Как найти квадрат радиуса сферы


Download Article


Download Article

The radius of a sphere (abbreviated as the variable r or R) is the distance from the exact center of the sphere to a point on the outside edge of that sphere. As with circles, the radius of a sphere is often an essential piece of starting information for calculating the shape’s diameter, circumference, surface area, and/or volume. However, you can also work backward from the diameter, circumference, etc. to find the sphere’s radius. Use the formula that works with the information you have.

  1. Image titled Find the Radius of a Sphere Step 1

    1

    Find the radius if you know the diameter. The radius is half the diameter, so use the formula r = D/2. This is identical to the method used for calculating the radius of a circle from its diameter.[1]

    • If you have a sphere with a diameter of 16 cm, find the radius by dividing 16/2 to get 8 cm. If the diameter is 42, then the radius is 21.
  2. Image titled Find the Radius of a Sphere Step 2

    2

    Find the radius if you know the circumference. Use the formula C/2π. Since the circumference is equal to πD, which is equal to 2πr, dividing the circumference by 2π will give the radius.[2]

    • If you have a sphere with a circumference of 20 m, find the radius by dividing 20/2π = 3.183 m.
    • Use the same formula to convert between the radius and circumference of a circle.

    Advertisement

  3. Image titled Find the Radius of a Sphere Step 3

    3

    Calculate the radius if you know the volume of a sphere. Use the formula ((V/π)(3/4))1/3.[3]
    The volume of a sphere is derived from the equation V = (4/3)πr3. Solving for the r variable in this equation gets ((V/π)(3/4))1/3 = r, meaning that the radius of a sphere is equal to the volume divided by π, times 3/4, all taken to the 1/3 power (or the cube root.)[4]

    • If you have a sphere with a volume of 100 inches3, solve for the radius as follows:
      • ((V/π)(3/4))1/3 = r
      • ((100/π)(3/4))1/3 = r
      • ((31.83)(3/4))1/3 = r
      • (23.87)1/3 = r
      • 2.88 in = r
  4. Image titled Find the Radius of a Sphere Step 4

    4

    Find the radius from the surface area. Use the formula r = √(A/(4π)). The surface area of a sphere is derived from the equation A = 4πr2. Solving for the r variable yields √(A/(4π)) = r, meaning that the radius of a sphere is equal to the square root of the surface area divided by 4π. You can also take (A/(4π)) to the 1/2 power for the same result.[5]

    • If you have a sphere with a surface area of 1,200 cm2, solve for the radius as follows:
      • √(A/(4π)) = r
      • √(1200/(4π)) = r
      • √(300/(π)) = r
      • √(95.49) = r
      • 9.77 cm = r
  5. Advertisement

  1. Image titled Find the Radius of a Sphere Step 5

    1

    Identify the basic measurements of a sphere. The radius (r) is the distance from the exact center of the sphere to any point on the surface of the sphere. Generally speaking, you can find the radius of a sphere if you know the diameter, the circumference, the volume, or the surface area.

    • Diameter (D): the distance across the sphere – double the radius. Diameter is the length of a line through the center of the sphere: from one point on the outside of the sphere to a corresponding point directly across from it. In other words, the greatest possible distance between two points on the sphere.
    • Circumference (C): the one-dimensional distance around the sphere at its widest point. In other words, the perimeter of a spherical cross-section whose plane passes through the center of the sphere.
    • Volume (V): the three-dimensional space contained inside the sphere. It is the «space that the sphere takes up.»[6]
    • Surface Area (A): the two-dimensional area on the outside surface of the sphere. The amount of flat space that covers the outside of the sphere.
    • Pi (π): a constant that expresses the ratio of the circle’s circumference to the circle’s diameter. The first ten digits of Pi are always 3.141592653, although it is usually rounded to 3.14.
  2. Image titled Find the Radius of a Sphere Step 6

    2

    Use various measurements to find the radius. You can use the diameter, circumference, volume, and surface area to calculate the radius of a sphere. You can also calculate each of these numbers if you know the length of the radius itself. Thus, to find the radius, try reversing the formulas for these components’ calculations. Learn the formulas that use the radius to find diameter, circumference, volume, and surface area.[7]

    • D = 2r. As with circles, the diameter of a sphere is twice the radius.
    • C = πD or 2πr. As with circles, the circumference of a sphere is equal to π times the diameter. Since the diameter is twice the radius, we can also say that the circumference is twice the radius times π.
    • V = (4/3)πr3. The volume of a sphere is the radius cubed (times itself twice), times π, times 4/3.
    • A = 4πr2. The surface area of a sphere is the radius squared (times itself), times π, times 4. Since the area of a circle is πr2, it can also be said that the surface area of a sphere is four times the area of the circle formed by its circumference.
  3. Advertisement

  1. Image titled Find the Radius of a Sphere Step 7

    1

    Find the (x,y,z) coordinates of the central point of the sphere. One way to think of the radius of a sphere is as the distance between the point at the center of the sphere and any point on the surface of the sphere. Because this is true, if you know the coordinates of the point at the center of the sphere and of any point on the surface, you can find the radius of the sphere simply by calculating the distance between the two points with a variant of the basic distance formula. To begin, find the coordinates of the sphere’s center point. Note that because spheres are three-dimensional, this will be an (x,y,z) point rather than an (x,y) point.

    • This process is easier to understand by following along with an example. For our purposes, let’s say that we have a sphere centered around the (x,y,z) point (4, -1, 12). In the next few steps, we’ll use this point to help find the radius.
  2. Image titled Find the Radius of a Sphere Step 8

    2

    Find the coordinates of a point on the surface of the sphere. Next, you’ll need to find the (x,y,z) coordinates of a point on the surface of the sphere. This can be any point on the surface of the sphere. Because the points on the surface of a sphere are equidistant from the center point by definition, any point will work for determining the radius.

    • For our example problem, let’s say that we know that the point (3, 3, 0) lies on the surface of the sphere. By calculating the distance between this point and the center point, we can find the radius.
  3. Image titled Find the Radius of a Sphere Step 9

    3

    Find the radius with the formula d = √((x2 — x1)2 + (y2 — y1)2 + (z2 — z1)2).[8]
    Now that you know the center of the sphere and a point on the surface, calculating the distance between the two will find the radius. Use the three-dimensional distance formula d = √((x2 — x1)2 + (y2 — y1)2 + (z2 — z1)2), where d equals distance, (x1,y1,z1) equals the coordinates of the center point, and (x2,y2,z2) equals the coordinates of the point on the surface to find the distance between the two points.

    • In our example, we would plug in (4, -1, 12) for (x1,y1,z1) and (3, 3, 0) for (x2,y2,z2), solving as follows:
      • d = √((x2 — x1)2 + (y2 — y1)2 + (z2 — z1)2)
      • d = √((3 — 4)2 + (3 — -1)2 + (0 — 12)2)
      • d = √((-1)2 + (4)2 + (-12)2)
      • d = √(1 + 16 + 144)
      • d = √(161)
      • d = 12.69. This is the radius of our sphere.
  4. Image titled Find the Radius of a Sphere Step 10

    4

    Know that, in general cases, r = √((x2 — x1)2 + (y2 — y1)2 + (z2 — z1)2).[9]
    In a sphere, every point on the surface of the sphere is the same distance from the center point. If we take the three-dimensional distance formula above and replace the «d» variable with the «r» variable for radius, we get a form of the equation that can can find the radius given any center point (x1,y1,z1) and any corresponding surface point (x2,y2,z2).

    • By squaring both sides of this equation, we get r2 = (x2 — x1)2 + (y2 — y1)2 + (z2 — z1)2. Note that this is essentially equal to the basic sphere equation r2 = x2 + y2 + z2 which assumes a center point of (0,0,0).
  5. Advertisement

Add New Question

  • Question

    How do I find the radius of a sphere if I know its volume is three times its surface area?

    Donagan

    Write an equation whereby the volume [(4πr³) / 3] is set equal to three times the surface area (4πr²). Thus, [(4πr³) / 3] = 12πr². Divide both sides by 4π, so that r³/3 = r². Multiply by 3: r³ = 3r². Divide by r²: r = 3. In other words, a sphere’s volume can be three times its surface area only if its radius is 3 units.

  • Question

    How do I calculate the radius of a sphere in my hand by using a ruler?

    Donagan

    You can get a very close approximation by carefully measuring the circumference and dividing by twice-pi (6.28).

  • Question

    Two solid spheres A & B are made of the same material. The radius of B is 3 times the radius of A, and the surface area of A is 20 cubic cm. How do I calculate the surface area of B?

    Donagan

    The surface area (S) of a sphere equals 4πr², where r is the radius. Using that equation to solve for r: r = √(S / 4π). Now substitute 20 for S, and solve for the radius of sphere A: r = √(20 / 4π) = √(20 / 12.56) = √ 1.59 = 1.26 cm. That’s the radius of sphere A. The radius of sphere B is three times the radius of sphere A: (3)(1.26) = 3.79 cm. So for sphere B, the surface area is 4πr² = (4)(3.14)(3.79)² = 180.4 square centimeters. (That answer makes sense, because when you multiply the radius of a sphere by 3, you multiply its surface area by 3² or 9.) (We didn’t exactly triple the original surface area, because we rounded off some numbers along the way.)

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • This article was published on demand. However, if you are trying to get to grips with solid geometry for the first time, it’s arguably better to start the other end: calculating the properties of the sphere from the radius.

  • The order in which the operations are performed matters. If you are uncertain how priorities work, and your calculating device supports parentheses, then make sure to use them.

  • π or pi is a Greek letter that represents the ratio of the diameter of a circle to its circumference. It’s an irrational number and cannot be written as a ratio of 2 integers. Many approximations exist, 333/106 gives pi to four decimal places. Today most people memorize the approximation 3.14 which is usually sufficiently accurate for everyday purposes.

Show More Tips

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

If you know the diameter, you can find the radius of a sphere by dividing the diameter in half. If you know the circumference, you can find the radius by dividing the circumference by 2 times pi. To learn how to calculate the radius of a sphere using two points on the sphere, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 522,598 times.

Did this article help you?

План урока:

Понятие сферы и шара

Уравнение сферы

Пересечение сферы плоскостью

Касательная плоскость к сфере

Пересечение двух сфер

Площадь сферы

Вписанные и описанные сферы

Понятие сферы и шара

Люди постоянно сталкиваются с предметами, имеющими форму шара. В большинстве спортивных игр (баскетболе, большом и настольном теннисе, футболе) используются мячи, которые по форме как раз являются шарами. Такую же форму имеют многие фрукты – яблоки, апельсины, мандарины. Более того, известно, что Земля, другие планеты и звезды, большинство крупных спутников также представляют собой шары.

1 sfera i shar

Важно отличать шар от сферы. Сферой называют только поверхность шара. Сам же шар является объемной фигурой, к нему относят всю часть пространства, ограниченную сферой.

Дадим строгие определения сферы и шара:

2 sfera i shar

Отрезок, соединяющий точку на сфере с ее центром, именуется радиусом сферы. Он же называется и радиусом шара, заключенного внутри этой сферы.

Проходящий через центр сферы отрезок, чьи концы принадлежат сфере, именуется диаметром сферы. Сама сфера считается частью шара, также как и окружность считается частью круга.Показывают шар или сферу на рисунке так:

3 sfera i shar

Из определения сферы явно вытекает тот факт, что все ее радиусы одинаковы. Это в свою очередь означает, что центр сферы – это середина диаметра, и диаметр вдвое длиннее радиуса.

Заметим, что сфера является телом вращения. Она получается при повороте полуокружности вокруг ее диаметра:

4 sfera i shar

Уравнение сферы

В планиметрии мы уже изучали уравнения линии. Так назывались ур-ния с двумя переменными, каждое решение которых соответствовало точке на координатной плос-ти, принадлежавшей заданной линии. Если же точка не принадлежала линии, то ее координаты решением соответствующего ур-ния не являлись. В частности, нам удалось получить уравнения прямой и окружности.

Аналогично в стереометрии вводится понятие уравнения поверхности. Так как в пространстве используются уже три координаты (х, у и z), то ур-ния поверхности содержат три переменных. Координаты всякой точки, принадлежащей поверхности, будут являться решениями ур-ния этой поверхности. И наоборот, координаты точки, не принадлежащей поверхности, будут обращать ур-ние поверхности в неверное равенство.

Выведем ур-ние сферы. Пусть ее центр располагается в точке С с координатами (х0, у0, z0), а радиус обозначен как R. Возьмем произвольную точку А на сфере. По определению сферы расстояние между А и С должно составлять R:

5 sfera i shar

Мы уже знаем формулу для расчета расстояния между А и С:

6 sfera i shar

Точки, координаты которых удовлетворяют этому неравенству, находятся от центра сферы на расстоянии меньше ее радиуса. Это значит, что они находятся внутри сферы, то есть принадлежат шару, чьей поверхностью является рассматриваемая сфера. Если же координаты точки удовлетворяют неравенству

7 sfera i shar

то можно утверждать, что точка находится вне пределов сферы, то есть она не принадлежит ни сфере, ни шару.

Задание. Напишите уравнение сферы, центр которой располагается в точке (2; – 4; 7) и чей радиус равен 3.

Решение. Здесь мы просто подставляем координаты центра сферы и ее радиус в ур-ние сферы:

8 sfera i shar

Задание. Есть сфера с радиусом 9, чей центр располагается в точке О(2; 3; 4). Определите, какие из следующих точек будут принадлежать этой сфере: А(1; 7; – 4), В(0; 6; 10), С(– 2; – 1; 11), D(5; 6; 8).

Решение. Сначала составляем уравнение сферы, описанной в условии:

9 sfera i shar

Равенство неверное, значит, В не располагается на сфере (более того, раз 49 < 81, то можно утверждать, что точка располагается внутри сферы). Далее проверяем точку С(– 2; – 1; 11):

10 sfera i shar

Задание. Докажите, что ур-ние

11 sfera i shar

является ур-нием сферы, после чего определите радиус этой сферы.

Решение. Здесь необходимо выполнить некоторые преобразования ур-ния, чтобы оно стало похожим на ур-ние сферы. Для этого используем формулы квадратов суммы и разности:

12 sfera i shar

Пересечение сферы плоскостью

Рассмотрим ситуацию, когда секущая плоскость α пересекает сферу. Нас в первую очередь интересует форма получающегося сечения. Опустим из точки О, центра сферы, перпендикуляр ОН на секущую плос-ть (пока мы рассматриваем случай, когда секущая плос-ть проходит не через О):

13 sfera i shar

Буквами А и В обозначим любые две точки сечения, которые принадлежат одновременно и сфере, и плос-ти α. Теперь сравним ∆ОНА и ∆ОНВ. Они прямоугольные, ведь ОН – перпендикуляр к α. При этом у них есть общий катет ОН и одинаковые гипотенузы ОА и ОВ (это радиусы одной сферы).Тогда эти ∆ОНА и ∆ОНВ одинаковы, и поэтому

AH = BH

Мы выбрали точки А и В произвольно, и они оказались равноудаленными от Н. Значит, А и В находятся на одной окруж-ти с центром Н. Легко показать и обратное – любая точка этой окруж-ти будет лежать и на сфере (попробуйте сделать этот сами). Значит, сечение имеет форму окруж-ти, причем ее центр – это основание перпендикуляра, проведенного из О на α.

14 sfera i shar

Обозначим длину перпендикуляра ОН буквой h, радиус сферы буквой R и радиус сечения буквой r. Тогда, используя теорему Пифагора, мы можем составить формулу для расчета радиуса r сечения:

15 sfera i shar

Видно, что чем длиннее перпендикуляр h(он представляет собой расстояние от О до α), тем меньше радиус сечения. Тогда ясно, что наибольший радиус будет у того сечения, которое проходит через центр О. Действительно, если сечение проходит через О, то все его точки по определению сферы будут удалены на расстояние R от О. Но уже по другому определению такое множество точек – окруж-ть с центром в О и радиусом R. Плос-ть, проходящая через центр сферы, именуется диаметральной плоскостью, а само сечение именуют большой окружностью сферы. Радиус большой окруж-ти совпадает с радиусом самой сферы.

16 sfera i shar

Задание. Сфера с радиусом 41 пересечена плос-тью, которая находится на расстоянии 9 от центра этой сферы. Найдите площадь сечения.

17 sfera i shar

Решение. Опустим из центра сферы О перпендикуляр ОН на секущую плос-ть, тогда по условию ОН = 9. Пусть А – точка на сечении, тогда ОА = 41. ∆ОНА – прямоугольный, поэтому мы можем найти радиус АН:

18 sfera i shar

Теперь площадь сечения можно рассчитать по известной формуле площади круга:

19 sfera i shar

Ответ: 1600π.

Задание. Докажите, что если через три точки сферы провести окруж-ть, то все точки этой окруж-ти будут также принадлежать сфере.

20 sfera i shar

Решение. Пусть на сфере есть точки А, В, С. Проведем через них окруж-ть L. Надо доказать, что произвольная точка D, принадлежащая этой окруж-ти, также будет находиться на сфере.

Через точки А, В и С можно провести единственную плос-ть АВС. Она будет секущей для сферы, ведь она имеет с ней как минимум три общих точки – А, В и С. Формой этого сечения будет некоторая окруж-ть L1. Lобязательно будет проходить через А, В и С. Но через любые три точки можно провести не более одной окружности, поэтому L и Lсовпадают. Значит, D, принадлежащая по условию L, будет также принадлежать и L1. Но L1– это сечение, все его точки, в том числе и D, принадлежат сфере, ч. т. д.

Есть смысл запомнить доказанное утверждение:

21 sfera i shar

Задание. На сфере радиусом 13 отмечены точки А, В и С так, что АВ = 6, ВС = 8 и АС = 10. Каково расстояние между центром сферы и плос-тью АВС?

22 sfera i shar

Решение. Сначала заметим, что ∆АВС является прямоугольным, ведь его стороны удовлетворяют теореме Пифагора:

23 sfera i shar

Напомним одного из свойств прямоугольного треугольника – центр окруж-ти, описанной около него, совпадает с серединой его гипотенузы. То есть если через точки А, В и С провести окруж-ть, то ее центр Н будет серединой АВ, и поэтому

24 sfera i shar

Теперь заметим, что эта описанная окруж-ть должна быть сечением сферы. Это значит, что ОН – перпендикуляр к плос-ти АВС, ведь центр сечения должен лежать на перпендикуляре к плос-ти, проведенном из О. Тогда ∆ОНС – прямоугольный, и ОН – искомое нами расстояние. ОС – радиус сферы. Рассчитаем по теореме Пифагора ОН:

25 sfera i shar

Касательная плоскость к сфере

Плос-ть, имеющая со сферой строго одну общую точку, именуется касательной плоскостью к сфере.

26 sfera i shar

Действительно, если плос-ть касается окруж-ти, то точка касания А должна располагаться на расстоянии R от центра сферы О, где R– радиус сферы. Все остальные точки касательной плос-ти находятся вне пределов сферы, то есть должны находиться от О на расстоянии, превышающем R. Это значит, что отрезок ОА должен быть кратчайшим отрезком, соединяющим О и касательную плос-ть. Но мы знаем, что кратчайший отрезок между плос-тью и точкой – это как раз перпендикуляр, опущенный из точки на плос-ть.

Справедливо и обратное утверждение:

27 sfera i shar

Доказательство. Если радиус ОА – перпендикуляр к плос-ти α, то он является кратчайшим расстоянием между плос-тью и центром О. Тогда все остальные точки плос-ти располагаются на большем расстоянии от О, чем точка А. Это значит, что они не располагаются на сфере. Значит, у сферы и плос-ти α одна общая точка А, а потому α по определению – касательная плос-ть.

По аналогии с касательной плос-тью существует понятие касательной прямой к сфере.

28 sfera i shar

Касательная к сфере обладает почти теми же свойствами, что и касательная к окруж-ти.

29 sfera i shar

Доказательство. Пусть m– касательная прямая к сфере с центром О. обозначим точку касания как А. Далее через прямую m и центр О проведем плос-ть α. Нам надо показать, что ОА⊥m:

30 sfera i shar

Плос-ть α будет диаметральной плос-тью. Сечение будет иметь форму окруж-ти с центром О и радиусом ОА. Прямая m будет касательной к этой окруж-ти, ведь она имеет с ней общую точку А, а второй общей точки m и окруж-ть иметь не могут, ведь такая бы точка была бы также общей для m и сферы, а m по определению имеет лишь одну общую точку со сферой. Напомним, что касательная к окруж-ти перпендикулярна радиусу, то есть m⊥ОА, ч. т. д.

Будет верным и обратное утверждение:

31 sfera i shar

Для доказательства используем ту же картинку. Известно, что m⊥ОА, надо показать, что m– касательная к сфере. Проведем через пересекающиеся прямые m и ОА плос-ть α. Она снова окажется диаметральной плоскостью, и снова сечением будут окруж-ть с радиусом ОА. По признаку касательной, который мы изучали в планиметрии, m– касательная к этой окруж-ти, ведь m⊥ОА. То есть в плос-ти α есть лишь одна общая точка m и сферы. В других плос-тях у них не может быть общих точек, так как m полностью принадлежит α. В итоге у m и сферы только одна общая точка, а потому m– касательная к сфере, ч. т. д.

Рассмотрим ещё одно утверждение:

32 sfera i shar

Сначала разберемся с понятием отрезков касательных. Пусть из точки А, лежащей вне сферы, к ней проведены две касательные, а точки касания обозначены буквами В и С. Тогда АВ и АС как раз и будут отрезками касательных:

33 sfera i shar

Докажем, что эти отрезки одинаковы. Для этого к точкам касания проведем радиусы ОВ и ОС. Теперь сравним ∆АВО и ∆АСО. Они прямоугольные, ведь ОВ⊥АВ по свойству касательной, и ОС⊥АС. Гипотенуза АО у этих треугольников общая, а катеты ОВ и ОС – это одинаковые радиусы. Получается, что ∆АВО и ∆АСО равны, а потому отрезки АВ и АС одинаковы.

Задание. Дан шар радиусом 10 см, к которому проведена касательная плос-ть α. Через точку касания проведена секущая плос-ть β, образующая с α угол в 30°. Вычислите площадь сечения шара плос-тью β.

34 sfera i shar

Решение. Обозначим точку касания как А. Опустим из центра сферы о перпендикуляр ОН на плос-ть β. Тогда отрезок АН будет радиусом сечения. Так как угол между плос-тями α и β составляет 30° (на рисунке он показан как ∠НАС), то

35 sfera i shar

Ответ: 25π см2.

Задание. Некоторое тело представляет собой шар, внутри которого есть полость, также имеющая форму шара, причем центры этих шаров совпадают. Докажите, что площадь сечения этого тела, проходящего через центр шаров, совпадает с площадью сечения, являющегося касательной к внутреннему шару.

36 sfera i shar

Решение. Обозначим радиус большей сферы как R, а радиус меньшей (внутренней сферы) как r. Площадь центрального сечения в виде кольца (показано синим цветом) представляет собой разницу между площадью большого круга с радиусом R и малого с радиусом r:

37 sfera i shar

Задание. Сфера радиусом 5 см касается каждой стороны треугольника со сторонами 13, 14 и 15 см. Каково расстояние между центром этой сферы и плос-тью треугольника?

38 sfera i shar

Решение. Обозначим вершины треугольника точками А, В и С. Пусть

AB = 13

AC = 14

BC = 15

Заметим, что плос-ть АВС – секущая, а само сечение имеет форму окруж-ти. Эта окруж-ть будет касаться сторон ∆АВС, то есть она является вписанной окруж-тью. Как вычислить ее радиус НK?

Напомним одну из формул для расчета площади треугольника:

39 sfera i shar

Площадь ∆АВС можно найти по формуле Герона. Предварительно найдем полупериметр ∆АВС:

40 sfera i shar

Пересечение двух сфер

Пусть есть две пересекающиеся сферы с центрами в точках О1 и О2 с радиусами Rи Rсоответственно. Какую форму будет иметь линия L, по которой они пересекаются?

Эта линия является множеством точек, которые принадлежат как первой, так и второй сфере. Обозначим две произвольные точки этой линии буквами А и В:

41 sfera i shar

Проведем радиусы О1А, О1В, О2А и О2В. Теперь сравним ∆АО1О2 и ∆ВО1О2. Сторона О1О2 у них общая, а другие стороны попарно равны как радиусы сфер:

42 sfera i shar

Получается, что ∆АО1О2 и ∆ВО1О2 равны. Теперь из точек А и В опустим высоты на прямую О1О2. Из равенства ∆АО1О2 и ∆ВО1О2 вытекает два факта:

  • эти высоты упадут в одну точку Н;
  • эти высоты будут одинаковы, то есть АН = НВ.

Другими словами, А и В равноудалены от Н. Получается, что точки А и В находятся на окруж-ти, центр которой – точка Н. Заметим, что О1О2 – перпендикуляр к плоскости окружности, ведь О1О2⊥АН и О1О2⊥ВН.

Точки А и В были выбраны произвольно, поэтому можно утверждать, что любые точки линии L будут находиться на одной окруж-ти. Докажем и обратное утверждение – любая точка, лежащая на этой окруж-ти, будет принадлежать линии L. Возьмем на окруж-ти какую-нибудь точку С и построим радиус НС:

43 sfera i shar

Теперь сравним ∆О1НС и ∆О1НА. Они прямоугольные, ведь О1Н – перпендикуляр к плос-ти окружности. Катет О1Н у них общий, а катеты АН и НС одинаковы как радиусы окруж-ти. Значит, ∆О1НС и ∆О1НА равны, и потому

44 sfera i shar

Это равенство означает, что С принадлежит сфере с центром в О1. Аналогично рассмотрев ∆О2НС и ∆О2НА, можно показать, что С также принадлежит и второй сфере. Тогда С принадлежит пересечению этих сфер.

Итак, всякая точка линии L лежит на окруж-ти с центром Н, и наоборот, каждая точка этой окруж-ти лежит на линии L. Это означает, что L как раз и является этой окружностью.

Отметим ещё один факт: по неравенству треугольника отрезок О1Одолжен быть меньше суммы отрезков О1А и О2А, то есть суммы радиусов сфер.

45 sfera i shar

Задание. Сферы имеют радиусы 25 см и 29 см, а расстояние между их центрами составляет 36 см. Вычислите радиус окруж-ти, по которой они пересекаются.

Решение. Пусть А – одна их точек сечения. Искомый радиус обозначим как АН. В итоге получим такую картинку:

46 sfera i shar

47 sfera i shar

Площадь сферы

Сферическая поверхность, как и всякая другая ограниченная поверхность, имеет какую-то площадь. Напомним, что для вычисления площадей цилиндрической и конической поверхности мы строили их плоские развертки и находили площади уже этих разверток, используя формулы из планиметрии. Оказывается, что для сферы построить такую развертку невозможно. Мы не будем доказывать строго этот факт, но он известен из географии – любая карта Земли, которая как раз и должна быть разверткой сферической поверхности нашей планеты, является неточной и сильно искажает форму и размеры континентов. Если бы существовал способ построить точную развертку, то и географические карты не имели бы таких искажений.

Однако вычислить площадь сферы всё же можно по известной формуле:

48 sfera i shar

Сейчас мы не будем доказывать эту формулу. Отметим лишь, что для ее получения необходимо использовать интегралы.

Задание. Какова площадь сферы с радиусом 5 см?

Решение. Просто используем формулу:

49 sfera i shar

Ответ: 100π см2.

Вписанные и описанные сферы

Если каждая точка многогранника лежит на поверхности сферы, то говорят, что многогранник вписан в сферу. Тогда сферу именуют описанной, а многогранник – вписанным.

Если же сфера касается каждой грани многогранника, то уже наоборот, сфера вписана в многогранник. Тогда уже сфера будет вписанной фигурой, а многогранник – описанной.

50 sfera i shar

Заметим, что не в каждый многогранник может быть вписанным или описанным. Например, в куб вписать сферу можно, а в прямоугольный параллелепипед, измерения которого отличаются, уже вписать сферу не получится.

Надо отметить, что в сферу можно вписать не только в многогранник, но и другие геометрические фигуры, в частности конус и цилиндр. Здесь нужно уточнить (без доказательства), что если касание плос-ти и сферы происходит только в одной точке, то цилиндрическая и коническая поверхности касаются сферы уже по окруж-ти.

51 sfera i shar

Задание. Правильная пирамида вписана в сферу. Докажите, высота этой пирамиды проходит через центр сферы.

52 sfera i shar

Решение. Опустим из центра сферы О перпендикуляр ОН на основание пирамиды. Далее возьмем произвольную вершину Х основания пирамиды, и соединим ее с Н отрезком ХН. По теореме Пифагора можно вычислить длину ХН (радиус сферы ОХ обозначим, буквой R):

53 sfera i shar

Получилось, что расстояние ХН не зависит от самой точки Х. То есть все вершины основания равноудалены от точки, то есть Н – центр описанной около основания окруж-ти. Это означает, что перпендикуляр ОН одновременно является высотой правильной пирамиды, ч. т. д.

Задание. Вычислите радиус описанной сферы, в которую вписан правильный тетраэдр со стороной а.

54 sfera i shar

Решение. Правильный тетраэдр можно считать правильной треугольной пирамидой, поэтому (согласно предыдущей задаче) из центра сферы О можно опустить перпендикуляр на основание АВС, который упадет в точку Н – центр основания. Так как тетраэдр правильный, то ∆АВС – равносторонний, то есть Н – эта точка пересечения и медиан, и высот. Опустим из А высоту АК, она пройдет через Н. Так как АК – ещё и медиана, то

55 sfera i shar

Далее найдем длину АН. Вспомним, что АН – медиана, а точка пересечения медиан Н делит их в отношении 2:1. Это значит, что

56 sfera i shar

Буквой R здесь обозначен радиус описанной сферы. Осталось применить теорему Пифагора к ∆АНD:

57 sfera i shar

Задание. Докажите что вокруг любого тетраэдра можно описать сферу.

Решение. Обозначим вершины произвольного тетраэдра буквами А, В, С и D. Далее на грани АВС отметим точку К – центр окруж-ти, описанной около ∆АВС. Аналогично на грани АВD отметим Н – центр окруж-ти, описанной около ∆АВD:

58 sfera i shar

Напомним, что центры описанных окружностей располагаются в той точке, где пересекаются серединные перпендикуляры. Это значит, что если мы из К и Н опустим перпендикуляры на ребро АВ, то эти перпендикуляры будут серединными, то есть они попадут в одну точку М, являющуюся серединой ребра АВ.

Мы получили плос-ть НМК. Заметим, что НМК⊥АВ по признаку перпендикулярности прямой и плоскости, так как АВ⊥МН и АВ⊥МК. Но тогда АВС⊥МНК уже по признаку перпендикулярности плоскостей, ведь АВС проходит через АВ, являющийся перпендикуляром к НМК. По той же причине и АВD⊥НМК.

Далее проведем через К перпендикуляр m к АВС. Он должен будет принадлежать НМК, ведь НМК⊥АВD. Аналогично и через Н проведем перпендикуляр n к АВD, который также будет принадлежать НМК.

В плос-ти НМК есть две прямые, mи n. Они либо параллельны, либо пересекаются. Но перпендикуляры к двум плос-тям могут быть параллельны только в случае, если сами эти плос-ти параллельны (или совпадают). Но АВС и АВD непараллельны и не совпадают, поэтому m и n непаралелльны, то есть они пересекаются в какой-то точке О.

Покажем, что точка О равноудалена от всех вершин тетраэдра. Сравним ∆АОК и ∆СОК. Они прямоугольные, ведь ОК – перпендикуляр к АВС. ОК – общий катет, а катеты АК и СК одинаковы как радиусы описанной окруж-ти. Значит, ∆АОК и ∆СОК равны, ОА = ОС. Аналогично рассмотрев ∆АОК и ∆ВОК, приходим к выводу, что ОА = ОВ. Далее рассматриваем ∆ОНD и ∆ОНА и получаем, что ОА = ОD. Эти три равенства все вместе означают, что О равноудалена от точек А, В, С и D. А это значит, что на сфере с центром О и радиусом ОА будут лежать все вершины тетраэдра, то есть такая сфера окажется описанной, ч. т. д.

Примечание. Несложно доказать, что описанная сфера будет единственной. Действительно, если бы около тетраэдра можно было описать две различных сферы, то они пересекались бы в точках А, В, С и D. Сферы пересекаются по окруж-ти, то есть А, В, С и D должны лежать на одной окруж-ти, но это невозможно, ведь они не располагаются в одной плос-ти. Значит, двух описанных сфер существовать не может.

Доказанное в задаче утверждение можно сформулировать несколько иначе:

59 sfera i shar

Сегодня мы изучили сферу – одну из важнейших геометрических фигур. Именно сферическую форму имеют звезды и планеты. Жидкость, оказавшаяся в невесомости, также принимает форму шара. Важно запомнить, что сечение сферы имеет форму окруж-ти, и касательные к сфере обладают почти такими ми же свойствами, как и касательные к окруж-ти в планиметрии.

Зная окружность шара, можно напрямую найти радиус и диаметр шара, разделив известное значение на удвоенное число π для вычисления радиуса, и просто на число π для вычисления диаметра.
r=P/2π
d=P/π

Площадь поверхности шара по определению равна четырем произведениям числа π на квадрат радиуса, поэтому подставив вместо последнего отношение длины окружности сферы к двум числам π, формула принимает вид произведения числа π на квадрат длины окружности.
S=4πr^2=P^2/π

Объем сферы, зная длину окружности сферы, можно найти, подставив отношение, через которое выражен радиус, в формулу объема. Тогда объем будет равен отношению куба длины окружности к шести квадратам числа π.
V=4/3 πr^3=4/3 π(P/2π)^3=P^3/(6π^(2 ) )

Пусть $%r$% — радиус вписанной сферы. В проекции на основание получается вписанная окружность того же радиуса. Поэтому площадь основания равна $%S=pr=16r$%. Оснований два, и их площади в сумме дают $%32r$%. Боковая поверхность состоит из трёх прямоугольников высотой $%2r$%. Их сумма площадей составляет $%32cdot2r=64r$%. Полная площадь поверхности равна $%96r=192$%, откуда $%r=2$%.

Для радиуса окружности, описанной около треугольника, существует известная формула $%R=frac{abc}{4S}$%. Применительно к нашему случаю, это даёт $%R=frac{896}{4cdot32}=7$%.

Теперь рассмотрим центр сферы, описанной около призмы. Он проектируется в центр описанной окружности основания, а расстояние до плоскости основания равно $%r$%. По теореме Пифагора, квадрат радиуса сферы будет равен $%R^2+r^2=7^2+2^2=53$%.

Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Формула. Объём шара:

V = 4 π R 3 = 1 π D 3
3 6

S = 4 π R 2 = π D 2

Уравнение сферы

x 2 + y 2 + z 2 = R 2

( x — x 0) 2 + ( y — y 0) 2 + ( z — z 0) 2 = R 2

Основные свойства сферы и шара

Секущая, хорда, секущая плоскость сферы и их свойства

d m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m r такого круга можно найти по формуле:

где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.

Касательная, касательная плоскость к сфере и их свойства

Формула. Объём сегмента сферы с высотой h через радиус сферы R:

S = π R(2 h + √ 2 h R — h 2 )

Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение радиуса шара: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус шара и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса шара

1. Через объем

Радиус шара вычисляется по формуле:

V – объем шара; равен трем четвертым произведения его радиуса в кубе и числа π .

π – число, приближенное значение которого равняется 3,14.

2. Через площадь поверхности

Радиус шара рассчитывается таким образом:

S – площадь поверхности шара; равна четырем его радиусам в квадрате, умноженным на число π .

S = 4 π R 2

Примеры задач

Задание 1
Объем шара составляет 904,32 см 3 . Найдите его радиус.

Решение:
Воспользовавшись первой формулой получаем:

Задание 2
Вычислите радиус шара, если площадь его поверхности равна 314 см 2 .

Решение:
В данном случае рассчитать радиус шара можно, применив 2-ю формулу (через площадь поверхности):

Площадь поверхности шара формула и калькулятор онлайн

Что такое шар?

В стереометрии есть большой раздел, который называется фигуры вращения. Об этом редко говорят в школе, но плоские фигуры можно вращать вокруг какой-либо оси или точки. Так получаются объемные фигуры.

Стереометрия это наука о фигурах в пространстве. Простейшими единицами стереометрии является точка, прямая и плоскость.

Например, цилиндр образован вращением прямоугольника или квадрата. Поэтому, если рассечь цилиндр плоскостью, то сечение примет форму того самого квадрата или прямоугольника, который вращали, чтобы получить фигуру.

Так же и шар образован вращением. Как не трудно догадаться, основной для шара послужил круг. Причем сразу стоит сказать, что именно круг, а не окружность.

Следует понимать, что круг и окружность разные фигуры. Так окружность представляет собой набор точек равноудаленных от центра. Переводя на более простой язык окружность – это сама линия и центр окружности. А круг включает в себя и все внутреннее пространство. У окружности не может быть площади.

То есть, шар имеет какое-то внутренне заполненное пространство. Интересно, что сфера так же имеет пространство внутри, только условно полое.

Формулы для вычисления радиуса

  • Например, дан шар с диаметром 16 см. Радиус этого шара: r = 16/2 = 8 см. Если диаметр равен 42 см, то радиус равен 21 см (42/2=21).

  • Например, дан шар с длиной окружности 20 см. Радиус этого шара: r = 20/2π = 3,183 см.
  • Такая же формула используется при вычислении радиуса и длины окружности круга.

  • Например, дан шар с объемом 100 см 3 . Радиус этого шара вычисляется так:
    • ((V/π)(3/4)) 1/3 = r
    • ((100/π)(3/4)) 1/3 = r
    • ((31,83)(3/4)) 1/3 = r
    • (23,87) 1/3 = r
    • 2,88 см = r

  • Например, дан шар с площадью поверхности 1200 см 3 . Радиус этого шара вычисляется так:
    • √(A/(4π)) = r
    • √(1200/(4π)) = r
    • √(300/(π)) = r
    • √(95,49) = r
    • 9,77 см = r

V = 4/3 πr3,

где V — объем, r — радиус шара.
Отсюда, радиус шара равен корню кубическому из объема шара деленного на три четвертых Пи:

Определение радиуса сферы при помощи площади ее поверхности

Допустим, нам дана сфера вместе с площадью её поверхности. В таком случае мы будем использовать формулу площади её поверхности для того, чтобы вычислить радиус.

где S – это площадь поверхности сферы, число Пи = 3,14.

Важные измерения

Радиус (обозначается r) — единственное необходимое измерение. Это расстояние от любой точки на поверхности сферы до её центра. Самый длинный отрезок, равный двум r, называется диаметром (d). Земля называется сфероидом, потому что она очень близка к шару, но не идеально круглая. Она немного вытянута на северном и южном полюсах.

Впервые вычислить площадь (S) поверхности шара удалось Архимеду. Именно он установил, что для того, чтобы найти S любого трёхмерного объекта, необходимо измерить его радиус. Для сферы получилась следующая формула: S = 4 * π * r ². Для того чтобы понять, как это работает, следует рассмотреть пример. Известно, что радиус детского мяча 10 см. Остаётся ещё одна неизвестная — число π. Это математическая константа, которая выражает отношение длины окружности к её диаметру и равна примерно 3,14. Далее, следует подставить цифры в уравнение:

  1. S = 4 * 3,14 * 10²;
  2. S мяча равна ≈ 1256 см².

Таким образом, можно найти площадь сферы через её радиус по формуле, полученной ещё в античности. Ещё одна важная характеристика — это объём (V) фигуры. Он вычисляется следующим образом: V = (4/3) * π * r³. Если придерживаться условий задачи, то V мяча = (4/3) * 3,14 * 10³ равен ≈ 4187 см ³. Сейчас можно избежать длительных расчётов, если нужно узнать площадь сферы, онлайн-калькуляторы — сервисы, которые очень в этом помогают.

Сектор сферы — это слой между двумя правильными круговыми конусами, имеющими общую вершину в центре шара и общую ось.

Надо сказать, что внутренний конус может иметь основание с нулевым радиусом. Формула, по которой определяют площадь сектора, следующая: S = 2 * π * r * h, где h — высота. К слову, эта же формула применима, если необходимо найти S части шара, отрезанной плоскостью, то есть полусферы. Такая же формула применяется при нахождении S сегмента (часть между двумя параллельными плоскостями) и зоны сферы (изогнутая поверхность сферического сегмента).

Шар, сфера и их части

Введем следующие определения, связанные с шаром, сферой и их частями.

Определение 1. Сферой с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O равно r (рис. 1).

Определение 2. Шаром с центром в точке O и радиусом r называют множество точек, расстояние от которых до точки O не превосходит r (рис. 1).

Таким образом, сфера с центром в точке O и радиусом r является поверхностью шара с центром в точке O и радиусом r.

Замечание. Радиусом сферы ( радиусом шара ) называют отрезок, соединяющий любую точку сферы с центром сферы. Длину этого отрезка также часто называют радиусом сферы ( радиусом шара ).

Определение 3. Сферическим поясом (шаровым поясом) называют часть сферы , заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).

Определение 4. Шаровым слоем называют часть шара , заключенную между двумя параллельными плоскостями параллельными плоскостями (рис. 2).

Окружности, ограничивающие сферический пояс, называют основаниями сферического пояса.

Расстояние между плоскостями Расстояние между плоскостями оснований сферического пояса называют высотой сферического пояса.

Из определений 3 и 4 следует, что шаровой слой ограничен сферическим поясом и двумя кругами, плоскости которых параллельны параллельны между собой. Эти круги называют основаниями шарового слоя.

Высотой шарового слоя называют расстояние между плоскостями расстояние между плоскостями оснований шарового слоя .

Определение 5. Сферическим сегментом называют каждую из двух частей, на которые делит сферу пересекающая ее плоскость (рис. 3).

Определение 6. Шаровым сегментом называют каждую из двух частей, на которые делит шар пересекающая ее плоскость (рис. 3).

Из определений 3 и 5 следут, что сферический сегмент представляет собой сферический пояс , у которого одна из плоскостей оснований касается сферы (рис. 4). Высоту такого сферического пояса и называют высотой сферического сегмента.

Соответственно, шаровой сегмент – это шаровой слой, у которого одна из плоскостей оснований касается шара (рис. 4). Высоту такого шарового слоя называют высотой шарового сегмента .

По той же причине всю сферу можно рассматривать как сферический пояс , у которого обе плоскости оснований касаются сферы (рис. 5). Соответственно, весь шар – это шаровой слой, у которого обе плоскости оснований касаются шара (рис. 5).

Определение 7. Шаровым сектором называют фигуру, состоящую из всех отрезков, соединяющих точки сферического сегмента с центром сферы (рис. 6).

Высотой шарового сектора называют высоту его сферического сегмента .

Замечание. Шаровой сектор состоит из шарового сегмента и конуса с общим основанием. Вершиной конуса является центр сферы .

Объем шара через длину окружности

Формула для нахождения объема шара через длину окружности: <6pi^3>> , где L — длина окружности шара.

Эта формула легко выводится формулы объема шара через его радиус и формулы для нахождения длины окружности

Уравнение сферы

x 2 + y 2 + z 2 = R 2

( x – x 0) 2 + ( y – y 0) 2 + ( z – z 0) 2 = R 2

3. Параметрическое уравнение сферы с центром в точке ( x 0, y 0, z 0):
x = x 0 + R · sin θ · cos φ y = y 0 + R · sin θ · sin φ z = z 0 + R · cos θ
где θ ϵ [0, π ], φ ϵ [0,2 π ].

Определение радиуса сферы при помощи объема шара

Если нам дан объём шара, ограниченного сферой, то радиус находится так:

где V – это объём шара, число Пи = 3,14.

Определение основных величин

  • Диаметр (D) – это отрезок, который соединяет две точки на поверхности шара и проходит через его центр (то есть это наибольшее расстояние между противоположными точками, лежащими на поверхности шара). Диаметр равен удвоенному радиусу.
  • Длина окружности (С) представляет собой длину окружности большого круга, то есть круга, который образует секущая плоскость, проходящая через центр шара.
  • Объем (V) – это значение трехмерного пространства, занимаемого шаром. [6]
  • Площадь поверхности (А) – это значение двумерного (плоского) пространства, ограниченного поверхностью шара.
  • Пи (π) – это постоянная, которая равна отношению длины окружности к ее диаметру. Первыми десятью цифрами этой постоянной являются 3,141592653, но зачастую число Пи округляется до 3,14.

  • D = 2г. Как и в случае круга , диаметр шара в два раза больше его радиуса.
  • C = πD = 2πr. Как и в случае круга , длина окружности шара равна произведению π на диаметр шара. Так как диаметр вдвое больше радиуса, то длина окружности шара равна удвоенному произведению π на радиус шара.
  • V = (4/3)πr 3 . Объем шара равен произведению 4/3 на π и на радиус в кубе. [7]
  • А = 4πr 2 . Площадь поверхности шара равна учетверенному произведению π на радиус в квадрате. Так как площадь круга равна πr 2 , то площадь поверхности шара в четыре раза больше площади круга, который образует секущая плоскость, проходящая через центр шара.

r = С / 2π

π — величина постоянная, равна отношению длины окружности к диаметру. Число Пи, равное 3,141592653… обычно округляется до 3,14.

— по площади шара.
Площадь шара равна произведению четырех пи на квадрат радиуса:

Нахождение радиуса по расстоянию между двумя точками

  • Рассмотрим пример. Дан шар с центром с координатами (4,-1,12). Воспользуйтесь этими координатами, чтобы найти радиус шара.

  • В нашем примере допустим, что некоторая точка, лежащая на поверхности шара, имеет координаты (3,3,0). Вычислив расстояние между этой точкой и центром шара, вы найдете радиус.

  • В рассматриваемом примере вместо (x1,y1,z1) подставьте (4,-1,12), а вместо (x2,y2,z2) подставьте (3,3,0):
    • d = √((x2 – x1) 2 + (y2 – y1) 2 + (z2 – z1) 2 )
    • d = √((3 – 4) 2 + (3 – -1) 2 + (0 – 12) 2 )
    • d = √((-1) 2 + (4) 2 + (-12) 2 )
    • d = √(1 + 16 + 144)
    • d = √(161)
    • d = 12,69. Это искомый радиус шара.

  • Возведите обе стороны этого уравнения в квадрат, и получите r 2 = (x2 – x1) 2 + (y2 – y1) 2 + (z2 – z1) 2 . Отметьте, что это уравнение соответствует уравнению сферы r 2 = x 2 + y 2 + z 2 с центром с координатами (0,0,0).

C = πD = 2πr

Отсюда, радиус равен частному от деления длины окружности © на 2 пи:

Через площадь поверхности

Радиус шара рассчитывается таким образом:

S – площадь поверхности шара; равна четырем его радиусам в квадрате, умноженным на число π .

S = 4 π R 2

Одиннадцать свойств

В своей книге «Геометрия и воображение» Дэвид Гилберт и Стефан Кон-Фоссен описывают свойства сферы и обсуждают, однозначны ли такие характеристики. Несколько пунктов справедливы и для плоскости, которую можно представить как шар с бесконечным радиусом:

  1. Точки на сфере находятся на одинаковом расстоянии от одной фиксированной, называемой центром. Можно сделать единственный вывод: это обычное определение и оно однозначно. А также отношение расстояний между двумя фиксированными точками является постоянным. И здесь прослеживается аналогия с окружностями Аполлония, то есть с фигурами в плоскости.
  2. Контуры и плоские участки сферы являются кругами. Это однозначное свойство, которое определяет шар.
  3. Сфера имеет постоянную ширину и обхват. Ширина поверхности — это расстояние между парами параллельных касательных плоскостей. Множество других замкнутых выпуклых поверхностей имеют постоянную ширину, например, тело Мейснера. Обхват поверхности — это окружность границы её ортогональной проекции на плоскость. Каждое из этих свойств подразумевает другое.
  4. Все точки сферы омбилические. В любой точке поверхности вектор нормали расположен под прямым углом к ней, поскольку шар — это линии, выходящие из его центра. Пересечение плоскости, которая содержит нормаль с поверхностью, сформирует кривую — нормальное сечение. Любая замкнутая поверхность будет иметь как минимум четыре точки, называемых омбилическими. Для сферы кривизны всех нормальных сечений одинаковы, поэтому омбилической будет каждая точка.
  5. У шара нет центра поверхности. Например, два центра, соответствующие минимальной и максимальной секционной кривизне, называются фокальными точками, а совокупность всех таких точек образует одноимённую поверхность. И только у шара она преобразуется в единую точку.
  6. Все геодезические сферы являются замкнутыми кривыми. Для этой фигуры они большие круги. Многие другие поверхности разделяют это свойство.
  7. Имеет наименьшую площадь при наибольшем объёме. Это определяет шар однозначно. Например, мыльный пузырь: его окружает фиксированный объём, поверхностное натяжение минимизирует площадь его поверхности для такого объёма. Конечно, пузырь не будет идеальным шаром, поскольку внешние силы, такие как гравитация, будут искажать его форму.
  8. Сфера — единственная вложенная поверхность, у которой нет границы или сингулярностей с постоянной положительной средней кривизной.
  9. Сфера имеет наименьшую общую среднюю кривизну среди всех выпуклых тел с заданной площадью поверхности.
  10. Шар имеет постоянную гауссову кривизну. Это внутреннее свойство, которое определяется путём измерения длины и углов и не зависит от того, как поверхность встроена в пространство.

Сфера превращается в себя трёхпараметрическим семейством жёстких движений. Любое вращение вокруг линии, проходящей через начало координат, может быть выражено как комбинация вращений вокруг трёхкоординатной оси.

источники:

Нахождение радиуса шара: формула и примеры

http://exceltut.ru/ploshhad-poverhnosti-shara-formula-i-kalkulyator-onlajn/

Понравилась статья? Поделить с друзьями:
  • Как найти фокус выпуклого зеркала
  • Как найти документ на компьютере по автору
  • Как найти проверочное слово рассказ
  • Как найти окаменелости pixelmon
  • Как составить смету продаж