Задание по геометрии — вектора.
Эта страница посвящена группе задач по геометрии, связанной с векторами, и является продолжением рассмотрения серии геометрических заданий, характерных для ЕГЭ и ОГЭ по математике.
Если вы не занимались другими типами этого задания, перейдите по ссылкам в конце страницы.
Задачи на вектора.
Длина отрезка называется модулем вектора. Два вектора равны, если они имеют равные модули и одинаково направлены.
Вектора обозначают либо строчными латинскими буквами a, b, c . , либо указанием концов отрезка AB, CD, MN. Чтобы отличить обозначение вектора от обозначения просто отрезка, эти символы сверху дополняются черточками или стрелочками. В печатном тексте строчные латинские буквы часто выделяют только полужирным шрифтом.
Если вектор обозначен двумя буквами (концами отрезка), то на первом месте всегда стоит начало вектора.
Задать вектор можно разными способами:
1. Графически — изобразить на координатной сетке.
2. Задать начальную и конечную точки и их координаты.
3. Задать длину отрезка и направление. Направление определяют углы с осями координат (направляющие косинусы).
4. Задать координаты вектора.
Уточним понятие координаты вектора.
На рисунке вектор AB имеет координаты (9;5). Обратите внимание, что эти числа фактически задают катеты прямоугольного треугольника, гипотенузой которого является отрезок АВ. Длина этих катетов не изменится, если мы переместим параллельным переносом отрезок, а с ним и весь треугольник, в другое место. Координаты вектора не зависят от его положения на плоскости, а только от длины отрезка и направления. Если направление вектора не совпадает с направлением оси координат, то соответствующая координата вектора будет равна длине катета со знаком «минус».
Вектора можно складывать, вычитать, умножать на число. Для векторов также определены специальные виды умножения — скалярное произведение, результатом которого является число, и — векторное произведение, результатом которого является вектор. (Векторное произведение не входит в обязательную школьную программу по математике, но частично встречается на уроках физики, когда изучают законы индукции магнитного поля.) Операции над векторами можно производить либо координатным методом, либо графическим (правило параллелограмма, правило треугольника. ). Повторите эти правила по учебнику или справочнику и выберите себе «любимое». Я привожу решение тем методом, который короче для конкретной задачи.
Для следующей группы задач чертёж в условии, вообще говоря, не обязателен. Если решать задачи координатным методом, то и в решении можно обойтись без чертежа, тем более, не нужна сетка. Однако лучше чертежи делать всегда, чтобы избежать нечаянных ошибок. А сетка помогает зрительно контролировать своё решение. Конечно, в том случае, если масштаб данных позволяет.
Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину вектора AC .
Длина вектора AC — равна длине отрезка AC, который является гипотенузой прямоугольного треугольника ABC с известными катетами.
AC 2 = AB 2 + BC 2 = 8 2 + 6 2 = 64 + 36 = 100; AC = 10.
Ответ: 10
Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину суммы векторов AB и AD .
По правилу параллелограмма: сумма векторов совпадает с диагональю параллелограмма, проходящей через точку, в которой совмещены начала векторов-слагаемых; начало вектора-суммы находится в точке начала обоих векторов. На рисунке это вектор AC — . Его длину мы находили в предыдущей задаче:
AC 2 = AB 2 + BC 2 = 8 2 + 6 2 = 64 + 36 = 100; AC = 10.
Ответ: 10
Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину разности векторов AB и AD .
По правилу параллелограмма: разность векторов совпадает с другой диагональю параллелограмма (соединяющей концы векторов-слагаемых, если их начала совмещены в одной точке); вектор разности направлен от вычитаемого к уменьшаемому. На рисунке это вектор DB — , направлен от D к B, так как я нахожу разность AB — − AD — .
DB 2 = AB 2 + AD 2 = 8 2 + 6 2 = 64 + 36 = 100; DB = 10.
Ответ: 10
Замечание: Ответы совпали, потому что дан один и тот же прямоугольник, а диагонали в прямоугольнике, как известно, равны.
Две стороны прямоугольника ABCD равны 6 и 8.
Найдите скалярное произведение векторов AB и AD .
Скалярное произведение двух векторов a и b находится по любой из двух формул.
1) Через координаты по формуле (a,b) = a1·b1 + a2·b2
2) Через длины векторов и угол между ними по формуле (a,b) = |a|·|b|·cosα
Способ I.
Координаты вектора AB — равны (8;0), вектора AD — равны (0;6).
Значит ( AB — , AD — ) = 8·0 + 0·6 = 0.
Способ II.
| AB — | = AB = 8, | AD — | = AD = 6, cosα = cos∠DAB = cos90° = 0.
Значит ( AB — , AD — ) = | AB — |·| AD — |·cos∠DAB = 8·6·0 = 0.
Ответ: 0
Замечание: Есть несколько способов обозначения скалярного произведения. Можно со скобками (a,b) или без них a·b _ _ , как обычное умножение.
Две стороны прямоугольника ABCD равны 6 и 8.
Диагонали пересекаются в точке O. Найдите длину суммы векторов AO и BO .
Вспомним, что диагонали прямоугольника пересекаются в его центре и в точке пересечения делятся пополам.
Способ I.
Координаты вектора AO — равны (4;3), обе положительны, потому что вектор направлен вверх, как ось Oy и вправо, как ось Ox. Координаты вектора BO — равны (-4;3), вектор направлен вверх, как ось Oy, но влево, противоположно оси Ox. Чтобы найти сумму векторов, воспользуемся тем, что при сложении векторов их соответствующие координаты складываются. Пусть вектор s(s1;s2) — сумма, тогда s1 = 4 + (- 4) = 4 — 4 = 0; s2 = 3 + 3 = 6. Квадрат длины вектора |s| 2 = s1 2 + s2 2 = 0 2 + 6 2 = 36;
длина вектора |s| = 6.
Способ II.
Чтобы решить задачу графически, надо применить к одному или к обоим векторам параллельный перенос. Для применения правила параллелограмма надо сместить их так, чтобы обе начальные точки совпали. Для применения правила треугольника надо начало одного из векторов-слагаемых совместить с концом другого. Здесь сместили вектор BO — вдоль линии ВD. На рисунке показан результат графического сложения — это вектор AD — . Как видно непосредственно по рисунку, его длина равна 6.
Ответ: 6
Две стороны прямоугольника ABCD равны 6 и 8.
Диагонали пересекаются в точке O. Найдите длину разности векторов AO и BO .
‘Способ I.
Координаты вектора AO — равны (4;3), вектора BO — равны (-4;3). Чтобы найти разность векторов, нужно найти разность их соответствующих координат. Пусть вектор d(d1;d2) — разность, тогда d1 = 4 — (- 4) = 4 + 4 = 8; d2 = 3 — 3 = 0. Квадрат длины вектора |d| 2 = d1 2 + d2 2 = 8 2 + 0 2 = 64; длина вектора |d| = 8.
Способ II.
Чтобы решить задачу графически, совмещаем начала векторов параллельным переносом обоих векторов вдоль диагоналей прямоугольника. На рисунке показан результат графического вычитания — это вектор DС — . Как видно непосредственно по рисунку, его длина равна 8.
Ответ: 8
Продолжить и повторить решение типовых задач ЕГЭ по математике на темы:
Перейдите по стрелке, чтобы найти ссылки на другие задачи ЕГЭ по математике.
Векторы на плоскости Работу выполнила Нина Саидзода. — презентация
Презентация была опубликована 8 лет назад пользователемКирилл Самошин
Похожие презентации
Презентация на тему: » Векторы на плоскости Работу выполнила Нина Саидзода.» — Транскрипт:
1 Векторы на плоскости Работу выполнила Нина Саидзода
2 Содержание I.ТеорияТеория II.Задачи на тему: «Векторы на плоскости» Задача 1 Задача 2 Задача 3 III.Проверь себяПроверь себя
3 Теория «Векторы на плоскости» Сложение Правило треугольника Правило параллелограмма Свойство сложения Вычитание Правило трех точек
5 А B C Для любых трех точек А, В и С справедливо равенство:
6 Правило параллелограмма А B C
8 Вычитание векторов Разностью векторов и называется такой вектор, сумма которого с вектором равна вектору
9 Вычитание B A C
10 Правило трех точек Любой вектор можно представить как разность двух векторов, проведенных из одной точки. А B K
11 Задача 1 ОТВЕТ: 3
12 Задача 2 2. Найдите длину суммы векторов и изображенных на клетчатой бумаге с размером клетки 1×1 Ответ: 5
13 Задача 3 3.Найдите длину разности векторов и, изображенных на клетчатой бумаге с размером клетки 1×1 Ответ: 4
14 Упростите выражения: а) б) в) г) Проверь себя показать
Как найти разность векторов
Формула
Примеры нахождения разности векторов
Задание. Найти разность векторов $bar-bar$, где $bar=(3 ; 0)$ и $bar=(1 ; 2)$
Решение. Для нахождения разности векторов $bar$ и $bar$, вычтем их соответствующие координаты:
Решение. Для нахождения искомой разности векторов вычтем их соответствующие координаты:
Остались вопросы?
Здесь вы найдете ответы.
Поможем выполнить
любую работу
Все еще сложно?
Наши эксперты помогут разобраться
Не получается написать работу самому?
Доверь это кандидату наук!
Ищещь ответ на вопрос с которым нужна помощь?
http://www.myshared.ru/slide/734073/
http://www.webmath.ru/poleznoe/formules_13_2.php
Как найти длину суммы векторов? — Мегаобучалка
Линейные операции над геометрическими векторами
Произведение вектора на число
Произведением вектора на число называется вектор, получающийся из вектора растяжением (при ) или сжатием (при ) в раз, причём направление вектора сохраняется, если , и меняется на противоположное, если . (Рис. 2)
Из определения следует, что векторы и = всегда расположены на одной или на параллельных прямых. Такие векторы называютсяколлинеарными. (Можно говорить также, что эти векторы параллельны, однако в векторной алгебре принято говорить «коллинеарны».) Справедливо и обратное утверждение: если векторы и коллинеарны, то они связаны отношением
. (1)
Следовательно, равенство (1) выражает условие коллинеарности двух векторов.
Сумма векторов
Суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец — с концом вектора , при условии, что начало вектора приложено к концу вектора . (Рис. 3)
Это определение может быть распределено на любое конечное число векторов. Пусть в пространстве даны n свободных векторов . Если к концу вектора приложить начало вектора , а к концу вектора — начало вектора и т.д. и, наконец, к концу вектора — начало вектора , то суммой этих векторов служит замыкающий вектор , начало которого совпадает с началом первого вектора , а конец — с концом последнего вектора . (Рис. 4)
Слагаемые называются составляющими вектора , а сформулированное правило — правилом многоугольника. Этот многоугольник может и не быть плоским.
При умножении вектора на число -1 получается противоположный вектор . Векторы и имеют одинаковые длины и противоположные направления. Их сумма даёт нулевой вектор, длина которого равна нулю. Направление нулевого вектора не определено.
В векторной алгебре нет необходимости рассматривать отдельно операцию вычитания: вычесть из вектора вектор означает прибавить к вектору противоположный вектор , т. е.
Пример 1. Упростить выражение:
.
Решение:
,
то есть, векторы можно складывать и умножать на числа так же, как и многочлены (в частности, также задачи на упрощение выражений). Обычно необходимость упрощать линейно подобные выражения с векторами возникает перед вычислением произведений векторов.
Пример 2. Векторы и служат диагоналями параллелограмма ABCD (рис. 4а). Выразить через и векторы , , и , являющиеся сторонами этого параллелограмма.
Решение. Точка пересечения диагоналей параллелограмма делит каждую диагональ пополам. Длины искомых векторов находим либо как половины сумм векторов, образующих с искомыми треугольник, либо как половины разностей (в зависимости от направления вектора, служащего диагональю), либо, как в последнем случае, половины суммы, взятой со знаком минус. Итак, искомые векторы равны:
Как найти длину суммы векторов?
Эта задача занимает особое место в операциях с векторами, так как предполагает использование тригонометрических свойств. Допустим, Вам попалась задача вроде следующей:
Даны длины векторов и длина суммы этих векторов . Найти длину разности этих векторов .
Решения этой и других подобных задач и объяснения, как их решать — в уроке «Длина суммы векторов и теорема косинусов«.
Простейшие задачи Как найти вектор по двум точкам?
Если
даны две точки плоскости
и
,
то вектор
имеет
следующие координаты:
Если
даны две точки пространства
и
,
то вектор
имеет
следующие координаты:
То
есть, из
координат конца вектора нужно
вычесть соответствующие координаты начала
вектора.
Пример
Даны
две точки плоскости
и
.
Найти координаты вектора
Решение: по
соответствующей формуле:
Как
вариант, можно было использовать
следующую запись:
Можно
и так:
Обязательно
нужно понимать различие
между координатами точек и координатами
векторов:
Координаты
точек –
это обычные координаты в прямоугольной
системе координат. Каждая точка обладает
строгим местом на плоскости, и перемещать
их куда-либо нельзя.
Координаты
же вектора –
это его разложение по базису
,
в данном случае
.
Любой вектор является свободным, поэтому
при необходимости мы легко можем отложить
его от какой-нибудь другой точки
плоскости. Интересно, что для векторов
можно вообще не строить оси, прямоугольную
систему координат, нужен лишь базис, в
данном случае ортонормированный базис
плоскости
.
Записи
координат точек и координат векторов
вроде бы схожи:
,
а смысл
координат абсолютно разный,
и следует хорошо понимать эту разницу.
Пример
Даны
точки
.
Найти векторы
.
Как найти длину отрезка?
Если
даны две точки плоскости
и
,
то длину отрезка
можно
вычислить по формуле
Если
даны две точки пространства
и
,
то длину отрезка
можно
вычислить по формуле
Примечание: Формулы
останутся корректными, если переставить
местами соответствующие координаты: и ,
но более стандартен первый вариант
Пример
Даны
точки
и
.
Найти длину отрезка
.
Ответ:
Если
дан вектор плоскости
,
то его длина вычисляется по формуле
.
Если
дан вектор пространства
,
то его длина вычисляется по формуле
.
Пример
Даны
точки
и
.
Найти длину вектора
.
Решение: Сначала
найдём вектор
:
По
формуле
вычислим
длину вектора:
Ответ:
Пример
а)
Даны точки
и
.
Найти длину вектора
.
б)
Даны векторы
,
,
и
.
Найти их длины.
а) Решение: найдём
вектор
:
Вычислим
длину вектора:
Ответ:
б) Решение:
Вычислим
длины векторов:
Действия с векторами в координатах
1) Правило
сложения векторов.
Рассмотрим два вектора плоскости
и
.
Для того, чтобы сложить векторы,
необходимо сложить
их соответствующие координаты
:
.
Частный
случай – формула разности векторов:
.
Аналогичное
правило справедливо для суммы любого
количества векторов, например, найдём
сумму трёх векторов:
Если
речь идёт о векторах в пространстве, то
всё точно так же, только добавится
дополнительная координата. Если даны
векторы
,
то их суммой является вектор
.
2) Правило
умножения вектора на число.
Для того чтобы вектор
умножить
на число
,
необходимо каждую координату данного
вектора умножить на число
:
.
Для
пространственного вектора
правило
такое же:
Пример
Даны
векторы
и
.
Найти
и
Решение: Для
действий с векторами справедлив обычный
алгебраический приоритет: сначала
умножаем, потом складываем:
Ответ:
Вычисление векторных P-норм — линейная алгебра для науки о данных -IV | by Harshit Tyagi
Математические принципы, лежащие в основе методов регуляризации в машинном обучении
В серии «Линейная алгебра», чтобы дать вам краткий обзор, мы узнали, что такое векторы, матрицы и тензоры, как вычислить скалярное произведение для решать системы линейных уравнений, и что такое единичные и обратные матрицы.
Продолжая серию, следующая очень важная тема Векторные нормы.
Итак,
Что такое векторные нормы?
Векторные нормы — это любые функции, которые отображают вектор в положительное значение, которое является величиной вектора или длиной вектора. Теперь есть разные функции, которые предлагают нам разные способы вычисления длин векторов.
Это нормально, но зачем мы это изучаем и что представляет собой длина этого вектора…?
Зачем изучать Нормы??
Нормы — это очень важная концепция в машинном и глубоком обучении, которая обычно используется для расчета ошибки в прогнозах модели ML/DL.
Длина вектора обычно представляет собой ошибку между предсказанием и фактическим наблюдением (меткой).
Нам часто нужно вычислить длину или величину векторов, чтобы использовать их непосредственно в качестве метода регуляризации в ML или как часть более широких векторных или матричных операций.
Итак, что это за функции?
Нормы — это любые функции, которые характеризуются следующими свойствами:
- Нормы возвращают неотрицательные значения, поскольку это величина или длина вектора, которые не могут быть отрицательными.
- Нормы равны 0 тогда и только тогда, когда вектор является нулевым вектором.
- Нормы следуют неравенству треугольника, т. е. норма суммы двух (или более) векторов меньше или равна сумме норм отдельных векторов. Он просто утверждает, что геометрически кратчайший путь между любыми двумя точками — это линия.
Представлено уравнением:
∥a+b∥≤∥a∥+∥b∥
, где a и b — два вектора, а вертикальные черты ∥ обычно обозначают норму. - Норма вектора, умноженная на скаляр, равна абсолютному значению этого скаляра, умноженному на норму вектора.
Представляющее уравнение: ∥k⋅ x ∥=|k|⋅∥ x ∥
Расчет P-нормы основан на центральной формуле:
∥ x 5(0 0 ∑ᵢ| x ᵢ|ᵖ)¹/ᵖ
Вот быстрый четырехэтапный процесс получения p-нормы вектора
- Получите абсолютное значение каждого элемента вектора.
- Возведите эти абсолютные значения в степень р.
- Подсчитайте сумму всех этих увеличенных абсолютных значений.
- Получите p ₜₕ root или поднимите степень до 1/p по результату предыдущего шага.
Теперь, исходя из значения P в формуле , получаем разные типы Норм. Давайте обсудим их один за другим:
Подставив p = 0 в формулу, мы получим норму L⁰.
Все, что возведено в степень 0, вернет 1, кроме 0. L⁰ на самом деле не является нормой, поскольку не обладает характеристикой #4 (описанной выше). Умножение константы даст нам само это число.
Если положить p = 1 , получим L¹ нормы. По сути, формула будет вычислять сумму абсолютных значений вектора.
Формула: |x|₁=(∑ᵢ |xᵢ|)
Используется для расчета средней абсолютной ошибки.
Код Python
Мы можем получить норму L¹, используя модуль линейной алгебры пакета Numpy, который предлагает метод norm(). По умолчанию функция norm настроена на вычисление нормы L2, но мы можем передать значение p в качестве аргумента. Итак, для нормы L¹ мы передадим ей 1:
from numpy import linalg#создание вектора
a = np.array([1,2,3])#вычисление нормы L¹
linalg.norm(a, 1)##output: 6.0
Ввод p = 2 дает нам норму L². Формула будет вычислять квадратный корень из суммы квадратов значений вектора.
Также известна как евклидова норма. Это широко используемая норма в машинном обучении, которая используется для вычисления среднеквадратичной ошибки.
∥x∥₂ = (∑ᵢ xᵢ²)¹/²
Итак, для вектора u, L² Норма будет выглядеть так:
Код Python
Опять же, используя ту же функцию нормы, мы можем вычислить норму L²:
норма(а) # или вы можете передать 2 следующим образом: норма(а,2 )## output: 3.7416573867739413
∑ᵢ|xᵢ|²
Квадрат нормы L2 — это просто норма L2, но без квадратного корня. Возведение в квадрат нормы L2, рассчитанной выше, даст нам норму L2.
Это удобно, потому что удаляет квадратный корень, и мы получаем простую сумму всех квадратов значений вектора.
Евклидова норма в квадрате широко используется в машинном обучении отчасти потому, что ее можно вычислить с помощью векторной операции x ᵀ x.
Код Python
Давайте проверим это в коде Python:
x = np.array([[1], [3], [5], [7]])
euclideanNorm = x.T.dot(x)## output: array([[84]])np.linalg.norm(x)**2
##ouput: 84.0
Это норма L∞, которая просто возвращает абсолютное значение наибольшего элемента вектора.
Формула принимает следующий вид:
‖x‖∞=maxᵢ|xᵢ|
Код Python
Давайте проверим это в коде Python, нам просто нужно передать бесконечность в функцию нормы:
x = np.array([[1], [3], [5], [7] ])
norm(x, np.inf)##output: 7.0
Вы можете поиграть со всеми кодами Python здесь:
Google Colaboratory
Расчет норм
colab. research.google.com
25 Попробуем проанализировать графики графически. Я использовал ту же формулу для двух измерений (x, y), а третье измерение представляет саму норму.
Вы можете проверить этот поверхностный плоттер, который я использовал для получения этих графиков.
L¹ Норма
Создано с использованием https://academo.org/demos/3d-surface-plotter/
Больше похоже на прикрепленные друг к другу плоскости. X и Y являются параметрами здесь.
Норма L²
https://academo.org/demos/3d-surface-plotter/
Квадрат L² Норма
https://academo.org/demos/3d-surface-plotter/
Квадрат нормы L2 и норма L2 выглядят одинаково, но здесь есть важное отличие в отношении крутизны графика около нулевой отметки (в средней синей области). Квадратная норма L2 плохо различает ноль и другие меньшие значения. Таким образом, это раскрывает одну проблему с его использованием.
В этом уроке мы рассмотрели различные способы вычисления длин или величин векторов, называемые векторными нормами.
В частности, мы научились:
- вычислять норму L1, которая рассчитывается как сумма абсолютных значений вектора.
- вычислить норму L2, которая рассчитывается как квадратный корень из суммы квадратов векторных значений.
- вычислить максимальную норму, которая рассчитывается как максимальные значения вектора.
С помощью этого канала я планирую выпустить пару серий, охватывающих все пространство науки о данных. Вот почему вам стоит подписаться на канал:
- Эти серии будут охватывать все необходимые/требуемые качественные учебные пособия по каждой из тем и подтем, таких как основы Python для науки о данных.
- Объяснение математики и причин того, почему мы делаем то, что делаем в машинном обучении и глубоком обучении.
- Подкасты с учеными и инженерами данных из Google, Microsoft, Amazon и т. д., а также с руководителями компаний, работающих с большими данными.
- Проекты и инструкции по реализации изученных тем. Узнайте о новых сертификатах, Bootcamp и ресурсах, чтобы взломать эти сертификаты, подобные этому Экзамен на сертификат разработчика TensorFlow от Google.
Введение в векторы — Уроки Wyzant
Векторы обычно используются для представления скорости и ускорения, силы и других
направленных величин в физике.
Векторы — это величины размера и направления .
Все объекты, с которыми мы работали в исчислении с одной переменной (Исчисление 1 и
2), имели количество, т. е. мы могли их измерить.
Некоторые величины имеют только размер, например время, температура или вес. Эти величины
называются скалярами . Другие величины могут иметь размер и направление .
Скорости, например, тоже имеют направление, и поэтому они описываются
как векторы. Мы обозначаем векторы стрелкой, указывающей в направлении, в котором они ориентированы.
Направление вектора на координатной плоскости интуитивно понятно. Положительное направление Y,
вверху — это север, а положительное направление х — восток. Следующий вектор
находится немного восточнее севера.
Направление вектора также можно описать с помощью количества. Обычно направление
векторов указывается по отношению к другому направлению. Следующий вектор —
, описанный как «5 миль в час 53,13 градуса к северу от востока».
Этот вектор можно также описать как «5 миль в час 36,87 градуса к востоку от севера».
Чтобы упростить значения векторов, мы используем ось x (или восток) в качестве отправной точки
для измерения. Линия, лежащая на оси x, будет иметь направление 0 градусов.
Следующий вектор может быть обозначен многими различными направлениями.
Последний вектор будет 53,13 градуса к югу от запада.
Скаляры и векторы
Помните, что у скаляров есть только размер, а у векторов есть размер и направление.
Скорость и скорость тоже разные. Хотя они иногда используются взаимозаменяемо, скорость
считается скаляром, а скорость считается вектором.
Существует также расстояние между расстоянием и перемещением. Расстояние является скаляром
, потому что оно имеет только размер. Смещение, однако, является вектором, потому что оно сообщает нам
, как далеко объект переместился в определенном направлении.
Скалярами можно манипулировать по законам арифметики для действительных чисел, тогда как векторы
имеют особые законы, которым необходимо следовать при работе друг с другом. Например,
, если вы прошли 4 квартала, а затем еще 3 квартала, сколько кварталов вы прошли?
Мы можем сложить эти количества, чтобы получить 7 блоков. Однако, если вы прошли 4 квартала
на восток и 3 квартала на север, как далеко вы прошли от начальной точки?
Поскольку эти векторы имеют разные направления, мы не можем просто сложить их вместе.
Количество пройденных градусов можно либо измерить по изображению, либо рассчитать
с помощью тригонометрии.
Результирующий вектор будет состоять из 5 блоков по 0,644 радиана.
Векторное обозначение
Векторы имеют специальные обозначения, отличающие их от скаляров. Векторы может
отметить как
Для наших целей мы всегда будем обозначать вектор стрелкой вверху, чтобы обозначить
величину с направлением.
Предыдущий вектор будет обозначаться как
Мы также можем использовать единичные векторы i и j для обозначения вектора, где i = 1,0 >
и j = 0,1>
Величина или длина вектора обозначается как
Мы используем величину, чтобы найти количество вектора. Всякий раз, когда мы хотим игнорировать
направление вектора (учитывая площадь, объем и т. д.), мы можем просто взять величину.
направление вектора обозначается как
Векторные равенства и операции
Равные векторы
Имеют одинаковую величину и одинаковое направление, они не обязательно должны иметь одинаковые
начальных точки.
Противоположные векторы
Имеют одинаковую длину, но направлены в противоположном направлении. При сложении
противоположных вектора компенсируют друг друга.
Параллельные векторы
Имеют одинаковое направление, но разную длину.
Векторы, имеющие одинаковое направление, могут быть умножены на скаляры, чтобы получить другую величину
.
Добавление вектора
При добавлении векторов мы присоединяем начало второго вектора (начальную точку) к
конец первого вектора (конечная точка).
Вычитание векторов
Скалярное умножение
Скалярное умножение — это когда вектор умножается на скаляр, чтобы увеличить или
уменьшить величину вектора. Скаляр не влияет на направление
вектора.
Точечный продукт
Если у нас есть два вектора u и v , скалярное произведение обозначается как
где |и| и |v| — величины, а Θ — угол между векторами.
Чтобы проиллюстрировать, что означает скалярное произведение, давайте возьмем последнюю часть формулы
и разберем ее.
Если мы возьмем вектор v , умноженный на cos(Θ) , мы получим
проекцию v на u . Проекция образована опусканием перпендикулярной линии
из конечной точки v на u, таким образом образуя прямой угол
. Проекция v на u — это количество вектора v, идущего в направлении u.
Скалярное произведение v и u просто умножает проекцию v на вектор u
(или наоборот).
Если мы вернемся к нашей формуле, мы можем заменить проекцию v на вектор
v.
Этот результат говорит нам, какая часть вектора v идет в направлении вектора
u .
Чем это полезно? Если мы подумаем о физических приложениях, если у нас есть два
силы под углом, мы можем видеть, какая сила действует в определенном направлении.
Скалярное произведение иногда называют скалярным произведением, поскольку оно всегда дает
скалярную величину. Скалярное произведение также может помочь нам измерить угол между векторами,
найти проекции и определить, перпендикулярны ли два вектора, как мы увидим
в следующих примерах.
Обратите внимание, что перпендикулярные векторы всегда будут давать скалярное произведение, равное 0, потому что
не является проекцией, то есть никакое количество векторов не идет в направлении другого вектора.
Для того, чтобы уяснить, что собой представляет разность векторов, введём понятие откладывания вектора от определённой точки и понятие суммы векторов.
Определение
Если некоторая точка A является началом вектора a, то говорят, что он является отложенным от точки A.
Теорема. От каждой точки можно отложить только один вектор, имеющий заданный модуль и направление. Докажем эту теорему.
Доказательство:
В случае, когда вектор нулевой, то теорема очевидна. Нулевые вектора в одной и той же точки совпадают между собой, т. е. являются одним и тем же вектором.
Сделаем построение. Точкой A обозначим начало вектора a, а точкой B его конец. Пусть у нас имеется некоторая точка K. Проведём через неё прямую b, которая параллельна вектору a. Отложим на данной прямой равные по своей абсолютной величине вектору a отрезки KL и KM. Из векторов, образованных этими отрезками искомым можно назвать только сонаправленный с a.
Единственность нашего вектора следует из того, что мы построили и видим.
Теорема доказана.
Определение
Суммой векторов a и b называется вектор с тем же началом, что вектор a и концом, как у вектора b. При этом вектор b должен начинаться в той же самой точке, в которой заканчивается вектор a.
Равные векторы, начинающиеся в разных точках, нередко обозначают одной и той же буквой. Иногда про подобные векторы говорят, как об одном и том же векторе, отложенном из разных мест.
Разность векторов
Определение
Разностью векторов a и b называется сумма вектора a c вектором, который противоположно направлен к вектору b.
По-другому это определение можно сформулировать следующим образом: разностью двух векторов a и b называется вектор c, который при сложении с вычитаемым b образует уменьшаемое, т. е. вектор a.
Формулами это записывается так:
b + c = a
a – b = c
Как найти разность векторов аналитическим способом
В двухмерном пространстве векторов a {x1, y1} и b {x2, y₂} разность векторов можно вычислить, как показано ниже:
c {x3, y3} = {x₁ — x2, y1 — y₂}.
Вычитание векторов в 3-мерном пространстве выглядит следующим образом:
c {x3; y3; z₃} = {x₁ — x2, y₂ — y₂, z1 — z2}.
Как найти разность векторов графическим способом
Нужно воспользоваться правилом треугольника. Последовательность действий следующая:
- Постройте по координатам векторы, для которых требуется найти разность;
- Совместите концы построенных векторов. Для этого нужно построить два равных заданным направленных отрезка, концы у которых будут в одной и той же точке;
- Соедините начала построенных отрезков и укажите их направление. Вектор c, называемый разностью векторов, будет иметь своё начало в той же точке, где начинается вектор, именуемый уменьшаемым и заканчивается в точке начала вычитаемого. Смотрите рисунок ниже.
Есть ещё один способ графического нахождения разности векторов. Он предусматривает следующий порядок действий:
- Постройте исходные направленные отрезки;
- Отразите вычитаемый отрезок. Для этого постройте противоположно направленный и равный ему отрезок и затем совместите начало этого отрезка с уменьшаемым;
- Постройте сумму, т. е. соедините начало первого отрезка и конец второго.
Нет времени решать самому?
Наши эксперты помогут!
Примеры вычисления разности векторов
Примеры
Вычислить вектор c, который представляет собой разность вектора a ={1;
2} и вектора b = {4; 8}.
Решение:
Действуем по выше указанному правилу
a — b = {1 — 4; 2 — 8} = {-3; -6}
Ответ: с{-3; -6}.
Вычислить вектор c, который является разностью векторов a = {1; 2; 5} и
b = {4; 8; 1}.
Решение:
Почти всё делается, как в уже рассмотренном примере, только добавляется третья координата.
a — b = {1 — 4; 2 — 8; 5 — 1} = {-3; -6; 4}
Ответ: c {-3; -6; 4}.
На рисунке векторы
Требуется построить разности: p — n, m —
n,m — n — p и найти ту из них, которая
имеет наименьший модуль.
Решение:
Для изображения p — n проще всего воспользоваться правилом треугольника. Параллельным переносом
отрезки
следует соединить таким образом, чтобы совпали их конечные точки. Далее нужно соединить начальные точки и
определить направление. В нашем случае вектор разности берёт своё начало там же, где и вычитаемый n.
Для изображения m — n правильнее будет воспользоваться вторым графическим способом нахождения разности
векторов. Сначала построим вектор противоположный n и найдём его суммы с вектором m.
Для нахождения разности m — n — p разобьём это выражение на два действия. Возможны следующие варианты:
- m — (n + p). Сначала нужно построить сумму,
затем уже вычесть её из m; - (m — n) — p. Сначала находим m — n,
осле этого от полученной разности отнимаем p; - (m— p) — n. Сначала определяем m — p, затем от
полученного результата отнимаем n.
Из вычислений выше нам известна разность m — n. Для получения решения нам нужно вычесть из неё
p.
Используя определение 3 построим разность векторов на рисунке. На нём изображён окончательный результат
и промежуточный.
Теперь нужно определить наименьший модуль. В нашем случае для этого можно лишь визуально оценить длины p — n,
m — n и m — n — p. Из построения сразу видно, что наименьшим модулем обладает вектор разности m — n —
p.
Содержание:
- Векторы
- Действия над векторами
- Умножение вектора на число
- Скалярное произведение векторов
- Векторное произведение
- Смешенное произведение векторов
- Разложение вектора по базису
- Действия над векторами, заданными своими координатами
- Проекция вектора на ось
- Проекции вектора на оси координат
- Направляющие косинусы вектора
- Разложение вектора по ортам
- Действия над векторами, заданными в координатной форме
- Вектор — основные определения
- Операции над векторами и их свойства
- Сформулируем и докажем ещё одну важную для решения некоторых задач теорему.
- Координаты вектора
- Скалярное произведение векторов и его свойства
- Векторы и их решение
- Собственные числа и собственные векторы
- Векторная алгебра
- Векторы: основные определения, линейные операции
- Линейные операции над векторами
- Умножения вектора на скаляр
- Основные свойства проекции вектора на ось
- Прямоугольная система координат в пространстве. Координатная и алгебраическая формы задания векторов
- Скалярное, векторное, смешанное произведения векторов
- Векторное произведение двух векторов
- Смешанное произведение векторов, заданных в координатной форме
- Простейшие задачи аналитической геометрии
- Задача об определении площади треугольника
- Задача о деление отрезка в заданном отношении
Векторы
В математике вектором называют величину, которая характеризуется только числом и направлением. Так определённые векторы ещё называют свободными векторами. Примером физических величин, которые имеют векторный характер являются скорость, сила, ускорение. Геометрически вектор — это направленный отрезок, хотя правильней говорить про целый класс направленных отрезков, которые все параллельны между собой, имеют одинаковые длину и направление.
Векторы обозначают малыми латинскими буквами с чертой сверху , или двумя большими латинскими буквами, которые обозначают его начало и конец, например . Длина (модуль) вектора — это длина отрезка, который отвечает данному вектору и обозначается В зависимости от соотношения длин и направлений различают следующие виды векторов:
Действия над векторами
Рассмотрим основные действия, определённые над векторами.
1. Сложение векторов. Суммой векторов называют вектор , который соединяет начало вектора с концом вектора , при условии, что вектор отложен от конца вектора . Такой способ сложения векторов называют правилом треугольника.
Учитывая, что , то найти сумму векторов можно также по так называемым «правилом параллелограмма» (рис. 3)
Вычитание векторов сводится к сложению противоположного вектора
Запишем основные свойства действий сложения векторов:
Заметим, что сумма нескольких векторов находится последовательным сложением двух из них, например:
Геометрически сумма нескольких векторов находится их последовательным отложением один за одним так, чтоб начало следующего совпадало с концом предыдущего. Суммой является вектор, который будет соединять начало первого с концом последнего (рис. 4). Если такая последовательность векторов даёт замкнутую ломаную то суммой векторов является (рис. 5).
Умножение вектора на число
Произведением вектора на число называют вектор , для которого выполняются условия:
а) ;
б) , причём сонаправленные если противоположно направленные, если . Отсюда, очевидно, что необходимым и достаточным условием коллинеарности векторов является соотношение .
Запишем основные свойства действий умножения вектора на число:
Скалярное произведение векторов
Скалярным произведением или векторов и называют выражение , где угол, который образуют векторы. Отметим, что углом между векторами считают угол между их направлениями. Если хотя бы один из векторов равен , то их скалярное произведение считают равным нулю.
Очевидно, что скалярное произведение двух ненулевых векторов будет равно нулю тогда и только тогда когда эти вектора перпендикулярны (ортогональны). Действительно, если . Но , следовательно,
Наоборот, если и согласно определениям
.
Например, скалярное произведение будет равным
Запишем основные свойства действий скалярного умножения векторов:
Векторное произведение
Векторным произведением двух векторов и называется вектор , который удовлетворяет условия:
1) модуль вектора равен произведению модулей векторов и на синус угла между ними
2) вектор перпендикулярный к плоскости, которая определяется векторами и (рис. 5).
3) вектор направленный так, что кратчайший поворот вектора к вектору видно с конца вектора таким, что происходит против движения стрелки (то есть вектора , и образуют правую упорядоченную тройку, или правый руль).
Модуль векторного произведения равен площади параллелограмма, построенного на векторах и . Векторное произведение выражается формулой , где площадь параллелограмма построенного на векторах и , единичный вектор направления .
Приведём основные свойства векторного произведения:
1) векторное произведение равно нулю, если векторы и коллинеарные, или один из них нулевой;
2) от перестановки местами векторов-сомножителей векторное произведение меняет знак на противоположный: (векторное произведение не имеет свойств перестановки);
3) (распределительный закон);
4) (соединительный закон).
Физическое содержание векторного произведения такое. Если сила, а радиус-вектор точки её приложения, которая имеет начало в точке , то моментом силы относительно точки является вектор, который равен векторному произведению на , то есть .
Смешенное произведение векторов
Смешенным произведением векторов называют скалярное произведение вектора на вектор . Смешенное произведение обозначают (), поэтому по определению имеем
Как результат скалярного произведения векторов и смешенное произведение является скалярной величиной (числом). Геометрически смешенное произведение — это объём параллелепипеда, построенного на эти векторах, взятый со знаком плюс, если векторы образуют правую тройку, и со знаком минус, когда эта тройка левая (рис. 7).
Действительно, , где угол между векторами угол между векторами и .
Объём V параллелепипеда, построенного на векторах равный произведению площади основы S на высоту h.
Однако, знак смешенного произведения совпадает со знаком , то есть он положительный, когда угол острый ( образуют правую тройку векторов) и отрицательный, когда угол тупой ( образуют левую тройку векторов). Поэтому:
Из геометрического содержания смешенного произведения выходит, что
1) смешанное произведение равно нулю тогда и только тогда, когда перемноженные вектора копланарные (условие компланарных векторов);
2)
Учитывая коммутативность скалярного произведения и антикоммутативность векторного, для произвольных векторов имеем
Пример 1.
Доказать, что когда М — точка АВС и О — произвольные точки пространства, то выполняется равенство:
Решение.
Пусть медиана треугольника АВС. По свойствам медиан треугольника Применив к векторам и формулу вычитания векторов
тогда
Пример 2.
У прямоугольного параллелепипеда рёбра , имеют длину 2, 3, 5. Вычислить длины отрезков и и угол между прямыми и .
Решение.
Пусть единичные вектора направленные вдоль рёбер, которые рассматриваются. Тогда (поскольку параллелепипед прямоугольный).
рис. 9.
Далее,
Этим закончен «перевод» условия задачи на «язык» векторов.
Теперь произведём вычисления с векторами:
Наконец «переводим» полученные вектора равенства снова на «геометрический язык». Поскольку аналогично .
Далее поскольку , где угол между данными векторами то , отсюда получаем . Теперь с помощью тригонометрических таблиц находим значения угла .
Разложение вектора по базису
Базисом на площади называют упорядоченную пару неколлинеарных векторов и точку отсчёта.
Теорема. Любой вектор на плоскости можно разложить по двум неколлинеарным векторам и , то есть представить в виде: .
Доказательство.
Пусть векторы компланарные и векторы и неколлинеарные. От точки О отложим все три вектора и на продолжении векторов и построим параллелограмм ONCM так, чтобы вектор был его диагональю.
Тогда по правилу параллелограмма .
Но , как коллинеарные векторы. Следовательно, вектор.
Числа, которые стоят при базисных векторах в разложении вектора за двумя неколлинеарными векторами называют координатами вектора в данном базисе и обозначают .
Соответственно в пространстве базисом называется упорядоченная тройка некомпланарных векторов и точки отсчёта. Для четырёх некомпланарных векторов справедлива следующая теорема.
Теорема. Любой вектор в пространстве можно разложить по трём некомпланарным векторам , и , то есть представить в виде: .
Доказательство.
От точки О отложим векторы и на продолжении векторов построим параллелограмм
в котором вектор является диагональю. Как видим
Числа х,у,z которые стоят при базисных векторах в разложении вектора по трём некомпланарным векторам называют координатами вектора в пространстве и обозначают . Если базисные вектора взаимно перпендикулярны (их обозначают ), то вместе с точкой отсчёта они образуют декартовую систему координат, а координаты вектора в таком базисе называют декартовыми координатами. В декартовой системе координат разложение вектора будет иметь вид . Если началом вектора является точка , а концом — точка , то координаты вектора вычисляют как разность соответствующих координат точек А и В,
Отсюда легко установить длину вектора как расстояние между двумя точками:
Действия над векторами, заданными своими координатами
1. При сложении двух, или более векторов их соответствующие координаты складываются:
Действительно:
2. При вычитании векторов соответствующие координаты вычитаются:
Доказательство аналогично предыдущему.
3. При умножении вектора на число все координаты умножаются на это число.
Правда, для вектора и числа имеем:
4. Скалярное произведение двух векторов равно сумме произведений соответствующих координат:
Правда:
Поскольку выполняется Следовательно, мы можем записать
5. Векторное произведение векторов заданных своими координатами вычисляется так:
6. Смешенное произведение трёх векторов равняется:
Пример 1.
Зная координаты векторов , найти координаты векторов .
Решение:
Ответ: .
Пример 2.
Зная координаты векторов вычислить координаты вектора .
Решение.
Ответ: .
Пример 3.
Зная координаты векторов вычислить:
а) скалярное произведение векторов
б) векторное произведение векторов
в) смешенное произведение векторов .
Решение.
Ответ:
На основании приведённых выше формул действий над векторами можно установить следующие условия и соотношения для нулевых векторов
1. Угол между векторами.
2. Условие перпендикулярности двух векторов:
(векторы перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю).
3. Условие коллинеарности двух векторов: (векторы коллинеарные тогда и только тогда, когда соответствующие их координаты пропорциональны).
4. Условие компланарности трёх векторов.
(три вектора компланарны тогда и только тогда, когда их смешенное произведение равно нулю).
5. Деление отрезка АВ в заданном отношении.
Если точка делит отрезок АВ в отношении , то координаты точки М находят по формуле:
Если точка М делит отрезок АВ на пополам то , и координаты точки находят согласно формуле:
Действия над векторами (теория)
а) Произведение вектора на число.
Определение 1. Произведением вектора на число λ называется вектор ,
который имеет длину и направление его совпадает с направлением вектора если λ > 0, и противоположно ему, если λ < 0 (рис.12).
Рис. 12.
Условие (2.6)
является условием коллинеарности двух векторов.
б) Сложение векторов.
Определение 2. Суммой двух векторов и называется вектор , начало которого совпадает с началом вектора , а конец совпадает с концом вектора , при условии, что начало вектора совпадает с концом вектора (правило треугольника) (рис.13).
Рис. 13.
Понятно, что вектор в этом случае является диагональю параллелограмма, построенного на векторах и (правило параллелограмма) (рис.13).
Для векторной суммы справедливый переместительный закон
Легко убедиться, что для векторной суммы имеет место соединительный
закон .
Исходя из определения 2, легко находим сумму, например, четырех векторов (рис. 14).
Рис. 14.
Вектор соединяет начало первого вектора с концом вектора (правило многоугольника).
в) Вычитание векторов.
Действие вычитание векторов можно рассматривать как обратное действие относительно сложения векторов.
Определение. Разностью называется вектор , который в сумме с вектором дает вектор (рис. 15), т.е.
Рис. 15.
Как видно из рис. 15, одна диагональ является суммой , а вторая диагональ является разностью векторов и .
Дадим еще одно определение разности векторов.
Определение. Разностью двух векторов и , которые имеют общее начало, называется вектор , который соединяет концы этих векторов и направлен в сторону уменьшаемого.
Проекция вектора на ось
Пусть имеем произвольную ось l на плоскости и некоторый вектор (рис. 16).
Рис. 16.
Опустим из начала A вектора и из конца B перпендикуляры на ось l. Основаниями перпендикуляров будут точки A1 и B1, которые называются проекциями точек A и B.
Величина A1B1 называется проекцией вектора на ось l и обозначается , то есть .
Определение 1. Проекцией вектора на ось l называется величина отрезка A1B1, взята со знаком плюс, если направление отрезка A1B1 совпадает с направлением оси l, и с знаком минус, если направления противоположные.
Из точки A проведем прямую, параллельную оси l, которая пересечет отрезок BB1 в точке C. Вектор образует с осью l угол φ. Величина отрезка AC равна величине отрезка A1B1, а тогда из Δ ABC находим
или (2.7)
Определение 2. Проекция вектора на любую ось равна произведению длины этого вектора на косинус угла между осью и вектором.
Если угол φ острый, то проекция — положительное число, а если угол φ тупой, то проекция — отрицательное число.
Свойства проекций.
1. Если векторы и равны, то величины их проекций на одну и ту же ось l также равны, то есть: .
2. Проекция суммы векторов на любую ось равна сумме проекций слагаемых на ту же ось, то есть:
3. Проекция разности двух векторов на ось l равна разности величин проекций на ту же ось, то есть:
4. Если вектор умножен на любое число λ, то величина проекции вектора на ось l также умножится на число λ, то есть:
Проекции вектора на оси координат
Рассматривается прямоугольная система координат Oxyz в пространстве и произвольный вектор .
Пусть
Проекции x, y, z вектора на координатные оси называют координатами вектора и записывают .
Если заданы две точки A (x1; y1; z1) и B (x2; y2; z2), то координаты вектора находятся по формулам
x = x2 – x1, y = y2 – y1, z = z2 – z1 .
Рис. 17
Действительно, проведем через точки A и B плоскости, перпендикулярные оси Ox и обозначим точки их пересечения соответственно A1 и B1 (рис.17). Точки A1 и B1 имеют на оси Ox координаты x1 и x2 , но на основе формулы (2.1), а потому
x = x2 – x1 . Аналогично доказывается, что y = y2 – y1, z = z2 – z1 .
Направляющие косинусы вектора
Пусть имеем вектор и будем считать, что он выходит из начала координат и не находится ни в одной координатной плоскости.
Рис. 18
Через точку M проведем плоскости, перпендикулярные к осям координат, и вместе с координатными плоскостями они образуют параллелепипед, диагональ которого — отрезок OM (рис.18). Через α, β, γ обозначим углы, которые образует вектор с осями координат. Величины cos α, cos β, cos γ называются направляющими косинусами вектора . Координаты вектора .
Квадрат диагонали прямоугольного параллелепипеда равна сумме квадратов длин трех его измерений.
Поэтому
или
(2.8)
Формула (2.8) выражает длину вектора через его координаты. Тогда на основе формул (2.7) и (2.8) получим
Отсюда для направляющих косинусов получаем
(2.9)
Для направляющих косинусов справедливо равенство (это вытекает из (2.9)).
Разложение вектора по ортам
Рассмотрим прямоугольную систему координат в пространстве и вектор, начало которого в точке O (рис.19) .
Рис. 19.
Обозначим орты осей координат Ox, Oy, Oz соответственно через , причем
Спроецируем вектор на координатные оси (через точку M проведем плоскости, перпендикулярные координатным осям). Проекциями точки M на координатные оси будут соответственно точки А, В, С (рис.19).
Из прямоугольника ODMC видно, что вектор , но из прямоугольника AOBD получаем, что вектор .
Тогда
(2.10)
Вектор , который соединяет точку O с точкой M (x, y, z) называется радиусом-вектором этой точки.
Векторы называются составными или компонентами вектора , а их величины OA = x, OB = y, OC = z координатами этого вектора. Компоненты вектора выразим через его координаты и единичные векторы , а именно .
Подставляя эти значения в равенство (2.10), учитывая, что , получим
(2.11)
Слагаемые являются составными или компонентами вектора .
Тройка векторов называется координатным базисом, а разложение (2.11) называется разложением вектора по базису . Это основная формула векторной алгебры.
Пример 1. Построить вектор .
Рис. 20.
Решение. Компоненты вектора являются и , и им
соответствует прямоугольный параллелепипед, диагональ которого является искомый вектор (рис. 20).
Действия над векторами, заданными в координатной форме
Если векторы заданы в координатной форме, то действия сложения, вычитания, умножения вектора на число можно заменить простыми арифметическими операциями над координатами этих векторов по таким правилам.
Правило 1. При сложении векторов их одноименные координаты складываются
Пусть имеем векторы и . Найдем . Запишем разложение векторов и . Тогда .
Сложив эти равенства, получим
.
Итак, координаты вектора будут
Правило 2. Чтобы отнять от вектора вектор нужно вычесть из координат вектора соответствующие координаты вектора , то есть
Правило 3. Чтобы умножить вектор на число λ, нужно каждую из его координат умножить на это число. То есть, если
то .
Пример 1. Найти вектор , если
Решение. Выполним действия последовательно и найдем
.
Значит,
Вектор — основные определения
Определение вектора в пространстве ничем не отличается от определения вектора на плоскости.
Определение 1. Вектором называется направленный отрезок, т.е. отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом.
Так же как и на плоскости, векторы обозначаются и т. п. и на чертеже изображаются стрелкой.
Определение 2. Длиной (или модулем) вектора называется длина отрезка а направление, определяемое лучом называется направлением вектора
Длина вектора обозначается длина вектора обозначается
Любая точка пространства также считается вектором, который называется нулевым. Начало такого вектора совпадает с его концом, а длина равна нулю. Обозначения нулевого вектора:
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Определение 3. Векторы и называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.
Если ненулевые векторы и лежат на параллельных прямых (следовательно, в одной плоскости), причём лучи лежат в одной полуплоскости, границей которой является прямая то векторы и называются сонаправленными в случае же, когда эти векторы принадлежат одной прямой, они называются сонаправленными, если один из лучей или целиком содержится в другом. Нулевой вектор будем считать сонаправленным с любым вектором в пространстве.
Ясно, что сонаправленные векторы, в силу их определения, коллинеарны. Если два коллинеарных вектора не сонаправлены, то они называются противоположно направленными. Обозначения остаются обычными: (векторы и сонаправлены), (векторы и противоположно направлены).
Определение 4. Векторы и называются равными, если и (т.е. если векторы сонаправлены и их длины равны).
Теорема 1. От любой тонки пространства можно отложить вектор, равный данному, и притом только один.
Доказательство этой теоремы аналогично доказательству соответствующей планиметрической теоремы.
Возможно вам будут полезны данные страницы:
Операции над векторами и их свойства
Операции над векторами в пространстве аналогичны соответствующим операциям на плоскости.
Пусть даны два вектора и В силу теоремы 1 от произвольной точки пространства можно отложить вектор а от точки — вектор Тогда вектор называется по определению суммой векторов и а описанное правило построения суммы двух векторов — правилом треугольника (рис. 1).
Теорема 2. Сумма векторов и не зависит от выбора точки от которой при сложении откладывается вектор (Докажите эту теорему самостоятельно.)
Правило треугольника можно сформулировать и так: для любых трёх точек пространства выполняется равенство
Кроме того, сумму двух неколлинеарных векторов с общим началом можно построить и по правилу параллелограмма: где — вектор, модуль которого_равен длине диагонали параллелограмма, построенного на векторах причём вектор откладывают от той же точки, что и векторы (рис. 2).
Все свойства операции сложения векторов, справедливые на плоскости, остаются справедливыми и в пространстве:
1)
2) — коммутативность (переместительный закон);
3) — ассоциативность (сочетательный закон).
Здесь — произвольные векторы в пространстве.
Определение 5. Два ненулевых вектора называются противоположными, если их длины равны и эти векторы противоположно направлены.
Вектор, противоположный данному ненулевому вектору обозначается
Определение 6. Разностью двух векторов и называется вектор такой, что его сумма с вектором равна вектору
Разность векторов и обозначается Таким образом, по определению если
Разность векторов и можно найти по формуле (рис. 3) (докажите эту формулу самостоятельно). Замечание. Так же как и на плоскости, для сложения нескольких векторов в пространстве можно использовать правило многоугольника (рис. 4), только в последнем случае этот многоугольник будет пространственным (т.е. не все векторы, его составляющие, лежат в одной плоскости).
Из законов сложения векторов следует, что сумма нескольких векторов не зависит от порядка слагаемых.
Умножение (произведение) вектора на число и его свойства, так же как и свойства операции сложения, не претерпевают изменений и в пространстве.
Определение 7. Произведением ненулевого вектора на действительное число называется вектор длина которого равна произведению длины вектора на модуль числа причём вектор сонаправлен с вектором при и противоположно направлен вектору при
Таким образом, по определению, если причём при Ясно, что векторы коллинеарны. Если же или то
Свойства умножения вектора на число не отличаются от аналогичных свойств на плоскости:
- — ассоциативность (сочетательный закон);
- —дистрибутивность относительно сложения векторов (1-й распределительный закон);
- — дистрибутивность относительно сложения чисел (2-й распределительный закон).
Здесь и — произвольные векторы, — произвольные действительные числа.
Справедлива также и лемма о коллинеарных векторах: если векторы и коллинеарны и то существует такое действительное число
что (ясно, что если
Сформулируем и докажем ещё одну важную для решения некоторых задач теорему.
Теорема 3. Пусть где — некоторое действительное число, отличное от -1, тогда точки принадлежат одной прямой. Для произвольной точки пространства справедливо равенство:
Доказательство
1. Из равенства следует, что векторы коллинеарны, и так как — общая точка прямых и эти прямые совпадают, поэтому точки принадлежат одной прямой.
2. Пусть — произвольная точка пространства. Тогда и поскольку откуда Поделив обе части последнего равенства на приходим к формуле (1). Теорема доказана.
З. Компланарные и некомпланарные векторы
Следующее понятие уже не имеет аналога в планиметрии.
Определение 8. Векторы называются компланарными, если лучи, задающие их направления, параллельны некоторой плоскости.
Замечание. Из определения 8 следует, что при откладывании от одной точки векторов, равных нескольким данным компланарным векторам, получим векторы, лежащие в одной плоскости. Таким образом, компланарные векторы лежат либо в одной плоскости, либо в параллельных плоскостях.
Очевидно, что любые два вектора компланарны и любые три вектора, два из которых коллинеарны, также являются компланарными (поясните). Рассмотрим теперь условия, при которых три вектора, из которых никакие два не коллинеарны, являются компланарными.
Теорема 4. Векторы из которых никакие два не коллинеарны, являются компланарными в том и только том случае, если существуют такие действительные числа и что
(иными словами, векторы являются компланарными в том и только том случае, если один из них можно выразить через два других, или, как говорят, разложить по двум другим).
Доказательство
1. Пусть векторы компланарны. Докажем, что для них имеет место равенство (5). Отложим от произвольной
точки векторы Векторы лежат в одной плоскости (см. замечание). Проведём через точку прямую до пересечения с прямой в точке и прямую до пересечения с прямой в точке (см. рис. 8). Так как векторы коллинеарны, по лемме о коллинеарных векторах (см. §1.2) существуют такие действительные числа и что Но по правилу параллелограмма откуда Обратно, пусть выполнено равенство (5).
Докажем, что векторы компланарны. Векторы при откладывании от одной точки определяют некоторую плоскость. Согласно правилу параллелограмма и равенству (5) вектор принадлежит той же плоскости, откуда следует, что векторы и а значит, и векторы компланарны. Теорема доказана.
Отложим от произвольной точки пространства векторы где — три данных некомпланарных вектора, и рассмотрим параллелепипед построенный на векторах (рис. 9). Тогда сумму векторов можно найти следующим образом: Это правило сложения трёх некомпланарных векторов называется правилом параллелепипеда.
Если векторы не являются компланарными и для вектора имеет место равенство где — некоторые действительные числа, то говорят, что вектор разложен по трём некомпланарным векторам
а числа называются коэффициентами разложения.
Следующая теорема, называемая теоремой о разложении вектора по трём некомпланарным векторам, является основной во всей элементарной (школьной) векторной алгебре.
Теорема 5. Любой вектор пространства можно разложить по трём данным некомпланарным векторам причём коэффициенты разложения определятся единственным образом. Доказательство. 1. Если векторы и коллинеарны, то и теорема доказана.
2. Пусть векторы и не коллинеарны. Отложим от произвольной точки пространства векторы (рис. 10). Проведём через точку прямую до пересечения с плоскостью в точке Через точку в плоскости проведём прямую до пересечения с прямой в точке (в частности, если то точка совпадает с точкой Согласно правилу многоугольника но векторы по построению коллинеарны, поэтому в силу леммы о коллинеарных векторах где — некоторые действительные числа Таким образом, учитывая, что приходим к равенству
3. Докажем теперь, что разложение вектора по данным векторам единственно. Допустим, что это не так, т.е. существует ещё одно разложение в котором хотя бы один коэффициент не равен соответствующему коэффициенту в полученном нами разложении. Пусть, например, Вычтем последнее равенство из предпоследнего.
Тогда отсюда — т. е. векторы компланарны, что противоречит условию теоремы. Значит, наше допущение о ещё одном разложении неверно, т.е. разложение вектора по данным векторам единственно. Теорема доказана.
Итак, любой вектор пространства можно разложить по трём данным некомпланарным векторам причём единственным образом. Заданную тройку некомпланарных векторов называют базисом, сами векторы — базисными векторами, а разложение вектора по векторам называют разложением по данному базису
Координаты вектора
Так же как и на плоскости, в пространстве помимо координат точки вводятся координаты вектора. Рассмотрим три попарно перпендикулярных вектора отложенных от некоторой точки пространства, таких, что (например, их можно направить по рёбрам единичного куба). Эти векторы, очевидно, не являются компланарными. Поэтому, в силу теоремы 5, любой вектор можно разложить_по векторам причём единственным образом: Введём прямоугольную систему координат с началом в точке так, чтобы направления осей совпали_с направлениями векторов соответственно. Тогда векторы называются единичными векторами осей координат, а числа — координатами вектора в системе координат (обозначения:
Свойства векторов пространства, заданных своими координатами, аналогичны соответствующим свойствам векторов на плоскости:
- Два вектора равны в том и только том случае, если равны их координаты.
- Координаты суммы (разности) двух векторов равны суммам (разностям) соответствующих координат этих векторов, т.е. для векторов получаем
- При умножении вектора на число каждая его координата умножается на это число, т.е. для вектора и действительного числа получаем
Докажем, например, свойство 2. Так как то, согласно свойствам сложения векторов и умножения вектора на число, т. е. вектор имеет координаты что и требовалось доказать. Остальные свойства доказываются аналогично.
Скалярное произведение векторов и его свойства
Определение скалярного произведения векторов и в пространстве ничем не отличается от аналогичного определения для векторов на плоскости.
Определение 11. Скалярным произведением векторов называется произведение длин этих векторов на косинус угла между ними (обозначение: Таким образом, по определению,
Теорема 8. Два ненулевых вектора взаимно перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю, т. е.
Доказательство этой теоремы вытекает из формулы (9).
Определение 12. Скалярным квадратом вектора называется скалярное произведение Скалярный квадрат обозначается т.е. по определению
Так как то
Таким образом, длина вектора равна квадратному корню из его скалярного квадрата.
Замечание. Скалярное произведение есть число, поэтому грубой ошибкой явилась бы запись:
Если векторы и заданы своими координатами: то скалярное произведение может быть выражено через их координаты.
Теорема 9. Скалярное произведение векторов равно сумме произведений их соответственных координат, т. е.
Доказательство. Отложим от произвольной точки пространства векторы При этом, как мы знаем, соответствующие координаты векторов и а также и будут равны, а угол По теореме косинусов для треугольника получим
итак как имеем откуда Но
поэтому
Решение любой геометрической задачи на вычисление сводится, в сущности, к нахождению величин двух типов: расстояний и углов. Если в пространстве задан некоторый базис (в частности, прямоугольный), т. е. тройка некомпланарных векторов, то на основании теоремы 5 любой вектор пространства можно разложить по векторам этого базиса, причём единственным образом.
Если известны длины векторов, образующих базис, углы между ними и разложение некоторого вектора по векторам этого базиса, то, используя свойства скалярного произведения, можно определить длину такого вектора и угол, образуемый им с любым другим вектором, разложение которого по векторам этого базиса известно.
Таким образом, векторы позволяют находить решения довольно широкого класса геометрических задач, а умение определять разложение вектора по базисным векторам является важнейшим фактором их решения.
Для решения задач о разложении вектора по трём данным некомпланарным векторам, разумеется, необходимо, помимо теоремы 5, знание предшествующего ей материала.
Примеры с решением
Задача 1.
Основанием четырёхугольной пирамиды является параллелограмм Точки и — середины рёбер и соответственно. Найдите разложение векторов по векторам
Решение (см. рис. 14).
1. но поэтому
2. Так как — середина но (см. следствие 1 теоремы 3), поэтому
Ответ:
Заметим, что в разложении вектора по векторам коэффициент разложения при векторе равен нулю, а это означает, в силу теоремы 4, что векторы компланарны. Если заранее «увидеть», что где — середина (отсюда то разложение вектора можно было бы найти проще. Но векторный метод тем и хорош, что, даже не обладая развитым пространственным воображением, а лишь зная основные определения и теоремы, можно получить правильный ответ (пусть и не всегда самым оптимальным путём)!
Задача 2.
Пусть — точка пересечения медиан треугольника — произвольная точка пространства. Найдите разложение вектора по векторам
Решение (см. рис. 15). Пусть — середина ребра Так как — точка пересечения медиан треугольника точки принадлежат одной прямой, причём, в силу теоремы о точке пересечения медиан треугольника, Согласно следствию I теоремы 3 Тогда
Ответ:
Векторы и их решение
Вектором называется направленный отрезок. Направление отрезка показывается стрелкой. Различают начало и конец отрезка.
Два вектора называются равными между собой, если каждый из них можно получить параллельными перенесениями другого.
Равные векторы являются параллельными (колинеарными), имеют одно и то же направление и одинаковую длину. Длина вектора называется абсолютной величиной или модулем вектора и обозначается
Вектор называется нулевым (ноль- вектором), если он имеет нулевую длину, то есть его конец сходится с началом.
Чтобы найти сумму двух векторов и совместим начало вектора с концом вектора .
Суммой векторов и называется вектор, начало которого сходится с началом вектора , а конец — с концом вектора (рис. 1.1).
Правило треугольника
Правило параллелограмма
Для складывания векторов имеют место такие законы:
1) переставной (коммутативный)
2) связующий
3) для каждого вектора существует противоположный такой, что
4)
5) для некоторых двух векторов и выполняются неравенства:
Если вектор образует угол с осью (рис. 1.2), то проекцию вектора на ость называется величина
Пусть вектор имеет начало в точке а конец — в точке Тогда величины являются проекциями вектора на оси Проекции вектора однозначно определяют вектор. Потому имеет место равенство
Если вектор то проекция суммы векторов
Произведением вектора на число называется вектор длина которого равна Умножение вектора на число имеет свойство ассоциативности и дистрибутивности, то есть для произвольных чисел и векторов и справедливы равенства:
Любой вектор можно записать в виде
где — единичные векторы, называются компонентами вектора (рис. 1.3) .
Пример 1.73
Даны два вектора: и
Найти вектор
Решение
Признаком колинеарности двух векторов и является пропорциональность их координат:
Скалярным произведением двух векторов и называется число которое равно произведению их модулей на косинус угла между ними:
Скалярное произведение можно записать в таком виде:
Если векторы и заданы своими координатами, то их скалярное произведение вычисляется по формуле:
Учитывая формулы (1.18) и (1.19), можно найти косинус угла между векторами и :
Отсюда получается условие перпендикулярности двух векторов: если и или в координатной форме:
Среди свойств скалярного произведения отметим так:
Векторным произведением вектора на вектор называется вектор который имеет такие свойства:
1) длина вектора равна произведению длин сомножителей на синус угла между ними:
2) вектор перпендикулярный к векторам и
3) из конца вектора кратчайший поворот от к является таким, что происходит против часовой стрелки (рис. 1.4).
Заметим, что а модуль векторного произведения равен плоскости параллелограмма, построенного на векторах и , если у них общее начало.
В координатной форме векторное произведение векторов и можно записать в виде:
Смешанным или скалярно — векторным произведением трех векторов называется векторное произведение векторов и , скалярно умноженный на вектор то есть
Если векторы — компланарны, то есть расположены в одной плоскости или на параллельных плоскостях, то их смешанное произведение равно нулю.
Если известные координаты сомножителей то смешанное произведение вычисляется по формуле:
Если три ненулевых разложены в одной плоскости (компланарны), то из смешанное произведение
Следует, в координатной форме условие компланарности трех ненулевых векторов имеет вид:
Решение примеров:
Пример 1.74
Заданы координатами точек и Найти:
1) вектор если
2) угол между векторами и
3) координаты вектора
4) объем пирамиды с вершинами в точках
Решение
1) По формуле (1.14) находим
тогда
2) Косинус угла между векторами и вычислим по формуле (1.20):
Поскольку косинус угла отрицательный, то угол тупой.
3) Координаты векторного произведения находим по формуле (1.22):
4) Чтобы найти объем пирамиды, найдем сначала смешанное произведение векторов, что выходят из одной вершины пирамиды:
Тогда объем пирамиды
Собственные числа и собственные векторы
Вектор — столбец называется собственным вектором квадратной матрицы — ого порядка, что соответствует собственному значению если он удовлетворяют матричному уравнению или
Тут — единичная матрица — ого порядка, а — нулевой вектор — столбец. При условии, что получим характеристическое уравнение для определения собственных значений
Координаты собственного вектора что соответствуют собственному значению является решением системы уравнений:
Собственный вектор обозначаются с точностью к постоянному множителю.
Решение примеров:
Пример 1.90.
Обозначить собственные определения и собственные векторы матрицы
Решение. Характеристические уравнения данной матрицы имеет вид (1.24):
или
отсюда получается, что матрица имеет два собственных значения и Собственный вектор что соответствует обозначаются с системой уравнений вида (1.25)
или
которое приводится к одному уравнению
Возьмем получим решение в виде
Следует, первый собственный вектор является
Второй вектор что соответствует собственному значению определяется из системы уравнений вида (1.25)
Эта система уравнений так же приводится к одному уравнению положив запишем ее решение в виде Следует, второй собственный вектор:
Таким образом, матрица имеет два разных определения и и два собственных вектора, равных и (с точностью к постоянному множителю).
Пример 1.91
Найти собственные векторы и собственные значения матрицы
Решение. Характеристическое уравнение
Раскрыв определитель получим:
Корень — кратный, показатель кратности корень — простой,
Система уравнений для определения собственных векторов имеет вид:
Последовательно подставим и в записанную систему:
Фундаментальная система уравнений получается, если свободным переменным последовательно дать значения
Получили два линейно независимые собственные векторы. Вся совокупность векторов, что соответствуют собственному значению имеет вид:
Фундаментальная система решений получается, если взять
Векторная алгебра
Понятие «вектор» (от лат. vector — носитель), как отрезка, имеет определенную длину и определенное направление, впервые появилось в работах по построению числовых систем в ирландского математика Уильяма Гамильтона (1805-1865). Это понятие связано с объектами, которые характеризуются величиной и направлением, например, скорость, сила, ускорение. При этом скорость можно понимать в широком смысле: скорость изменения издержек производства, доходов, спроса, потребления и предложения и др. Вектор может указывать направление наибольшего возрастания или убывания функции, описывающей различные экономические процессы. Векторы, рассмотренные в данном разделе, является частным случаем -мерных векторов: они предполагают геометрическую интерпретацию, потому что принадлежат к векторным линейных пространств размерности
Для графического изображения решения экономических задач на плоскости и в пространстве применяются средства аналитической геометрии. Аналитическая геометрия — математическая наука, объектом изучения которой являются геометрические фигуры, а предметом — установление их свойств средствами алгебры с помощью координатного метода. Теоретической базой этой науки является частично известна из школы векторная алгебра.
Основателем метода координат и, вместе с тем, аналитической геометрии является Рене Декарт (1596-1650) — французский философ, математик, физик и физиолог. Его именем и названа известная «декартова прямоугольная система координат», которая позволяет определить положение фигуры на плоскости и тела в пространстве.
После изучения данной темы вы сможете:
● использовать инструмент векторной алгебры для геометрического изображения и анализа объектов экономических процессов;
● применять уравнение прямой линии на плоскости для геометрической интерпретации зависимости между функциональному признаку и аргументом, что на нее влияет;
● применять уравнение кривых второго порядка при построении нелинейных математических моделей экономических задач;
● осуществлять геометрическую интерпретацию решений экономических задач с помощью поверхностей и плоскостей.
Векторы: основные определения, линейные операции
Выберем на произвольной прямой (в или в ) отрезок и укажем, которую из точек или считать начальной (началом отрезка), а какую — конечной (концом отрезка). Конец отрезка обозначают стрелке и говорят, что на отрезке задано направление. Отрезок с заданным на нем направлением, или коротко — направленный отрезок, называется вектором. Вектор обозначается символом или строчными буквами латинского
алфавита с чертой: и др. (Рис. 6.1).
Рис. 6.1
В применимых задачах естественных наук существенным является обстоятельство — где, в какой точке находится начало вектора. Например, результат действия силы зависит не только от ее величины и направления действия, но и от того, в какой точке она прикладывается.
Вектор, для которого фиксированная (не фиксирована) начальная точка называется связанным (свободным). Векторы, которые применяются в экономических задачах, как правило, не являются связанными, поэтому в дальнейшем будем рассматривать преимущественно свободные векторы
Длиной, или модулем, вектора называется длина соответствующего отрезка и обозначается одним из символов:
Нулевым вектором 0, или ноль-вектором, называется вектор, длина которого равна нулю, а направление его считается произвольным (неопределенным).
Единичным вектором называется вектор, длина которого равна единице.
Равными векторами называются векторы, которые принадлежат одной прямой или параллельным прямым, одинаково направлены и имеют равные длины.
Взаимно противоположными называются векторы, которые принадлежат одной прямой или параллельным прямым, имеют равные длины, но противоположно направлены. Вектор, противоположный вектору , обозначают символом .
Коллинеарными называют векторы, которые принадлежат одной прямой или параллельным прямым.
Компланарными называются векторы, которые принадлежат одной плоскости или параллельным плоскостям.
Линейные операции над векторами
Будем считать, что векторы принадлежат одни плоскости. Осуществляя параллельный перенос одного из векторов , совместим начало вектора с концом вектора (или наоборот) и по отрезками, соответствующие векторам, как по двум сторонам, построим треугольник (рис. 6.2 а).
1. Суммой векторов называется вектор , который определяется третьей стороной треугольника, с началом в начале вектора . Порядок построения суммы двух векторов по этому определению называют правилом треугольника.
Параллельный перенос можно осуществить и так, что объединятся начала векторов и , тогда на векторах как на сторонах построим параллелограмм (рис. 6.2 б), и придем к известному из школьного курса алгебры правилу параллелограмма.
Рис. 6.2
Правило треугольника обобщается на произвольное конечное число векторов. Если параллельным переносом расположить векторы так, что конец предыдущего вектора (начиная с первого) является началом следующего, то результирующим будет вектор, соединяющий начало первого вектора слагаемого с концом последнего (рис. 6.3):
Рис. 6.3
Соответствующее правило называют правилом многоугольника.
Свойства суммы векторов:
1) переставная, или коммутативна:
2) соединительная, или ассоциативная:
3)
4)
Разницу можно рассматривать как сумму вектора с вектором, противоположным вектору
Умножения вектора на скаляр
Пусть — некоторое действительное число . Произведением вектора со скаляром называется вектор , модуль которого равен произведению модулей , а направление совпадает с направлением , если , или противоположно направлению , если (рис. 6.4):
Рис. 6.4
При вектор превращается в ноль-вектор .
Свойства умножения вектора на скаляр:
1) переставной или коммутативных закон:
где
2) соединительный, или ассоциативный закон:
где
3) распределительный или дистрибутивный закон:
где
4)
5)
Из определения умножения вектора на скаляр следует необходимое и достаточное условие коллинеарности двух векторов: вектора и коллинеарны тогда и только тогда, когда каждый из них является произведением другого из скаляром:
Известно, что три ненулевые векторы и компланарны тогда и только тогда, когда один из них является линейной комбинацией двух других:
компланарны
Рассмотрим понятие, имеет очень важное значение в теории векторов — проекции вектора на ось (прямую, имеет направление; заданное направление считать положительным, противоположное направление — отрицательным).
Компонентой вектора относительно оси называют вектор, начало которого является проекцией начала вектора на ось , а конец — проекцией конца вектора на ось (рис. 6.5).
Рис. 6.5
Проекцией вектора на ось называют скаляр, равный длине компоненты вектора относительно оси со знаком , если направление компоненты совпадает с направлением оси , или со знаком , если ее направление противоположно направлению оси:
Основные свойства проекции вектора на ось
1. Проекция вектора на ось равна произведению длины вектора с косинусом угла между вектором и осью:
2. Проекция суммы двух векторов на эту ось равна сумме их проекций на эту ось:
Это свойство обобщается на любое конечное число векторов.
3. Проекция на ось произведения вектора со скаляром равна произведению со скаляром проекции самого вектора на ось:
Прямоугольная система координат в пространстве. Координатная и алгебраическая формы задания векторов
Пусть в трехмерном векторном пространстве задана прямоугольная декартова система координат , что определяется тремя взаимно перпендикулярными числовыми осями — осями, на которых указано масштаб (единицу длины) — с общей точкой — началом координат (рис. 6.6).
Рис. 6.6
Выберем в пространстве произвольную точку и соединим ее отрезком прямой с началом координат . Вектор , началом которого является начало координат , а концом данная точка , называется радиусом-вектором точки . Отметим, что радиусы-векторы точек пространства являются связанными векторами.
Под декартовыми прямоугольными координатами точки понимают проекции ее радиус-вектора на оси
Точка с координатами обозначается через . Вектор каждой точки пространства (кроме точки ) определяет прямоугольный параллелепипед с диагональю, что является отрезком, на котором построено вектор (рис. 6.6).
Измерениями параллелепипеда есть модули координат точки . Длина диагонали параллелепипеда определяется по формуле:
Углы , которые образованы радиусом-вектором с координатными осями называются его направляющими углами.
откуда:
Косинусы направляющих углов называются направляющими косинусами радиус-вектора . С (6.4) получаем свойства:
1) направляющие косинусы являются координатами единичного радиус-вектора:
2) сумма квадратов направляющих косинусов вектора равна единице:
Понятие «координата», «направляющие углы», «направляющие косинусы» без изменений переносятся на любые свободные векторы, потому начало каждого из них параллельным переносом можно поместить в начало , дает радиус вектор определенной точки.
Координатами любого вектора в пространстве называются его проекции на оси координат. Они обозначаются символами и пишут: или , где согласно определению координат:
Задача вектора тройкой его координат , называют координатной формой задачи.
Для единичных векторов , расположенных соответственно на осям , имеем:
Длина произвольного вектора и его направляющие косинусы вычисляются по формулам:
Найти длину и направляющие косинусы вектора
По формулам (6.5) имеем:
Установим связь между координатами вектора — числами — и его компонентами — векторами — с помощью единичных векторов (рис. 6.7).
Рис. 6.7
Компонентами вектора относительно координатных осей являются векторы (рис. 6.7). Согласно операции сложения векторов по правилу многоугольника получаем:
Следовательно, любой вектор в трехмерном пространстве является суммой трех его компонент относительно координатных осей:
Изображение вектора с в виде суммы произведений координат с единичными векторами (ортами) называют алгебраической формой задания вектора.
Согласно свойствами операций над векторами, алгебраическая форма задания дает возможность установить результаты действий над векторами, заданными в координатной форме.
1. При добавлении (вычитании) двух векторов с : и , их соответствующие по номеру координаты прилагаются (вычитаются):
Действительно, по свойствам ассоциативности и дистрибутивности имеем:
2. При умножении вектора на скаляр все его координаты умножаются на этот скаляр:
Действительно, согласно распределительным свойствам умножения скаляра на сумму векторов имеем:
Скалярное, векторное, смешанное произведения векторов
Скалярным произведением двух векторов и называется число (скаляр), равное произведению их модулей с косинус угла между ними и обозначается :
Вместо часто пишут или используют обозначения . Название этой операции согласуется с ее сути, а именно: скалярное произведение является скаляром, то есть числом.
Для определения угла между векторами и совмещают их начала и рассматривают угол между двумя лучами и (рис. 6.8). Если угол острый, то , если тупой, то .
Основные свойства скалярного произведения векторов вытекают из его определения (6.7).
1. Скалярное произведение ненулевых векторов равно нулю тогда и только тогда, когда векторы взаимно перпендикулярны (ортогональные):
2. Скалярный квадрат вектора равен квадрату его модуля, то есть
3. Скалярное произведение подчиняется всем законам арифметики чисел относительно линейных операций:
4. Скалярное произведение двух векторов равно произведению модуля одного из них с проекцией второго на ось, направление которого определяется первым вектором:
Доказательство этого свойства основывается на определении (6.3).
Скалярное произведение векторов и , заданных в координатной форме. Пусть имеем два вектора
1. Вычислим скалярные произведения единичных векторов По свойству Для других пар на основании свойства 1 имеем:
2. Находим произведение , подавая векторы в алгебраической форме (6.6) и используя распределительный закон:
Раскрываем скобки и получаем:
Скалярное произведение двух векторов равно сумме произведений одноименных координат. Это полностью совпадает с определением скалярного произведения -мерных векторов.
Как следствие из (6.12) при получаем формулу (6.5) модуля вектора через его координаты:
Определим угол между двумя ненулевыми векторами и , заданные в координатной форме. Воспользуемся определением скалярного произведения (6.7) и соотношения (6.5). В результате получаем:
Следовательно, косинус угла между двумя векторами определяется формулой:
Отсюда
В результате с соотношением (6.13) получим критерий ортогональности двух векторов, заданных в координатной форме:
Критерием коллинеарности векторов и , заданных в координатной форме является пропорциональность их координат:
Векторное произведение двух векторов
Пусть и — векторы пространства , определяющие некоторую плоскость . Вектор называется векторным произведением векторов и , если вектор удовлетворяет условиям:
1) модуль его численно равен площади параллелограмма, построенного на векторах и как на сторонах;
2) он перпендикулярный плоскости параллелограмма и направленный так, что поворот вектора до совмещения с вектором кратчайшим путем наблюдается с конца вектора против часовой стрелки (рис. 6.9).
Рис. 6.9
Векторное произведение обозначается символами: , или
Следовательно,
где наименьший из углов что соответствует совмещению с поворотом вектора против часовой стрелки.
Основные свойства векторного произведения вытекают из его определения.
1. Векторное произведение ненулевых векторов равно ноль-вектору тогда и только тогда, когда векторы и коллинеарны:
Еще одним критерием коллинеарности векторов является равенство нулевому вектору их векторного произведения.
2. Векторные произведения с разным порядком сомножителей являются взаимно противоположными векторами:
Это означает, что векторное произведение не подчиняется переставному (коммутативному) закону.
3. Векторное произведение подчиняется ассоциативному закону относительно скалярного множителя и дистрибутивному закону относительно сложения:
где
Векторное произведение векторов и , заданных в координатной форме. Пусть имеем два ненулевые векторы:
1. Определяем векторные произведения ортов (рис. 6.10).
Векторное произведение одноименных векторов по свойству 1 дает ноль вектор:
Однако все векторные произведения разноименных единичных векторов будут давать единичные векторы:
Рис. 6.10
Рассмотрим, например, произведение . Совмещение с кратчайшим путем (указано дугой со стрелкой на рис. 6.10) происходит против часовой стрелки, если смотреть с конца вектора , следовательно, . Тогда по свойству
2. Находим произведение , подавая векторы в алгебраической форме и используя арифметические свойства (6.18) и соотношения (6.19):
Множители при это вскрытые определители 2-го порядка, поэтому
Коэффициенты при единичных векторах в соотношении (6.20) являются координатами вектора как векторного произведения векторов и .
Если символы в соотношении (6.20) считать элементами первой строки определителя 3-го порядка, то окончательно получим представление в виде определителя:
Найдем векторное произведение векторов и
Модуль векторного произведения определяет площадь параллелограмма, построенного на векторах и
Смешанным произведением трех векторов и называется векторное произведение двух из них, умножен скалярно на третий вектор, то есть и т. д.
Смешанное произведение можно обозначать тройкой векторов , в которой первые два элемента считают связанными векторным произведением, а результат векторного произведения умножают на третий вектор скалярно, то есть — это все равно, что . Понятно, что результатом смешанного произведения является скаляр, поскольку векторное произведение является вектором (обозначим его через ), а произведение дает скаляр.
Геометрическая интерпретация смешанного произведения. Пусть и — некомпланарные векторы. Построим на этих векторах как на ребрах параллелепипед (рис. 6.11).
Рис. 6.11
Вектор по длине численно равна площади параллелограмма, построенного на векторах и как на сторонах. Этот параллелограмм является основой параллелепипеда, построенного на векторах и . Вектор является перпендикулярным плоскости параллелограмма.
Согласно (6.11) скалярное произведение можно представить как произведение модуля и проекции вектора на ось, определяется вектором :
где , причем является положительным числом, если угол между векторами и острый, и отрицательным, если этот угол тупой. По модулю эта проекция равна высоте параллелепипеда .
Модуль смешанного произведения трех векторов численно равен объему параллелепипеда , построенного на векторах как на ребрах:
Основные свойства смешанного произведения вытекают из его определения и геометрической интерпретации.
1. Смешанное произведение ненулевых векторов равно нулю, если по крайней мере два из трех векторов коллинеарны или все три — компланарны, и наоборот.
Необходимым и достаточным условием компланарности трех ненулевых векторов является равенство нулю их смешанного произведения:
компланарны
Свяжем с изображенными на плоскости векторами круг (рис. 6.12). Перечисление векторов, начиная с любого, против часовой стрелки назовем положительным, или циклическим, перестановкой векторов, в противном случае — отрицательной перестановкой.
2. Циклическая перестановка трех сомножителей смешанного произведения не меняет его величины, а отрицательное перестановки меняет его знак на противоположный:
Смешанное произведение векторов, заданных в координатной форме
Пусть имеем три ненулевые векторы По определению смешанного произведения и представлением векторного и скалярного произведений в координатной форме имеем:
Полученная сумма произведений является расписанием определителя 3-го порядка, составленный из координат векторов, по элементам его третьей строки, то есть:
Векторы компланарны тогда и только тогда, когда определитель 3-го порядка, элементами строк которого являются координаты этих векторов равен нулю (свойство 1):
компланарны
С помощью смешанного произведения векторов легко определить, относятся ли четыре точки одной плоскости. Для этого следует проверить выполнение условия компланарности трех векторов с общим началом в одной из точек.
Простейшие задачи аналитической геометрии
Задача об определении длины отрезка. Найти длину отрезка , если известны координаты его концов: . Эту задачу можно рассматривать как задачу о нахождении расстояния между двумя точками.
1. Введем в рассмотрение вектор с началом и концом и радиусы-векторы (рис. 6.13).
2. Определим координаты вектора как разности векторов и :
3. Находим модуль вектора , который и равна длине отрезка :
Задача об определении площади треугольника
Найдем площадь треугольника, заданного координатами вершин:
По аксиомой стереометрии известно, что три точки в пространстве определяют плоскость и притом только одну. Для упрощения изложения, не нарушает общего подхода к решению задачи, договоримся рассматривать треугольник , принадлежащей плоскости : и .
1. Введем в рассмотрение векторы:
и найдем их векторное произведение
По соотношению (6.20) имеем:
2. Вычислим модуль вектора , численно равна площади параллелограмма , построенного на векторах как на сторонах (рис. 6.14):
Тогда для площади треугольника имеем:
Знак или берется в зависимости от того, каким будет определитель — положительным или отрицательным.
Если треугольник принадлежит не плоскости , а любой другой плоскости в пространстве, то его площадь тоже можно найти по формуле:
Найдем площадь треугольника с вершинами
Введем в рассмотрение векторы: и и определим их векторное произведение:
Тогда
(кв. ед.)
Задача о деление отрезка в заданном отношении
Пусть в пространстве заданы две точки . Проведем через них произвольную прямую и установим на этой прямой положительное направление, согласно которому определим направление на отрезке (рис. 6.15). На прямой возьмем точку , которая может принадлежать отрезку , или его продолжению. При этом, если точка принадлежит отрезку (рис. 6.15 а), говорится, что она осуществляет внутреннее деление отрезка на части, если не принадлежит (рис. 6.15 б) — то внешний.
Рис. 6.15
Число , которое определяется формулой
называется отношением, в котором точка разделяет направленный отрезок . Если , то осуществляет внутреннее (внешнее) деление отрезка на части.
Задача о деление отрезка в заданном отношении формулируется так: найти координаты точки , что разделяет отрезок в отношении , если отрезок задан координатами начала и конца —
Пусть точкам соответствуют радиусы-векторы (рис. 6.16). Из определения (6.29) следует, что векторы и коллинеарны, то есть . Следовательно,
С этого векторного равенства найдем вектор
или в координатах:
Отсюда, если отрезок разделить на две равные части точкой то координаты точки могут быть найдены следующим образом:
Можно доказать, что координаты точки пересечения медиан треугольника, заданного координатами его вершин вычисляются по формулам:
Лекции:
- Объем конуса
- Разложение на множители
- Деление многочлена на многочлен
- Правила дифференцирования
- Теорема Пифагора
- Асимптотическое поведение функций. Сравнение бесконечно малых функций
- Прямая линия на плоскости
- Выпуклость и вогнутость графика функции
- Матанализ для чайников
- Производные некоторых элементарных функций
Векторы в пространстве и метод координат
Существует два способа решения задач по стереометрии
Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.
Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.
Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.
Система координат в пространстве
Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.
Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.
Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:
Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.
Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора:
Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:
Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма
Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .
Сумма векторов:
Разность векторов:
Произведение вектора на число:
Скалярное произведение векторов:
Косинус угла между векторами:
Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.
1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.
Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:
Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.
Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.
Запишем координаты векторов:
и найдем косинус угла между векторами и :
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.
Координаты точек A, B и C найти легко:
Из прямоугольного треугольника AOS найдем
Координаты вершины пирамиды:
Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.
Найдем координаты векторов и :
и угол между ними:
Покажем теперь, как вписать систему координат в треугольную призму.
3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1
Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.
Запишем координаты точек:
Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.
Найдем координаты векторов и , а затем угол между ними:
Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.
Плоскость в пространстве задается уравнением:
Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.
Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.
Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Покажем, как это делается.
Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).
Уравнение плоскости выглядит так:
Подставим в него по очереди координаты точек M, N и K.
Для точки M:
То есть A + C + D = 0.
Для точки N:
Аналогично для точки K:
Получили систему из трех уравнений:
.
В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.
Пусть, например, D = −2. Тогда:
;
.
Выразим C и B через A и подставим в третье уравнение:
.
Решив систему, получим:
Уравнение плоскости MNK имеет вид:
Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:
Вектор — это нормаль к плоскости MNK.
Уравнение плоскости, проходящей через заданную точку имеет вид:
Угол между плоскостями равен углу между нормалями к этим плоскостям:
Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.
Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.
Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.
4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.
Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.
Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.
Итак, первый вектор нормали у нас уже есть:
Напишем уравнение плоскости AEF.
Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.
Упростим систему:
.
Пусть С = -1. Тогда A = B = 2.
Уравнение плоскости AEF:
Нормаль к плоскости AEF:
Найдем угол между плоскостями:
5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.
Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике»
Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».
Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?
«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.
Итак, AA1 = √3
Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .
Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:
Координаты вектора — тоже:
Находим угол между плоскостями, равный углу между нормалями к ним:
Зная косинус угла, находим его тангенс по формуле
Получим:
Ответ:
Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.
Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.
Находим синус угла между прямой m и плоскостью α по формуле:
6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.
Как всегда, рисуем чертеж и выбираем систему координат
Находим координаты вектора .
Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .
Найдем угол между прямой и плоскостью:
Ответ:
Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:
7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.
Построим чертеж и выпишем координаты точек:
Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D
Решим эту систему. Выберем
Тогда
Уравнение плоскости A1DB имеет вид:
Дальше все просто. Находим расстояние от точки A до плоскости A1DB:
В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Векторы в пространстве и метод координат» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023