложите квадратное уравнение на множители. Чтобы получить подробные инструкции, прочитайте эту статью.

  7. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 27

    7

    Найдите w. Для этого приравняйте каждый множитель к нулю и вычислите w. Вы получите два значения (так называемые корни уравнения).

  8. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 28

    8

    Подставьте найденное значение ширины (или длины) в уравнение, характеризующее отношение сторон. Так можно найти другую сторону прямоугольника.

  9. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 29

    9

  10. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 30

    10

  11. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 31

    11

    Длину и ширину возведите в квадрат, а затем сложите полученные результаты. Помните, что при возведении числа в квадрат оно умножается на себя.

  12. Изображение с названием Find the Measurement of the Diagonal Inside a Rectangle Step 32

    12

    Извлеките квадратный корень из обеих сторон уравнения. Воспользуйтесь калькулятором, чтобы быстро извлечь квадратный корень. Также можно воспользоваться онлайн-калькулятором.[16]
    Вы найдете c, то есть гипотенузу треугольника, а значит и диагональ прямоугольника.

    Реклама

Об этой статье

Эту страницу просматривали 558 135 раз.

Была ли эта статья полезной?

Посчитать диагональ прямоугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Посчитать диагональ прямоугольника

Чтобы посчитать диагональ прямоугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

прямоугольник

Посчитать чему равна диагональ (d) любого прямоугольника (в том числе и квадрата) можно зная длины его сторон (a и b).

Просто подставьте их в калькулятор и получите результат.

Чему равна диагональ прямоугольника если сторона

a = ,

а сторона

b = ?

Ответ: d =

0

Теория

Чему равна диагональ прямоугольника d если известны длина стороны a и длина стороны b?

Формула

d = a2 + b2

Пример

Если сторона a = 10 см, а сторона b = 5 см, то:

d = 102 + 52 = 100 + 25 ≈ 11.18 см

См. также

Прямоугольник. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).

Можно дать и другое определение прямоугольника.

Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.

Свойства прямоугольника

Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.

Кроме этого:

  • 1. Стороны прямоугольника являются его высотами.
  • 2. Все углы прямоугольника прямые.
  • 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
  • 4. Диагонали прямоугольника равны.
  • 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.

Длиной прямоугольника называется более длинная пара его сторон.

Шириной прямоугольника называется более короткая пара его сторон.

Диагональ прямоугольника

Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

или

Из равенства (1) найдем d:

Пример 1. Стороны прямоугольника равны . Найти диагональ прямоугольника.

Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя в (2), получим:

Ответ:

Окружность, описанная около прямоугольника

Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):

Формула радиуса окружности описанной около прямоугольника

Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.

Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть

Подставляя (3) в (2), получим:

Пример 2. Стороны прямоугольника равны . Найти радиус окружности, описанной вокруг прямоугольника.

Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя в (4), получим:

Ответ:

Периметр прямоугольника

Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Периметр прямоугольника вычисляется формулой:

где ( small a ) и ( small b ) − стороны прямоугольника.

Пример 3. Стороны прямоугольника равны . Найти периметр прямоугольника.

Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя в (5), получим:

Ответ:

Формулы сторон прямоугольника через его диагональ и периметр

Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).

Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:

Из формулы (7) найдем ( small b ) и подставим в (6):

Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):

Вычислим дискриминант квадратного уравнения (10):

Сторона прямоугольника вычисляется из следующих формул:

После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).

Примечание. Легко можно доказать, что

Действительно.

Тогда

Имеем ( small sqrt{D} <2d ,) ( small P > 2d .) Следовательно выполняется неравенство (*).

Пример 4. Диагональ прямоугольника равна , а периметр равен . Найти стороны прямоугольника.

Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим , в (11):

Подставляя значения и в первую формулу (12), получим:

Найдем другую сторону ( small b ) из формулы (8). Подставляя значения и в формулу, получим:

Ответ: ,

Признаки прямоугольника

Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.

Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.

Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.

В данной публикации мы рассмотрим определение, свойства и признаки одной из основных геометрических фигур – прямоугольника. Также приведем формулы, с помощью которых можно найти его площадь и периметр.

  • Определение прямоугольника

  • Свойства прямоугольника

    • Свойство 1

    • Свойство 2

    • Свойство 3

    • Свойство 4

    • Свойство 5

    • Свойство 6

  • Признаки прямоугольника

  • Формулы

Определение прямоугольника

Прямоугольник – это четырехугольник, у которого все углы равны 90° (т.е. являются прямыми).

Прямоугольник ABCD

∠ABC = ∠BCD = ∠BAD = ADC = 90°

Прямоугольник состоит из:

  • длины – более длинная пара сторон. Обычно обозначаются латинской буквой, например, a;
  • ширины – более короткая пара сторон. Чаще всего обозначаются как b.

Сам прямоугольник обычно записывается путем перечисления его вершин, например, ABCD в нашем случае.

Примечание: Прямоугольник является разновидностью параллелограмма.

Свойства прямоугольника

Свойство 1

Противоположные стороны прямоугольника попарно параллельны и равны.

Попарное равенство и параллельность сторон прямоугольника

  • AD = BC = a, AD || BC
  • AB = CD = b, AB || CD

Свойство 2

Длина и ширина прямоугольника одновременно являются его высотами, т.к. они взаимно перпендикулярны.

Высоты прямоугольника

  • a – это высота h1, проведенная к стороне b
  • b – это высота h2, проведенная к стороне a

Свойство 3

Если соединить середины сторон прямоугольника, то получится ромб.

Ромб внутри прямоугольника

Свойство 4

Квадрат диагонали (d) прямоугольника равняется сумме квадратов его смежных сторон.

d2 = a2 + b2

Диагональ прямоугольника

Это следует из теоремы Пифагора, которую можно применить к любому из прямоугольных треугольников, которые образуются в результате деления диагональю прямоугольника.

Свойство 5

Диагонали прямоугольника равны, и в точке пересечения делятся пополам.

Равенство диагоналей прямоугольника

  • AC = BD = d
  • AE = EC = BE = ED

Свойство 6

Около любого прямоугольника можно описать окружность, радиус (R) которой равен половине диагонали этого прямоугольника.

Описанная около прямоугольника окружность

Следовательно, диаметр окружности равен полной длине диагонали прямоугольника.

Признаки прямоугольника

Параллелограмм является прямоугольником, если верно одно из следующих утверждений:

  • Его диагонали равны.
  • Все его углы равны.
  • Если квадрат диагонали равен сумме квадратов его смежных сторон.

Формулы

1. Площадь прямоугольника (S):

S = a ⋅ b

2. Периметр прямоугольника (P):

P = a + a + b + b = 2a + 2b

Прямоугольник — четырёхугольник, у которого все углы равны 90 градусов, т. е. прямые.

Диагональ прямоугольника — прямая проложенная из противоположных вершин прямоугольника.

Диагонали прямоугольника равны и они делят прямоугольник на два равных прямоугольных треугольника.

Чтобы найти диагональ прямоугольника необходимо вспомнить теорему Пифагора, ведь диагональ — это гипотенуза прямоугольного треугольника, а стороны (длина и ширина) прямоугольника являются катетами треугольника.

Как найти диагональ прямоугольника

Воспользуемся теоремой Пифагора и формулой

d= sqrt{a^2 + b^2}

d — диагональ квадрата

a — длина прямоугольника

b — ширина прямоугольника

Подставив в формулу вместо a длину прямоугольника, а вместо b — ширину прямоугольника и произведя расчет мы получим диагональ прямоугольника. Следует помнить, что у прямоугольника две диагонали и они равны между собой.

Диагональ прямоугольника онлайн калькулятор

Чтобы найти диагональ с помощью калькулятора введите длину и ширину прямоугольника и нажмите кнопку Рассчитать. В результате вы получите ответ и подробное решение.

Нахождение диагонали прямоугольника используется в различных жизненных ситуациях. К примеру, при проектировании фундамента дома необходимо проверить его диагонали — они должны быть равны между собой. Также на сайте можно рассчитать диагональ квадрата.

Ваша оценка

[Оценок: 172 Средняя: 3.1]

Диагональ прямоугольника Автор admin средний рейтинг 3.1/5 172 рейтинги пользователей

Понравилась статья? Поделить с друзьями:
  • Как найти дух наслаждения
  • Как найти среднее кубическое
  • Как найти диагонали параллелепипеда если известны длины
  • Как правильно составить акт по результатам инвентаризации
  • Как правильно составить технику желаний