Как найти квадратное уравнение если даны корни

  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Квадратное уравнение

    Что такое квадратное уравнение и как его решать?

    Мы помним, что уравнение это равенство, содержащее в себе переменную, значение которой нужно найти.

    Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением.

    Например, следующие уравнения являются квадратными:

    Решим первое из этих уравнений, а именно x 2 − 4 = 0 .

    Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.

    Итак, в уравнении x 2 − 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:

    Получили уравнение x 2 = 4 . Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду x = a , где a — корень уравнения.

    У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.

    Чтобы решить уравнение x 2 = 4 , нужно ответить на вопрос при каком значении x левая часть станет равна 4 . Очевидно, что при значениях 2 и −2 . Чтобы вывести эти значения воспользуемся определением квадратного корня.

    Число b называется квадратным корнем из числа a , если b 2 = a и обозначается как

    У нас сейчас похожая ситуация. Ведь, что такое x 2 = 4 ? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень x прирáвнена к 4.

    Тогда можно записать, что . Вычисление правой части позвóлит узнать чему равно x . Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем x = 2 и x = −2 .

    Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят арифметическое значение квадратного корня. В нашем случае на этапе когда записано выражение , перед следует поставить знак ±

    Затем найти арифметическое значение квадратного корня

    Выражение x = ± 2 означает, что x = 2 и x = −2 . То есть корнями уравнения x 2 − 4 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

    Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

    В обоих случаях левая часть равна нулю. Значит уравнение решено верно.

    Решим ещё одно уравнение. Пусть требуется решить квадратное уравнение (x + 2) 2 = 25

    Для начала проанализируем данное уравнение. Левая часть возведенá в квадрат и она равна 25 . Какое число в квадрате равно 25 ? Очевидно, что числа 5 и −5

    То есть наша задача найти x, при которых выражение x + 2 будет равно числам 5 и −5 . Запишем эти два уравнения:

    Решим оба уравнения. Это обычные линейные уравнения, которые решаются легко:

    Значит корнями уравнения (x + 2) 2 = 25 являются числа 3 и −7 .

    В данном примере как и в прошлом можно использовать определение квадратного корня. Так, в уравнения (x + 2) 2 = 25 выражение (x + 2) представляет собой квадратный корень из числа 25 . Поэтому можно cначала записать, что .

    Тогда правая часть станет равна ±5 . Полýчится два уравнения: x + 2 = 5 и x + 2 = −5. Решив по отдельности каждое из этих уравнений мы придём к корням 3 и −7 .

    Запишем полностью решение уравнения (x + 2) 2 = 25

    Из рассмотренных примеров видно, что квадратное уравнение имеет два корня. Чтобы не забыть о найденных корнях, переменную x можно подписывать нижними индексами. Так, корень 3 можно обозначить через x1 , а корень −7 через x2

    В предыдущем примере тоже можно было сделать так. Уравнение x 2 − 4 = 0 имело корни 2 и −2 . Эти корни можно было обозначить как x1 = 2 и x2 = −2.

    Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

    Сделаем проверку для уравнения (x + 2) 2 = 25 . Подставим в него корни 3 и −7 . Если при значениях 3 и −7 левая часть равна 25 , то это будет означать, что уравнение решено верно:

    В обоих случаях левая часть равна 25 . Значит уравнение решено верно.

    Квадратное уравнение бывает дано в разном виде. Наиболее его распространенная форма выглядит так:

    ax 2 + bx + c = 0 ,
    где a, b, c — некоторые числа, x — неизвестное.

    Это так называемый общий вид квадратного уравнения. В таком уравнении все члены собраны в общем месте (в одной части), а другая часть равна нулю. По другому такой вид уравнения называют нормальным видом квадратного уравнения.

    Пусть дано уравнение 3x 2 + 2x = 16 . В нём переменная x возведенá во вторую степень, значит уравнение является квадратным. Приведём данное уравнение к общему виду.

    Итак, нам нужно получить уравнение, которое будет похоже на уравнение ax 2 + bx + c = 0 . Для этого в уравнении 3x 2 + 2x = 16 перенесем 16 из правой части в левую часть, изменив знак:

    Получили уравнение 3x 2 + 2x − 16 = 0 . В этом уравнении a = 3 , b = 2 , c = −16 .

    В квадратном уравнении вида ax 2 + bx + c = 0 числа a , b и c имеют собственные названия. Так, число a называют первым или старшим коэффициентом; число b называют вторым коэффициентом; число c называют свободным членом.

    В нашем случае для уравнения 3x 2 + 2x − 16 = 0 первым или старшим коэффициентом является 3 ; вторым коэффициентом является число 2 ; свободным членом является число −16 . Есть ещё другое общее название для чисел a, b и cпараметры.

    Так, в уравнении 3x 2 + 2x − 16 = 0 параметрами являются числа 3 , 2 и −16 .

    В квадратном уравнении желательно упорядочивать члены так, чтобы они располагались в таком же порядке как у нормального вида квадратного уравнения.

    Например, если дано уравнение −5 + 4x 2 + x = 0 , то его желательно записать в нормальном виде, то есть в виде ax 2 + bx + c = 0.

    В уравнении −5 + 4x 2 + x = 0 видно, что свободным членом является −5 , он должен располагаться в конце левой части. Член 4x 2 содержит старший коэффициент, он должен располагаться первым. Член x соответственно будет располагаться вторым:

    Квадратное уравнение в зависимости от случая может принимать различный вид. Всё зависит от того, чему равны значения a , b и с .

    Если коэффициенты a , b и c не равны нулю, то квадратное уравнение называют полным. Например, полным является квадратное уравнение 2x 2 + 6x − 8 = 0 .

    Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид. Такое квадратное уравнение называют неполным. Например, неполным является квадратное уравнение 2x 2 + 6x = 0, в нём имеются коэффициенты a и b (числа 2 и 6 ), но отсутствует свободный член c.

    Рассмотрим каждый из этих видов уравнений, и для каждого из этих видов определим свой способ решения.

    Пусть дано квадратное уравнение 2x 2 + 6x − 8 = 0 . В этом уравнении a = 2 , b = 6 , c = −8 . Если b сделать равным нулю, то уравнение примет вид:

    Получилось уравнение 2x 2 − 8 = 0 . Чтобы его решить перенесем −8 в правую часть, изменив знак:

    Для дальнейшего упрощения уравнения воспользуемся ранее изученными тождественными преобразованиями. В данном случае можно разделить обе части на 2

    У нас получилось уравнение, которое мы решали в начале данного урока. Чтобы решить уравнение x 2 = 4 , следует воспользоваться определением квадратного корня. Если x 2 = 4 , то . Отсюда x = 2 и x = −2 .

    Значит корнями уравнения 2x 2 − 8 = 0 являются числа 2 и −2 . Запишем полностью решение данного уравнения:

    Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

    В обоих случаях левая часть равна нулю, значит уравнение решено верно.

    Уравнение, которое мы сейчас решили, является неполным квадратным уравнением. Название говорит само за себя. Если полное квадратное уравнение выглядит как ax 2 + bx + c = 0 , то сделав коэффициент b нулём получится неполное квадратное уравнение ax 2 + c = 0 .

    У нас тоже сначала было полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Но мы сделали коэффициент b нулем, то есть вместо числа 6 поставили 0 . В результате уравнение обратилось в неполное квадратное уравнение 2x 2 − 4 = 0 .

    В начале данного урока мы решили квадратное уравнение x 2 − 4 = 0 . Оно тоже является уравнением вида ax 2 + c = 0 , то есть неполным. В нем a = 1 , b = 0 , с = −4 .

    Также, неполным будет квадратное уравнение, если коэффициент c равен нулю.

    Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициент c нулём. То есть вместо числа 4 поставим 0

    Получили квадратное уравнение 2x 2 + 6x=0 , которое является неполным. Чтобы решить такое уравнение, переменную x выносят за скобки:

    Получилось уравнение x(2x + 6) = 0 в котором нужно найти x, при котором левая часть станет равна нулю. Заметим, что в этом уравнении выражения x и (2x + 6) являются сомножителями. Одно из свойств умножения говорит, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

    В нашем случае равенство будет достигаться, если x будет равно нулю или (2x + 6) будет равно нулю. Так и запишем для начала:

    Получилось два уравнения: x = 0 и 2x + 6 = 0 . Первое уравнение решать не нужно — оно уже решено. То есть первый корень равен нулю.

    Чтобы найти второй корень, решим уравнение 2x + 6 = 0 . Это обычное линейное уравнение, которое решается легко:

    Видим, что второй корень равен −3.

    Значит корнями уравнения 2x 2 + 6x = 0 являются числа 0 и −3 . Запишем полностью решение данного уравнения:

    Выполним проверку. Подставим корни 0 и −3 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 0 и −3 левая часть равна нулю, то это будет означать, что уравнение решено верно:

    Следующий случай это когда числа b и с равны нулю. Рассмотрим полное квадратное уравнение 2x 2 + 6x − 4 = 0 . Сделаем коэффициенты b и c нулями. Тогда уравнение примет вид:

    Получили уравнение 2x 2 = 0 . Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю. Очевидно, что x = 0 . Действительно, 2 × 0 2 = 0 . Отсюда, 0 = 0 . При других значениях x равенства достигаться не будет.

    Проще говоря, если в квадратном уравнении вида ax 2 + bx + c = 0 числа b и с равны нулю, то корень такого уравнения равен нулю.

    Отметим, что когда употребляются словосочетания « b равно нулю » или « с равно нулю «, то подразумевается, что параметры b или c вовсе отсутствуют в уравнении.

    Например, если дано уравнение 2x 2 − 32 = 0 , то мы говорим, что b = 0 . Потому что если сравнить с полным уравнением ax 2 + bx + c = 0 , то можно заметить, что в уравнении 2x 2 − 32 = 0 присутствует старший коэффициент a , равный 2; присутствует свободный член −32 ; но отсутствует коэффициент b .

    Наконец, рассмотрим полное квадратное уравнение ax 2 + bx + c = 0 . В качестве примера решим квадратное уравнение x 2 − 2x + 1 = 0 .

    Итак, требуется найти x , при котором левая часть станет равна нулю. Воспользуемся изученными ранее тождественными преобразованиями.

    Прежде всего заметим, что левая часть уравнения представляет собой квадрат разности двух выражений. Если мы вспомним как раскладывать многочлен на множители, то получим в левой части (x − 1) 2 .

    Рассуждаем дальше. Левая часть возведенá в квадрат и она равна нулю. Какое число в квадрате равно нулю? Очевидно, что только 0 . Поэтому наша задача найти x , при котором выражение x − 1 равно нулю. Решив простейшее уравнение x − 1 = 0 , можно узнать чему равно x

    Этот же результат можно получить, если воспользоваться квадратным корнем. В уравнении (x − 1) 2 = 0 выражение (x − 1) представляет собой квадратный корень из нуля. Тогда можно записать, что . В этом примере записывать перед корнем знак ± не нужно, поскольку корень из нуля имеет только одно значение — ноль. Тогда получается x − 1 = 0 . Отсюда x = 1 .

    Значит корнем уравнения x 2 − 2x + 1 = 0 является единица. Других корней у данного уравнения нет. В данном случае мы решили квадратное уравнение, имеющее только один корень. Такое тоже бывает.

    Не всегда бывают даны простые уравнения. Рассмотрим например уравнение x 2 + 2x − 3 = 0 .

    В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

    Заметим, что левая часть уравнения представляет собой квадратный трехчлен. Тогда можно попробовать выделить полный квадрат из этого трёхчлена и посмотреть что это нам даст.

    Выделим полный квадрат из квадратного трёхчлена, располагающего в левой части уравнения:

    В получившемся уравнении перенесем −4 в правую часть, изменив знак:

    Теперь воспользуемся квадратным корнем. В уравнении (x + 1) 2 = 4 выражение (x + 1) представляет собой квадратный корень из числа 4 . Тогда можно записать, что . Вычисление правой части даст выражение x + 1 = ±2 . Отсюда полýчится два уравнения: x + 1 = 2 и x + 1 = −2 , корнями которых являются числа 1 и −3

    Значит корнями уравнения x 2 + 2x − 3 = 0 являются числа 1 и −3 .

    Пример 3. Решить уравнение x 2 − 6x + 9 = 0 , выделив полный квадрат.

    Выделим полный квадрат из левой части:

    Далее воспользуемся квадратным корнем и узнáем чему равно x

    Значит корнем уравнения x 2 − 6x + 9 = 0 является 3. Выполним проверку:

    Пример 4. Решить квадратное уравнение 4x 2 + 28x − 72 = 0 , выделив полный квадрат:

    Выделим полный квадрат из левой части:

    Перенесём −121 из левой части в правую часть, изменив знак:

    Воспользуемся квадратным корнем:

    Получили два простых уравнения: 2x + 7 = 11 и 2x + 7 = −11. Решим их:

    Пример 5. Решить уравнение 2x 2 + 3x − 27 = 0

    Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

    Так, в прошлом примере первым членом уравнения был 4x 2 . Его можно было представить в виде квадрата выражения 2x , то есть (2x) 2 = 2 2 x 2 = 4x 2 . Чтобы убедиться что это правильно, можно извлечь квадратный корень из выражения 4x 2 . Это квадратный корень из произведения — он равен произведению корней:

    В уравнении 2x 2 + 3x − 27 = 0 первый член это 2x 2 . Его нельзя представить в виде квадрата какого-нибудь выражения. Потому что нет числá, квадрат которого равен 2. Если бы такое число было, то этим числом был бы квадратный корень из числа 2. Но квадратный корень из числа 2 извлекается только приближённо. А приближённое значение не годится для представления числá 2 в виде квадрата.

    Если обе части исходного уравнения умножить или разделить на одно и то же число, то полýчится уравнение равносильное исходному. Это правило сохраняется и для квадратного уравнения.

    Тогда можно разделить обе части нашего уравнения на 2 . Это позвóлит избавиться от двойки перед x 2 что впоследствии даст нам возможность выделить полный квадрат:

    Перепишем левую часть в виде трёх дробей со знаменателем 2

    Сократим первую дробь на 2. Остальные члены левой части перепишем без изменений. Правая часть по-прежнему станет равна нулю:

    Выделим полный квадрат.

    При представлении члена в виде удвоенного произведения, появление множителя 2 привело бы к тому, что этот множитель и знаменатель дроби сократились бы. Чтобы этого не произошло, удвоенное произведение было домножено на . При выделении полного квадрата всегда нужно стараться сделать так, чтобы значение изначального выражения не изменилось.

    Свернём полученный полный квадрат:

    Приведём подобные члены:

    Перенесём дробь в правую часть, изменив знак:

    Воспользуемся квадратным корнем. Выражение представляет собой квадратный корень из числа

    Для вычисления правой части воспользуемся правилом извлечения квадратного корня из дроби:

    Тогда наше уравнение примет вид:

    Полýчим два уравнения:

    Значит корнями уравнения 2x 2 + 3x − 27 = 0 являются числа 3 и .

    Корень удобнее оставить в таком виде, не выполняя деления числителя на знаменатель. Так проще будет выполнять проверку.

    Выполним проверку. Подставим найденные корни в исходное уравнение:

    В обоих случаях левая часть равна нулю, значит уравнение 2x 2 + 3x − 27 = 0 решено верно.

    Решая уравнение 2x 2 + 3x − 27 = 0 , в самом начале мы разделили обе его части на 2 . В результате получили квадратное уравнение, в котором коэффициент перед x 2 равен единице:

    Такой вид квадратного уравнения называют приведённым квадратным уравнением.

    Любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведённым. Для этого нужно разделить обе его части на коэффициент, который располагается перед x². В данном случае обе части уравнения ax 2 + bx + c = 0 нужно разделить на a

    Пример 6. Решить квадратное уравнение 2x 2 + x + 2 = 0

    Сделаем данное уравнение приведённым:

    Выделим полный квадрат:

    Получили уравнение , в котором квадрат выражения равен отрицательному числу . Такого быть не может, поскольку квадрат любого числа или выражения всегда положителен.

    Следовательно, нет такого значения x , при котором левая часть стала бы равна . Значит уравнение не имеет корней.

    А поскольку уравнение равносильно исходному уравнению 2x 2 + x + 2 = 0 , то и оно (исходное уравнение) не имеет корней.

    Формулы корней квадратного уравнения

    Выделять полный квадрат для каждого решаемого квадратного уравнения не очень удобно.

    Можно ли создать универсальные формулы для решения квадратных уравнений? Оказывается можно. Сейчас мы этим и займёмся.

    Взяв за основу буквенное уравнение ax 2 + bx + c = 0 , и выполнив некоторые тождественные преобразования, мы сможем получить формулы для вывода корней квадратного уравнения ax 2 + bx + c = 0 . В эти формулы можно будет подставлять коэффициенты a , b , с и получать готовые решения.

    Итак, выделим полный квадрат из левой части уравнения ax 2 + bx + c = 0. Сначала сделаем данное уравнение приведённым. Разделим обе его части на a

    Теперь в получившемся уравнении выделим полный квадрат:

    Перенесем члены и в правую часть, изменив знак:

    Приведём правую часть к общему знаменателю. Дроби, состоящие из букв, привóдят к общему знаменателю методом «крест-нáкрест». То есть знаменатель первой дроби станóвится дополнительным множителем второй дроби, а знаменатель второй дроби станóвится дополнительным множителем первой дроби:

    В числителе правой части вынесем за скобки a

    Сократим правую часть на a

    Поскольку все преобразования были тождественными, то получившееся уравнение имеет те же корни, что и исходное уравнение ax 2 + bx + c = 0.

    Уравнение будет иметь корни только тогда, если правая часть больше нуля или равна нулю. Это потому что в левой части выполнено возведéние в квадрат, а квадрат любого числа положителен или равен нулю (если в этот квадрат возвóдится ноль). А чему будет равна правая часть зависит от того, что будет подставлено вместо переменных a , b и c .

    Поскольку при любом a не рáвным нулю, знаменатель правой части уравнения всегда будет положительным, то знак дроби будет зависеть от знака её числителя, то есть от выражения b 2 − 4ac .

    Выражение b 2 − 4ac называют дискриминантом квадратного уравнения. Дискриминант это латинское слово, означающее различитель . Дискриминант квадратного уравнения обозначается через букву D

    Дискриминант позволяет заранее узнать имеет ли уравнение корни или нет. Так, в предыдущем задании мы долго решали уравнение 2x 2 + x + 2 = 0 и оказалось, что оно не имеет корней. Дискриминант же позволил бы нам заранее узнать, что корней нет. В уравнении 2x 2 + x + 2 = 0 коэффициенты a , b и c равны 2, 1 и 2 соответственно. Подставим их в формулу D = b 2 −4ac

    D = b 2 − 4ac = 1 2 − 4 × 2 × 2 = 1 − 16 = −15.

    Видим, что D (оно же b 2 − 4ac ) является отрицательным числом. Тогда нет смысла решать уравнение 2x 2 + x + 2 = 0, выделяя в нём полный квадрат, потому что когда мы дойдем до уравнения вида , окажется что правая часть станет меньше нуля (из-за отрицательного дискриминанта). А квадрат числа не может быть отрицательным. Следовательно, корней у данного уравнения не будет.

    Станóвится понятно почему древние люди считали выражение b 2 − 4ac различителем. Это выражение подобно индикатору позволяет различить уравнение имеющего корни от уравнения, не имеющего корней.

    Итак, D равно b 2 − 4ac . Подставим в уравнении вместо выражения b 2 − 4ac букву D

    Если дискриминант исходного уравнения окажется меньше нуля (D , то уравнение примет вид:

    В этом случае говорят, что у исходного уравнения корней нет, поскольку квадрат любого числа не должен быть отрицательным.

    Если дискриминант исходного уравнения окажется больше нуля (D > 0) , то уравнение примет вид:

    В этом случае уравнение будет иметь два корня. Для их вывода воспользуемся квадратным корнем:

    Получили уравнение . Из него полýчится два уравнения: и . Выразим x в каждом из уравнений:

    Получившиеся два равенства это и есть универсальные формулы для решения квадратного уравнения ax 2 + bx + c = 0. Их называют формулами корней квадратного уравнения .

    Чаще всего эти формулы обозначаются как x1 и x2 . То есть для вычисления первого корня используется формула c индексом 1; для вывода второго корня — формула с индексом 2. Обозначим свои формулы так же:

    Очерёдность применения формул не важнá.

    Решим например квадратное уравнение x 2 + 2x − 8 = 0 с помощью формул корней квадратного уравнения. Коэффициенты данного квадратного уравнения это числа 1 , 2 и −8 . То есть, a = 1 , b = 2 , c = −8 .

    Прежде чем использовать формулы корней квадратного уравнения, нужно найти дискриминант этого уравнения.

    Найдём дискриминант квадратного уравнения. Для этого воспользуемся формулой D = b 2 4 ac . Вместо переменных a, b и c у нас будут коэффициенты уравнения x 2 + 2x − 8 = 0

    D = b 2 4ac = 2 2 − 4 × 1 × (−8) = 4 + 32 = 36

    Дискриминант больше нуля. Значит уравнение имеет два корня. Теперь можно воспользоваться формулами корней квадратного уравнения:

    Значит корнями уравнения x 2 + 2x − 8 = 0 являются числа 2 и −4 . Проверкой убеждаемся, что корни найдены верно:

    Наконец, рассмотрим случай когда дискриминант квадратного уравнения равен нулю. Вернёмся к уравнению . Если дискриминант равен нулю, то правая часть уравнения примет вид:

    И в этом случае квадратное уравнение будет иметь только один корень. Воспользуемся квадратным корнем:

    Далее выражаем x

    Это ещё одна формула для вывода корня квадратного корня. Рассмотрим её применение. Ранее мы решили уравнение x 2 − 6x + 9 = 0 , имеющее один корень 3. Решили мы его методом выделения полного квадрата. Теперь попробуем решить с помощью формул.

    Найдём дискриминант квадратного уравнения. В этом уравнении a = 1 , b = −6 , c = 9 . Тогда по формуле дискриминанта имеем:

    D = b 2 4ac = (−6) 2 − 4 × 1 × 9 = 36 − 36 = 0

    Дискриминант равен нулю (D = 0) . Это означает, что уравнение имеет только один корень, и вычисляется он по формуле

    Значит корнем уравнения x 2 − 6x + 9 = 0 является число 3.

    Для квадратного уравнения, имеющего один корень также применимы формулы и . Но применение каждой из них будет давать один и тот же результат.

    Применим эти две формулы для предыдущего уравнения. В обоих случаях получим один и тот же ответ 3

    Если квадратное уравнение имеет только один корень, то желательно применять формулу , а не формулы и . Это позволяет сэкономить время и место.

    Пример 3. Решить уравнение 5x 2 − 6x + 1 = 0

    Найдём дискриминант квадратного уравнения:

    Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

    Значит корнями уравнения 5x 2 − 6x + 1 = 0 являются числа 1 и .

    Ответ: 1; .

    Пример 4. Решить уравнение x 2 + 4x + 4 = 0

    Найдём дискриминант квадратного уравнения:

    Дискриминант равен нулю. Значит уравнение имеет только один корень. Он вычисляется по формуле

    Значит корнем уравнения x 2 + 4x + 4 = 0 является число −2 .

    Пример 5. Решить уравнение 3x 2 + 2x + 4 = 0

    Найдём дискриминант квадратного уравнения:

    Дискриминант меньше нуля. Значит корней у данного уравнения нет.

    Ответ: корней нет.

    Пример 6. Решить уравнение (x + 4) 2 = 3x + 40

    Приведём данное уравнение к нормальному виду. В левой части располагается квадрата суммы двух выражений. Раскрóем его:

    Перенесём все члены из правой части в левую часть, изменив их знаки. В правой части останется ноль:

    Приведём подобные члены в левой части:

    В получившемся уравнении найдём дискриминант:

    Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

    Значит корнями уравнения (x + 4) 2 = 3x + 40 являются числа 3 и −8 .

    Ответ: 3 ; −8.

    Пример 7. Решить уравнение

    Умнóжим обе части данного уравнения на 2 . Это позвóлит нам избавиться от дроби в левой части:

    В получившемся уравнении перенесём 22 из правой части в левую часть, изменив знак. В правой части останется 0

    Приведём подобные члены в левой части:

    В получившемся уравнении найдём дискриминант:

    Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

    Значит корнями уравнения являются числа 23 и −1 .

    Ответ: 23; −1.

    Пример 8. Решить уравнение

    Умнóжим обе части на наименьшее общее кратное знаменателей обеих дробей. Это позвóлит избавиться от дробей в обеих частях. Наименьшее общее кратное чисел 2 и 3 это число 6 . Тогда получим:

    В получившемся уравнении раскроем скобки в обеих частях:

    Теперь перенесём все члены из правой части в левую часть, изменив у них знаки. В правой части останется 0

    Приведём подобные члены в левой части:

    В получившемся уравнении найдём дискриминант:

    Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

    Значит корнями уравнения являются числа и 2.

    Примеры решения квадратных уравнений

    Пример 1. Решить уравнение x 2 = 81

    Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 9 и −9. Воспользуемся квадратным корнем для их вывода:

    Ответ: 9, −9 .

    Пример 2. Решить уравнение x 2 − 9 = 0

    Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

    Ответ: 3, −3.

    Пример 3. Решить уравнение x 2 − 9x = 0

    Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

    Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

    Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение x − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

    Ответ: 0, 9 .

    Пример 4. Решить уравнение x 2 + 4x − 5 = 0

    Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

    Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

    D = b 2 − 4ac = 4 2 − 4 × 1 × (−5) = 16 + 20 = 36

    Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

    Ответ: 1, −5 .

    Пример 5. Решить уравнение

    Умнóжим обе части на наименьшее общее кратное чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

    В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

    Приведём подобные члены:

    Решим получившееся уравнение с помощью формул:

    Ответ: 5 , .

    Пример 6. Решить уравнение x 2 = 6

    В данном примере как и в первом нужно воспользоваться квадратным корнем:

    Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

    Но чаще всего корень оставляют в виде радикала:

    Ответ:

    Пример 7. Решить уравнение (2x + 3) 2 + (x − 2) 2 = 13

    Раскроем скобки в левой части уравнения:

    В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

    Получили неполное квадратное уравнение. Решим его:

    Ответ: 0 , −1,6 .

    Пример 8. Решить уравнение (5 + 7x)(4 − 3x) = 0

    Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

    Первый способ. Раскрыть скобки и получить нормальный вид квадратного уравнения.

    Приведём подобные члены:

    Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

    Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

    Решим получившееся уравнение с помощью формул корней квадратного уравнения:

    Второй способ. Найти значения x , при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

    Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x)(4 − 3x) = 0 будет достигаться, если выражение (5 + 7x) равно нулю, или же выражение (4 − 3x) равно нулю. Наша задача выяснить при каких x это происходит:

    Примеры решения задач

    Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м 2 . При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

    Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

    Обозначим ширину комнаты через x . А длину комнаты через 2x , потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

    Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

    По условию задачи площадь должна быть 8 м 2 . Значит выражение 2x × x следует приравнять к 8

    Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

    Первое что можно сделать это выполнить умножение в левой части уравнения:

    В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

    Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

    Теперь воспользуемся квадратным корнем. Если x 2 = 4 , то . Отсюда x = 2 и x = −2 .

    Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2 . Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

    А длина была обозначена через 2x . Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

    Значит длина равна 4 м , а ширина 2 м . Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м 2

    Ответ: длина комнаты составляет 4 м , а ширина 2 м .

    Пример 2. Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м 2

    Решение

    Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (x + 10) метров. Площадь участка составляет 1200 м 2 . Умножим длину участка на его ширину и приравняем к 1200 , получим уравнение:

    Решим данное уравнение. Для начала раскроем скобки в левой части:

    Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется 0

    Решим получившееся уравнение с помощью формул:

    Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30 . Потому что ширина не может выражаться отрицательным числом.

    Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение x + 10 . Подставим в него найденное значение x и вычислим длину:

    x + 10 = 30 + 10 = 40 м

    Значит длина участка составляет сорок метров, а ширина тридцать метров. Эти значения удовлетворяют условию задачи, поскольку если перемножить длину и ширину (числа 40 и 30 ) получится 1200 м 2

    40 × 30 = 1200 м 2

    Теперь ответим на вопрос задачи. Какова длина изгороди? Чтобы её вычислить нужно найти периметр участка.

    Периметр прямоугольника это сумма всех его сторон. Тогда:

    P = 2(a + b) = 2 × (40 + 30) = 2 × 70 = 140 м.

    Ответ: длина изгороди огородного участка составляет 140 м.

    Методы решения квадратных уравнений. Формула Виета для квадратного уравнения

    Квадратные уравнения часто появляются в ряде задач по математике и физике, поэтому уметь их решать должен каждый школьник. В этой статье подробно рассматриваются основные методы решения уравнений квадратных, а также приводятся примеры их использования.

    Какое уравнение называется квадратным

    В первую очередь ответим на вопрос этого пункта, чтобы лучше понимать, о чем пойдет речь в статье. Итак, уравнение квадратное имеет следующий общий вид: c + b*x+a*x2=0, где a, b, c — некоторые числа, которые называются коэффициентами. Здесь a≠0 — это обязательное условие, в противном случае указанное уравнение вырождается в линейное. Остальные коэффициенты (b, c) могут принимать абсолютно любые значения, включая ноль. Так, выражения типа a*x2=0, где b=0 и c=0 или c+a*x2=0,где b=0, или b*x+a*x2=0, где c=0 — это тоже уравнения квадратные, которые называют неполными, поскольку в них либо линейный коэффициент b равен нулю, либо нулевым является свободный член c, либо они оба зануляются.

    Вам будет интересно: Химические цепочки превращений: примеры и способы решения

    Уравнение, в котором a=1, называют приведенным, то есть оно вид имеет: x2 + с/a + (b/a)*x =0.

    Решение квадратного уравнения заключается в нахождении таких значений x, которые удовлетворяют его равенству. Эти значения называются корнями. Поскольку рассматриваемое уравнение — это выражение второй степени, то это означает, что максимальное число его корней не может превышать двух.

    Какие методы решения уравнений квадратных существуют

    В общем случае существует 4 метода решения. Ниже перечисляются их названия:

  • Разложение на множители.
  • Дополнение до квадрата.
  • Использование известной формулы (через дискриминант).
  • Способ решения геометрический.

    Вам будет интересно: Каково значение слова «транспарентность»?

    Как понятно из приведенного списка, первые три метода являются алгебраическими, поэтому они используются чаще, чем последний, который предполагает построение графика функции.

    Существует еще один способ решения по теореме Виета уравнений квадратных. Его можно было бы включить 5-м в список выше, однако, это не сделано, поскольку теорема Виета является простым следствием 3-го метода.

    Далее в статье рассмотрим подробнее названные способы решения, а также приведем примеры их использования для нахождения корней конкретных уравнений.

    Метод №1. Разложение на множители

    Для этого метода в математике квадратных уравнений существует красивое название: факторизация. Суть этого способа заключается в следующем: необходимо квадратное уравнение представить в виде произведения двух членов (выражений), которое должно равняться нулю. После такого представления можно воспользоваться свойством произведения, которое будет равно нулю только тогда, когда один или несколько (все) его членов являются нулевыми.

    Теперь рассмотрим последовательность конкретных действий, которые нужно выполнить, чтобы найти корни уравнения:

  • Перебросить все члены в одну часть выражения (например, в левую) так, чтобы в другой его части (правой) остался только 0.
  • Представить сумму членов в одной части равенства в виде произведения двух линейных уравнений.
  • Приравнять каждое из линейных выражений к нулю и решить их.

    Вам будет интересно: Коммуникативная методика обучения английскому языку: главные принципы, учебники, результаты, отзывы

    Как видно, алгоритм факторизации является достаточно простым, тем не менее, у большинства школьников возникают трудности во время реализации 2-го пункта, поэтому поясним его подробнее.

    Чтобы догадаться, какие 2-а линейных выражения при умножении их друг на друга дадут искомое квадратное уравнение, необходимо запомнить два простых правила:

    • Линейные коэффициенты двух линейных выражений при умножении их друг на друга должны давать первый коэффициент квадратного уравнения, то есть число a.
    • Свободные члены линейных выражений при их произведении должны давать число c искомого уравнения.

    После того, как подобраны все числа множителей, следует выполнить их перемножение, и если они дают искомое уравнение, тогда переходить к пункту 3 в изложенном выше алгоритме, в противном случае следует изменить множители, но делать это нужно так, чтобы приведенные правила всегда выполнялись.

    Пример решения методом факторизации

    Покажем наглядно, как алгоритм решения уравнения квадратного составить и найти неизвестные корни. Пусть дано произвольное выражение, например, 2*x-5+5*x2-2*x2 = x2+2+x2+1. Перейдем к его решению, соблюдая последовательность пунктов от 1-го до 3-х, которые изложены в предыдущем пункте статьи.

    Пункт 1. Перенесем все члены в левую часть и выстроим их в классической последовательности для квадратного уравнения. Имеем следующее равенство: 2*x+(-8)+x2=0.

    Пункт 2. Разбиваем на произведение линейных уравнений. Поскольку a=1, а с=-8, то подберем, например, такое произведение (x-2)*(x+4). Оно удовлетворяет изложенным в пункте выше правилам поиска предполагаемых множителей. Если раскрыть скобки, то получим: -8+2*x+x2, то есть получается точно такое же выражение, как в левой части уравнения. Это означает, что мы правильно угадали множители, и можно переходить к 3-му пункту алгоритма.

    Пункт 3. Приравниваем каждый множитель нулю, получаем: x=-4 и x=2.

    Если возникают какие-либо сомнения в полученном результате, то рекомендуется выполнить проверку, подставляя найденные корни в исходное уравнение. В данном случае имеем: 2*2+22-8=0 и 2*(-4)+(-4)2-8=0. Корни найдены правильно.

    Таким образом, методом факторизации мы нашли, что заданное уравнение два корня различных имеет: 2 и -4.

    Метод №2. Дополнение до полного квадрата

    В алгебре уравнений квадратных метод множителей не всегда может использоваться, поскольку в случае дробных значений коэффициентов квадратного уравнения возникают сложности в реализации пункта 2 алгоритма.

    Метод полного квадрата, в свою очередь, является универсальным и может применяться для квадратных уравнений любого типа. Суть его заключается в выполнении следующих операций:

  • Члены уравнения, содержащие коэффициенты a и b, необходимо перебросить в одну часть равенства, а свободный член c — в другую.
  • Далее, следует части равенства (правую и левую) разделить на коэффициент a, то есть представить уравнение в приведенном виде (a=1).
  • Сумму членов с коэффициентами a и b представить в виде квадрата линейного уравнения. Поскольку a=1, то линейный коэффициент будет равен 1, что касается свободного члена уравнения линейного, то он равен должен быть половине линейного коэффициента приведенного уравнения квадратного. После того, как составлен квадрат линейного выражения, необходимо в правую часть равенства, где находится свободный член, добавить соответствующее число, которое получается при раскрытии квадрата.
  • Взять квадратный корень со знаками «+» и «-» и решить полученное уже уравнение линейное.

    Описанный алгоритм может на первый взгляд быть воспринят, как достаточно сложный, однако, на практике его реализовать проще, чем метод факторизации.

    Пример решения с помощью дополнения до полного квадрата

    Приведем пример уравнения квадратного для тренировки его решения методом изложенным в предыдущем пункте. Пусть дано уравнение квадратное -10 — 6*x+5*x2 = 0. Начинаем решать его, следуя описанному выше алгоритму.

    Пункт 1. Используем метод переброски при решении уравнений квадратных, получаем: — 6*x+5*x2 = 10.

    Пункт 2. Приведенный вид этого уравнения получается путем деления на число 5 каждого его члена (если равенства обе части поделить или умножить на одинаковое число, то равенство сохранится). В результате преобразований получим: x2 — 6/5*x = 2.

    Пункт 3. Половина от коэффициента — 6/5 равна -6/10 = -3/5, используем это число для составления полного квадрата, получаем: (-3/5+x)2. Раскроем его и полученный свободный член следует вычесть из части равенства левой, чтобы удовлетворить исходному виду квадратного уравнения, что эквивалентно его добавлению в правую часть. В итоге получаем: (-3/5+x)2 = 59/25.

    Пункт 4. Вычисляем квадратный корень с положительным и отрицательным знаками и находим корни: x = 3/5±√59/5 = (3±√59)/5. Два найденных корня имеют значения: x1 = (√59+3)/5 и x1 = (3-√59)/5.

    Поскольку проведенные вычисления связаны с корнями, то велика вероятность допустить ошибку. Поэтому рекомендуется проверить правильность корней x2 и x1. Получаем для x1: 5*((3+√59)/5)2-6*(3+√59)/5 — 10 = (9+59+6*√59)/5 — 18/5 — 6*√59/5-10 = 68/5-68/5 = 0. Подставляем теперь x2: 5*((3-√59)/5)2-6*(3-√59)/5 — 10 = (9+59-6*√59)/5 — 18/5 + 6*√59/5-10 = 68/5-68/5 = 0.

    Таким образом, мы показали, что найденные корни уравнения являются истинными.

    Метод №3. Применение известной формулы

    Этот метод решения уравнений квадратных является, пожалуй, самым простым, поскольку он заключается в подставлении коэффициентов в известную формулу. Для его использования не нужно задумываться о составлении алгоритмов решения, достаточно запомнить только одну формулу. Она приведена на рисунке выше.

    В этой формуле подкоренное выражение (b2-4*a*c) называется дискриминантом (D). От его значения зависит то, какие корни получатся. Возможны 3-и случая:

    • D>0, тогда уравнение корня два имеет действительных и разных.
    • D=0, тогда получается корень один, который можно вычислить из выражения x = -b/(a*2).
    • D 0 — параболы ветви направлены вверх, наоборот, если a 0. Ее экстремум имеет координаты: x=4/10=2/5, y=-4*2/5+5*(2/5)2+10 = 9,2. Поскольку минимум кривой лежит над осью абсцисс (y=9,2), то она не пересекает последнюю ни при каких значениях x. То есть действительных корней приведенное уравнение не имеет.

    Теорема Виета

    Как выше было отмечено, эта теорема является следствием метода №3, который основан на применении формулы с дискриминантом. Суть теоремы Виета заключается в том, что она позволяет связать в равенство коэффициенты уравнения и его корни. Получим соответствующие равенства.

    Воспользуемся формулой для вычисления корней через дискриминант. Сложим два корня, получаем: x1+x2 = -b/a. Теперь умножим корни друг на друга: x1*x2, после ряда упрощений получается число c/a.

    Таким образом, для решения уравнений квадратных по теореме Виета можно использовать полученных два равенства. Если все три коэффициента уравнения известны, тогда корни можно найти путем решения соответствующей системы из этих двух уравнений.

    Пример использования теоремы Виета

    Необходимо составить квадратное уравнение, если известно, что оно имеет вид x2+c = -b*x и корни его равны 3 и -4.

    Поскольку в рассматриваемом уравнении a=1, то формулы Виета будут иметь вид: x2+x1 =-b и x2*x1= с. Подставляя известные значения корней, получаем: b = 1 и c = -12. В итоге восстановленное уравнение квадратное приведенное будет вид иметь: x2-12 = -1*x. Можно подставить в него значение корней и убедиться, что равенство выполняется.

    Обратное применение Виета теоремы, то есть вычисление корней по известному виду уравнения, позволяет для небольших целых чисел a, b и c быстро (интуитивно) находить решения.

    источники:

    Квадратное уравнение

    http://1ku.ru/obrazovanie/9864-metody-resheniya-kvadratnyx-uravnenij-formula-vieta-dlya-kvadratnogo-uravneniya/

  • Решение квадратных уравнений

    6 июля 2011

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    1. Не имеют корней;
    2. Имеют ровно один корень;
    3. Имеют два различных корня.

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

    Дискриминант

    Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    1. Если D < 0, корней нет;
    2. Если D = 0, есть ровно один корень;
    3. Если D > 0, корней будет два.

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    Задача. Сколько корней имеют квадратные уравнения:

    1. x2 − 8x + 12 = 0;
    2. 5x2 + 3x + 7 = 0;
    3. x2 − 6x + 9 = 0.

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    Формула корней квадратного уравнения

    Основная формула корней квадратного уравнения

    Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

    Задача. Решить квадратные уравнения:

    1. x2 − 2x − 3 = 0;
    2. 15 − 2xx2 = 0;
    3. x2 + 12x + 36 = 0.

    Первое уравнение:
    x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2)2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Решение простого квадратного уравнения

    Второе уравнение:
    15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2)2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    [begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

    Наконец, третье уравнение:
    x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 122 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    [x=frac{-12+sqrt{0}}{2cdot 1}=-6]

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    1. x2 + 9x = 0;
    2. x2 − 16 = 0.

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (−c/a) < 0, корней нет.

    Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Разложение уравнения на множители

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    1. x2 − 7x = 0;
    2. 5x2 + 30 = 0;
    3. 4x2 − 9 = 0.

    x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

    5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

    Смотрите также:

    1. Теорема Виета
    2. Следствия из теоремы Виета
    3. Тест на тему «Значащая часть числа»
    4. Метод коэффициентов, часть 1
    5. Однородные тригонометрические уравнения: общая схема решения
    6. Задача B4: строительные бригады

    Что такое квадратные уравнения?

    А теперь подробно с примерами обсудим квадратные уравнения.

    Любые уравнения, сводящиеся к виду (ax^2+bx+c=0), называются квадратными. Где буквы ( b,; с) — любые числа, (aneq0). Почему (aneq0) мы обсудим ниже.

    Обратите внимание на порядок слагаемых в квадратном уравнении:
    (a) — всегда стоит первая и обязательно умножается на (x^2), она называется старшим коэффициентом (или первым);
    (b) — принадлежит второму слагаемому и всегда умножается просто на переменную (x), это у нас второй коэффициент;
    (c) — называют свободным членом, она не умножается ни на какую переменную.

    В дальнейшем старайтесь приводить квадратное уравнение к виду (ax^2+bx+c=0), чтобы слагаемые стояли именно в таком порядке. Это очень важно при решении уравнений, и поможет избежать множества ошибок.

    Потренируемся определять значения коэффициентов ( a, ; b,; с), чтобы запомнить порядок:

    Пример 1
    $$2x^2+3x+4=0;$$
    $$a=2 quad b=3 quad c=4.$$

    Пример 2
    $$5x^2-3x-0,7=0;$$
    $$a=5 quad b=-3 quad c=-0,7.$$

    Пример 3
    $$-x^2+2x+10=0;$$
    Минус перед (x^2) можно представить в виде (-x^2=-1*x^2). Единицу обычно не пишут, поэтому минус перед первым слагаемым означает, что (a=-1):
    $$a=-1 quad b=2 quad c=10.$$

    Пример 4
    $$3+x^2-5x=0;$$
    Слагаемые стоят в неправильном порядке. Так коэффициенты находить неудобно, поэтому переставим все слагаемые в нужном порядке. От перемены мест слагаемых сумма не меняется:
    $$x^2-5x+3=0;$$
    $$a=1 quad b=-5 quad c=3.$$

    Пример 5
    $$2x^2-3x=0;$$
    В уравнении нет свободного члена (c), поэтому он будет равен (0):
    $$a=2 quad b=-3 quad c=0.$$

    Пример 6
    $$-4x^2+1=0;$$
    А здесь уже нет второго коэффициента (b):
    $$a=-4 quad b=0 quad c=1.$$

    Уравнения, приведенные в примерах №5 и 6, называются неполными квадратными уравнениями, так как в них коэффициенты (b) или (c) равны нулю.

    А вот если в уравнении коэффициенты ( a, ; b,; с) не равны 0, то такое уравнение называется полным.

    От того, полное ли квадратное уравнение или неполное, зависит, как мы будем его решать. Начнем с неполных уравнений, они немного легче, но почему-то как раз в них все часто ошибаются.

    Неполные квадратные уравнения

    Неполное квадратное уравнение — это уравнение, в котором один из коэффициентов (b) или (c) равен нулю, (aneq0).

    Как решать квадратное уравнение (ax^2+bx=0)?

    Рассмотрим уравнение, в котором (c=0), оно будет иметь вид:
    $$ax^2+bx=0;$$
    Чтобы его решить, нужно вынести общий множитель (x) за скобки:
    $$x(ax+b)=0;$$
    И вспомнить правило, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Здесь два множителя: (x) и ((ax+b)). Приравниваем их к нулю и решаем каждое по-отдельности:
    $$x=0;$$
    Тут решать-то нечего, сразу дан корень.
    Второе:
    $$ax+b=0;$$
    Обычное линейное уравнение:
    $$ax=-b;$$
    $$x=frac{-b}{a};$$

    Получили, что уравнение имеет сразу два корня:(x=0) и (x=frac{-b}{a}).

    Разберем на примере:

    Пример 7
    $$2x^2+8x=0;$$
    Выносим общий множитель (x):
    $$x(2x+8)=0;$$
    $$quad x_1=0 quad и quad 2x+8=0;$$
    $$2x+8=0;$$
    $$2x=-8;$$
    $$x_2=-4.$$
    Ответ: (x_1=0 quad и quad x_2=-4.)

    Как решать квадратное уравнение (ax^2+с=0)?

    Вот с такими уравнениями надо быть очень внимательными. Важно помнить, что любое число (выражение), возведенное в квадрат, всегда больше или равно нуля, оно не может быть отрицательным.

    Общая схема решения уравнений вида (ax^2+с=0):

    • Выражаем (x^2) из уравнения:
      $$ax^2+c=0;$$
      $$ax^2=-c;$$
      $$x^2=frac{-c}{a};$$
    • Если (-frac{c}{a} geq 0):
      $$x_1=sqrt{-frac{c}{a}};$$
      $$x_2=-sqrt{-frac{c}{a}};$$
    • Если (-frac{c}{a} lt 0):
      РЕШЕНИЙ НЕТ.

    Пример 8
    $$2x^2-8=0;$$
    $$2x^2=8;$$
    $$x^2=frac{8}{2};$$
    $$x^2=4;$$
    $$x=pmsqrt{4};$$
    $$x_1=2;$$
    $$x_2=-2;$$
    Ответ: (x_1=2 quad и quad x_2=-2.)

    Пример 9
    $$4x^2+36=0;$$
    $$2x^2=-36;$$
    $$x^2=frac{-36}{2}=-18;$$
    Так как (-18 < 0), а (x^2) не может быть отрицательным, то это уравнение не имеет корней.
    Ответ: Нет корней.

    Пример 10
    $$frac{1}{2}x^2-frac{1}{18}=0;$$
    $$frac{1}{2}x^2=frac{1}{18};$$
    Чтобы избавиться от (frac{1}{2}), умножим уравнение слева и справа на (2):
    $$x^2=frac{2}{18};$$
    $$x^2=frac{1}{9};$$
    $$x=pmsqrt{frac{1}{9}};$$
    $$x_1=frac{1}{3};$$
    $$x_2=-frac{1}{3};$$
    Ответ: (x_1=frac{1}{3} quad и quad x_2=-frac{1}{3}.)

    Решение квадратных уравнений через дискриминант

    Квадратные уравнения (ax^2+bx+c=0), у которых все коэффициенты ( a, ; b,; с) не равны 0, называются полными квадратными уравнениями.

    Чтобы их решать, нужно уметь находить дискриминант квадратного уравнения. Ничего страшного в этом нет, несмотря на странное называние. Дискриминантом уравнения (ax^2+bx+c=0) называют выражение:
    $$D=b^2-4ac;$$

    1. Если дискриминант получился больше нуля ((D ge 0)), то квадратное уравнение имеет два корня, которые можно найти по формулам:
      $$x_1=frac{-b+sqrt{D}}{2a};$$
      $$x_2=frac{-b-sqrt{D}}{2a};$$
    2. Если дискриминант равен нулю ((D=0)), то квадратное уравнение имеет один корень:
      $$x=frac{-b}{2a};$$
    3. Если дискриминант меньше нуля ((D<0)), то квадратное уравнение не имеет корней.

    Примеры квадратных уравнений

    Пример 11
    $$2x^2-9x+4=0;$$
    Прежде чем решать уравнение, я рекомендую выписать все коэффициенты:
    $$a=2 quad b=-9 quad c=4.$$
    Используя значения коэффициентов, можем посчитать дискриминант:
    $$D=b^2-4ac=(-9)^2-4*2*4=81-32=49;$$
    Ура, дискриминант посчитан и он больше нуля! Значит корней будет два, найдем их по формулам:
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-(-9)+sqrt{49}}{2*2}=frac{9+7}{4}=frac{16}{4}=4;$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-(-9)—sqrt{49}}{2*2}=frac{9-7}{4}=frac{2}{4}=frac{1}{2};$$
    Ответ: (x_1=4 quad и quad x_2=frac{1}{2}.)

    Пример 12
    $$10x^2+x-21=0;$$
    $$a=10 quad b=1 quad c=-21.$$
    $$D=b^2-4ac=1^2-4*10*(-21)=1+840=841;$$
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-1+sqrt{841}}{2*10}=frac{-1+29}{20}=frac{28}{20}=frac{7}{5};$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-1-sqrt{841}}{2*10}=frac{-1-29}{20}=frac{-30}{20}=frac{-3}{2};$$
    Ответ: (x_1=frac{7}{5} quad и quad x_2=-frac{3}{2}.)

    Пример 13
    $$(x-7)^2=2x^2+11x+23;$$
    Это уравнение еще нужно привести к стандартному виду, для этого раскроем скобки по формуле «квадрат разности» ((a-b)^2=a^2-2ab+b^2):
    $$x^2-14x+49=2x^2+11x+23;$$
    Перекинем все слагаемые в левую часть, не забывая при этом менять знак на противоположный:
    $$x^2-14x+49-2x^2-11x-23=0;$$
    Приводим подобные слагаемые:
    $$-x^2-25x+26=0;$$
    $$a=-1 quad b=-25 quad c=26.$$
    $$D=b^2-4ac=(-25)^2-4*(-1)*26=625+104=729;$$
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-(-25)+sqrt{729}}{2*(-1)}=frac{25+27}{-2}=frac{52}{-2}=-26;$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-(-25)-sqrt{729}}{2*(-1)}=frac{25-27}{-2}=frac{-2}{-2}=1;$$
    Ответ: (x_1=-26 quad и quad x_2=1.)

    Пример 14
    $$3x^2+7x+6=0;$$
    $$a=3 quad b=7 quad c=6.$$
    $$D=b^2-4ac=7^2-4*3*6=49-72=-23;$$
    Стоп! Дискриминант получился отрицательный, это означает, что у этого квадратного уравнения не будет корней.
    Ответ: Нет корней.

    Пример 15
    $$4x^2-4x+1=0;$$
    $$a=4 quad b=-4 quad c=1.$$
    $$D=b^2-4ac=(-4)^2-4*4*1=16-16=0;$$
    Дискриминат получился равен нулю. В этом случае у квадратного уравнения будет всего один корень, который можно найти по формуле:
    $$x=frac{-b}{2a}=frac{-(-4)}{2*4}=frac{4}{8}=frac{1}{2};$$
    Ответ: (x=frac{1}{2}.)

    Полезно знать! Если дискриминант получился равен нулю, то перед вами формула полного квадрата. Это значит, что квадратный многочлен можно разложить по формуле ((apm b)^2=a^2pm 2ab+b^2).
    И пример №15 можно решить, используя эту формулу:
    $$4x^2-4x+1=0;$$
    $$(2x-1)^2=0;$$
    Квадрат равен нулю только в том случае, если выражение под квадратом равно нулю:
    $$2x-1=0;$$
    $$2x=1;$$
    $$x=frac{1}{2};$$
    Ответ получили точно такой же, как и при решении через дискриминант.

    Дискриминант деленный на 4

    Квадратные уравнения иногда удобно решать по упрощенной формуле дискриминанта. Но применять ее можно не во всех случаях, а только, если коэффициент (b) в уравнении (ax^2+bx+c=0) четный (делится на 2).

    Итак, представим, что коэффициент (b) четный, тогда дискриминант можно посчитать по формуле:
    $$D_4=left(frac{b}{2}right)^2-ac;$$
    А корни уравнения находятся по формулам:
    $$x_1=frac{-frac{b}{2}+sqrt{D_4}}{a};$$
    $$x_2=frac{-frac{b}{2}-sqrt{D_4}}{a};$$
    Кстати, обычный дискриминант (D) отличается от (D_4) в 4 раза:
    $$D_4=frac{D}{4}=frac{b^2-4ac}{4}=frac{b^2}{4}-frac{4ac}{4}=left(frac{b}{2}right)^2-ac;$$
    Поэтому (D_4) называют «дискриминантом деленным на 4».

    Эти формулы нужны, чтобы, когда это возможно, сократить вычисления. Разберем на примере:

    Пример 16
    $$7x^2-20x-1067=0;$$
    $$a=7 quad b=-20 quad c=-1067.$$
    (b=-20) — четный, поэтому воспользуемся дискриминантом деленным на 4:
    $$D_4=left(frac{b}{2}right)^2-ac=left(frac{-20}{2}right)^2-7*(-1067)=(-10)^2+7469=100+7469=7569;$$
    $$x_1=frac{-frac{b}{2}+sqrt{D_4}}{a}=frac{-frac{-20}{2}+sqrt{7569}}{7}=frac{10+87}{7}=frac{97}{7};$$
    $$x_2=frac{-frac{b}{2}-sqrt{D_4}}{a}=frac{-frac{-20}{2}-sqrt{7569}}{7}=frac{10-87}{7}=frac{-77}{7}=-11;$$
    Ответ: (x_1=frac{97}{7} quad и quad x_2=-11.)

    Возникает вопрос, зачем вообще нужен этот (D_4), если все можно считать через обычный дискриминант? Если бы мы считали пример №16 как обычно, то наш дискриминант, который и так получился не маленьким — ((D_4=7659)), был бы в четыре раза больше. А чем больше числа, тем сложнее расчеты.

    Теорема Виета для решения квадратных уравнений

    Теорема Виета — это еще один способ упростить решение полных квадратных уравнений. Ее очень часто используют для решения несложных квадратных уравнений в уме и для анализа квадратного многочлена, особенно это актуально в сложных заданиях с параметром в ЕГЭ.

    Прежде чем сформулировать теорему Виета, познакомимся с приведенными квадратными уравнениями.

    Приведенное квадратное уравнение

    Квадратные уравнения (ax^2+bx+c=0), у которых коэффициент (a) при (x^2) равен (1), называют приведенными.

    Например:
    $$x^2+4x-3=0;$$
    $$x^2-140x-65=0;$$
    Любое полное квадратное уравнение всегда можно свести к приведенному. Для этого надо поделить все уравнение на коэффициент (a):

    Пример 17
    Привести квадратное уравнение к приведенному.
    $$3x^2-15x+9=0;$$
    Разделим уравнение на (a=3). (Так можно делать: если левую и правую части уравнения поделить на одно и то же число, то корни уравнения от этого не изменятся.)
    $$frac{3x^2-15x+9}{3}=frac{0}{3};$$
    В результате каждое слагаемое поделится на (3):
    $$frac{3x^2}{3}-frac{15x}{3}+frac{9}{3}=0;$$
    $$x^2-5x+3=0;$$

    Формулы Виета

    Сумма корней приведенного квадратного уравнения (x^2+bx+c=0) равна второму коэффициенту (b) со знаком минус, а произведение корней равно свободному члену (c).

    Пусть (x_1), и (x_2) — корни квадратного уравнения (x^2+bx+c=0), тогда справедливы формулы:
    $$ begin{cases}
    x_1+x_2=-b; \
    x_1*x_2=c. \
    end{cases}$$
    На первый взгляд может показаться, что это очень запутанно, но на самом деле, теорема Виета часто помогает решить уравнение в уме. Попробуем на практике:

    Пример 18
    $$x^2+4x+3=0;$$
    $$a=1 quad b=4 quad c=3.$$
    Воспользуемся теоремой Виета и выпишем формулы:
    $$ begin{cases}
    x_1+x_2=-b; \
    x_1*x_2=c. \
    end{cases}$$
    Подставим коэффициенты:
    $$ begin{cases}
    x_1+x_2=-4; \
    x_1*x_2=3. \
    end{cases}$$

    Нужно найти такие (x_1) и (x_2), которые удовлетворяют и первому, и второму уравнениям в системе. Подобрать корни достаточно просто: рассмотрим второе уравнение, какие два числа дают при умножении (3ку)?

    Либо: (3=1*3);
    Либо: (3=(-1)*(-3)).

    Осталось проверить, будут ли найденные множители удовлетворять первому уравнению в системе, просто подставим их:
    $$1+3 neq -4;$$
    $$-1+(-3) = -4;$$
    Вот мы и нашли корни системы уравнений: (x_1=-1) и (x_2=-3). А самое главное, мы нашли корни исходного квадратного уравнения.
    Ответ: (x_1=-1 quad и quad x_2=-3.)

    Если потренироваться, то все эти вычисления можно легко проводить в уме, если коэффициенты небольшие. Главное запомнить, что произведение корней должно быть равно свободному члену (c), а сумма корней равна ((-b)).

    Теорема Виета, если (aneq1)

    По теореме Виета можно решать не только приведенные квадратные уравнения (у которых (a=1)). Но перед тем, как применять формулы Виета, надо привести уравнение к приведенному, поделив на первый коэффициент (a):
    $$ax^2+bx+c=0; quad mid :a$$
    $$frac{ax^2}{a}+frac{bx}{a}+frac{c}{a};$$
    $$x^2+frac{b}{a}*x+frac{c}{a};$$
    Получили приведенное квадратное уравнение, для которого можно записать формулы Виета, где вторым коэффициентом будет (frac{b}{a}), а свободным членом (frac{c}{a}):
    $$ begin{cases}
    x_1+x_2=-frac{b}{a}; \
    x_1*x_2=frac{c}{a}. \
    end{cases}$$

    Пример 19
    $$12x^2+x-1=0;$$
    $$a=12 quad b=1 quad c=-1.$$
    Коэффициент (a=12 neq 1), поэтому разделим все уравнение на (a=12):
    $$12x^2+x-1=0; quad mid :12$$
    $$x^2+frac{1}{12}x-frac{1}{12}=0;$$
    $$a=1 quad b=frac{1}{12} quad c=-frac{1}{12}.$$

    Теорема Виета:
    $$ begin{cases}
    x_1+x_2=-frac{1}{12}; \
    x_1*x_2=-frac{1}{12}. \
    end{cases}$$

    Подбираем корни:
    $$x_1=-frac{1}{3};$$
    $$x_2=frac{1}{4};$$

    Ответ: (x_1=-frac{1}{3} quad и quad x_2=frac{1}{4}.)

    Теорема Виета удобна, когда у квадратного уравнения небольшие коэффициенты и можно легко подобрать корни. В остальных случаях лучше пользоваться дискриминантом.

    Квадратное уравнение – что это?

    Квадратное уравнение – это уравнение, которое имеет вид:

    (ax^2+bx+c=0)

    Что такое a, b и с? Это коэффициенты. У каждого есть свои названия:

    а – старший коэффициент;

    b – средний коэффициент;

    с – свободный член;

    a, b, c – абсолютно любые числа. Но здесь важно: а ≠ 0.

    Почему именно так? Давай поразмышляем: если предположить, что а все же будет равно 0, то наше уравнение уже не будет квадратным и превратится в линейное:

    (bx+c=0)

    А такие уравнения ты уже решать умеешь, поэтому мы вернемся обратно к квадратным уравнениям.

    Как выглядит квадратное уравнение?

    К слову, квадратное уравнение может выглядеть необязательно как стандартное(ax^2+bx+c=0)

    Оно может иметь и другой вид, например:

    (ac^2+bx=c)

    (здесь свободный член с находится по другую сторону знака равно) или (ax^2=c) (тут средний коэффициент b = 0, а с находится по другую сторону знака равно). Также коэффициенты могут быть отрицательными и т.д.

    Однако следует помнить, что абсолютно любое квадратное уравнение можно привести к стандартному виду:

    (ax^2+bx+c=0)

    Как же решать квадратное уравнение?

    Существует всего три результата решения квадратного уравнения:

    1. Уравнение не имеет решения.
    2. Уравнение имеет только один корень.
    3. Уравнение имеет два корня.

    Как определить, под какой из этих случаев подпадет наше квадратное уравнение? Для этого нам понадобится дискриминант: он нам поможет в решении квадратного уравнения. Дискриминантом (образован от латинского discrimino – «разбираю»)  мы обозначим следующее выражение:

    (D=b^2-4ac),

    где D – дискриминант, а a, b, c – коэффициенты квадратного уравнения.

    Чем конкретно нам может помочь дискриминант?

    1. Если D < 0 – то квадратное уравнение не имеет решений;
    2. Если D = 0 – то уравнение будет иметь только один корень;
    3. Если D > 0 – то уравнение имеет два решения.

    То есть благодаря дискриминанту мы будем знать о результате и количестве решений квадратного уравнения.

    Итак, мы посчитали, чему равен наш дискриминант, потом определили количество решений уравнения, что дальше? А дальше определяем корни квадратного уравнения по формулам.

    1. В первом случае, когда D < 0, считать ничего не нужно, т.к. уравнение не имеет решений. Это значит, что корней квадратного уравнения на множестве действительных чисел нет.
    2. Во втором варианте, когда D = 0, решение будет одно и единственный корень квадратного уравнения будет равен: (x=frac{-b}{2a})
    3. Третий случай, при D > 0, наиболее сложный из всех трех возможных: в ответе должно получиться два корня квадратного уравнения.

    (x_1=frac{-b+sqrt D}{2a})– первый корень квадратного уравнения;

    (x_1=frac{-b-sqrt D}{2a})– второй корень квадратного уравнения.

    Как найти дискриминант квадратного уравнения

    Дискриминант квадратного уравнения — это выражение, равное b2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

    Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

     

    Свойства дискриминанты

    Как решать квадратные уравнения через дискриминант 

    Алгоритм решения квадратного уравнения ax2 + bx + c = 0:

    Определим, чему равны коэффициенты a, b, c.

    Вычислим значение дискриминанта по формуле D = b2 − 4ac.

    • Если дискриминант D < 0, то корней нет.
    • Если D = 0, то есть один корень, равный −b/2a.
    • Если D > 0, то у уравнения две корня, равные.

    Примеры решения квадратных уравнений с помощью дискриминанта

    Пример 1. Решить уравнение: 3×2 — 4x + 2 = 0.

    Как решаем:

    Определим коэффициенты: a = 3, b = -4, c = 2.

    Найдем дискриминант: D = b2 — 4ac = (-4)2 — 4 * 3 * 2 = 16 — 24 = -8.
    Ответ: D < 0, корней нет.

    Пример 2. Решить уравнение: x2 — 6x + 9 = 0.

    Как решаем:

    Определим коэффициенты: a = 1, b = -6, c = 9.

    Найдем дискриминант: D = b2 — 4ac = (-6)2 — 4 * 1 * 9 = 36 — 36 = 0.

    D = 0, значит уравнение имеет один корень:

    Решение уравнения x2 - 6x + 9 = 0

    Ответ: корень уравнения 3. 
     

    Решение квадратных уравнений на самом деле не настолько сложное, как кажется на первый взгляд. Всего-то нужно запомнить несколько формул и алгоритм действий. Главное — не бояться вида квадратных уравнений, мы уверены: все у тебя получится! Запишись на бесплатный пробный урок тут и разберись с тем, что тебе непонятно.

    Часто задаваемые вопросы:

    Как решить квадратное уравнение?

    Квадратное уравнение можно решить, используя формулу Квадратного корня: (x = (-b ± √(b^2 — 4ac)) / 2a). Необходимо вычислить значение выражения под корнем и подставить его в формулу.

    Каковы особенности решения квадратного уравнения?

    Квадратное уравнение может иметь два, один или ноль корней. Количество корней зависит от дискриминанта (D = b^2 — 4ac). Если D > 0, то уравнение имеет два корня, если D = 0, то уравнение имеет один корень, если D < 0, то уравнение не имеет корней в области действительных чисел.

    Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!


    Запишитесь на бесплатное тестирование знаний!

    Содержание:

    Квадратные уравнения

    В предыдущих классах вы уже научились составлять и решать уравнения, но лишь простейшие, к которым сводятся относительно несложные задачи. Для решения более сложных задач используют квадратные уравнения. Изучив эту тему, вы сможете решать прикладные задачи из разных отраслей знаний.

    В этой главе вы узнаете, что такое:

    • неполные квадратные уравнения;
    • формула корней квадратного уравнения;
    • теорема Виета;
    • разложение квадратного трёхчлена на множители.

    Неполные квадратные уравнения

    Пример:

    Одно из двух чисел больше другого на 6, а их произведение равно 112. Найдите эти числа.

    Решение:

    Обозначим меньшее искомое число буквой х. Тогда большее число равно х + 6. Их произведение — 112. Следовательно,

    х(х + 6) = 112, или х2 + 6х- 112 = 0.

    Это уравнение второй степени с одной переменной. Такие уравнения называют также квадратными.

    Квадратным называют уравнение вида ах2 + bх + c = 0, где х — переменная, а, b, с — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения

    Числа а, b, с — коэффициенты квадратного уравнения: а — первый коэффициент, b — второй, с — свободный член.

    По определению, первый коэффициент квадратного уравнения не может быть равен нулю. Если хотя бы один коэффициент (b или с) равен нулю, то квадратное уравнение называют неполным.

    Неполные квадратные уравнения бывают трёх видов:

    1) ах2 = 0; 2) ах2 + bх = 0; 3) ах2 + с = 0.

    1. Уравнение вида ах2 = О равносильно уравнению х2 = 0, и поэтому всегда имеет только один корень х = О.

    2. Уравнение вида ах2 + bх = 0 равносильно уравнению х(ах + b) = 0 и всегда имеет два корня: х1 = 0, х2 =Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение 2 + 4х = 0.

    Решение:

    Вынесем переменную х за скобки: х(5х + 4) = 0. Следовательно, х = О, или 5х + 4 = 0,отсюда х = -0,8. О т в е т. х1 = 0, х2 = -0,8.

    3. Квадратное уравнение вида ах2 + с = О равносильно уравнению х2 = Квадратные уравнения - определение и вычисление с примерами решения . Если Квадратные уравнения - определение и вычисление с примерами решения > 0 , то оно имеет два решения: если Квадратные уравнения - определение и вычисление с примерами решения<0 — ни одного решения.

    Пример:

    Решите уравнение 2 -3 = 0.

    Решение:

    Преобразуем данное уравнение: 2 = 3, Квадратные уравнения - определение и вычисление с примерами решения, х — число, квадрат которого равен Квадратные уравнения - определение и вычисление с примерами решения, то есть квадратный корень из числа Квадратные уравнения - определение и вычисление с примерами решения . Таких корней два: Квадратные уравнения - определение и вычисление с примерами решенияи Квадратные уравнения - определение и вычисление с примерами решения. Ответ. Квадратные уравнения - определение и вычисление с примерами решения. Если знаки коэффициентов а и с разные, то число Квадратные уравнения - определение и вычисление с примерами решения положительное, и уравнение имеет два корня. Если знаки коэффициентов а и с одинаковы, то число — отрицательное. Следовательно, уравнение ах2 + с = 0 не имеет корней.

    Хотите знать ещё больше?

    Некоторые квадратные уравнения (полные) можно решать приведением их к неполным квадратным уравнениям. Например, по формуле квадрата двучлена, уравнение х2 — 2х + 1 = 0 можно представить в виде (х — 1)2 = 0 и решить так: (х-1)2 равно нулю лишь в том случае, если х — 1 = 0, то есть х = 1.

    Таким способом можно решить любое квадратное уравнение, выразив его левую часть в виде квадрата двучлена.

    Например, Квадратные уравнения - определение и вычисление с примерами решения. Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Решите квадратное уравнение: а) Зх2 — 6х = 0; б) 2у2 -72 = 0.

    Решение:

    а) Зх2 — 6х = 0; Зх(х — 2) = 0; х1 = 0; х-2 = 0; х2 = 2.

    б) 2 -72 = 0; 2(у2 36)-0; у2— 36 — 0; y1 = 6; y2 = -6. Ответ. a) x1 = 0, х2 = 2; б)у1=6, у2 =-6.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения, Квадратные уравнения - определение и вычисление с примерами решения, Квадратные уравнения - определение и вычисление с примерами решения, отсюда х1 = -20, х2 = 20.

    При этих значениях х знаменатель не равен нулю. Следовательно, х1 = — 20, х2 = 20 — корни уравнения. О т в е т. х1 = — 20, х2 = 20 .

    Формула корней квадратного уравнения

    Решим уравнение х2 + 6х-112=0, которое мы составили по условию задачи.

    Решение:

    Если к выражению х2 + 6х прибавить 9, то получим квадрат двучлена х + 3. Поэтому данное уравнение равносильно уравнению х2 + 6х + 9-9-112=0, или (х + 3)2 = 121. Следовательно, х + 3 = 11, отсюда х = 8; или х + 3 = -11, отсюда х = -14. Ответ. х1 = 8, х2 = -14.

    Такой способ решения квадратного уравнения называют способом выделения квадрата двучлена.

    Решим этим способом уравнение 5х2 — 2х — 3 = 0.

    Чтобы первый его член стал квадратом одночлена с целым коэффициентом, умножим обе части данного уравнения на 5: 25х2 -10х — 15=0, 25х2-2 . 5х + 1 — 1 — 15 = 0, (5х- 1)2 = 16.

    Следовательно, 5х — 1 = 4, отсюда 5х = 5, х = 1; или 5х — 1 = — 4, отсюда 5х = — 3, х = — 0,6. От в е т. х1 = 1, х2 = -0,6.

    Решим таким способом уравнение ах2 + bх + с = 0.

    Умножим обе части уравнения на 4а (помним, что Квадратные уравнения - определение и вычисление с примерами решения):

    2х2 + 4ах.b + 4ас = 0,

    (2ах)2 + 2 . 2ах . b + b2 — b2 + 4ас = 0,

    (2ах + b)2 = b2 — 4ас.

    Выражение b2 — 4ас называют дискриминантом (от латинскогоdiscriminans — различающий) данного квадратного уравнения и обозначают буквой D.

    Если D < 0, то данное уравнение не имеет корней: не существует такого значения х, при котором значение выражения (2ах + b)2 было бы отрицательным.

    Если D = 0, то 2ах + и = 0, отсюда х = Квадратные уравнения - определение и вычисление с примерами решения — единственный корень. Если D > 0, то данное квадратное уравнение равносильно уравнению Квадратные уравнения - определение и вычисление с примерами решения, отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    или Квадратные уравнения - определение и вычисление с примерами решения

    В этом случае уравнение имеет два корня, они отличаются только знаками перед Квадратные уравнения - определение и вычисление с примерами решения . Кратко их записывают так: Квадратные уравнения - определение и вычисление с примерами решения , где Квадратные уравнения - определение и вычисление с примерами решения.

    Это формула корней квадратного уравнения ах2 + bх + с = 0. Пользуясь ею, можно решить любое квадратное уравнение.

    Пример:

    Решите уравнение: а) Зх2 — 5х + 2 = 0; б) х2 + 6х + 9 = 0; в) 5х2 — х + 1 = 0.

    Решение:

    a) D = 25 — 24 = 1, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения;

    б) D = 36-36 = 0,

    Квадратные уравнения - определение и вычисление с примерами решения;

    в) D =1 — 20 = -19, D < 0. Уравнение корней не имеет.

    Ответ. а)х1 = 1, х2= Квадратные уравнения - определение и вычисление с примерами решения ; б) х = -3: в) уравнение корней не имеет. Формулу корней квадратного уравнения применяют при решении многих уравнений, которые-сводятся к квадратным.

    Пример:

    Решите уравнение: а) 4х4 — 9х2 +5=0; б) (Зх2 — x — 3)(3х2 — х + 5) = 9.

    Решение:

    Такие уравнения удобно решать путём введения вспомогательной переменной.

    a) 4x4 — 9x2 + 5 = 0. Пусть x2 — t, тогда x4 = t2, получим уравнение относительно переменной t: 4x2 — 9x2+ 5 = 0, D = (-9)2 — 4 .4 .5 = 81 — 80 = 1, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения/

    Вернёмся к переменной x: l) x2 = l, xl=-l, x2=l;

    2) Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение вида ax4 + bx2 + c=0 называют биквадратным. б) (Зх2 — х — 3)(3х2 — х + 5) = 9. Пусть 2 — х = t, тогда относительно переменной t получим уравнение: (t — 3)(t + 5) = 9, t2 + 2t — 15 = 9, t2 + 2t — 24 = 0, D= 4. 4 (-24) = 4 + 96 — 100, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения.

    1)3х2-х=-6,Зх2-х + 6-0, D = (-1)2-4. 3. 6=-71, D<0, следовательно, это уравнение корней не имеет. 2 ) Зх2 — х = 4, Зх2 — х — 4 — О, х1 = -1, х2 = Квадратные уравнения - определение и вычисление с примерами решения. Ответ. а) х1 = -1, х2 = 1, х3 = Квадратные уравнения - определение и вычисление с примерами решения, х4 = Квадратные уравнения - определение и вычисление с примерами решения; б) x1 = -1, x2 =Квадратные уравнения - определение и вычисление с примерами решения .

    Хотите знать ещё больше?

    Формулу корней уравнения ах2 + bх + с = 0 можно записать и в таком виде:

    Квадратные уравнения - определение и вычисление с примерами решения.

    Если второй коэффициент уравнения — чётное число, то есть уравнение имеет вид ах2 + 2kx + с = 0, то

    Квадратные уравнения - определение и вычисление с примерами решения.

    Если первый коэффициент квадратного уравнения равен 1, то такое уравнение называют приведённым. Приведённое квадрат ное уравнение имеет вид х2 + рх + q = 0, Формула его корней:

    Квадратные уравнения - определение и вычисление с примерами решения.

    Выведите эти формулы из основной формулы корней квадратного уравнения.

    Выполним вместе!

    Пример:

    Приведите уравнение (х — 4)(2х + 1) = Зх(х — 1) к квадратному и найдите его корни.

    Решение:

    (х- 4)(2х 4-1) = Зх(х-1). Раскроем скобки и сведём подобные слагаемые: 2 — 8х + х — 4 = 3х2 — 3х,

    Зх2 — 2х2 — 3х + 8х — х + 4 = 0, х2 +4х +4 = 0.

    Решим полученное уравнение, принимая во внимание, что в его левой части — квадрат двучлена: х2 + 2 . х . 2 + 22 = (х +2)2. Следовательно, (х +2)2 — 0, отсюда х + 2 = 0, х = -2.

    Ответ. х = -2.

    Пример:

    Решите дробное рациональное уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Дробь равна нулю, если числитель равен нулю, а знаменатель не равен нулю, х2 — 5х + 6 = 0:

    D=25-4.6=1, Квадратные уравнения - определение и вычисление с примерами решения, х1 =2, х2 =3. Данное уравнение эти значения не удовлетворяют, поскольку при х = 2 знаменатель первой дроби равен 0, а при х = 3 знаменатель второй дроби равен 0. Ответ. Уравнение корней не имеет.

    Теорема Виета

    Квадратное уравнение называют приведённым, если первый его коэффициент равен единице. В таблице — примеры трёх приведённых квадратных уравнений, их корни, а также суммы и произведения корней:

    Квадратные уравнения - определение и вычисление с примерами решения

    Сравните сумму корней каждого приведённого квадратного уравнения с его вторым коэффициентом, а произведение корней — со свободным членом.

    Теорема Виета: Если приведённое квадратное уравнение имеет два корня, то их сумма равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение — свободному члену.

    Доказательство. Если уравнение х2 + рх + q = 0 имеет корни х1 и х2, то их можно найти по формулам:

    Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения где D = р2 — 4q — дискриминант уравнения.

    Сложим и перемножим эти корни:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Итак, x1 + х2 =— р, x1 . х2 = q, что и требовалось доказать. Примечание. Если р2 — 4q = 0, то уравнение х2+ рх + q = 0 имеет один корень Квадратные уравнения - определение и вычисление с примерами решения.

    Формулы (*) в этом случае дают Квадратные уравнения - определение и вычисление с примерами решенияи Квадратные уравнения - определение и вычисление с примерами решения Поэтому часто считают, что данное уравнение имеет два равных корня. Теорема Виета верна и для этого случая, поскольку

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Каждое квадратное уравнение вида Квадратные уравнения - определение и вычисление с примерами решения равносильно приведённому квадратному уравнению Квадратные уравнения - определение и вычисление с примерами решения Если такое уравнение имеет корни х1 и х2,то

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема (обратная теореме Виета). Если сумма m и n произведение чисел тип равны соответственно — р и q, то m и n тип — корни уравнения х2 + рх + q =0.

    Доказательство. Пусть m + n =-р и m . n =q. При данных условиях уравнение х2 + рх 4 q = 0 равно сильно уравнению х2 — (m + n)х + m n = 0.

    Подставим в это уравнение вместо переменной х числа m и n:

    m2 — (m +n)m + mn = m2m2nm + mn= 0,

    n2 — (m +n)n+ mn = n2mnn2 +mn = 0.

    Итак, m и n — корни данного уравнения, что и требовалось доказать. Из теоремы Виета следует: если р и q — целые числа, то целые решения уравнения х2 + рх + q= 0 — это делители числа q. Пользуясь обратной теоремой, можно проверить, является та или другая пара чисел корнями приведённого квадратного уравнения. Это даёт возможность устно решать такие уравнения.

    Пример:

    Решите уравнение х2 + 12х + 11 = 0.

    Решение:

    Если уравнение имеет целые корни, то их произведение равно 11. Это могут быть числа 1 и 11 либо — 1 и -11. Второй коэффициент уравнения положительный, поэтому корни отрицательные. Ответ. х1 = -1, х2 = -11.

    Хотите знать ещё?

    Теорема Виета верна не толоко для приведённого квадратного уравнения, но и для уравнений высших степеней Например, если уравнение третьей степени х3+4ах2 +bх + с = 0 имеет корни х1, х2 и х3, то

    x1+x2+x3=-a

    x1x2+x1x3+x2x3=b

    x1x2x3 = — c.

    Если такое уравнение с целыми коэффициентами имеет целые решения, то они являются делителями свободного члена.

    Выполним вместе!

    Пример:

    Найдите сумму и произведение корней уравнения:

    а) х2 + х-6 = 0; б)х2 + 2х + 3 = 0.

    Решение:

    а) D=1 +24 >0. Корни существуют, поэтому x1 + х2 = -1; x1 . х2 = -6;

    б) D= 4-12<0. Корней не существует. Ответ. а)х1 + х2 = -1,х1 -х2 = -6; б) корней не существует.

    Пример:

    При каких значениях m произведение корней уравнения х2 + 8х + m — 7 = 0 равно 3?

    Решение:

    m-7 = 3, m = 10. Ответ. m = 10.

    Пример:

    Не решая уравнение х2 — 4х + 1 = 0, найдите сумму квадратов его корней.

    Решение:

    D = 16 — 4 > 0. Корни существуют. x1 + х2 = 4; х1 .х2 = 1;

    (x1 + x2)2 = 16; x21+2x1x2+x22 =16;

    х12 +2. 1+x22 =16; x21 +x22 =16-2, х2122 =14.

    Ответ. x21+x22=14.

    Квадратный трёхчлен

    Квадратным трёхчленом называют многочлен вида ах2 + bх+ с, где х — не ременная, a, b, c — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения.

    Переменную квадратного трёхчлена можно обозначить любой буквой. Примеры квадратных трёхчленов:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если квадратный трёхчлен приравнять к нулю, то получим квадратное уравнение. Его корни и дискриминант называют соответственно корнями и дискриминантом данного квадратного трёхчлена. Например, дискриминант и корни квадратного трёхчлена 2 — 7х — 6 равны соответственно 169, 2 и Квадратные уравнения - определение и вычисление с примерами решения , поскольку это дискриминант и корни уравне ния 2 — 7х — 6 = 0.

    Из теоремы Виета следует правило разложения квадратных трёхчленов на множители.

    Если m и n — корни уравнения x2+ рх + q = 0, то х2 + рх + q = (х-m)(х — n).

    Поскольку х2 + рх + q = х2 — (m -n)х 4+mn = х2 — mх — nх 4- mn = (y- m )(х — n).

    Пример:

    Разложите на множители трёхчлен: х2+4х- 21.

    Решение:

    а) Корни уравнения х2+4х- 21=0 равны 3 и -7. Поэтому

    х2+ 4х — 21 =(х- 3)(х +7).

    Ответ.(х- 3)(х +7).

    Верна и такая теорема.

    Если корни квадратного трёхчлена ах2 + bх + с равны m и n, то его можно разложить на множители:

    ах2 +bх + с = а(х — m)(х — n).

    Доказательство:

    Квадратные уравнения - определение и вычисление с примерами решения. Следовательно, корни m и n трёхчлена ах2+bx+c также являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения. По теореме Виета,

    Квадратные уравнения - определение и вычисление с примерами решения

    Поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Например, если нужно разложить на множители трёхчлен Зх2+5х-2, то решаем уравнение Зх2+5х-2-0. Его дискриминант D = 25+24= 49, поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно,

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать и так;

    Зх2+ 5х 2 = (Зх 1 )(х+ 2).

    Разложение квадратных трёхчленов на множители применяется при сокращении дробей, приведении их к общему знаменателю и т. д. Например, чтобы сократить дробь Квадратные уравнения - определение и вычисление с примерами решения сначала следует разложить ее числитель и знаменатель на множители. Поскольку

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Каждый квадратный трёхчлен ах2 + bх + c можно представить в виде а(х-k)2+ р, где k и р некоторые числа. Такое преобразование называют выделением квадрата двучлена. Как выполнить подобное преобразование, покажем на примере. Чтобы выделить из квадратного трёхчлена 2х2 — 12х + 25 квадрат двучлена, сначала вынесем за скобки множитель 2:

    Квадратные уравнения - определение и вычисление с примерами решения Одночлен представим в виде произведения 2 . Зх, прибавим к нему 9 и отнимем 9: Квадратные уравнения - определение и вычисление с примерами решения

    В результате имеем: 2х2 — 12х + 25 = 2 (х — 3)2 + 7.

    Выделение квадрата двучлена даёт возможность решать задачи на нахождение наибольшего или наименьшего значения квадратного трёхчлена. Например, чтобы найти, при каком значении х значение выражения 2х2 -12х + 25 наименьшее, выделим из него квадрат двучлена:

    2— 12x+25 =2(х-3)2 + 7.

    Второе слагаемое полученной суммы — число 7, а первое имеет наименьшее значение, если равно 0, то есть х=3. Следовательно, трёхчлен 2— 12x+25 имеет наименьшее значение 7. если х = 3.

    Хотите знать ещё больше?

    Если квадратный трёхчлен имеет дробные корни, го при разложении его на линейные множители желательно первый коэффициент этого трёхчлена «внести в скобки» Например:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Найдите значение функцииКвадратные уравнения - определение и вычисление с примерами решения при х = 2008.

    Решение:

    Числитель формулы разложим на множители:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если х = 2008, то у = 2008 — 1 = 2007. О т в е т. у = 2007.

    Решение задач составлением квадратных уравнений

    С помощью квадратных уравнений можно упростить решение многих задач.

    Пример:

    Найдите два числа, произведение и среднее арифметическое которых равны соответственно 108 и 10,5.

    Решение:

    Если среднее арифметическое двух чисел равно 10,5, то их сумма в 2 раза больше, то есть 21. Пусть одно из искомых чисел х, тогда другое равно 21-х.

    Имеем уравнение:

    х(21 — х) = 108, или х2 — 21х + 108 = 0.

    Решим это уравнение: D = 212 — 4. 108 = 9,

    Квадратные уравнения - определение и вычисление с примерами решения

    Если х = 9, то 21 — х = 12; если х = 12, то 21 — х = 9.

    Ответ. 9 и 12.

    Пример:

    Собственная скорость моторной лодки — 18 км/ч. Расстояние 12 км по течению реки она проходит на 9 мин быстрее, чем против течения. Найдите скорость течения реки.

    Решение:

    9 мин = 0,15 ч. Если скорость течения реки равна х км/ч, то скорость лодки по течению составляет (18 + х) км/ч, а против течения — (18 — х) км/ч. Расстояние 12 км по течению она проходит за Квадратные уравнения - определение и вычисление с примерами решенияч, а против течения — за Квадратные уравнения - определение и вычисление с примерами решенияч. Имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    отсюда 4(18 + х) — 4(18 — х) — 0,05(18 — х)(18 + х) = 0,

    х2 + 160х — 324 = 0, D = 1602 + 4.324 = 26 896.

    Квадратные уравнения - определение и вычисление с примерами решения

    Задачу удовлетворяет только положительный корень. Ответ. 2 км/ч.

    Пример:

    На плоскости n точек расположены таким образом, что никакие три из них не лежат на одной прямей. Если любую из этих точек соединить отрезком со всеми другими, то получим 351 отрезок. Найдите число n.

    Решение:

    Из одной точки выходит n — 1 отрезков, из всех n данных точек — n(n — 1) отрезков. При этом каждый отрезок повторяется дважды, поскольку имеет два конца. Следовательно, всего отрезков Квадратные уравнения - определение и вычисление с примерами решения

    Имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решим это уравнение: D = 1 + 4 .702 = 2809, Квадратные уравнения - определение и вычисление с примерами решения отсюда n1= 27, n2 = -26. Отрицательный корень задачу не удовлетворяет.

    Ответ. n = 27

    Хотите знать ещё больше?

    В задачах кроме числовых данных иногда бывают и параметры. В этом случае решение желательно дополнить соответствующими исследованиями — указать, какие значения могут принимать параметры. Например, решим такую задачу.

    Пример:

    Найдите стороны равнобедренного треугольника, если известно, что две его неравные высоты равны а и b.

    Решение:

    Обозначим стороны треугольника буквами: АС = АВ = х, СВ = у (рис. 62).

    Квадратные уравнения - определение и вычисление с примерами решенияРис. 62

    Воспользуемся теоремой Пифагора и формулой для вычисления площади треугольника и составим систему

    Квадратные уравнения - определение и вычисление с примерами решения

    Вычислим из второго уравнения с, подставим его в первое и получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения.

    Следовательно,

    Квадратные уравнения - определение и вычисление с примерами решения

    Исследование. В полученных значениях x и у под знаком корня имеем разность 2 — b2, которая должна быть положительной, что возможно только при b < 2а.

    Следовательно, данное решение задачи верно не при любых положительных а и b, а лишь при b < 2а.

    Далее. Мы рассмотрели случай, когда на основание y и опущена высота а. Но для этих же значений а и b возможен иной вариант (рис. 63). Имеем:

    Квадратные уравнения - определение и вычисление с примерами решенияотсюда Квадратные уравнения - определение и вычисление с примерами решения

    В этом случае а < 2b. Ответ. Если a < 2b < 4а, то задача имеет два решения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения, тo задача имеет одно решение

    Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения, тo задача имеет также одно решение

    Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Найдите три последовательных целых числа, сумма квадратов которых равна 509.

    Решение:

    Пусть искомые числа: х -1, х, х + 1. Тогда имеем уравнение: (х — 1)2 + х2 + (х + 1)2 =509. Решим его.

    Раскроем скобки и сведём подобные слагаемые: х2 -2х + 1+ х2+ х2+2х+1- 509=0,.

    2-507=0, отсюда х2 =169, х1= 13, х2=- 13

    = 0, отсюда х2 — 169, х, 13, х . = 13. Следовательно, два других числа: 12, 14 или -12, 14. Ответ. 12, 13, 14 или 12. -13, II.

    Следовательно, два других числа: 12,14 или -12, -14.

    Ответ. 12,13,14 или -12, 13, 14.

    ИСТОРИЧЕСКИЕ СВЕДЕНИЯ

    Квадратные уравнения простейших видов вавилонские математики умели решать ещё 4 тыс. лет тому назад. Со временем их решали также в Китае и Греции. Особое внимание квадратным уравнениям уделил Мухаммед аль-Хо-резми (IX в.). Он показал, как решать (при положительных а и b) уравнения видов х2 + ах = b, х2 + а = bх, ах + b = х2, не используя каких-либо выражений, даже числа записывал словами. Например, уравнение х2 + 21 = 10х учил решать так: «Раздели пополам корни, получится пять, и умножь это на равное ему — будет двадцать пять, и отними от этого двадцать один, то останется четыре, добудь из этого корень, будет два, и отними это от половины корней, то есть от пяти, — останется три; это и будет корень, который ты ищешь». Отрицательных корней тогда не вычисляли. Индийские учёные в решении этого вопроса пошли дальше. Они находили также отрицательные корни квадратных уравнений. Например, Бхаскара (1114 -1178), решая уравнение х2 — 45х = 250, находит два корня: 50 и 5. И только после этого делает замечание: «Второе значение в данном случае не следует брать, люди ведь не воспринимают отрицательных абстрактных чисел». Алгебраические задачи на составление уравнений индийские учёные записывали в стихотворной форме и рассматривали их как особый вид искусства. Они объясняли: «Как солнце затмевает звёзды своим светом, так и человек учёный способен затмить славу других на народных собраниях, предлагая алгебраические задачи и, тем более, решая их». Формулы корней квадратного уравнения вывел Франсуа Виет (1540—1603). Теорему, впоследствии названную его именем, учёный сформулировал так: «Если (В + В) А -А2 равно BD, то А равно В и равно В». Отрицательных корней он не рассматривал. Современные способы решения квадратных уравнений появились благодаря научным трудам Рене Декарта (1596— 1650) и Исаака Ньютона (1643—1727).

    ОСНОВНОЕ В ГЛАВЕ

    Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами. Числа, удовлетворяющие уравнению, — его решения (или корни). Решить уравнение означает найти все его решения либо показать, что их не существует. Два уравнения называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считают равносильными друг другу. Квадратным называют уравнения вида ах2 + bх + с = 0, где х — переменная, а, b, с — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения. Выражение D = b2 — 4ас — его дискриминант. Если Квадратные уравнения - определение и вычисление с примерами решения, то данное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения Если D — 0, то эти корни равны. Если D < 0, то такое квадратное уравнение не имеет действительных корней. Если необходимо, например, решить квадратное уравнение 2 + 9х — 5 = 0, то находим его дискриминант: D = 92 — 4.2 .(-5) =121. Поэтому корни уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения Квадратное уравнение называют неполным, если хотя бы один его коэффициент, кроме первого, равен нулю. Уравнение: ах2 = 0 имеет единственный корень: х = 0;

    ax2 = 0 имеет единственный корень: х = 0; ах2 +bх = 0 имеет два корня: х1 = 0, х2=Квадратные уравнения - определение и вычисление с примерами решения; ах2 + с = 0 имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения , если с : а < 0, и ни одного, если с • а > 0.

    Квадратное уравнение называют приведенным, если его первый коэффициент равен единице. Если уравнение х2 + рх + q = 0 имеет два корня, то

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета Если приведённое квадратное уравнение х2 +рх + q = 0 имеет два корня, то их сумма равна р, а произведение — q.

    Квадратные уравнения

    • Изучив материал этого параграфа, вы научитесь решать уравнения вида Квадратные уравнения - определение и вычисление с примерами решения
    • Ознакомитесь с теоремой Виета для квадратного уравнения.
    • Овладеете приемами решения уравнений, сводящихся к квадратным.

    Вы умеете решать линейные уравнения, то есть уравнения вида Квадратные уравнения - определение и вычисление с примерами решения, где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа.

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения называют уравнением первой степени.

    Например, каждое из линейных уравнений Квадратные уравнения - определение и вычисление с примерами решения

    является уравнением первой степени. А вот линейные уравнения Квадратные уравнения - определение и вычисление с примерами решения не являются уравнениями первой степени.

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения.

    То, что множество уравнений первой степени является подмножеством множества линейных уравнений, иллюстрирует схема на рисунке 34.

    Вы также умеете решать некоторые уравнения, содержащие переменную во второй степени. Например, готовясь к изучению новой темы, вы решили уравнения Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения (упражнение 589). Каждое из этих уравнений имеет вид Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Определение: Квадратным уравнением называют уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами квадратного уравнения. Число Квадратные уравнения - определение и вычисление с примерами решения называют первым или старшим коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениявторым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениясвободным членом.

    Например, квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет следующие коэффициенты: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

    Например, Квадратные уравнения - определение и вычисление с примерами решения — это приведенные квадратные уравнения.

    Поскольку в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения старший коэффициент не равен нулю, то неприведенное квадратное уравнение всегда можно преобразовать в приведенное, равносильное данному. Разделив обе части уравнения Квадратные уравнения - определение и вычисление с примерами решения на число Квадратные уравнения - определение и вычисление с примерами решения получим приведенное квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Существует три вида неполных квадратных уравнений.

    1. При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения
    2. При Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения
    3. При Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Решим неполные квадратные уравнения каждого вида.

    1. Поскольку Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет единственный корень Квадратные уравнения - определение и вычисление с примерами решения
    2. Уравнение Квадратные уравнения - определение и вычисление с примерами решения представим в виде Квадратные уравнения - определение и вычисление с примерами решения Это уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения один из которых равен нулю, а другой является корнем уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения
    3. Уравнение Квадратные уравнения - определение и вычисление с примерами решения представим в виде Квадратные уравнения - определение и вычисление с примерами решения Поскольку Квадратные уравнения - определение и вычисление с примерами решения то возможны два случая: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Очевидно, что в первом случае уравнение корней не имеет. Во втором случае уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения иКвадратные уравнения - определение и вычисление с примерами решения

    Обобщим полученные результаты:

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    или Квадратные уравнения - определение и вычисление с примерами решения Но корень Квадратные уравнения - определение и вычисление с примерами решения не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения Последнее уравнение не имеет корней.

    Ответ: 2.

    Формула корней квадратного уравнения

    Зная коэффициенты Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения можно найти его корень по формуле Квадратные уравнения - определение и вычисление с примерами решения

    Выведем формулу, позволяющую по коэффициентам Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения находить его корни.

    Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения (1)

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то, умножив обе части этого уравнения на 4а, получим уравнение, равносильное данному:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выделим в левой части этого уравнения квадрат двучлена: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения (2)

    Существование корней уравнения (2) и их количество зависят от знака значения выражения Квадратные уравнения - определение и вычисление с примерами решения Это значение называют дискриминантом квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения и обозначают буквой Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения Термин «дискриминант» происходит от латинского слова discriminare, что означает «различать», «разделять».

    Теперь уравнение (2) можно записать так:

    Квадратные уравнения - определение и вычисление с примерами решения (3)

    Возможны три случая: Квадратные уравнения - определение и вычисление с примерами решения

    1. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3), а следовательно, и уравнение (1) корней не имеет. Действительно, при любом значении Квадратные уравнения - определение и вычисление с примерами решения выражение Квадратные уравнения - определение и вычисление с примерами решения принимает только неотрицательные значения.

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение корней не имеет.

    2. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3) принимает вид

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет один корень Квадратные уравнения - определение и вычисление с примерами решения

    3. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3) можно записать в виде

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Применяют также краткую форму записи:

    Квадратные уравнения - определение и вычисление с примерами решения

    Эту запись называют формулой корней квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Полученную формулу можно применять и в случае, когда Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    При решении квадратных уравнений удобно руководствоваться следующим алгоритмом:

    Если второй коэффициент квадратного уравнения представить в виде Квадратные уравнения - определение и вычисление с примерами решения то можно пользоваться другой формулой, которая во многих случаях облегчает вычисления.

    Рассмотрим квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Найдем его дискриминант: Квадратные уравнения - определение и вычисление с примерами решения Обозначим выражение Квадратные уравнения - определение и вычисление с примерами решения через Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то по формуле корней квадратного уравнения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    то есть

    Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Для данного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Дискриминант уравнения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    2) Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, данное уравнение имеет один корень:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что данное уравнение можно решить другим способом. Умножив обе части уравнения на —2, получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 2.

    3) Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать одним из двух способов: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    4) Квадратные уравнения - определение и вычисление с примерами решения Следовательно, уравнение не имеет корней.

    Ответ: корней нет.

    5) Представим данное уравнение в виде Квадратные уравнения - определение и вычисление с примерами решения и применим формулу корней для уравнения вида Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения которое имеет

    корни —8 и 2, однако корень —8 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения которое имеет корни —2 и 8, однако корень 8 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: —2; 2.

    2) Поскольку Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения то искомые корни должны удовлетворять двум условиям одновременно: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения В таком случае говорят, что данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет корни —2 и 12, но корень —2 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 12.

    3) Данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    При каком значении Квадратные уравнения - определение и вычисление с примерами решения имеет единственный корень уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю. Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    2) При Квадратные уравнения - определение и вычисление с примерами решения получаем линейное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеющее один корень.

    При Квадратные уравнения - определение и вычисление с примерами решения данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю:

    Квадратные уравнения - определение и вычисление с примерами решения

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения отсюда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Несколько поколений учителей математики приобретали педагогический опыт, а их учащиеся углубляли свои знания, пользуясь чудесной книгой «Квадратные уравнения» блестящего украинского педагога и математика Николая Андреевича Чайковского. Н. А. Чайковский оставил значительное научное и педагогическое наследие. Его труды известны далеко за пределами Украины.

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета

    Готовясь к изучению этого пункта, вы выполнили упражнения 677, 678. Возможно, эти упражнения подсказали вам, каким образом сумма и произведение корней квадратного уравнения связаны с его коэффициентами.

    Теорема: (теорема Виета). Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Условием теоремы предусмотрено, что данное квадратное уравнение имеет корни. Поэтому его дискриминант Квадратные уравнения - определение и вычисление с примерами решения не может быть отрицательным.

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Применив формулу корней квадратного уравнения, запишем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пусть Квадратные уравнения - определение и вычисление с примерами решения В этом случае считают, что Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следствие. Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Иными словами, сумма корней приведенного квадратного уривнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    Теорема: (обратная теореме Виета). Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Рассмотрим квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Преобразуем его в приведенное:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Французский математик, по профессии юрист. В 1591 г. ввел буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений, благодаря чему стало возможным выражать свойства уравнений и их корни общими формулами. Среди своих открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.

    Согласно условию теоремы это уравнение можно записать так: Квадратные уравнения - определение и вычисление с примерами решения (*)

    Подставим в левую часть этого уравнения вместо Квадратные уравнения - определение и вычисление с примерами решения сначала число Квадратные уравнения - определение и вычисление с примерами решения а затем число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения (*), а следовательно, и корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Следствие. Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Это следствие позволяет решать некоторые квадратные уравнения устно, не используя формулу корней квадратного уравнения.

    Пример:

    Найдите сумму и произведение корней уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Выясним, имеет ли данное уравнение корни. Имеем: Квадратные уравнения - определение и вычисление с примерами решения Следовательно, уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда по теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Найдите коэффициенты Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения уравнения Квадратные уравнения - определение и вычисление с примерами решения если его корнями являются числа —7 и 4.

    Решение:

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Составьте квадратное уравнение с целыми коэффициентами, корни которого равны: 1) 4 и Квадратные уравнения - определение и вычисление с примерами решения; 2) Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения.

    Решение:

    1) Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения По теореме, обратной теореме Виета, числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения Умножив обе части этого уравнения на 7, получаем квадратное уравнение с целыми коэффициентами:

    Квадратные уравнения - определение и вычисление с примерами решения

    2) Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения Отсюда искомым является уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Известно, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Не решая уравнения, найдите значение выражения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Тогда имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Число 4 является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения Найдите второй корень уравнения и значение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения, причем Квадратные уравнения - определение и вычисление с примерами решения По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Составьте квадратное уравнение, корни которого на 4 больше соответствующих корней уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни искомого уравнения.

    По условию Квадратные уравнения - определение и вычисление с примерами решения

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Тогда имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, по теореме, обратной теореме Виета, искомым является уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен

    Определение: Квадратным трехчленом называют многочлен вида Квадратные уравнения - определение и вычисление с примерами решениягде Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Приведем примеры многочленов, являющихся квадратными трехчленами:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что левая часть квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения является квадратным трехчленом.

    Определение: Корнем квадратного трехчлена называют значение переменной, при котором значение квадратного трехчлена равно нулю.

    Например, число 2 является корнем квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы найти корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения надо решить соответствующее квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Значение выражения Квадратные уравнения - определение и вычисление с примерами решения называют дискриминантом квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен корней не имеет. Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет один корень, если Квадратные уравнения - определение и вычисление с примерами решения — то два корня.

    Рассмотрим квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения Разложим его на множители методом группировки (подобное упражнение, 724, вы выполняли при подготовке к изучению этого пункта).

    Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    О таком тождественном преобразовании говорят, что квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения разложили на линейные множители Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Связь между корнями квадратного трехчлена и линейными множителями, на которые он раскладывается, устанавливает следующая теорема.

    Теорема: Если дискриминант квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения положительный, то данный трехчлен можно разложить на линейные множители:

    Квадратные уравнения - определение и вычисление с примерами решения

    где Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного трехчлена.

    Доказательство: Поскольку числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то по теореме Виета

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда

    Квадратные уравнения - определение и вычисление с примерами решения

    Замечание. Если дискриминант квадратного трехчлена равен нулю, то считают, что квадратный трехчлен имеет два равных корня, то есть Квадратные уравнения - определение и вычисление с примерами решения В этом случае разложение квадратного трехчлена на линейные множители имеет следующий вид:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема:. Если дискриминант квадратного трехчлена отрицательный, то данный трехчлен нельзя разложить на линейные множители.

    Доказательство: Предположим, что квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения можно разложить на линейные множители. Тогда существуют такие числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения при которых выполняется равенство Квадратные уравнения - определение и вычисление с примерами решения Отсюда получаем, что тип — корни данного квадратного трехчлена. Следовательно, его дискриминант неотрицательный, что противоречит условию.

    Пример:

    Разложите на множители квадратный трехчлен:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Найдем корни данного трехчлена:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    2) Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    3) Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Сократите дробь Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Разложим на множители квадратный трехчлен, являющийся числителем данной дроби. Решив уравнение Квадратные уравнения - определение и вычисление с примерами решения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теперь можно записать:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    При каком значении Квадратные уравнения - определение и вычисление с примерами решения разложение на множители трехчленаКвадратные уравнения - определение и вычисление с примерами решения содержит множитель Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Поскольку разложение данного трехчлена на множители должно содержать множитель Квадратные уравнения - определение и вычисление с примерами решения то один из корней этого трехчлена равен —5. Тогда имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнений, приводимых к квадратным уравнениям

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение.

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Подставив в исходное уравнение вместо Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения соответственно Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения, получим квадратное уравнение с переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решая это уравнение, находим: Квадратные уравнения - определение и вычисление с примерами решения

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то решение исходного уравнения сводится к решению двух уравнений:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать двумя способами: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Определение: Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением.

    Заменой Квадратные уравнения - определение и вычисление с примерами решения биквадратное уравнение сводится к квадратному уравнению Квадратные уравнения - определение и вычисление с примерами решения Такой способ решения уравнений называют методом замены переменной.

    Метод замены переменной можно использовать не только при решении биквадратных уравнений.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Выполним замену Квадратные уравнения - определение и вычисление с примерами решения Тогда исходное уравнение сводится к квадратному уравнению

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Теперь надо решить следующие два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения Первое из них корней не имеет. Из второго уравнения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 0; 1.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем: Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Получаем два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то эти уравнения корней не имеют, а следовательно, и исходное уравнение корней не имеет.

    Ответ: корней нет.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: —3.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, данное уравнение равносильно системе

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 7.

    Решение уравнений методом замены переменной

    В п. 22 вы ознакомились с решением уравнений методом замены переменной. Рассмотрим еще несколько примеров, иллюстрирующих эффективность этого метода.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения Это уравнение равносильно системе

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Теперь решение исходного уравнения сводится к решению двух уравнений

    Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: —3; —1; 2; 6.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Преобразуем это уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Решив эти два квадратных уравнения, получаем ответ.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    С помощью проверки легко убедиться, что число 0 не является корнем данного уравнения. Тогда, разделив обе части данного уравнения на Квадратные уравнения - определение и вычисление с примерами решенияперейдем к равносильному уравнению:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Произведем замену: Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    С учетом замены получаем два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Такая замена позволяет переписать исходное уравнение следующим образом:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    С помощью проверки можно убедиться, что число 0 не является корнем данного уравнения. Следовательно, можно разделить обе части уравнения на Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение, равносильное исходному:

    Квадратные уравнения - определение и вычисление с примерами решения

    Замена Квадратные уравнения - определение и вычисление с примерами решения приводит к квадратному уравнению

    Квадратные уравнения - определение и вычисление с примерами решения

    Завершите решение самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Может возникнуть вопрос: почему при решении примеров 1—5 мы не пытались упростить уравнения с помощью тождественных преобразований?

    Дело в том, что после тождественных преобразований нам пришлось бы решать уравнение вида Квадратные уравнения - определение и вычисление с примерами решения (вы можете убедиться в этом самостоятельно). При Квадратные уравнения - определение и вычисление с примерами решения такое уравнение называют уравнением четвертой степени, при Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решенияуравнением третьей степени. Частным случаем этого уравнения, когда Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения является биквадратное уравнение. Его вы решать умеете.

    В общем случае для решения уравнений третьей и четвертой степеней необходимо знать формулы нахождения их корней. С историей открытия этих формул вы можете ознакомиться в следующем рассказе.

    Секретное оружие Сципиона дель Ферро

    Вы легко решите каждое из следующих уравнений третьей степени:

    Квадратные уравнения - определение и вычисление с примерами решения

    Все они являются частными случаями уравнения вида Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения Вывести формулу его корней — задача сложная. Недаром появление этой формулы считают выдающимся математическим открытием XVI века.

    Первым изобрел способ решения уравнения вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — положительные числа, итальянский математик Сципион дель Ферро (1465-1526). Найденную формулу он хранил в секрете. Это было обусловлено тем, что карьера ученого того времени во многом зависела от его выступлений в публичных математических турнирах. Поэтому было выгодно хранить открытия в тайне, рассчитывая использовать их в математических соревнованиях как секретное оружие.

    После смерти дель Ферро его ученик Фиоре, владея секретной формулой, вызвал на математический поединок талантливого математика-самоучку Никколо Тарталья. За несколько дней до турнира Тарталья сам вывел формулу корней уравнения третьей степени. Диспут, на котором Тарталья одержал убедительную победу, состоялся 20 февраля 1535 года.

    Впервые секретная формула была опубликована в книге известного итальянского ученого Джероламо Кардан о «Великое искусство». В этой работе также описан метод решения уравнения четвертой степени, открытый Людовико Феррари (1522—1565).

    В XVTI-XVIII вв. усилия многих ведущих математиков были сосредоточены на поиске формулы для решения уравнений пятой степени. Получению результата способствовали работы итальянского математика Паоло Руффини (1765-1822) и норвежского математика Нильса Хенрика Абеля. Сам результат оказался абсолютно неожиданным: было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения пятой и более высоких степеней через коэффициенты уравнения, используя лишь четыре арифметических действия и действие извлечения корня.

    Квадратные уравнения - определение и вычисление с примерами решения

    Рациональные уравнения как математические модели реальных ситуаций

    В п. 7 вы уже ознакомились с задачами, в которых рациональные уравнения служили математическими моделями реальных ситуаций. Теперь, когда вы научились решать квадратные уравнения, можно существенно расширить круг рассматриваемых задач.

    Пример:

    Из пункта Квадратные уравнения - определение и вычисление с примерами решения выехал велосипедист, а через 45 мин после этого в том же направлении выехал грузовик, догнавший велосипедиста на расстоянии 15 км от пункта Квадратные уравнения - определение и вычисление с примерами решения. Найдите скорость велосипедиста и скорость грузовика, если скорость грузовика на 18 км/ч больше скорости велосипедиста.

    Решение:

    Пусть скорость велосипедиста равна Квадратные уравнения - определение и вычисление с примерами решения км/ч, тогда скорость грузовика составляет Квадратные уравнения - определение и вычисление с примерами решения км/ч. Велосипедист проезжает 15 км за Квадратные уравнения - определение и вычисление с примерами решения ч, а грузовик — за Квадратные уравнения - определение и вычисление с примерами решения ч. Разность Квадратные уравнения - определение и вычисление с примерами решения показывает, на сколько часов грузовик проезжает 15 км быстрее, чем велосипедист. Поскольку грузовик проехал 15 км на 45 мин,

    то есть на Квадратные уравнения - определение и вычисление с примерами решения ч, быстрее, чем велосипедист, то получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решим это уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решив квадратное уравнение системы, получим Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Корень —30 не удовлетворяет условию задачи. Следовательно, скорость велосипедиста равна 12 км/ч, а скорость грузовика составляет: 12 + 18 = 30 (км/ч).

    Ответ: 12 км/ч, 30 км/ч.

    Пример:

    Одна бригада работала на ремонте дороги 7 ч, после чего к ней присоединилась вторая бригада. Через 2 ч их совместной работы ремонт был завершен. За сколько часов может отремонтировать дорогу каждая бригада, работая самостоятельно, если первой для этого требуется на 4 ч больше, чем второй?

    Решение:

    Пусть первая бригада может самостоятельно отремонтировать дорогу за Квадратные уравнения - определение и вычисление с примерами решения ч, тогда второй для этого нужно Квадратные уравнения - определение и вычисление с примерами решения ч. За 1 ч первая бригада ремонтирует Квадратные уравнения - определение и вычисление с примерами решения часть дороги, а вторая Квадратные уравнения - определение и вычисление с примерами решения часть дороги. Первая бригада работала 9 ч и отремонтировала Квадратные уравнения - определение и вычисление с примерами решения дороги, а вторая бригада работала 2 ч и отремонтировала соответственно Квадратные уравнения - определение и вычисление с примерами решения дороги. Поскольку в результате была отремонтирована вся дорога, то можно составить уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Полученное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения (убедитесь в этом самостоятельно). Второй корень не удовлетворяет условию задачи, поскольку тогда вторая бригада могла бы отремонтировать дорогу за 3 — 4 = —1 (ч), что не имеет смысла.

    Следовательно, первая бригада может отремонтировать дорогу за 12 ч, а вторая — за 8 ч.

    Ответ: 12 ч, 8 ч.

    Пример:

    Водный раствор соли содержал 120 г воды. После того как в раствор добавили 10 г соли, его концентрация увеличилась на 5 %. Сколько граммов соли содержал раствор первоначально?

    Решение:

    Пусть исходный раствор содержал Квадратные уравнения - определение и вычисление с примерами решения г соли. Тогда его масса была равна Квадратные уравнения - определение и вычисление с примерами решения г, а концентрация соли составляла Квадратные уравнения - определение и вычисление с примерами решения

    После того как к раствору добавили 10 г соли, ее масса Квадратные уравнения - определение и вычисление с примерами решения

    в растворе составила Квадратные уравнения - определение и вычисление с примерами решения г, а масса раствора Квадратные уравнения - определение и вычисление с примерами решения г. Теперь концентрация соли составляет Квадратные уравнения - определение и вычисление с примерами решения что на 5 %, то есть на Квадратные уравнения - определение и вычисление с примерами решения больше, чем Квадратные уравнения - определение и вычисление с примерами решения Отсюда можно записать: Квадратные уравнения - определение и вычисление с примерами решения

    Полученное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения (убедитесь в этом самостоятельно), из которых второй корень не удовлетворяет условию задачи.

    Следовательно, раствор содержал первоначально 30 г соли.

    Ответ: 30 г.

    ГЛАВНОЕ В ПАРАГРАФЕ 3

    Уравнение первой степени

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют уравнением первой степени.

    Квадратное уравнение

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют квадратным уравнением.

    Приведенное квадратное уравнение

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

    Неполное квадратное уравнение

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Решение неполного квадратного уравнения

    Квадратные уравнения - определение и вычисление с примерами решения

    Дискриминант квадратного уравнения

    Для уравнения вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения его дискриминант Квадратные уравнения - определение и вычисление с примерами решения — это значение выражения Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение корней не имеет.

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет один корень Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета:

    Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    то Квадратные уравнения - определение и вычисление с примерами решения

    Теорема, обратная теореме Виета

    Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения иКвадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен

    Многочлен вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения— некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют квадратным трехчленом.

    Разложение квадратного трехчлена на множители

    Если дискриминант квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения положительный, то данный трехчлен можно разложить на линейные множители: Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного трехчлена.

    Биквадратное уравнение

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением.

    ——

    Квадратные уравнения

    В этом разделе вы научитесь:

    • решать квадратные уравнения различными способами;
    • применять квадратные уравнения для решения задач;
    • по каким формулам находят площади треугольников и четырёхугольников;
    • применять формулы площадей при решении задач;
    • находить площадь сложных фигур, разделяя их на простые геометрические фигуры.

    Квадратные уравнения широко применяются в строительстве, финансах и дизайне.

    На практике также, широко применяются формулы для вычисления площадей.

    Это интересно!

    Великий учёный Востока аль — Хорезми в своём труде «Китаб мухтасаб ал-джабр и ва-л-мукабала», что в переводе означает «Книга о восполнении и противопоставлении» показал различные способы решения квадратных уравнений. Одним из них является метод подбора. Хорезми выбирал число и подставлял его в уравнение вместо неизвестного. После чего, становилось понятно, является ли данное число корнем уравнения.

    Например,

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения называется квадратным уравнением. Здесь Квадратные уравнения - определение и вычисление с примерами решения — постоянные, Квадратные уравнения - определение и вычисление с примерами решения — неизвестная. Квадратные уравнения - определение и вычисление с примерами решения — первый коэффициент, Квадратные уравнения - определение и вычисление с примерами решения — второй коэффициент, Квадратные уравнения - определение и вычисление с примерами решения — свободный член.

    Например, в уравнении Квадратные уравнения - определение и вычисление с примерами решения

    Если квадратное уравнение с обеих сторон разделить на Квадратные уравнения - определение и вычисление с примерами решения, то получим уравнение Квадратные уравнения - определение и вычисление с примерами решения Здесь, обозначив Квадратные уравнения - определение и вычисление с примерами решения можно записать

    Квадратные уравнения - определение и вычисление с примерами решения Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения называется приведённым квадратным уравнением. Например, разделив уравнение Квадратные уравнения - определение и вычисление с примерами решения на 2, получим равносильное ему приведённое квадратное уравнение

    Квадратные уравнения - определение и вычисление с примерами решения

    Неполные квадратные уравнения

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решенияили Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называется неполным квадратным уравнением.

    Уравнения, Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения являются неполными квадратными уравнениями.

    1) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения Разделив обе части уравнения на число Квадратные уравнения - определение и вычисление с примерами решенияполучим уравнение Квадратные уравнения - определение и вычисление с примерами решения Его корнями является Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Разделим обе части уравнения Квадратные уравнения - определение и вычисление с примерами решения

    2) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения Для решения таких уравнений применяют вынесение общего множителя за скобку: Квадратные уравнения - определение и вычисление с примерами решенияПроизведение равно нулю, если хотя бы один из множителей равен нулю, т.е. Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Отсюда следует, что уравнение Квадратные уравнения - определение и вычисление с примерами решенияимеет два корня, один из которых всегда равен Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Для решения уравнении Квадратные уравнения - определение и вычисление с примерами решения надо левую часть уравнения разложить на множители: Квадратные уравнения - определение и вычисление с примерами решения

    3) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения

    Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения имеют одинаковые знаки, то действительных корней нет (почему?). Если Квадратные уравнения - определение и вычисление с примерами решения имеют разные знаки, то уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения методом разложения на множители

    Решение уравнения Квадратные уравнения - определение и вычисление с примерами решения методом разложения на множители

    Для разложения левой части уравнения Квадратные уравнения - определение и вычисление с примерами решения на множители надо найти два числа тип (если это возможно), чтобы их произведение было равно Квадратные уравнения - определение и вычисление с примерами решения а сумма Квадратные уравнения - определение и вычисление с примерами решения. Если Квадратные уравнения - определение и вычисление с примерами решения являются целыми числами, то Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — также целые числа. В этом случае, если Квадратные уравнения - определение и вычисление с примерами решения то заданной уравнение можно записать в виде : Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Квадратные уравнения - определение и вычисление с примерами решения В уравнении Квадратные уравнения - определение и вычисление с примерами решения Так как Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решенияположительные числа, то надо найти два положительных числа, чтобы их произведение было равно 8, а сумма — равна 6. Это числа 2 и 4. Зная, что Квадратные уравнения - определение и вычисление с примерами решения то уравнение можно записать в виде Квадратные уравнения - определение и вычисление с примерами решенияОтсюда находим Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Квадратные уравнения - определение и вычисление с примерами решения Так как в уравнении Квадратные уравнения - определение и вычисление с примерами решения отрицательное число, а Квадратные уравнения - определение и вычисление с примерами решения положительное, то надо найти два отрицательных числа, чтобы их произведение было равно 18, а сумма была равна -9. Зная, что Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решениято уравнение можно записать так Квадратные уравнения - определение и вычисление с примерами решения Отсюда находим Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 4. Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнения вида Квадратные уравнения - определение и вычисление с примерами решения методом разложения на множители

    Для разложения левой части уравнения Квадратные уравнения - определение и вычисление с примерами решения на множители, надо найти два числа, чтобы их произведение было равно Квадратные уравнения - определение и вычисление с примерами решения а сумма Квадратные уравнения - определение и вычисление с примерами решения Тогда за-данное уравнение можно решить записав его в виде Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения такие , что Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения В нём Квадратные уравнения - определение и вычисление с примерами решения тогда Квадратные уравнения - определение и вычисление с примерами решения а значит оба числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения отрицательные. Найдём два целых отрицательных, числа, произведение которых равно 40, а сумма равна -13. Это числа -5 и -8.

    Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. В трёхчлене Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Составим список целых отрицательных множителей числа 16. Как видно целых чисел, которые удовлетворяют условию Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения не существует. Это говорит о том, что данный трёхчлен невозможно разложить на множители.

    Квадратные уравнения - определение и вычисление с примерами решения

    Метод выделения полного квадрата

    Для выделения полного квадрата из двухчленах Квадратные уравнения - определение и вычисление с примерами решения его надо дополнить членом Квадратные уравнения - определение и вычисление с примерами решения

    Это правило одинаково как для положительных, так и для отрицательных Квадратные уравнения - определение и вычисление с примерами решенияПример 1. Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения С обеих сторон дополним данное уравнение Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Для решения уравнения Квадратные уравнения - определение и вычисление с примерами решения методом выделения полного квадрата, сначала запишем его в виде Квадратные уравнения - определение и вычисление с примерами решения Для того, чтобы выражение слева соответствовало модели площади квадрата, не хватает всего одной единичной алгебраической карты. Значит, с каждой стороны следует добавить 1. Тогда выражение слева можно представить в виде квадрата двухчлена так

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения графическим методом

    Графический метод

    Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения Тогда решением уравнения будут абсциссы точек пересечения параболы Квадратные уравнения - определение и вычисление с примерами решения и прямой Квадратные уравнения - определение и вычисление с примерами решения При этом прямая может пересекаться с параболой (тогда уравнение имеет два различных корня), может касаться параболы (в этом случае уравнение удовлетворяется при единственном значении неизвестного) или может вообще не иметь общих точек с параболой (тогда уравнение не имеет действительных-корней).

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Графики пересекаются в двух точках. Абсциссы точек пересечения равны — 3 и 1. При проверке убеждаемся, что обе точки являются корнями уравнения.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Для построения прямой Квадратные уравнения - определение и вычисление с примерами решения составим таблицу

    Квадратные уравнения - определение и вычисление с примерами решения

    Абсцисса точки касания прямой и параболы равна 1. Уравнение удовлетворяется при единственном значении неизвестного: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Графики не имеют точек пересечения. Это говорит о том, что данное уравнение не имеет действительных корней.

    Обе части квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения можно преобразовать в приведённое квадратное уравнение, разделив его на Квадратные уравнения - определение и вычисление с примерами решения которое затем удобно решить по способу, представленному выше. Обычно графическим способом находятся приближенные значения корней.

    Калькулятор для построения графиков

    Используя онлайн калькуляторы для построения графиков можно построить различные графики. На рисунке представлены графики функций Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения построенные при помощи графического калькулятора www.meta-calculator.com/online.

    Квадратные уравнения - определение и вычисление с примерами решения

    Решить квадратное уравнение также можно при помощи графического калькулятора, построив в одной системе координат параболу и прямую

    На рисунке корни уравнение Квадратные уравнения - определение и вычисление с примерами решения записанного в виде Квадратные уравнения - определение и вычисление с примерами решениянайдены графически при помощи графического калькулятора www.my.hrw.com/malh06_07/nsmedia/tools/Graph_Calcula-tor/graphCa lc.html

    Квадратные уравнения - определение и вычисление с примерами решения

    Формула для нахождения корней квадратного уравнения

    Мы уже научились находить корни квадратного уравнения методом разложения на множители и методом выделения полного квадрата. Для нахождения корней любого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения методом выделения полного квадрата можно записать обобщённую формулу.

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения эта формула является формулой корней квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Если в формуле для нахождения корней квадратного уравнения принять Квадратные уравнения - определение и вычисление с примерами решения то ее можно записать как Квадратные уравнения - определение и вычисление с примерами решения

    Наличие корней квадратного уравнения зависит от знака Квадратные уравнения - определение и вычисление с примерами решения называется дискриминантом (определителем) квадратного уравнения.

    1) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение не имеет действительных корней.

    2) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два равных корня. Квадратные уравнения - определение и вычисление с примерами решения

    3) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два различных корня: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения а это значит, что уравнение имеет два различных действительных корня. Квадратные уравнения - определение и вычисление с примерами решения

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения дискриминант находится по формуле для приведённого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения При Квадратные уравнения - определение и вычисление с примерами решения для корней приведённого квадратного уравнения, верны следующие формулы Квадратные уравнения - определение и вычисление с примерами решения

    Если второй коэффициент квадратного уравнения является четным числом (т.е. Квадратные уравнения - определение и вычисление с примерами решения), то уравнение Квадратные уравнения - определение и вычисление с примерами решения можно записать в виде Квадратные уравнения - определение и вычисление с примерами решенияТогда Квадратные уравнения - определение и вычисление с примерами решения Обозначим Квадратные уравнения - определение и вычисление с примерами решениятогда Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета

    Решим приведённое квадратное уравнение: Квадратные уравнения - определение и вычисление с примерами решения По формуле нахождения корней приведённого квадратного уравнения имеем Квадратные уравнения - определение и вычисление с примерами решения т.е. Квадратные уравнения - определение и вычисление с примерами решения

    Внимание! Если сложить найденные корни, то получим число противоположное коэффициенту при Квадратные уравнения - определение и вычисление с примерами решения На самом деле, из уравнения Квадратные уравнения - определение и вычисление с примерами решения с другой стороны Квадратные уравнения - определение и вычисление с примерами решения Если умножить полученные корни, получим число равное свободному члену уравнения: 3 • 4 = 12. Это свойство верно для любого приведённого квадратного уравнения.

    Теорема: В приведённом квадратном уравнении сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение, равно свободному члену Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Известно, что Квадратные уравнения - определение и вычисление с примерами решения корни приведённого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения Отсюда получим: Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, для уравнения Квадратные уравнения - определение и вычисление с примерами решения Если обе части любого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения разделить на Квадратные уравнения - определение и вычисление с примерами решения, то получим равносильное приведённое квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Тогда к нему можно будет применить теорему Виета. Сумма корней Квадратные уравнения - определение и вычисление с примерами решения равна Квадратные уравнения - определение и вычисление с примерами решения а произведение равно Квадратные уравнения - определение и вычисление с примерами решения Теорема Виета остаётся в силе, если Квадратные уравнения - определение и вычисление с примерами решения (когда квадратное уравнение имеет два равных корня).

    Найдём корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения методом подбора. По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом корнями уравнения являются числа 4 и 5.

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема, обратная теореме Виета

    Обратная теорема. Если сумма чисел Квадратные уравнения - определение и вычисление с примерами решения равна Квадратные уравнения - определение и вычисление с примерами решения а произведение равно Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Эту теорему можно записать так: любые числа Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство. На самом деле, если принять, что Квадратные уравнения - определение и вычисление с примерами решения то получим: Квадратные уравнения - определение и вычисление с примерами решения т.е. число Квадратные уравнения - определение и вычисление с примерами решения действительно удовлетворяет уравнению. Таким же образом можно показать, что число Квадратные уравнения - определение и вычисление с примерами решениятакже является корнем уравнения.

    Пример:

    Составим квадратное уравнение, если известно, что числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются его корнями. Так как Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения то уравнение будет выглядеть как Квадратные уравнения - определение и вычисление с примерами решения

    Решение задач при помощи квадратных уравнений

    Задача. Один из катетов прямоугольного треугольника на 2 см больше другого и на 2 см меньше гипотенузы. Найдите периметр треугольника.

    1 этап — составление уравнения

    Обозначим длину одного из катетов через Квадратные уравнения - определение и вычисление с примерами решения тогда длина другого катета будет Квадратные уравнения - определение и вычисление с примерами решения а гипотенуза будет равна Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    2 этап — решение уравнения. Согласно теореме Пифагора получим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    3 этап — решение уравнения. Преобразуем уравнение Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    4 этап — анализ результата.

    Решению задачи соответствует корень Квадратные уравнения - определение и вычисление с примерами решения т.к. длины сторон выражаются положительными числами. Тогда длина другого катета будет Квадратные уравнения - определение и вычисление с примерами решения а длина гипотенузы Квадратные уравнения - определение и вычисление с примерами решения Периметр: Квадратные уравнения - определение и вычисление с примерами решения Ответ: периметр треугольника равен 24 см.

    • Заказать решение задач по высшей математике

    Квадратные уравнения

    Квадратные уравнения. Неполные квадратные уравнения

    В математике, физике, экономике, практической деятельности человека встречаются задачи, математическими моделями которых являются уравнения, содержащие переменную во второй степени.

    Пример №256

    Длина земельного участка на 15 м больше ширины, а площадь равна Квадратные уравнения - определение и вычисление с примерами решения Найдите ширину участка.

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения м- ширина участка, тогда ее длина — Квадратные уравнения - определение и вычисление с примерами решения м. По условию задачи площадь участка равна Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Такое уравнение называют квадратным.

    Квадратным уравнением называют уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения —переменная, Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Например, уравнения Квадратные уравнения - определение и вычисление с примерами решения также являются квадратными.

    Числа Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами квадратного уравнения, число Квадратные уравнения - определение и вычисление с примерами решенияпервым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениявторым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениясвободным членом.

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения коэффициенты следующие: Квадратные уравнения - определение и вычисление с примерами решения В уравнении Квадратные уравнения - определение и вычисление с примерами решения следующие: Квадратные уравнения - определение и вычисление с примерами решения а в уравнении Квадратные уравнения - определение и вычисление с примерами решения следующие: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным. Уравнение Квадратные уравнения - определение и вычисление с примерами решения — приведенное, а уравнение Квадратные уравнения - определение и вычисление с примерами решения — не является приведенным.

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Например, неполным квадратным уравнением, в котором Квадратные уравнения - определение и вычисление с примерами решения является уравнение Квадратные уравнения - определение и вычисление с примерами решения в котором Квадратные уравнения - определение и вычисление с примерами решения -уравнение Квадратные уравнения - определение и вычисление с примерами решения в котором Квадратные уравнения - определение и вычисление с примерами решения — уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, неполные квадратные уравнения бывают трех видов: Квадратные уравнения - определение и вычисление с примерами решения

    Рассмотрим решение каждого из них.

    1.Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения имеем уравнение Квадратные уравнения - определение и вычисление с примерами решения корнем которого является число 0.

    Следовательно, уравнение имеет единственный корень: Квадратные уравнения - определение и вычисление с примерами решения

    2.Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Имеем Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения Так как Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение корней не имеет.

    Пример №257

    Решите уравнение:

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения 2) корней нет.

    3. Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Разложим левую часть уравнения на множители и решим полученное уравнение Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Значит, уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №258

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Систематизируем данные о решениях неполного квадратного уравнения в виде схемы: Квадратные уравнения - определение и вычисление с примерами решения

    Формула корней квадратного уравнения

    Рассмотрим полное квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения и найдем его решения в общем виде.

    Умножим левую и правую части уравнения на Квадратные уравнения - определение и вычисление с примерами решения (так как Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Далее прибавим к обеим частям уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выражение Квадратные уравнения - определение и вычисление с примерами решения называют дискриминантом квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Слово дискриминант происходит от латинского различающий. Дискриминант обозначают буквой Квадратные уравнения - определение и вычисление с примерами решения

    Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения запишем уравнение в виде:

    Квадратные уравнения - определение и вычисление с примерами решения и продолжим его решать.

    Рассмотрим все возможные случаи в зависимости от значения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    (при делении на Квадратные уравнения - определение и вычисление с примерами решения учли, что Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два различных корня:

    Квадратные уравнения - определение и вычисление с примерами решения

    Коротко это можно записать так:

    Квадратные уравнения - определение и вычисление с примерами решения

    Получили формулу корней квадратного уравнения.

    2) Квадратные уравнения - определение и вычисление с примерами решенияТогда имеем уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет один корень: Квадратные уравнения - определение и вычисление с примерами решенияЭтот корень можно было бы найти и по формуле корней квадратного уравнения, учитывая, что Квадратные уравнения - определение и вычисление с примерами решения Поэтому можно считать, что уравнение Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня, каждый из которых равен Квадратные уравнения - определение и вычисление с примерами решения

    3) Квадратные уравнения - определение и вычисление с примерами решения В этом случае уравнение Квадратные уравнения - определение и вычисление с примерами решения не имеет корней, так как не существует такого значения Квадратные уравнения - определение и вычисление с примерами решения при котором значение выражения Квадратные уравнения - определение и вычисление с примерами решения было бы отрицательным.

    Систематизируем данные о решениях квадратного уравнения с помощью схемы: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №259

    Решите уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №260

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Умножим левую и правую части уравнения на Квадратные уравнения - определение и вычисление с примерами решения чтобы его коэффициенты стали целыми числами, получим уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения тогда Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Неполные квадратные уравнения и некоторые виды полных квадратных уравнений (например, вида Квадратные уравнения - определение и вычисление с примерами решения вавилонские математики умели решать еще 4 тыс. лет назад. В более поздние времена некоторые квадратные уравнения в Древней Греции и Индии математики решали геометрически. Приемы решения некоторых квадратных уравнений без применения геометрии изложил древнегреческий математик Диофант (III в.).

    Много внимания квадратным уравнениям уделял арабский математик Мухаммед ал-Хорезми (IX в.). Он нашел, как решить уравнения вида Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения (для положительных Квадратные уравнения - определение и вычисление с примерами решения и получить их положительные корни.

    Формулы, связывающие между собой корни квадратного уравнения и его коэффициенты, были найдены французским математиком Франсуа Виетом в 1591 году. Он пришел к следующему выводу (в современных обозначениях): «Корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения являются числа Квадратные уравнения - определение и вычисление с примерами решения

    После публикации трудов нидерландского математика А. Жирара (1595-1632), а также француза Р. Декарта (1596-1650) и англичанина И. Ньютона (1643-1727) формула корней квадратного уравнения приобрела современный вид.

    Теорема Виета

    Рассмотрим несколько приведенных квадратных уравнений, имеющих два различных корня. Внесем в таблицу следующие данные о них: само уравнение, его корни Квадратные уравнения - определение и вычисление с примерами решения сумму его корней Квадратные уравнения - определение и вычисление с примерами решения произведение его корней Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Обратим внимание, что сумма корней каждого из уравнений таблицы равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение корней равно свободному члену. Это свойство выполняется для любого приведенного квадратного уравнения, имеющего корни.

    Приведенное квадратное уравнение в общем виде обычно записывают так: Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней — свободному члену.

    Доказательство: Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения дискриминант которого Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два корня:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня: Квадратные уравнения - определение и вычисление с примерами решения

    Найдем сумму и произведение корней:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения Теорема доказана.

    Эту теорему называют теоремой Виета — в честь выдающегося французского математика Франсуа Виета, который открыл это свойство. Его можно сформулировать следующим образом:

    Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Два последних равенства, показывающих связь между корнями и коэффициентами приведенного квадратного уравнения, называют формулами Виста.

    Используя теорему Виета, можно записать соответствующие формулы и для корней любого неприведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения разделим обе части уравнения на Квадратные уравнения - определение и вычисление с примерами решения Получим приведенное квадратное уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда по теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения — корни неприведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример №261

    Не решая уравнения Квадратные уравнения - определение и вычисление с примерами решения найдите сумму и произведение его корней.

    Решение:

    Найдем дискриминант уравнения, чтобы убедиться, что корни существуют: Квадратные уравнения - определение и вычисление с примерами решения Очевидно, что Квадратные уравнения - определение и вычисление с примерами решения следовательно, уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения

    По теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Если в уравнении Квадратные уравнения - определение и вычисление с примерами решения коэффициент Квадратные уравнения - определение и вычисление с примерами решения является целым числом, то из равенства Квадратные уравнения - определение и вычисление с примерами решения следует, что целыми корнями этого уравнения могут быть только делители числа Квадратные уравнения - определение и вычисление с примерами решения

    Пример №262

    Найдите подбором корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения. Тогда Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения — целые числа, то они являются делителями числа -4. Ищем среди этих делителей два таких, сумма которых равна -3. Нетрудно догадаться, что это числа 1 и -4. Таким образом, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 1; -4.

    Пример №263

    Один из корней уравнения Квадратные уравнения - определение и вычисление с примерами решения равен 3. Найдите коэффициент Квадратные уравнения - определение и вычисление с примерами решения и второй корень уравнения.

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения— один из корней уравнения Квадратные уравнения - определение и вычисление с примерами решения — второй его корень. По теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №264

    Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни уравнения Квадратные уравнения - определение и вычисление с примерами решения Не решая уравнения, найдите значение выражения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    По теореме Виета:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда: 1) Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Справедливо и утверждение, обратное теореме Виета.

    Теорема (обратная теореме Виета). Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: По условию Квадратные уравнения - определение и вычисление с примерами решения Поэтому уравнение Квадратные уравнения - определение и вычисление с примерами решения можно записать так: Квадратные уравнения - определение и вычисление с примерами решения

    Проверим, является ли число Квадратные уравнения - определение и вычисление с примерами решения корнем этого уравнения, для чего подставим в левую часть уравнения вместо переменной Квадратные уравнения - определение и вычисление с примерами решения число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения — корень этого уравнения.

    Аналогично подставим в левую часть уравнения вместо переменной Квадратные уравнения - определение и вычисление с примерами решения число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения — также корень этого уравнения.

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения корни уравнения Квадратные уравнения - определение и вычисление с примерами решения что и требовалось доказать.

    Пример №265

    Составьте приведенное квадратное уравнение, корнями которого являются числа -5 и 2.

    Решение:

    Искомое квадратное уравнение имеет вид Квадратные уравнения - определение и вычисление с примерами решения По теореме, обратной теореме Виета:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения — искомое уравнение.

    Ответ, Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение как математическая модель текстовых и прикладных задач

    В 7 классе мы уже знакомились с задачами, которые можно решить с помощью линейных уравнений или систем линейных уравнений. Для решения прикладной задачи сначала создают ее математическую модель, то есть записывают зависимость между известными и неизвестными величинами с помощью математических понятий, отношений, формул, уравнений и т. п. Математической моделью многих задач в математике, физике, технике, практической деятельности человека может быть не только линейное уравнение или система линейных уравнений, но и квадратное уравнение.

    Рассмотрим несколько примеров.

    Пример №266

    Разность кубов двух натуральных чисел равна 279. Найдите эти числа, если одно из них на 3 больше другого.

    Решение:

    Пусть меньшее из этих чисел равно Квадратные уравнения - определение и вычисление с примерами решения тогда большее равно Квадратные уравнения - определение и вычисление с примерами решения По условию задачи имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Упростим левую часть уравнения.

    Получим: Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения По условию задачи Квадратные уравнения - определение и вычисление с примерами решения Поэтому условию удовлетворяет только число 4. Следовательно, первое искомое число 4, а второе Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 4; 7.

    Пример №267

    В кинотеатре количество мест в ряду на 6 больше количества рядов. Сколько рядов в кинотеатре, если мест в нем 432?

    Решение:

    Пусть в кинотеатре Квадратные уравнения - определение и вычисление с примерами решения рядов, тогда мест в каждом ряду Квадратные уравнения - определение и вычисление с примерами решения Всего мест в зале Квадратные уравнения - определение и вычисление с примерами решения

    Имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Перепишем уравнение в виде Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    По смыслу задачи значение Квадратные уравнения - определение и вычисление с примерами решения должно быть положительным. Этому условию удовлетворяет только Квадратные уравнения - определение и вычисление с примерами решения Следовательно, в кинотеатре 18 рядов.

    Ответ. 18 рядов.

    Пример №268

    У выпуклого многоугольника 54 диагонали. Найдите, сколько у него вершин.

    Решение:

    Пусть у многоугольника Квадратные уравнения - определение и вычисление с примерами решения вершин. Из каждой его вершины выходит Квадратные уравнения - определение и вычисление с примерами решения диагонали. Тогда из всех Квадратные уравнения - определение и вычисление с примерами решения его вершин выходит Квадратные уравнения - определение и вычисление с примерами решения диагонали. Но при этом каждую из его диагоналей посчитали дважды. Следовательно, всего диагоналей будет Квадратные уравнения - определение и вычисление с примерами решения

    Получим уравнение: Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решенияОтрицательный корень уравнения не может быть решением задачи.

    Ответ. 12.

    Пример №269

    Тело подбросили вертикально вверх со скоростью Квадратные уравнения - определение и вычисление с примерами решения Высота Квадратные уравнения - определение и вычисление с примерами решения (в м), на которой через Квадратные уравнения - определение и вычисление с примерами решения с будет тело, вычисляется по формуле Квадратные уравнения - определение и вычисление с примерами решения В какой момент времени тело окажется на высоте 15 м?

    Решение:

    По условию: Квадратные уравнения - определение и вычисление с примерами решения, следовательно, после упрощения имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения решив которое, найдем корни: Квадратные уравнения - определение и вычисление с примерами решения

    Оба корня являются решением задачи, так как на высоте 15 м тело окажется дважды: сначала при движении вверх (это произойдет через 1 с), а во второй раз — при падении (это произойдет через 3 с).

    Ответ. 1 с, 3 с.

    Пример №270

    В 9 часов утра из базового лагеря в восточном направлении отправилась группа туристов со скоростью Квадратные уравнения - определение и вычисление с примерами решения Через час из того же лагеря со скоростью Квадратные уравнения - определение и вычисление с примерами решения отправилась другая группа туристов, но в северном направлении. В котором часу расстояние между группами туристов будет 17 км? Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    За первый час первая группа туристов преодолеет 5 км: Квадратные уравнения - определение и вычисление с примерами решения (рис. 19). Дальше будут двигаться обе группы.

    Пусть расстояние в 17 км между группами будет через Квадратные уравнения - определение и вычисление с примерами решения часов после начала движения второй группы. Тогда за это время первая группа преодолеет Квадратные уравнения - определение и вычисление с примерами решения км, а вторая — Квадратные уравнения - определение и вычисление с примерами решения км, Квадратные уравнения - определение и вычисление с примерами решения Всего первая группа преодолеет расстояние Квадратные уравнения - определение и вычисление с примерами решения

    Из Квадратные уравнения - определение и вычисление с примерами решения по теореме Пифагора Квадратные уравнения - определение и вычисление с примерами решения тогда имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения получим Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, расстояние 17 км между группами туристов будет в 12 часов.

    Ответ. В 12 часов.

    В результате хозяйственной деятельности человека возникли прикладные задачи, решением которых люди занимаются уже на протяжении нескольких тысячелетий. Самые древние из известных нам письменных памятников, содержащих правила нахождения площадей и объемов, были составлены в Египте и Вавилоне приблизительно 4 тыс. лет назад. Около 2,5 тыс. лет назад греки переняли геометрические знания египтян и вавилонян и стали развивать теоретическую (чистую) математику.

    Также в древние времена математики использовали математические модели, в частности и для геометрических построений (метод подобия фигур).

    Современное понятие математической модели в качестве описания некоторого реального процесса языком математики стали использовать в середине XX в. в связи с развитием кибернетики — науки об общих законах получения, хранения, передачи и обработки информации. А раздел современной математики, изучающий математическое моделирование реальных процессов, даже выделили в отдельную науку — прикладную математику.

    Существенный вклад в развитие прикладной математики был сделан нашими выдающимися земляками — математиками М.П. Кравчуком и М.В. Остроградским.

    Развитие кибернетики связывают с именем академика Виктора Михайловича Глушкова — выдающегося математика, доктора физико-математических наук, профессора. В 1953 г. он возглавил лабораторию вычислительной техники Института математики, стал ее мозговым и энергетическим центром. На базе этой лаборатории в 1957 г. был создан Вычислительный центр, а в 1962 г. -Институт кибернетики который и возглавил В.М. Глушков. Лаборатория известна тем, что в 1951 г. в ней создали первую в Евразии Малую электронную счетную машину, а уже в Вычислительном центре завершили работу по созданию первой большой электронно-вычислительной машины. Сегодня Институт кибернетики носит имя В.М. Глушкова и является, в частности, разработчиком прикладных информационных технологий для решения неотложных практических задач, возникающих при моделировании экономических процессов, проектировании объектов теплоэнергетики, решении проблем экологии и защиты окружающей среды.

    Квадратный трехчлен. Разложение квадратного трехчлена на линейные множители

    Выражения Квадратные уравнения - определение и вычисление с примерами решения являются многочленами второй степени с одной переменной стандартного вида. Такие многочлены называют квадратными трехчленами.

    Квадратным трехчленом называют многочлен вида Квадратные уравнения - определение и вычисление с примерами решения переменная, Квадратные уравнения - определение и вычисление с примерами решения — числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Например, выражение Квадратные уравнения - определение и вычисление с примерами решения является квадратным трехчленом, у которого Квадратные уравнения - определение и вычисление с примерами решения

    Пример №271

    Рассмотрим квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то его значение равно нулю. Действительно, Квадратные уравнения - определение и вычисление с примерами решения В таком случае число -1 называют корнем этого квадратного трехчлена.

    Корнем квадратного трехчлена называют значение переменной, при котором значение трехчлена обращается в нуль.

    Чтобы найти корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения нужно решить уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Пример №272

    Найдите корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения Следовательно, Квадратные уравнения - определение и вычисление с примерами решения корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен, как и квадратное уравнение, может иметь два различных корня, один корень (то есть два равных корня) или не иметь корней. Это зависит от знака дискриминанта квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения который также называют и дискриминантом квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет два различных корня, если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет один корень (то есть два равных корня), если Квадратные уравнения - определение и вычисление с примерами решениято квадратный трехчлен не имеет корней.

    Если корни квадратного трехчлена известны, то его можно разложить на линейные множители, то есть на множители, являющиеся многочленами первой степени.

    Теорема (о разложении квадратного трехчлена на множители). Если Квадратные уравнения - определение и вычисление с примерами решения корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения то справедливо равенство

    Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Если Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения (по теореме Виета).

    Для доказательства теоремы раскроем скобки в правой части равенства:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения что и требовалость доказать.

    Если же квадратный трехчлен не имеет корней, то на линейные множители его разложить нельзя.

    Пример №273

    Разложите на множители квадратный трехчлен:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Корни трехчлена Квадратные уравнения - определение и вычисление с примерами решения — числа -1 и 2,5. Поэтому Квадратные уравнения - определение и вычисление с примерами решения Это можно записать иначе, умножив первый в разложении множитель -2 на двучлен Квадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения

    2) Квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения не имеет корней. Поэтому квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения на множители не разлагается.

    3) Квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня Квадратные уравнения - определение и вычисление с примерами решения Поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Нетрудно заметить, что если квадратный трехчлен имеет два равных корня, то он представляет собой квадрат двучлена или произведение некоторого числа на квадрат двучлена.

    Пример №274

    Сократите дробь Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Числа 1 и -0,5 — корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения Поэтому Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    При решении некоторых задач, связанных с квадратным трехчленом Квадратные уравнения - определение и вычисление с примерами решения бывает удобно представить его в виде Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа. Такое преобразование называют выделением квадрата двучлена из квадратного трехчлена.

    Пример №275

    Выделите из трехчлена Квадратные уравнения - определение и вычисление с примерами решения квадрат двучлена.

    Решение:

    Вынесем за скобки множитель 2: Квадратные уравнения - определение и вычисление с примерами решения

    Воспользовавшись формулой квадрата суммы двух чисел Квадратные уравнения - определение и вычисление с примерами решенияпреобразуем выражение в скобках, считая, что Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения откуда определяем, что число 4 является вторым слагаемым квадрата суммы, то есть Квадратные уравнения - определение и вычисление с примерами решения поэтому добавим и вычтем Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №276

    Дан квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения При каком значении Квадратные уравнения - определение и вычисление с примерами решения он принимает наибольшее значение? Найдите это значение.

    Решение:

    Выделим из трехчлена квадрат двучлена:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выражение Квадратные уравнения - определение и вычисление с примерами решения при любом значении Квадратные уравнения - определение и вычисление с примерами решения принимает не положительное значение, то есть Квадратные уравнения - определение и вычисление с примерами решения причем это выражение равно нулю только при Квадратные уравнения - определение и вычисление с примерами решения Поэтому при Квадратные уравнения - определение и вычисление с примерами решения значение данного в условии трехчлена равно 16 и является для него наибольшим.

    Таким образом, квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения принимает наибольшее значение, равное 16, при Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 16 при Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнений, сводящихся к квадратным

    Дробные рациональные уравнения

    Решение дробных рациональных уравнений часто сводится к решению квадратных уравнений. Вспомним один из методов решения дробного рационального уравнения

    Пример №277

    Решите уравнение

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Чтобы найти область допустимых значений переменной и общий знаменатель, разложим на множители знаменатели дробей в уравнении:

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножим обе части уравнения на общий знаменатель дробей — выражение Квадратные уравнения - определение и вычисление с примерами решения учитывая ОДЗ: Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения

    откуда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 3.

    Метод разложения многочлена на множители

    Некоторые уравнения, правая часть которых равна нулю, можно решить с помощью разложения левой части на множители.

    Пример №278

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Вынесем в левой части уравнения общий множитель Квадратные уравнения - определение и вычисление с примерами решения за скобки. Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет три корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 0; 3; -5.

    Биквадратные уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением. Его можно решить с помощью введения новой переменной, то есть обозначив Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения а исходное уравнение принимает вид:

    Квадратные уравнения - определение и вычисление с примерами решения

    Такой метод решения называют методом введения новой переменной или методом замены переменной.

    Пример №279

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Сделаем замену Квадратные уравнения - определение и вычисление с примерами решения получим уравнение Квадратные уравнения - определение и вычисление с примерами решения корнями которого являются числа Квадратные уравнения - определение и вычисление с примерами решения

    Вернемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, корни исходного уравнения — числа 2 и -2.

    Ответ. 2; -2.

    Метод замены переменной

    Не только биквадратные, но и некоторые другие виды уравнений можно решить, используя замену переменной.

    Пример №280

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Если мы раскроем скобки в левой части уравнения, получим уравнение четвертой степени, которое не всегда возможно решить методами школьной математики. Поэтому скобки раскрывать не будем. Заметим, что в обеих скобках выражения, содержащие Квадратные уравнения - определение и вычисление с примерами решения одинаковы, поэтому можно воспользоваться заменой Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение Квадратные уравнения - определение и вычисление с примерами решения которое является квадратным относительно переменной Квадратные уравнения - определение и вычисление с примерами решения Перепишем его в виде Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Возвращаемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, корнями исходного уравнения являются числа Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №281

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Раскроем скобки в каждой части уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что выражения, содержащие переменную Квадратные уравнения - определение и вычисление с примерами решения в обеих частях уравнения одинаковы, поэтому сделаем замену Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение с переменной Квадратные уравнения - определение и вычисление с примерами решения

    Найдем его корни: Квадратные уравнения - определение и вычисление с примерами решения

    Вернемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, исходное уравнение имеет три корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Решение задач с помощью дробных рациональных уравнений

    Дробные рациональные уравнения также могут служить математическими моделями текстовых задач.

    Пример №282

    Из одного города в другой, расстояние между которыми 560 км, одновременно выехали легковой и грузовой автомобили. Скорость легкового была на Квадратные уравнения - определение и вычисление с примерами решения больше скорости грузового, поэтому он прибыл в пункт назначения на 1 ч раньше грузового. Найдите скорость каждого автомобиля.

    Решение:

    Пусть скорость грузового автомобиля Квадратные уравнения - определение и вычисление с примерами решения Систематизируем условие задачи в виде таблицы: Квадратные уравнения - определение и вычисление с примерами решения

    Так как значение величины Квадратные уравнения - определение и вычисление с примерами решения на 1 ч меньше значения величины Квадратные уравнения - определение и вычисление с примерами решения то можем составить уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    У него два корня: Квадратные уравнения - определение и вычисление с примерами решения Отрицательный корень не соответствует смыслу задачи, поэтому скорость грузового автомобиля 70 Квадратные уравнения - определение и вычисление с примерами решения Тогда скорость легкового автомобиля: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №283

    Мастер и его ученик, работая вместе, могут выполнить задание за 8 ч. За сколько часов может выполнить это задание самостоятельно каждый из них, если мастеру на это нужно на 12 ч меньше, чем его ученику?

    Решение:

    Пусть мастеру для самостоятельного выполнения задания нужно Квадратные уравнения - определение и вычисление с примерами решения ч, тогда ученику Квадратные уравнения - определение и вычисление с примерами решения ч. Если вид и объем работ в задачах на работу не конкретизирован (как в данном случае), его принято обозначать единицей. Напомним, что производительность труда — это объем работы, выполняемый за единицу времени. Тогда за 1 ч мастер выполнит Квадратные уравнения - определение и вычисление с примерами решения — часть задания, а ученик Квадратные уравнения - определение и вычисление с примерами решения часть, это и есть их производительности труда. По условию задачи мастер и ученик проработали 8 ч, поэтому мастер выполнил Квадратные уравнения - определение и вычисление с примерами решения часть задания, а ученик Квадратные уравнения - определение и вычисление с примерами решения Учитывая, что они выполнили все задание, имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    откуда Квадратные уравнения - определение и вычисление с примерами решения

    Второй корень не соответствует смыслу задачи, так как является отрицательным.

    Таким образом, мастер, работая отдельно, может выполнить задание за 12 ч, а его ученик — за Квадратные уравнения - определение и вычисление с примерами решения

    Условие этой задачи, как и предыдущей, можно также систематизировать в виде таблицы: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 12 ч и 24 ч.

    Обратите внимание, что условия большинства задач на движение или работу можно систематизировать в виде таблицы, что поможет избежать громоздких текстовых записей.

    «Желаю тебе стать вторым Остроградским…»

    Михаил Васильевич Остроградский родился 12 сентября 1801 года в д. Пашенная Полтавской губернии (в настоящее время деревня Пашеновка). Предки Михаила Васильевича служили в казацком войске, участвовали во многих боях, не раз проявляли военную доблесть и героизм. По-видимому, именно поэтому в детстве Михаил Васильевич так мечтал стать военным. Но ему суждено было стать всемирно известным ученым.

    В детстве Михаил обладал исключительной наблюдательностью и увлекался измерениями. Учился он в пансионе при Полтавской гимназии, потом в этой гимназии. Закончив ее, стал свободным слушателем Харьковского университета, а в дальнейшем и его студентом. После окончания университета с отличием в августе 1820 года, менее чем через год (в апреле 1821 года) получил степень кандидата наук за исследования в прикладной математике. В 1822 году Остроградский уезжает в Париж, чтобы усовершенствовать М.В. Остроградский свое математическое образование, и становится слушателем университета в Сорбонне.

    Именно там он публикует свои первые научные труды, становится известным ученым и заслуживает уважение французских математиков. За неимением средств Михаил Васильевич вынужден был покинуть Париж, преодолев пешком зимой 1828 года путь от Парижа до Петербурга.

    Научные круги Петербурга встретили молодого ученого с радостью и надеждой. Его авторитет среди петербургских деятелей науки был высоким и незыблемым. В том же 1828 году Остроградский начинает преподавательскую деятельность в Морском кадетском корпусе Петербурга, его избирают адъюнктом Петербургской академии наук. А с 1830 года преподает еще в четырех высших учебных заведениях Петербурга. В 1834 году Остроградский был избран членом Американской академии наук, в 1841 году — членом Туринской академии, в 1853 — членом Римской академии Линчей и в 1856 году -членом-корреспондентом Парижской академии наук.

    Лекции Остроградского посещали не только студенты, но и преподаватели, профессура, известные математики. Всем нравилась его система преподавания предмета — широта темы, но при этом выразительность и сжатость изложения, а также его остроумие. На лекциях он украшал свою речь словами, пословицами и поговорками. Поэтому студенты вспоминали его лекции с восторгом.

    Любимым писателем Остроградского был Т.Г. Шевченко, с которым он был лично знаком и значительную часть произведений которого, зная наизусть, охотно декламировал. В 1858 году, когда Тарас Григорьевич возвращался из ссылки на родину через Петербург, Михаил Васильевич предложил Кобзарю остановится в его петербургской квартире.

    Вернувшись из ссылки, Шевченко писал в «Дневнике»: «Великий математик принял меня с распростертыми объятиями, как земляка и как надолго выехавшего члена семьи».

    Михаил Васильевич был выдающимся, оригинальным, всесторонне одаренным человеком. Его ценили не только за ум, но и за независимость, демократизм, скромность, искренность и простоту, за уважение к людям труда. Находясь на вершине славы, отмеченный за свои научные труды во всей Европе, Остроградский был прост в общении и не любил говорить о своих заслугах.

    И какие бы проблемы не решал ученый (занимался он алгеброй, прикладной математикой, теорией чисел, теорией вероятностей, механикой и т. п.), все его научные труды отличаются глубиной мысли и оригинальностью, в них неизменно присутствует широта его взглядов, умение углубиться в суть проблемы, систематизировать и обобщить.

    На всю жизнь Михаил Васильевич сохранил любовь к родной Земле и родному языку. Почти ежегодно летом он выезжал с целью погрузиться в полное спокойствие и полюбоваться замечательными пейзажами. Летом 1861 года Остроградский, пребывая на родине, заболел и 1 января 1862 года умер.

    За свою почти 40-летнюю научную деятельность Михаил Васильевич написал свыше 50 трудов из разных отраслей математики: математического анализа, аналитической и небесной механики, математической физики, теории вероятностей. Свои педагогические взгляды М.В. Остроградский изложил в учебниках по элементарной и высшей математике.

    Именем М.В. Остроградского назван Кременчугский национальный университет.

    И хотя почти всю свою жизнь Михаил Остроградский занимался наукой, он был широко известен своим соотечественникам. Авторитет и популярность М.В. Остроградского были настолько значимыми, что родители, отдавая ребенка на учебу, желали ему «стать вторым Остроградским».

    Сведения из курса математики 5-6 классов и алгебры 7 класса

    Десятичные дроби

    Сложение и вычитание десятичных дробей выполняют поразрядно, записывая их одна под другой так, чтобы запятая размещалась под запятой.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы перемножить две десятичные дроби, надо выполнить умножение, не обращая внимания на запятые, а потом в произведении отделить занятой справа налево столько цифр, сколько их после занятой в обоих множителях вместе.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить десятичную дробь на натуральное число, надо выполнить деление, не обращая внимания на запятую, но после окончания деления целой части делимого нужно в частном поставить занятую.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить десятичную дробь на десятичную, нужно в делимом и делителе перенести запятую на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Обычные дроби

    Частное от деления числа Квадратные уравнения - определение и вычисление с примерами решения на число Квадратные уравнения - определение и вычисление с примерами решения можно записать в виде обычной дроби Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения числитель дроби, Квадратные уравнения - определение и вычисление с примерами решения — ее знаменатель.

    Основное свойство дроби: значение дроби не изменится, если ее числитель и знаменатель умножить или разделить на одно и то же натуральное число.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения (сократили дробь Квадратные уравнения - определение и вычисление с примерами решения на 5);

    Квадратные уравнения - определение и вычисление с примерами решения (привели дробь Квадратные уравнения - определение и вычисление с примерами решения к знаменателю 14).

    Дроби с одинаковыми знаменателями складывают и вычитают по формулам:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы сложить или вычесть дроби с разными знаменателями, их сначала приводят к общему знаменателю, а затем выполняют действие по правилу сложения или вычитания дробей с одинаковыми знаменателями.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    На следующих примерах показано, как выполнить сложение и вычитание смешанных чисел.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы умножить две дроби, нужно перемножить их числители и их знаменатели и первый результат записать числителем произведения, а второй — знаменателем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Положительные и отрицательные числа

    Модулем числа называют расстояние от начала отсчета до точки, изображающей это число на координатной прямой.

    Модуль положительного числа и числа нуль — само это число, а модуль отрицательного — противоположное ему число:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения Чтобы сложить два отрицательных числа, нужно сложить их модули и перед полученным результатом записать знак Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы сложить два числа с разными знаками, нужно из большего модуля слагаемых вычесть меньший модуль и перед полученным результатом записать знак слагаемого с большим модулем.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число, противоположное вычитаемому:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Произведение двух чисел с одинаковыми знаками равно произведению их модулей. Произведение двух чисел с разными знаками равно произведению их модулей, взятому со знаком «-».

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Частное двух чисел с одинаковыми знаками равно частному от деления их модулей. Частное двух чисел с разными знаками равно частному от деления их модулей, взятому со знаком «-».

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение

    Корнем, или решением, уравнения называют число, обращающее уравнение в правильное числовое равенство.

    Примеры:

    1) Число 3 является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения так как Квадратные уравнения - определение и вычисление с примерами решения

    2) Число -2 не является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения так как Квадратные уравнения - определение и вычисление с примерами решения

    Решить уравнение — значит найти все его корни или доказать, что корней нет.

    Два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и уравнения, не имеющие корней.

    Примеры:

    1) Уравнения Квадратные уравнения - определение и вычисление с примерами решения равносильны, так как каждое из них имеет единственный корень, равный 2.

    2) Уравнения Квадратные уравнения - определение и вычисление с примерами решения не являются равносильными, так как корень первого — число 1, а второго — число 2.

    Для решения уравнений используют следующие свойства:

    1) если в любой части уравнения раскрыть скобки или привести подобные слагаемые, получим уравнение, равносильное данному;

    2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, получим уравнение, равносильное данному;

    3) если обе части уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения числа, Квадратные уравнения - определение и вычисление с примерами решения переменная, называют линейным уравнением с одной переменной.

    Решение линейного уравнения представим в виде схемы:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    В большинстве случаев уравнения последовательными преобразованиями приводят к линейному уравнению, равносильному данному.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения Раскроем скобки: Квадратные уравнения - определение и вычисление с примерами решения Перенесем слагаемые, содержащие переменную, в левую часть уравнения, остальные — в правую, изменив знаки переносимых слагаемых на противоположные: Квадратные уравнения - определение и вычисление с примерами решения приведем подобные слагаемые: Квадратные уравнения - определение и вычисление с примерами решения решим полученное линейное уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножим обе части уравнения на наименьшее общее кратное знаменателей дробей — число 6:

    Квадратные уравнения - определение и вычисление с примерами решения

    Дальше решаем, как в предыдущем примере:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Любое число.

    Степень с натуральным показателем

    Степенью числа Квадратные уравнения - определение и вычисление с примерами решения с натуральным показателем Квадратные уравнения - определение и вычисление с примерами решения называют произведение Квадратные уравнения - определение и вычисление с примерами решения множителей, каждый из которых равен Квадратные уравнения - определение и вычисление с примерами решения Степенью числа Квадратные уравнения - определение и вычисление с примерами решения с показателем 1 называют само это число.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Свойства степени с натуральным показателем

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Используя свойства степени с натуральным показателем, можем существенно упростить вычисления.

    Квадратные уравнения - определение и вычисление с примерами решения

    Одночлен

    Целые выражения — числа, переменные, их степени и произведения называют одночленами.

    Например Квадратные уравнения - определение и вычисление с примерами решения — одночлены; выражения Квадратные уравнения - определение и вычисление с примерами решения Не одночлены.

    Если одночлен содержит только один числовой множитель, записанный первым, и содержит степени разных переменных, то такой одночлен называют одночленом стандартного вида.

    Например, Квадратные уравнения - определение и вычисление с примерами решения — одночлен стандартного вида, а одночлен Квадратные уравнения - определение и вычисление с примерами решения не является одночленом стандартного вида.

    Этот одночлен можно привести к одночлену стандартного вида:

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение одночленов

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Возведение одночлена в степень

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Многочлен

    Многочленом называют сумму одночленов. Многочлен, являющийся суммой одночленов стандартного вида, среди которых нет подобных слагаемых, называют многочленом стандартного вида.

    Многочлен Квадратные уравнения - определение и вычисление с примерами решения не является многочленом стандартного вида, но его можно привести к стандартному виду:

    Квадратные уравнения - определение и вычисление с примерами решения

    Сложение и вычитание многочленов

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение одночлена на многочлен

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение многочлена на многочлен

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Формулы сокращенного умножения

    Квадратные уравнения - определение и вычисление с примерами решения

    Разложение многочленов на множители

    Вынесение общего множителя за скобки

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Способ группировки

    Квадратные уравнения - определение и вычисление с примерами решения

    Использование формул сокращенного умножения

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Функция

    Если каждому значению независимой переменной соответствует единственное значение зависимой переменной, то такую зависимость называют функциональной зависимостью, или функцией.

    Переменную Квадратные уравнения - определение и вычисление с примерами решения в этом случае называют независимой переменной (или аргументом), а переменную Квадратные уравнения - определение и вычисление с примерами решениязависимой переменной (или функцией от заданного аргумента).

    Все значения, которые принимает независимая переменная (аргумент), образуют область определения функции; все значения, которые принимает зависимая переменная (функция), образуют область значений функции.

    Линейной называют функцию, которую можно задать формулой вида Квадратные уравнения - определение и вычисление с примерами решения независимая переменная, Квадратные уравнения - определение и вычисление с примерами решения -некоторые числа.

    Графиком любой линейной функции является прямая. Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки на координатной плоскости и провести через них прямую.

    Пример:

    Построим график функции Квадратные уравнения - определение и вычисление с примерами решения

    Составим таблицу для любых двух значений аргумента: Квадратные уравнения - определение и вычисление с примерами решения

    Отметим на координатной плоскости полученные точки и проведем через них прямую (рис. 20). Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Построим график функции Квадратные уравнения - определение и вычисление с примерами решения Любому значению Квадратные уравнения - определение и вычисление с примерами решения соответствует одно и то же значение Квадратные уравнения - определение и вычисление с примерами решения равное числу -2. Графиком функции является прямая, состоящая из точек с координатами Квадратные уравнения - определение и вычисление с примерами решения— любое число. Обозначим две любые такие точки, например Квадратные уравнения - определение и вычисление с примерами решения и проведем через них прямую (рис. 21).

    Квадратные уравнения - определение и вычисление с примерами решения

    Системы линейных уравнений с двумя переменными

    Если нужно найти общее решение двух (или более) уравнений, то говорят, что эти уравнения образуют систему уравнений.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения система уравнений с двумя неизвестными Квадратные уравнения - определение и вычисление с примерами решения

    Решением системы уравнений с двумя переменными называют пару значений переменных, при которых каждое уравнение обращается в верное числовое равенство.

    Пара чисел Квадратные уравнения - определение и вычисление с примерами решения является решением данной выше системы, поскольку Квадратные уравнения - определение и вычисление с примерами решения

    Пара чисел Квадратные уравнения - определение и вычисление с примерами решения не является решением системы. Для этих значений переменных первое уравнение обращается в верное равенство Квадратные уравнения - определение и вычисление с примерами решения а второе — нет Квадратные уравнения - определение и вычисление с примерами решения

    Решить систему уравнений — значит найти все ее решения или доказать, что решений нет.

    Решение системы двух линейных уравнений с двумя переменными способом подстановки Решить систему уравнений Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Решение системы двух линейных уравнении с двумя переменными способом сложения

    Решить систему уравнений Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    • Неравенства
    • Числовые последовательности
    • Предел числовой последовательности
    • Предел и непрерывность числовой функции одной переменной
    • Разложение многочленов на множители
    • Системы линейных уравнений с двумя переменными
    • Рациональные выражения
    • Квадратные корни

    Понравилась статья? Поделить с друзьями:
  • Как найти длину катета лежащего против угла
  • Как найти моды в игре симс
  • Как найти информацию пропавших вов
  • Как найти скрытый текст в документе
  • Как найти файлы вайбера на компьютере